linux/mm/hugetlb.c
<<
>>
Prefs
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/memblock.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/mmdebug.h>
  22#include <linux/sched/signal.h>
  23#include <linux/rmap.h>
  24#include <linux/string_helpers.h>
  25#include <linux/swap.h>
  26#include <linux/swapops.h>
  27#include <linux/jhash.h>
  28#include <linux/numa.h>
  29
  30#include <asm/page.h>
  31#include <asm/pgtable.h>
  32#include <asm/tlb.h>
  33
  34#include <linux/io.h>
  35#include <linux/hugetlb.h>
  36#include <linux/hugetlb_cgroup.h>
  37#include <linux/node.h>
  38#include <linux/userfaultfd_k.h>
  39#include <linux/page_owner.h>
  40#include "internal.h"
  41
  42int hugetlb_max_hstate __read_mostly;
  43unsigned int default_hstate_idx;
  44struct hstate hstates[HUGE_MAX_HSTATE];
  45/*
  46 * Minimum page order among possible hugepage sizes, set to a proper value
  47 * at boot time.
  48 */
  49static unsigned int minimum_order __read_mostly = UINT_MAX;
  50
  51__initdata LIST_HEAD(huge_boot_pages);
  52
  53/* for command line parsing */
  54static struct hstate * __initdata parsed_hstate;
  55static unsigned long __initdata default_hstate_max_huge_pages;
  56static unsigned long __initdata default_hstate_size;
  57static bool __initdata parsed_valid_hugepagesz = true;
  58
  59/*
  60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  61 * free_huge_pages, and surplus_huge_pages.
  62 */
  63DEFINE_SPINLOCK(hugetlb_lock);
  64
  65/*
  66 * Serializes faults on the same logical page.  This is used to
  67 * prevent spurious OOMs when the hugepage pool is fully utilized.
  68 */
  69static int num_fault_mutexes;
  70struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  71
  72/* Forward declaration */
  73static int hugetlb_acct_memory(struct hstate *h, long delta);
  74
  75static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  76{
  77        bool free = (spool->count == 0) && (spool->used_hpages == 0);
  78
  79        spin_unlock(&spool->lock);
  80
  81        /* If no pages are used, and no other handles to the subpool
  82         * remain, give up any reservations mased on minimum size and
  83         * free the subpool */
  84        if (free) {
  85                if (spool->min_hpages != -1)
  86                        hugetlb_acct_memory(spool->hstate,
  87                                                -spool->min_hpages);
  88                kfree(spool);
  89        }
  90}
  91
  92struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  93                                                long min_hpages)
  94{
  95        struct hugepage_subpool *spool;
  96
  97        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  98        if (!spool)
  99                return NULL;
 100
 101        spin_lock_init(&spool->lock);
 102        spool->count = 1;
 103        spool->max_hpages = max_hpages;
 104        spool->hstate = h;
 105        spool->min_hpages = min_hpages;
 106
 107        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 108                kfree(spool);
 109                return NULL;
 110        }
 111        spool->rsv_hpages = min_hpages;
 112
 113        return spool;
 114}
 115
 116void hugepage_put_subpool(struct hugepage_subpool *spool)
 117{
 118        spin_lock(&spool->lock);
 119        BUG_ON(!spool->count);
 120        spool->count--;
 121        unlock_or_release_subpool(spool);
 122}
 123
 124/*
 125 * Subpool accounting for allocating and reserving pages.
 126 * Return -ENOMEM if there are not enough resources to satisfy the
 127 * the request.  Otherwise, return the number of pages by which the
 128 * global pools must be adjusted (upward).  The returned value may
 129 * only be different than the passed value (delta) in the case where
 130 * a subpool minimum size must be manitained.
 131 */
 132static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 133                                      long delta)
 134{
 135        long ret = delta;
 136
 137        if (!spool)
 138                return ret;
 139
 140        spin_lock(&spool->lock);
 141
 142        if (spool->max_hpages != -1) {          /* maximum size accounting */
 143                if ((spool->used_hpages + delta) <= spool->max_hpages)
 144                        spool->used_hpages += delta;
 145                else {
 146                        ret = -ENOMEM;
 147                        goto unlock_ret;
 148                }
 149        }
 150
 151        /* minimum size accounting */
 152        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 153                if (delta > spool->rsv_hpages) {
 154                        /*
 155                         * Asking for more reserves than those already taken on
 156                         * behalf of subpool.  Return difference.
 157                         */
 158                        ret = delta - spool->rsv_hpages;
 159                        spool->rsv_hpages = 0;
 160                } else {
 161                        ret = 0;        /* reserves already accounted for */
 162                        spool->rsv_hpages -= delta;
 163                }
 164        }
 165
 166unlock_ret:
 167        spin_unlock(&spool->lock);
 168        return ret;
 169}
 170
 171/*
 172 * Subpool accounting for freeing and unreserving pages.
 173 * Return the number of global page reservations that must be dropped.
 174 * The return value may only be different than the passed value (delta)
 175 * in the case where a subpool minimum size must be maintained.
 176 */
 177static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 178                                       long delta)
 179{
 180        long ret = delta;
 181
 182        if (!spool)
 183                return delta;
 184
 185        spin_lock(&spool->lock);
 186
 187        if (spool->max_hpages != -1)            /* maximum size accounting */
 188                spool->used_hpages -= delta;
 189
 190         /* minimum size accounting */
 191        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 192                if (spool->rsv_hpages + delta <= spool->min_hpages)
 193                        ret = 0;
 194                else
 195                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 196
 197                spool->rsv_hpages += delta;
 198                if (spool->rsv_hpages > spool->min_hpages)
 199                        spool->rsv_hpages = spool->min_hpages;
 200        }
 201
 202        /*
 203         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 204         * quota reference, free it now.
 205         */
 206        unlock_or_release_subpool(spool);
 207
 208        return ret;
 209}
 210
 211static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 212{
 213        return HUGETLBFS_SB(inode->i_sb)->spool;
 214}
 215
 216static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 217{
 218        return subpool_inode(file_inode(vma->vm_file));
 219}
 220
 221/*
 222 * Region tracking -- allows tracking of reservations and instantiated pages
 223 *                    across the pages in a mapping.
 224 *
 225 * The region data structures are embedded into a resv_map and protected
 226 * by a resv_map's lock.  The set of regions within the resv_map represent
 227 * reservations for huge pages, or huge pages that have already been
 228 * instantiated within the map.  The from and to elements are huge page
 229 * indicies into the associated mapping.  from indicates the starting index
 230 * of the region.  to represents the first index past the end of  the region.
 231 *
 232 * For example, a file region structure with from == 0 and to == 4 represents
 233 * four huge pages in a mapping.  It is important to note that the to element
 234 * represents the first element past the end of the region. This is used in
 235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 236 *
 237 * Interval notation of the form [from, to) will be used to indicate that
 238 * the endpoint from is inclusive and to is exclusive.
 239 */
 240struct file_region {
 241        struct list_head link;
 242        long from;
 243        long to;
 244};
 245
 246/*
 247 * Add the huge page range represented by [f, t) to the reserve
 248 * map.  In the normal case, existing regions will be expanded
 249 * to accommodate the specified range.  Sufficient regions should
 250 * exist for expansion due to the previous call to region_chg
 251 * with the same range.  However, it is possible that region_del
 252 * could have been called after region_chg and modifed the map
 253 * in such a way that no region exists to be expanded.  In this
 254 * case, pull a region descriptor from the cache associated with
 255 * the map and use that for the new range.
 256 *
 257 * Return the number of new huge pages added to the map.  This
 258 * number is greater than or equal to zero.
 259 */
 260static long region_add(struct resv_map *resv, long f, long t)
 261{
 262        struct list_head *head = &resv->regions;
 263        struct file_region *rg, *nrg, *trg;
 264        long add = 0;
 265
 266        spin_lock(&resv->lock);
 267        /* Locate the region we are either in or before. */
 268        list_for_each_entry(rg, head, link)
 269                if (f <= rg->to)
 270                        break;
 271
 272        /*
 273         * If no region exists which can be expanded to include the
 274         * specified range, the list must have been modified by an
 275         * interleving call to region_del().  Pull a region descriptor
 276         * from the cache and use it for this range.
 277         */
 278        if (&rg->link == head || t < rg->from) {
 279                VM_BUG_ON(resv->region_cache_count <= 0);
 280
 281                resv->region_cache_count--;
 282                nrg = list_first_entry(&resv->region_cache, struct file_region,
 283                                        link);
 284                list_del(&nrg->link);
 285
 286                nrg->from = f;
 287                nrg->to = t;
 288                list_add(&nrg->link, rg->link.prev);
 289
 290                add += t - f;
 291                goto out_locked;
 292        }
 293
 294        /* Round our left edge to the current segment if it encloses us. */
 295        if (f > rg->from)
 296                f = rg->from;
 297
 298        /* Check for and consume any regions we now overlap with. */
 299        nrg = rg;
 300        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 301                if (&rg->link == head)
 302                        break;
 303                if (rg->from > t)
 304                        break;
 305
 306                /* If this area reaches higher then extend our area to
 307                 * include it completely.  If this is not the first area
 308                 * which we intend to reuse, free it. */
 309                if (rg->to > t)
 310                        t = rg->to;
 311                if (rg != nrg) {
 312                        /* Decrement return value by the deleted range.
 313                         * Another range will span this area so that by
 314                         * end of routine add will be >= zero
 315                         */
 316                        add -= (rg->to - rg->from);
 317                        list_del(&rg->link);
 318                        kfree(rg);
 319                }
 320        }
 321
 322        add += (nrg->from - f);         /* Added to beginning of region */
 323        nrg->from = f;
 324        add += t - nrg->to;             /* Added to end of region */
 325        nrg->to = t;
 326
 327out_locked:
 328        resv->adds_in_progress--;
 329        spin_unlock(&resv->lock);
 330        VM_BUG_ON(add < 0);
 331        return add;
 332}
 333
 334/*
 335 * Examine the existing reserve map and determine how many
 336 * huge pages in the specified range [f, t) are NOT currently
 337 * represented.  This routine is called before a subsequent
 338 * call to region_add that will actually modify the reserve
 339 * map to add the specified range [f, t).  region_chg does
 340 * not change the number of huge pages represented by the
 341 * map.  However, if the existing regions in the map can not
 342 * be expanded to represent the new range, a new file_region
 343 * structure is added to the map as a placeholder.  This is
 344 * so that the subsequent region_add call will have all the
 345 * regions it needs and will not fail.
 346 *
 347 * Upon entry, region_chg will also examine the cache of region descriptors
 348 * associated with the map.  If there are not enough descriptors cached, one
 349 * will be allocated for the in progress add operation.
 350 *
 351 * Returns the number of huge pages that need to be added to the existing
 352 * reservation map for the range [f, t).  This number is greater or equal to
 353 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 354 * is needed and can not be allocated.
 355 */
 356static long region_chg(struct resv_map *resv, long f, long t)
 357{
 358        struct list_head *head = &resv->regions;
 359        struct file_region *rg, *nrg = NULL;
 360        long chg = 0;
 361
 362retry:
 363        spin_lock(&resv->lock);
 364retry_locked:
 365        resv->adds_in_progress++;
 366
 367        /*
 368         * Check for sufficient descriptors in the cache to accommodate
 369         * the number of in progress add operations.
 370         */
 371        if (resv->adds_in_progress > resv->region_cache_count) {
 372                struct file_region *trg;
 373
 374                VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 375                /* Must drop lock to allocate a new descriptor. */
 376                resv->adds_in_progress--;
 377                spin_unlock(&resv->lock);
 378
 379                trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 380                if (!trg) {
 381                        kfree(nrg);
 382                        return -ENOMEM;
 383                }
 384
 385                spin_lock(&resv->lock);
 386                list_add(&trg->link, &resv->region_cache);
 387                resv->region_cache_count++;
 388                goto retry_locked;
 389        }
 390
 391        /* Locate the region we are before or in. */
 392        list_for_each_entry(rg, head, link)
 393                if (f <= rg->to)
 394                        break;
 395
 396        /* If we are below the current region then a new region is required.
 397         * Subtle, allocate a new region at the position but make it zero
 398         * size such that we can guarantee to record the reservation. */
 399        if (&rg->link == head || t < rg->from) {
 400                if (!nrg) {
 401                        resv->adds_in_progress--;
 402                        spin_unlock(&resv->lock);
 403                        nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 404                        if (!nrg)
 405                                return -ENOMEM;
 406
 407                        nrg->from = f;
 408                        nrg->to   = f;
 409                        INIT_LIST_HEAD(&nrg->link);
 410                        goto retry;
 411                }
 412
 413                list_add(&nrg->link, rg->link.prev);
 414                chg = t - f;
 415                goto out_nrg;
 416        }
 417
 418        /* Round our left edge to the current segment if it encloses us. */
 419        if (f > rg->from)
 420                f = rg->from;
 421        chg = t - f;
 422
 423        /* Check for and consume any regions we now overlap with. */
 424        list_for_each_entry(rg, rg->link.prev, link) {
 425                if (&rg->link == head)
 426                        break;
 427                if (rg->from > t)
 428                        goto out;
 429
 430                /* We overlap with this area, if it extends further than
 431                 * us then we must extend ourselves.  Account for its
 432                 * existing reservation. */
 433                if (rg->to > t) {
 434                        chg += rg->to - t;
 435                        t = rg->to;
 436                }
 437                chg -= rg->to - rg->from;
 438        }
 439
 440out:
 441        spin_unlock(&resv->lock);
 442        /*  We already know we raced and no longer need the new region */
 443        kfree(nrg);
 444        return chg;
 445out_nrg:
 446        spin_unlock(&resv->lock);
 447        return chg;
 448}
 449
 450/*
 451 * Abort the in progress add operation.  The adds_in_progress field
 452 * of the resv_map keeps track of the operations in progress between
 453 * calls to region_chg and region_add.  Operations are sometimes
 454 * aborted after the call to region_chg.  In such cases, region_abort
 455 * is called to decrement the adds_in_progress counter.
 456 *
 457 * NOTE: The range arguments [f, t) are not needed or used in this
 458 * routine.  They are kept to make reading the calling code easier as
 459 * arguments will match the associated region_chg call.
 460 */
 461static void region_abort(struct resv_map *resv, long f, long t)
 462{
 463        spin_lock(&resv->lock);
 464        VM_BUG_ON(!resv->region_cache_count);
 465        resv->adds_in_progress--;
 466        spin_unlock(&resv->lock);
 467}
 468
 469/*
 470 * Delete the specified range [f, t) from the reserve map.  If the
 471 * t parameter is LONG_MAX, this indicates that ALL regions after f
 472 * should be deleted.  Locate the regions which intersect [f, t)
 473 * and either trim, delete or split the existing regions.
 474 *
 475 * Returns the number of huge pages deleted from the reserve map.
 476 * In the normal case, the return value is zero or more.  In the
 477 * case where a region must be split, a new region descriptor must
 478 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 479 * NOTE: If the parameter t == LONG_MAX, then we will never split
 480 * a region and possibly return -ENOMEM.  Callers specifying
 481 * t == LONG_MAX do not need to check for -ENOMEM error.
 482 */
 483static long region_del(struct resv_map *resv, long f, long t)
 484{
 485        struct list_head *head = &resv->regions;
 486        struct file_region *rg, *trg;
 487        struct file_region *nrg = NULL;
 488        long del = 0;
 489
 490retry:
 491        spin_lock(&resv->lock);
 492        list_for_each_entry_safe(rg, trg, head, link) {
 493                /*
 494                 * Skip regions before the range to be deleted.  file_region
 495                 * ranges are normally of the form [from, to).  However, there
 496                 * may be a "placeholder" entry in the map which is of the form
 497                 * (from, to) with from == to.  Check for placeholder entries
 498                 * at the beginning of the range to be deleted.
 499                 */
 500                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 501                        continue;
 502
 503                if (rg->from >= t)
 504                        break;
 505
 506                if (f > rg->from && t < rg->to) { /* Must split region */
 507                        /*
 508                         * Check for an entry in the cache before dropping
 509                         * lock and attempting allocation.
 510                         */
 511                        if (!nrg &&
 512                            resv->region_cache_count > resv->adds_in_progress) {
 513                                nrg = list_first_entry(&resv->region_cache,
 514                                                        struct file_region,
 515                                                        link);
 516                                list_del(&nrg->link);
 517                                resv->region_cache_count--;
 518                        }
 519
 520                        if (!nrg) {
 521                                spin_unlock(&resv->lock);
 522                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 523                                if (!nrg)
 524                                        return -ENOMEM;
 525                                goto retry;
 526                        }
 527
 528                        del += t - f;
 529
 530                        /* New entry for end of split region */
 531                        nrg->from = t;
 532                        nrg->to = rg->to;
 533                        INIT_LIST_HEAD(&nrg->link);
 534
 535                        /* Original entry is trimmed */
 536                        rg->to = f;
 537
 538                        list_add(&nrg->link, &rg->link);
 539                        nrg = NULL;
 540                        break;
 541                }
 542
 543                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 544                        del += rg->to - rg->from;
 545                        list_del(&rg->link);
 546                        kfree(rg);
 547                        continue;
 548                }
 549
 550                if (f <= rg->from) {    /* Trim beginning of region */
 551                        del += t - rg->from;
 552                        rg->from = t;
 553                } else {                /* Trim end of region */
 554                        del += rg->to - f;
 555                        rg->to = f;
 556                }
 557        }
 558
 559        spin_unlock(&resv->lock);
 560        kfree(nrg);
 561        return del;
 562}
 563
 564/*
 565 * A rare out of memory error was encountered which prevented removal of
 566 * the reserve map region for a page.  The huge page itself was free'ed
 567 * and removed from the page cache.  This routine will adjust the subpool
 568 * usage count, and the global reserve count if needed.  By incrementing
 569 * these counts, the reserve map entry which could not be deleted will
 570 * appear as a "reserved" entry instead of simply dangling with incorrect
 571 * counts.
 572 */
 573void hugetlb_fix_reserve_counts(struct inode *inode)
 574{
 575        struct hugepage_subpool *spool = subpool_inode(inode);
 576        long rsv_adjust;
 577
 578        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 579        if (rsv_adjust) {
 580                struct hstate *h = hstate_inode(inode);
 581
 582                hugetlb_acct_memory(h, 1);
 583        }
 584}
 585
 586/*
 587 * Count and return the number of huge pages in the reserve map
 588 * that intersect with the range [f, t).
 589 */
 590static long region_count(struct resv_map *resv, long f, long t)
 591{
 592        struct list_head *head = &resv->regions;
 593        struct file_region *rg;
 594        long chg = 0;
 595
 596        spin_lock(&resv->lock);
 597        /* Locate each segment we overlap with, and count that overlap. */
 598        list_for_each_entry(rg, head, link) {
 599                long seg_from;
 600                long seg_to;
 601
 602                if (rg->to <= f)
 603                        continue;
 604                if (rg->from >= t)
 605                        break;
 606
 607                seg_from = max(rg->from, f);
 608                seg_to = min(rg->to, t);
 609
 610                chg += seg_to - seg_from;
 611        }
 612        spin_unlock(&resv->lock);
 613
 614        return chg;
 615}
 616
 617/*
 618 * Convert the address within this vma to the page offset within
 619 * the mapping, in pagecache page units; huge pages here.
 620 */
 621static pgoff_t vma_hugecache_offset(struct hstate *h,
 622                        struct vm_area_struct *vma, unsigned long address)
 623{
 624        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 625                        (vma->vm_pgoff >> huge_page_order(h));
 626}
 627
 628pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 629                                     unsigned long address)
 630{
 631        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 632}
 633EXPORT_SYMBOL_GPL(linear_hugepage_index);
 634
 635/*
 636 * Return the size of the pages allocated when backing a VMA. In the majority
 637 * cases this will be same size as used by the page table entries.
 638 */
 639unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 640{
 641        if (vma->vm_ops && vma->vm_ops->pagesize)
 642                return vma->vm_ops->pagesize(vma);
 643        return PAGE_SIZE;
 644}
 645EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 646
 647/*
 648 * Return the page size being used by the MMU to back a VMA. In the majority
 649 * of cases, the page size used by the kernel matches the MMU size. On
 650 * architectures where it differs, an architecture-specific 'strong'
 651 * version of this symbol is required.
 652 */
 653__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 654{
 655        return vma_kernel_pagesize(vma);
 656}
 657
 658/*
 659 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 660 * bits of the reservation map pointer, which are always clear due to
 661 * alignment.
 662 */
 663#define HPAGE_RESV_OWNER    (1UL << 0)
 664#define HPAGE_RESV_UNMAPPED (1UL << 1)
 665#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 666
 667/*
 668 * These helpers are used to track how many pages are reserved for
 669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 670 * is guaranteed to have their future faults succeed.
 671 *
 672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 673 * the reserve counters are updated with the hugetlb_lock held. It is safe
 674 * to reset the VMA at fork() time as it is not in use yet and there is no
 675 * chance of the global counters getting corrupted as a result of the values.
 676 *
 677 * The private mapping reservation is represented in a subtly different
 678 * manner to a shared mapping.  A shared mapping has a region map associated
 679 * with the underlying file, this region map represents the backing file
 680 * pages which have ever had a reservation assigned which this persists even
 681 * after the page is instantiated.  A private mapping has a region map
 682 * associated with the original mmap which is attached to all VMAs which
 683 * reference it, this region map represents those offsets which have consumed
 684 * reservation ie. where pages have been instantiated.
 685 */
 686static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 687{
 688        return (unsigned long)vma->vm_private_data;
 689}
 690
 691static void set_vma_private_data(struct vm_area_struct *vma,
 692                                                        unsigned long value)
 693{
 694        vma->vm_private_data = (void *)value;
 695}
 696
 697struct resv_map *resv_map_alloc(void)
 698{
 699        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 700        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 701
 702        if (!resv_map || !rg) {
 703                kfree(resv_map);
 704                kfree(rg);
 705                return NULL;
 706        }
 707
 708        kref_init(&resv_map->refs);
 709        spin_lock_init(&resv_map->lock);
 710        INIT_LIST_HEAD(&resv_map->regions);
 711
 712        resv_map->adds_in_progress = 0;
 713
 714        INIT_LIST_HEAD(&resv_map->region_cache);
 715        list_add(&rg->link, &resv_map->region_cache);
 716        resv_map->region_cache_count = 1;
 717
 718        return resv_map;
 719}
 720
 721void resv_map_release(struct kref *ref)
 722{
 723        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 724        struct list_head *head = &resv_map->region_cache;
 725        struct file_region *rg, *trg;
 726
 727        /* Clear out any active regions before we release the map. */
 728        region_del(resv_map, 0, LONG_MAX);
 729
 730        /* ... and any entries left in the cache */
 731        list_for_each_entry_safe(rg, trg, head, link) {
 732                list_del(&rg->link);
 733                kfree(rg);
 734        }
 735
 736        VM_BUG_ON(resv_map->adds_in_progress);
 737
 738        kfree(resv_map);
 739}
 740
 741static inline struct resv_map *inode_resv_map(struct inode *inode)
 742{
 743        return inode->i_mapping->private_data;
 744}
 745
 746static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 747{
 748        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 749        if (vma->vm_flags & VM_MAYSHARE) {
 750                struct address_space *mapping = vma->vm_file->f_mapping;
 751                struct inode *inode = mapping->host;
 752
 753                return inode_resv_map(inode);
 754
 755        } else {
 756                return (struct resv_map *)(get_vma_private_data(vma) &
 757                                                        ~HPAGE_RESV_MASK);
 758        }
 759}
 760
 761static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 762{
 763        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 764        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 765
 766        set_vma_private_data(vma, (get_vma_private_data(vma) &
 767                                HPAGE_RESV_MASK) | (unsigned long)map);
 768}
 769
 770static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 771{
 772        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 773        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 774
 775        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 776}
 777
 778static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 779{
 780        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 781
 782        return (get_vma_private_data(vma) & flag) != 0;
 783}
 784
 785/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 786void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 787{
 788        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 789        if (!(vma->vm_flags & VM_MAYSHARE))
 790                vma->vm_private_data = (void *)0;
 791}
 792
 793/* Returns true if the VMA has associated reserve pages */
 794static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 795{
 796        if (vma->vm_flags & VM_NORESERVE) {
 797                /*
 798                 * This address is already reserved by other process(chg == 0),
 799                 * so, we should decrement reserved count. Without decrementing,
 800                 * reserve count remains after releasing inode, because this
 801                 * allocated page will go into page cache and is regarded as
 802                 * coming from reserved pool in releasing step.  Currently, we
 803                 * don't have any other solution to deal with this situation
 804                 * properly, so add work-around here.
 805                 */
 806                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 807                        return true;
 808                else
 809                        return false;
 810        }
 811
 812        /* Shared mappings always use reserves */
 813        if (vma->vm_flags & VM_MAYSHARE) {
 814                /*
 815                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 816                 * be a region map for all pages.  The only situation where
 817                 * there is no region map is if a hole was punched via
 818                 * fallocate.  In this case, there really are no reverves to
 819                 * use.  This situation is indicated if chg != 0.
 820                 */
 821                if (chg)
 822                        return false;
 823                else
 824                        return true;
 825        }
 826
 827        /*
 828         * Only the process that called mmap() has reserves for
 829         * private mappings.
 830         */
 831        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 832                /*
 833                 * Like the shared case above, a hole punch or truncate
 834                 * could have been performed on the private mapping.
 835                 * Examine the value of chg to determine if reserves
 836                 * actually exist or were previously consumed.
 837                 * Very Subtle - The value of chg comes from a previous
 838                 * call to vma_needs_reserves().  The reserve map for
 839                 * private mappings has different (opposite) semantics
 840                 * than that of shared mappings.  vma_needs_reserves()
 841                 * has already taken this difference in semantics into
 842                 * account.  Therefore, the meaning of chg is the same
 843                 * as in the shared case above.  Code could easily be
 844                 * combined, but keeping it separate draws attention to
 845                 * subtle differences.
 846                 */
 847                if (chg)
 848                        return false;
 849                else
 850                        return true;
 851        }
 852
 853        return false;
 854}
 855
 856static void enqueue_huge_page(struct hstate *h, struct page *page)
 857{
 858        int nid = page_to_nid(page);
 859        list_move(&page->lru, &h->hugepage_freelists[nid]);
 860        h->free_huge_pages++;
 861        h->free_huge_pages_node[nid]++;
 862}
 863
 864static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 865{
 866        struct page *page;
 867
 868        list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 869                if (!PageHWPoison(page))
 870                        break;
 871        /*
 872         * if 'non-isolated free hugepage' not found on the list,
 873         * the allocation fails.
 874         */
 875        if (&h->hugepage_freelists[nid] == &page->lru)
 876                return NULL;
 877        list_move(&page->lru, &h->hugepage_activelist);
 878        set_page_refcounted(page);
 879        h->free_huge_pages--;
 880        h->free_huge_pages_node[nid]--;
 881        return page;
 882}
 883
 884static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 885                nodemask_t *nmask)
 886{
 887        unsigned int cpuset_mems_cookie;
 888        struct zonelist *zonelist;
 889        struct zone *zone;
 890        struct zoneref *z;
 891        int node = NUMA_NO_NODE;
 892
 893        zonelist = node_zonelist(nid, gfp_mask);
 894
 895retry_cpuset:
 896        cpuset_mems_cookie = read_mems_allowed_begin();
 897        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 898                struct page *page;
 899
 900                if (!cpuset_zone_allowed(zone, gfp_mask))
 901                        continue;
 902                /*
 903                 * no need to ask again on the same node. Pool is node rather than
 904                 * zone aware
 905                 */
 906                if (zone_to_nid(zone) == node)
 907                        continue;
 908                node = zone_to_nid(zone);
 909
 910                page = dequeue_huge_page_node_exact(h, node);
 911                if (page)
 912                        return page;
 913        }
 914        if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 915                goto retry_cpuset;
 916
 917        return NULL;
 918}
 919
 920/* Movability of hugepages depends on migration support. */
 921static inline gfp_t htlb_alloc_mask(struct hstate *h)
 922{
 923        if (hugepage_movable_supported(h))
 924                return GFP_HIGHUSER_MOVABLE;
 925        else
 926                return GFP_HIGHUSER;
 927}
 928
 929static struct page *dequeue_huge_page_vma(struct hstate *h,
 930                                struct vm_area_struct *vma,
 931                                unsigned long address, int avoid_reserve,
 932                                long chg)
 933{
 934        struct page *page;
 935        struct mempolicy *mpol;
 936        gfp_t gfp_mask;
 937        nodemask_t *nodemask;
 938        int nid;
 939
 940        /*
 941         * A child process with MAP_PRIVATE mappings created by their parent
 942         * have no page reserves. This check ensures that reservations are
 943         * not "stolen". The child may still get SIGKILLed
 944         */
 945        if (!vma_has_reserves(vma, chg) &&
 946                        h->free_huge_pages - h->resv_huge_pages == 0)
 947                goto err;
 948
 949        /* If reserves cannot be used, ensure enough pages are in the pool */
 950        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 951                goto err;
 952
 953        gfp_mask = htlb_alloc_mask(h);
 954        nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 955        page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 956        if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 957                SetPagePrivate(page);
 958                h->resv_huge_pages--;
 959        }
 960
 961        mpol_cond_put(mpol);
 962        return page;
 963
 964err:
 965        return NULL;
 966}
 967
 968/*
 969 * common helper functions for hstate_next_node_to_{alloc|free}.
 970 * We may have allocated or freed a huge page based on a different
 971 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 972 * be outside of *nodes_allowed.  Ensure that we use an allowed
 973 * node for alloc or free.
 974 */
 975static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 976{
 977        nid = next_node_in(nid, *nodes_allowed);
 978        VM_BUG_ON(nid >= MAX_NUMNODES);
 979
 980        return nid;
 981}
 982
 983static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 984{
 985        if (!node_isset(nid, *nodes_allowed))
 986                nid = next_node_allowed(nid, nodes_allowed);
 987        return nid;
 988}
 989
 990/*
 991 * returns the previously saved node ["this node"] from which to
 992 * allocate a persistent huge page for the pool and advance the
 993 * next node from which to allocate, handling wrap at end of node
 994 * mask.
 995 */
 996static int hstate_next_node_to_alloc(struct hstate *h,
 997                                        nodemask_t *nodes_allowed)
 998{
 999        int nid;
1000
1001        VM_BUG_ON(!nodes_allowed);
1002
1003        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1004        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005
1006        return nid;
1007}
1008
1009/*
1010 * helper for free_pool_huge_page() - return the previously saved
1011 * node ["this node"] from which to free a huge page.  Advance the
1012 * next node id whether or not we find a free huge page to free so
1013 * that the next attempt to free addresses the next node.
1014 */
1015static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016{
1017        int nid;
1018
1019        VM_BUG_ON(!nodes_allowed);
1020
1021        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1022        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023
1024        return nid;
1025}
1026
1027#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1028        for (nr_nodes = nodes_weight(*mask);                            \
1029                nr_nodes > 0 &&                                         \
1030                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1031                nr_nodes--)
1032
1033#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1034        for (nr_nodes = nodes_weight(*mask);                            \
1035                nr_nodes > 0 &&                                         \
1036                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1037                nr_nodes--)
1038
1039#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040static void destroy_compound_gigantic_page(struct page *page,
1041                                        unsigned int order)
1042{
1043        int i;
1044        int nr_pages = 1 << order;
1045        struct page *p = page + 1;
1046
1047        atomic_set(compound_mapcount_ptr(page), 0);
1048        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1049                clear_compound_head(p);
1050                set_page_refcounted(p);
1051        }
1052
1053        set_compound_order(page, 0);
1054        __ClearPageHead(page);
1055}
1056
1057static void free_gigantic_page(struct page *page, unsigned int order)
1058{
1059        free_contig_range(page_to_pfn(page), 1 << order);
1060}
1061
1062static int __alloc_gigantic_page(unsigned long start_pfn,
1063                                unsigned long nr_pages, gfp_t gfp_mask)
1064{
1065        unsigned long end_pfn = start_pfn + nr_pages;
1066        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1067                                  gfp_mask);
1068}
1069
1070static bool pfn_range_valid_gigantic(struct zone *z,
1071                        unsigned long start_pfn, unsigned long nr_pages)
1072{
1073        unsigned long i, end_pfn = start_pfn + nr_pages;
1074        struct page *page;
1075
1076        for (i = start_pfn; i < end_pfn; i++) {
1077                if (!pfn_valid(i))
1078                        return false;
1079
1080                page = pfn_to_page(i);
1081
1082                if (page_zone(page) != z)
1083                        return false;
1084
1085                if (PageReserved(page))
1086                        return false;
1087
1088                if (page_count(page) > 0)
1089                        return false;
1090
1091                if (PageHuge(page))
1092                        return false;
1093        }
1094
1095        return true;
1096}
1097
1098static bool zone_spans_last_pfn(const struct zone *zone,
1099                        unsigned long start_pfn, unsigned long nr_pages)
1100{
1101        unsigned long last_pfn = start_pfn + nr_pages - 1;
1102        return zone_spans_pfn(zone, last_pfn);
1103}
1104
1105static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1106                int nid, nodemask_t *nodemask)
1107{
1108        unsigned int order = huge_page_order(h);
1109        unsigned long nr_pages = 1 << order;
1110        unsigned long ret, pfn, flags;
1111        struct zonelist *zonelist;
1112        struct zone *zone;
1113        struct zoneref *z;
1114
1115        zonelist = node_zonelist(nid, gfp_mask);
1116        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1117                spin_lock_irqsave(&zone->lock, flags);
1118
1119                pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1120                while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1121                        if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1122                                /*
1123                                 * We release the zone lock here because
1124                                 * alloc_contig_range() will also lock the zone
1125                                 * at some point. If there's an allocation
1126                                 * spinning on this lock, it may win the race
1127                                 * and cause alloc_contig_range() to fail...
1128                                 */
1129                                spin_unlock_irqrestore(&zone->lock, flags);
1130                                ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1131                                if (!ret)
1132                                        return pfn_to_page(pfn);
1133                                spin_lock_irqsave(&zone->lock, flags);
1134                        }
1135                        pfn += nr_pages;
1136                }
1137
1138                spin_unlock_irqrestore(&zone->lock, flags);
1139        }
1140
1141        return NULL;
1142}
1143
1144static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1145static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1146
1147#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1148static inline bool gigantic_page_supported(void) { return false; }
1149static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1150                int nid, nodemask_t *nodemask) { return NULL; }
1151static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1152static inline void destroy_compound_gigantic_page(struct page *page,
1153                                                unsigned int order) { }
1154#endif
1155
1156static void update_and_free_page(struct hstate *h, struct page *page)
1157{
1158        int i;
1159
1160        if (hstate_is_gigantic(h) && !gigantic_page_supported())
1161                return;
1162
1163        h->nr_huge_pages--;
1164        h->nr_huge_pages_node[page_to_nid(page)]--;
1165        for (i = 0; i < pages_per_huge_page(h); i++) {
1166                page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1167                                1 << PG_referenced | 1 << PG_dirty |
1168                                1 << PG_active | 1 << PG_private |
1169                                1 << PG_writeback);
1170        }
1171        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1172        set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1173        set_page_refcounted(page);
1174        if (hstate_is_gigantic(h)) {
1175                destroy_compound_gigantic_page(page, huge_page_order(h));
1176                free_gigantic_page(page, huge_page_order(h));
1177        } else {
1178                __free_pages(page, huge_page_order(h));
1179        }
1180}
1181
1182struct hstate *size_to_hstate(unsigned long size)
1183{
1184        struct hstate *h;
1185
1186        for_each_hstate(h) {
1187                if (huge_page_size(h) == size)
1188                        return h;
1189        }
1190        return NULL;
1191}
1192
1193/*
1194 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1195 * to hstate->hugepage_activelist.)
1196 *
1197 * This function can be called for tail pages, but never returns true for them.
1198 */
1199bool page_huge_active(struct page *page)
1200{
1201        VM_BUG_ON_PAGE(!PageHuge(page), page);
1202        return PageHead(page) && PagePrivate(&page[1]);
1203}
1204
1205/* never called for tail page */
1206static void set_page_huge_active(struct page *page)
1207{
1208        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1209        SetPagePrivate(&page[1]);
1210}
1211
1212static void clear_page_huge_active(struct page *page)
1213{
1214        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1215        ClearPagePrivate(&page[1]);
1216}
1217
1218/*
1219 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1220 * code
1221 */
1222static inline bool PageHugeTemporary(struct page *page)
1223{
1224        if (!PageHuge(page))
1225                return false;
1226
1227        return (unsigned long)page[2].mapping == -1U;
1228}
1229
1230static inline void SetPageHugeTemporary(struct page *page)
1231{
1232        page[2].mapping = (void *)-1U;
1233}
1234
1235static inline void ClearPageHugeTemporary(struct page *page)
1236{
1237        page[2].mapping = NULL;
1238}
1239
1240void free_huge_page(struct page *page)
1241{
1242        /*
1243         * Can't pass hstate in here because it is called from the
1244         * compound page destructor.
1245         */
1246        struct hstate *h = page_hstate(page);
1247        int nid = page_to_nid(page);
1248        struct hugepage_subpool *spool =
1249                (struct hugepage_subpool *)page_private(page);
1250        bool restore_reserve;
1251
1252        VM_BUG_ON_PAGE(page_count(page), page);
1253        VM_BUG_ON_PAGE(page_mapcount(page), page);
1254
1255        set_page_private(page, 0);
1256        page->mapping = NULL;
1257        restore_reserve = PagePrivate(page);
1258        ClearPagePrivate(page);
1259
1260        /*
1261         * A return code of zero implies that the subpool will be under its
1262         * minimum size if the reservation is not restored after page is free.
1263         * Therefore, force restore_reserve operation.
1264         */
1265        if (hugepage_subpool_put_pages(spool, 1) == 0)
1266                restore_reserve = true;
1267
1268        spin_lock(&hugetlb_lock);
1269        clear_page_huge_active(page);
1270        hugetlb_cgroup_uncharge_page(hstate_index(h),
1271                                     pages_per_huge_page(h), page);
1272        if (restore_reserve)
1273                h->resv_huge_pages++;
1274
1275        if (PageHugeTemporary(page)) {
1276                list_del(&page->lru);
1277                ClearPageHugeTemporary(page);
1278                update_and_free_page(h, page);
1279        } else if (h->surplus_huge_pages_node[nid]) {
1280                /* remove the page from active list */
1281                list_del(&page->lru);
1282                update_and_free_page(h, page);
1283                h->surplus_huge_pages--;
1284                h->surplus_huge_pages_node[nid]--;
1285        } else {
1286                arch_clear_hugepage_flags(page);
1287                enqueue_huge_page(h, page);
1288        }
1289        spin_unlock(&hugetlb_lock);
1290}
1291
1292static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1293{
1294        INIT_LIST_HEAD(&page->lru);
1295        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1296        spin_lock(&hugetlb_lock);
1297        set_hugetlb_cgroup(page, NULL);
1298        h->nr_huge_pages++;
1299        h->nr_huge_pages_node[nid]++;
1300        spin_unlock(&hugetlb_lock);
1301}
1302
1303static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1304{
1305        int i;
1306        int nr_pages = 1 << order;
1307        struct page *p = page + 1;
1308
1309        /* we rely on prep_new_huge_page to set the destructor */
1310        set_compound_order(page, order);
1311        __ClearPageReserved(page);
1312        __SetPageHead(page);
1313        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1314                /*
1315                 * For gigantic hugepages allocated through bootmem at
1316                 * boot, it's safer to be consistent with the not-gigantic
1317                 * hugepages and clear the PG_reserved bit from all tail pages
1318                 * too.  Otherwse drivers using get_user_pages() to access tail
1319                 * pages may get the reference counting wrong if they see
1320                 * PG_reserved set on a tail page (despite the head page not
1321                 * having PG_reserved set).  Enforcing this consistency between
1322                 * head and tail pages allows drivers to optimize away a check
1323                 * on the head page when they need know if put_page() is needed
1324                 * after get_user_pages().
1325                 */
1326                __ClearPageReserved(p);
1327                set_page_count(p, 0);
1328                set_compound_head(p, page);
1329        }
1330        atomic_set(compound_mapcount_ptr(page), -1);
1331}
1332
1333/*
1334 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1335 * transparent huge pages.  See the PageTransHuge() documentation for more
1336 * details.
1337 */
1338int PageHuge(struct page *page)
1339{
1340        if (!PageCompound(page))
1341                return 0;
1342
1343        page = compound_head(page);
1344        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1345}
1346EXPORT_SYMBOL_GPL(PageHuge);
1347
1348/*
1349 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1350 * normal or transparent huge pages.
1351 */
1352int PageHeadHuge(struct page *page_head)
1353{
1354        if (!PageHead(page_head))
1355                return 0;
1356
1357        return get_compound_page_dtor(page_head) == free_huge_page;
1358}
1359
1360pgoff_t __basepage_index(struct page *page)
1361{
1362        struct page *page_head = compound_head(page);
1363        pgoff_t index = page_index(page_head);
1364        unsigned long compound_idx;
1365
1366        if (!PageHuge(page_head))
1367                return page_index(page);
1368
1369        if (compound_order(page_head) >= MAX_ORDER)
1370                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1371        else
1372                compound_idx = page - page_head;
1373
1374        return (index << compound_order(page_head)) + compound_idx;
1375}
1376
1377static struct page *alloc_buddy_huge_page(struct hstate *h,
1378                gfp_t gfp_mask, int nid, nodemask_t *nmask)
1379{
1380        int order = huge_page_order(h);
1381        struct page *page;
1382
1383        gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1384        if (nid == NUMA_NO_NODE)
1385                nid = numa_mem_id();
1386        page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1387        if (page)
1388                __count_vm_event(HTLB_BUDDY_PGALLOC);
1389        else
1390                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1391
1392        return page;
1393}
1394
1395/*
1396 * Common helper to allocate a fresh hugetlb page. All specific allocators
1397 * should use this function to get new hugetlb pages
1398 */
1399static struct page *alloc_fresh_huge_page(struct hstate *h,
1400                gfp_t gfp_mask, int nid, nodemask_t *nmask)
1401{
1402        struct page *page;
1403
1404        if (hstate_is_gigantic(h))
1405                page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1406        else
1407                page = alloc_buddy_huge_page(h, gfp_mask,
1408                                nid, nmask);
1409        if (!page)
1410                return NULL;
1411
1412        if (hstate_is_gigantic(h))
1413                prep_compound_gigantic_page(page, huge_page_order(h));
1414        prep_new_huge_page(h, page, page_to_nid(page));
1415
1416        return page;
1417}
1418
1419/*
1420 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1421 * manner.
1422 */
1423static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1424{
1425        struct page *page;
1426        int nr_nodes, node;
1427        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1428
1429        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1430                page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1431                if (page)
1432                        break;
1433        }
1434
1435        if (!page)
1436                return 0;
1437
1438        put_page(page); /* free it into the hugepage allocator */
1439
1440        return 1;
1441}
1442
1443/*
1444 * Free huge page from pool from next node to free.
1445 * Attempt to keep persistent huge pages more or less
1446 * balanced over allowed nodes.
1447 * Called with hugetlb_lock locked.
1448 */
1449static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1450                                                         bool acct_surplus)
1451{
1452        int nr_nodes, node;
1453        int ret = 0;
1454
1455        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1456                /*
1457                 * If we're returning unused surplus pages, only examine
1458                 * nodes with surplus pages.
1459                 */
1460                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1461                    !list_empty(&h->hugepage_freelists[node])) {
1462                        struct page *page =
1463                                list_entry(h->hugepage_freelists[node].next,
1464                                          struct page, lru);
1465                        list_del(&page->lru);
1466                        h->free_huge_pages--;
1467                        h->free_huge_pages_node[node]--;
1468                        if (acct_surplus) {
1469                                h->surplus_huge_pages--;
1470                                h->surplus_huge_pages_node[node]--;
1471                        }
1472                        update_and_free_page(h, page);
1473                        ret = 1;
1474                        break;
1475                }
1476        }
1477
1478        return ret;
1479}
1480
1481/*
1482 * Dissolve a given free hugepage into free buddy pages. This function does
1483 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1484 * dissolution fails because a give page is not a free hugepage, or because
1485 * free hugepages are fully reserved.
1486 */
1487int dissolve_free_huge_page(struct page *page)
1488{
1489        int rc = -EBUSY;
1490
1491        spin_lock(&hugetlb_lock);
1492        if (PageHuge(page) && !page_count(page)) {
1493                struct page *head = compound_head(page);
1494                struct hstate *h = page_hstate(head);
1495                int nid = page_to_nid(head);
1496                if (h->free_huge_pages - h->resv_huge_pages == 0)
1497                        goto out;
1498                /*
1499                 * Move PageHWPoison flag from head page to the raw error page,
1500                 * which makes any subpages rather than the error page reusable.
1501                 */
1502                if (PageHWPoison(head) && page != head) {
1503                        SetPageHWPoison(page);
1504                        ClearPageHWPoison(head);
1505                }
1506                list_del(&head->lru);
1507                h->free_huge_pages--;
1508                h->free_huge_pages_node[nid]--;
1509                h->max_huge_pages--;
1510                update_and_free_page(h, head);
1511                rc = 0;
1512        }
1513out:
1514        spin_unlock(&hugetlb_lock);
1515        return rc;
1516}
1517
1518/*
1519 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1520 * make specified memory blocks removable from the system.
1521 * Note that this will dissolve a free gigantic hugepage completely, if any
1522 * part of it lies within the given range.
1523 * Also note that if dissolve_free_huge_page() returns with an error, all
1524 * free hugepages that were dissolved before that error are lost.
1525 */
1526int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1527{
1528        unsigned long pfn;
1529        struct page *page;
1530        int rc = 0;
1531
1532        if (!hugepages_supported())
1533                return rc;
1534
1535        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1536                page = pfn_to_page(pfn);
1537                if (PageHuge(page) && !page_count(page)) {
1538                        rc = dissolve_free_huge_page(page);
1539                        if (rc)
1540                                break;
1541                }
1542        }
1543
1544        return rc;
1545}
1546
1547/*
1548 * Allocates a fresh surplus page from the page allocator.
1549 */
1550static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1551                int nid, nodemask_t *nmask)
1552{
1553        struct page *page = NULL;
1554
1555        if (hstate_is_gigantic(h))
1556                return NULL;
1557
1558        spin_lock(&hugetlb_lock);
1559        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1560                goto out_unlock;
1561        spin_unlock(&hugetlb_lock);
1562
1563        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1564        if (!page)
1565                return NULL;
1566
1567        spin_lock(&hugetlb_lock);
1568        /*
1569         * We could have raced with the pool size change.
1570         * Double check that and simply deallocate the new page
1571         * if we would end up overcommiting the surpluses. Abuse
1572         * temporary page to workaround the nasty free_huge_page
1573         * codeflow
1574         */
1575        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1576                SetPageHugeTemporary(page);
1577                put_page(page);
1578                page = NULL;
1579        } else {
1580                h->surplus_huge_pages++;
1581                h->surplus_huge_pages_node[page_to_nid(page)]++;
1582        }
1583
1584out_unlock:
1585        spin_unlock(&hugetlb_lock);
1586
1587        return page;
1588}
1589
1590struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1591                                     int nid, nodemask_t *nmask)
1592{
1593        struct page *page;
1594
1595        if (hstate_is_gigantic(h))
1596                return NULL;
1597
1598        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1599        if (!page)
1600                return NULL;
1601
1602        /*
1603         * We do not account these pages as surplus because they are only
1604         * temporary and will be released properly on the last reference
1605         */
1606        SetPageHugeTemporary(page);
1607
1608        return page;
1609}
1610
1611/*
1612 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1613 */
1614static
1615struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1616                struct vm_area_struct *vma, unsigned long addr)
1617{
1618        struct page *page;
1619        struct mempolicy *mpol;
1620        gfp_t gfp_mask = htlb_alloc_mask(h);
1621        int nid;
1622        nodemask_t *nodemask;
1623
1624        nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1625        page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1626        mpol_cond_put(mpol);
1627
1628        return page;
1629}
1630
1631/* page migration callback function */
1632struct page *alloc_huge_page_node(struct hstate *h, int nid)
1633{
1634        gfp_t gfp_mask = htlb_alloc_mask(h);
1635        struct page *page = NULL;
1636
1637        if (nid != NUMA_NO_NODE)
1638                gfp_mask |= __GFP_THISNODE;
1639
1640        spin_lock(&hugetlb_lock);
1641        if (h->free_huge_pages - h->resv_huge_pages > 0)
1642                page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1643        spin_unlock(&hugetlb_lock);
1644
1645        if (!page)
1646                page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1647
1648        return page;
1649}
1650
1651/* page migration callback function */
1652struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1653                nodemask_t *nmask)
1654{
1655        gfp_t gfp_mask = htlb_alloc_mask(h);
1656
1657        spin_lock(&hugetlb_lock);
1658        if (h->free_huge_pages - h->resv_huge_pages > 0) {
1659                struct page *page;
1660
1661                page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1662                if (page) {
1663                        spin_unlock(&hugetlb_lock);
1664                        return page;
1665                }
1666        }
1667        spin_unlock(&hugetlb_lock);
1668
1669        return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1670}
1671
1672/* mempolicy aware migration callback */
1673struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1674                unsigned long address)
1675{
1676        struct mempolicy *mpol;
1677        nodemask_t *nodemask;
1678        struct page *page;
1679        gfp_t gfp_mask;
1680        int node;
1681
1682        gfp_mask = htlb_alloc_mask(h);
1683        node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1684        page = alloc_huge_page_nodemask(h, node, nodemask);
1685        mpol_cond_put(mpol);
1686
1687        return page;
1688}
1689
1690/*
1691 * Increase the hugetlb pool such that it can accommodate a reservation
1692 * of size 'delta'.
1693 */
1694static int gather_surplus_pages(struct hstate *h, int delta)
1695{
1696        struct list_head surplus_list;
1697        struct page *page, *tmp;
1698        int ret, i;
1699        int needed, allocated;
1700        bool alloc_ok = true;
1701
1702        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1703        if (needed <= 0) {
1704                h->resv_huge_pages += delta;
1705                return 0;
1706        }
1707
1708        allocated = 0;
1709        INIT_LIST_HEAD(&surplus_list);
1710
1711        ret = -ENOMEM;
1712retry:
1713        spin_unlock(&hugetlb_lock);
1714        for (i = 0; i < needed; i++) {
1715                page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1716                                NUMA_NO_NODE, NULL);
1717                if (!page) {
1718                        alloc_ok = false;
1719                        break;
1720                }
1721                list_add(&page->lru, &surplus_list);
1722                cond_resched();
1723        }
1724        allocated += i;
1725
1726        /*
1727         * After retaking hugetlb_lock, we need to recalculate 'needed'
1728         * because either resv_huge_pages or free_huge_pages may have changed.
1729         */
1730        spin_lock(&hugetlb_lock);
1731        needed = (h->resv_huge_pages + delta) -
1732                        (h->free_huge_pages + allocated);
1733        if (needed > 0) {
1734                if (alloc_ok)
1735                        goto retry;
1736                /*
1737                 * We were not able to allocate enough pages to
1738                 * satisfy the entire reservation so we free what
1739                 * we've allocated so far.
1740                 */
1741                goto free;
1742        }
1743        /*
1744         * The surplus_list now contains _at_least_ the number of extra pages
1745         * needed to accommodate the reservation.  Add the appropriate number
1746         * of pages to the hugetlb pool and free the extras back to the buddy
1747         * allocator.  Commit the entire reservation here to prevent another
1748         * process from stealing the pages as they are added to the pool but
1749         * before they are reserved.
1750         */
1751        needed += allocated;
1752        h->resv_huge_pages += delta;
1753        ret = 0;
1754
1755        /* Free the needed pages to the hugetlb pool */
1756        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1757                if ((--needed) < 0)
1758                        break;
1759                /*
1760                 * This page is now managed by the hugetlb allocator and has
1761                 * no users -- drop the buddy allocator's reference.
1762                 */
1763                put_page_testzero(page);
1764                VM_BUG_ON_PAGE(page_count(page), page);
1765                enqueue_huge_page(h, page);
1766        }
1767free:
1768        spin_unlock(&hugetlb_lock);
1769
1770        /* Free unnecessary surplus pages to the buddy allocator */
1771        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1772                put_page(page);
1773        spin_lock(&hugetlb_lock);
1774
1775        return ret;
1776}
1777
1778/*
1779 * This routine has two main purposes:
1780 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1781 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1782 *    to the associated reservation map.
1783 * 2) Free any unused surplus pages that may have been allocated to satisfy
1784 *    the reservation.  As many as unused_resv_pages may be freed.
1785 *
1786 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1787 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1788 * we must make sure nobody else can claim pages we are in the process of
1789 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1790 * number of huge pages we plan to free when dropping the lock.
1791 */
1792static void return_unused_surplus_pages(struct hstate *h,
1793                                        unsigned long unused_resv_pages)
1794{
1795        unsigned long nr_pages;
1796
1797        /* Cannot return gigantic pages currently */
1798        if (hstate_is_gigantic(h))
1799                goto out;
1800
1801        /*
1802         * Part (or even all) of the reservation could have been backed
1803         * by pre-allocated pages. Only free surplus pages.
1804         */
1805        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1806
1807        /*
1808         * We want to release as many surplus pages as possible, spread
1809         * evenly across all nodes with memory. Iterate across these nodes
1810         * until we can no longer free unreserved surplus pages. This occurs
1811         * when the nodes with surplus pages have no free pages.
1812         * free_pool_huge_page() will balance the the freed pages across the
1813         * on-line nodes with memory and will handle the hstate accounting.
1814         *
1815         * Note that we decrement resv_huge_pages as we free the pages.  If
1816         * we drop the lock, resv_huge_pages will still be sufficiently large
1817         * to cover subsequent pages we may free.
1818         */
1819        while (nr_pages--) {
1820                h->resv_huge_pages--;
1821                unused_resv_pages--;
1822                if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1823                        goto out;
1824                cond_resched_lock(&hugetlb_lock);
1825        }
1826
1827out:
1828        /* Fully uncommit the reservation */
1829        h->resv_huge_pages -= unused_resv_pages;
1830}
1831
1832
1833/*
1834 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1835 * are used by the huge page allocation routines to manage reservations.
1836 *
1837 * vma_needs_reservation is called to determine if the huge page at addr
1838 * within the vma has an associated reservation.  If a reservation is
1839 * needed, the value 1 is returned.  The caller is then responsible for
1840 * managing the global reservation and subpool usage counts.  After
1841 * the huge page has been allocated, vma_commit_reservation is called
1842 * to add the page to the reservation map.  If the page allocation fails,
1843 * the reservation must be ended instead of committed.  vma_end_reservation
1844 * is called in such cases.
1845 *
1846 * In the normal case, vma_commit_reservation returns the same value
1847 * as the preceding vma_needs_reservation call.  The only time this
1848 * is not the case is if a reserve map was changed between calls.  It
1849 * is the responsibility of the caller to notice the difference and
1850 * take appropriate action.
1851 *
1852 * vma_add_reservation is used in error paths where a reservation must
1853 * be restored when a newly allocated huge page must be freed.  It is
1854 * to be called after calling vma_needs_reservation to determine if a
1855 * reservation exists.
1856 */
1857enum vma_resv_mode {
1858        VMA_NEEDS_RESV,
1859        VMA_COMMIT_RESV,
1860        VMA_END_RESV,
1861        VMA_ADD_RESV,
1862};
1863static long __vma_reservation_common(struct hstate *h,
1864                                struct vm_area_struct *vma, unsigned long addr,
1865                                enum vma_resv_mode mode)
1866{
1867        struct resv_map *resv;
1868        pgoff_t idx;
1869        long ret;
1870
1871        resv = vma_resv_map(vma);
1872        if (!resv)
1873                return 1;
1874
1875        idx = vma_hugecache_offset(h, vma, addr);
1876        switch (mode) {
1877        case VMA_NEEDS_RESV:
1878                ret = region_chg(resv, idx, idx + 1);
1879                break;
1880        case VMA_COMMIT_RESV:
1881                ret = region_add(resv, idx, idx + 1);
1882                break;
1883        case VMA_END_RESV:
1884                region_abort(resv, idx, idx + 1);
1885                ret = 0;
1886                break;
1887        case VMA_ADD_RESV:
1888                if (vma->vm_flags & VM_MAYSHARE)
1889                        ret = region_add(resv, idx, idx + 1);
1890                else {
1891                        region_abort(resv, idx, idx + 1);
1892                        ret = region_del(resv, idx, idx + 1);
1893                }
1894                break;
1895        default:
1896                BUG();
1897        }
1898
1899        if (vma->vm_flags & VM_MAYSHARE)
1900                return ret;
1901        else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1902                /*
1903                 * In most cases, reserves always exist for private mappings.
1904                 * However, a file associated with mapping could have been
1905                 * hole punched or truncated after reserves were consumed.
1906                 * As subsequent fault on such a range will not use reserves.
1907                 * Subtle - The reserve map for private mappings has the
1908                 * opposite meaning than that of shared mappings.  If NO
1909                 * entry is in the reserve map, it means a reservation exists.
1910                 * If an entry exists in the reserve map, it means the
1911                 * reservation has already been consumed.  As a result, the
1912                 * return value of this routine is the opposite of the
1913                 * value returned from reserve map manipulation routines above.
1914                 */
1915                if (ret)
1916                        return 0;
1917                else
1918                        return 1;
1919        }
1920        else
1921                return ret < 0 ? ret : 0;
1922}
1923
1924static long vma_needs_reservation(struct hstate *h,
1925                        struct vm_area_struct *vma, unsigned long addr)
1926{
1927        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1928}
1929
1930static long vma_commit_reservation(struct hstate *h,
1931                        struct vm_area_struct *vma, unsigned long addr)
1932{
1933        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1934}
1935
1936static void vma_end_reservation(struct hstate *h,
1937                        struct vm_area_struct *vma, unsigned long addr)
1938{
1939        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1940}
1941
1942static long vma_add_reservation(struct hstate *h,
1943                        struct vm_area_struct *vma, unsigned long addr)
1944{
1945        return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1946}
1947
1948/*
1949 * This routine is called to restore a reservation on error paths.  In the
1950 * specific error paths, a huge page was allocated (via alloc_huge_page)
1951 * and is about to be freed.  If a reservation for the page existed,
1952 * alloc_huge_page would have consumed the reservation and set PagePrivate
1953 * in the newly allocated page.  When the page is freed via free_huge_page,
1954 * the global reservation count will be incremented if PagePrivate is set.
1955 * However, free_huge_page can not adjust the reserve map.  Adjust the
1956 * reserve map here to be consistent with global reserve count adjustments
1957 * to be made by free_huge_page.
1958 */
1959static void restore_reserve_on_error(struct hstate *h,
1960                        struct vm_area_struct *vma, unsigned long address,
1961                        struct page *page)
1962{
1963        if (unlikely(PagePrivate(page))) {
1964                long rc = vma_needs_reservation(h, vma, address);
1965
1966                if (unlikely(rc < 0)) {
1967                        /*
1968                         * Rare out of memory condition in reserve map
1969                         * manipulation.  Clear PagePrivate so that
1970                         * global reserve count will not be incremented
1971                         * by free_huge_page.  This will make it appear
1972                         * as though the reservation for this page was
1973                         * consumed.  This may prevent the task from
1974                         * faulting in the page at a later time.  This
1975                         * is better than inconsistent global huge page
1976                         * accounting of reserve counts.
1977                         */
1978                        ClearPagePrivate(page);
1979                } else if (rc) {
1980                        rc = vma_add_reservation(h, vma, address);
1981                        if (unlikely(rc < 0))
1982                                /*
1983                                 * See above comment about rare out of
1984                                 * memory condition.
1985                                 */
1986                                ClearPagePrivate(page);
1987                } else
1988                        vma_end_reservation(h, vma, address);
1989        }
1990}
1991
1992struct page *alloc_huge_page(struct vm_area_struct *vma,
1993                                    unsigned long addr, int avoid_reserve)
1994{
1995        struct hugepage_subpool *spool = subpool_vma(vma);
1996        struct hstate *h = hstate_vma(vma);
1997        struct page *page;
1998        long map_chg, map_commit;
1999        long gbl_chg;
2000        int ret, idx;
2001        struct hugetlb_cgroup *h_cg;
2002
2003        idx = hstate_index(h);
2004        /*
2005         * Examine the region/reserve map to determine if the process
2006         * has a reservation for the page to be allocated.  A return
2007         * code of zero indicates a reservation exists (no change).
2008         */
2009        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2010        if (map_chg < 0)
2011                return ERR_PTR(-ENOMEM);
2012
2013        /*
2014         * Processes that did not create the mapping will have no
2015         * reserves as indicated by the region/reserve map. Check
2016         * that the allocation will not exceed the subpool limit.
2017         * Allocations for MAP_NORESERVE mappings also need to be
2018         * checked against any subpool limit.
2019         */
2020        if (map_chg || avoid_reserve) {
2021                gbl_chg = hugepage_subpool_get_pages(spool, 1);
2022                if (gbl_chg < 0) {
2023                        vma_end_reservation(h, vma, addr);
2024                        return ERR_PTR(-ENOSPC);
2025                }
2026
2027                /*
2028                 * Even though there was no reservation in the region/reserve
2029                 * map, there could be reservations associated with the
2030                 * subpool that can be used.  This would be indicated if the
2031                 * return value of hugepage_subpool_get_pages() is zero.
2032                 * However, if avoid_reserve is specified we still avoid even
2033                 * the subpool reservations.
2034                 */
2035                if (avoid_reserve)
2036                        gbl_chg = 1;
2037        }
2038
2039        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2040        if (ret)
2041                goto out_subpool_put;
2042
2043        spin_lock(&hugetlb_lock);
2044        /*
2045         * glb_chg is passed to indicate whether or not a page must be taken
2046         * from the global free pool (global change).  gbl_chg == 0 indicates
2047         * a reservation exists for the allocation.
2048         */
2049        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2050        if (!page) {
2051                spin_unlock(&hugetlb_lock);
2052                page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2053                if (!page)
2054                        goto out_uncharge_cgroup;
2055                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2056                        SetPagePrivate(page);
2057                        h->resv_huge_pages--;
2058                }
2059                spin_lock(&hugetlb_lock);
2060                list_move(&page->lru, &h->hugepage_activelist);
2061                /* Fall through */
2062        }
2063        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2064        spin_unlock(&hugetlb_lock);
2065
2066        set_page_private(page, (unsigned long)spool);
2067
2068        map_commit = vma_commit_reservation(h, vma, addr);
2069        if (unlikely(map_chg > map_commit)) {
2070                /*
2071                 * The page was added to the reservation map between
2072                 * vma_needs_reservation and vma_commit_reservation.
2073                 * This indicates a race with hugetlb_reserve_pages.
2074                 * Adjust for the subpool count incremented above AND
2075                 * in hugetlb_reserve_pages for the same page.  Also,
2076                 * the reservation count added in hugetlb_reserve_pages
2077                 * no longer applies.
2078                 */
2079                long rsv_adjust;
2080
2081                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2082                hugetlb_acct_memory(h, -rsv_adjust);
2083        }
2084        return page;
2085
2086out_uncharge_cgroup:
2087        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2088out_subpool_put:
2089        if (map_chg || avoid_reserve)
2090                hugepage_subpool_put_pages(spool, 1);
2091        vma_end_reservation(h, vma, addr);
2092        return ERR_PTR(-ENOSPC);
2093}
2094
2095int alloc_bootmem_huge_page(struct hstate *h)
2096        __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2097int __alloc_bootmem_huge_page(struct hstate *h)
2098{
2099        struct huge_bootmem_page *m;
2100        int nr_nodes, node;
2101
2102        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2103                void *addr;
2104
2105                addr = memblock_alloc_try_nid_raw(
2106                                huge_page_size(h), huge_page_size(h),
2107                                0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2108                if (addr) {
2109                        /*
2110                         * Use the beginning of the huge page to store the
2111                         * huge_bootmem_page struct (until gather_bootmem
2112                         * puts them into the mem_map).
2113                         */
2114                        m = addr;
2115                        goto found;
2116                }
2117        }
2118        return 0;
2119
2120found:
2121        BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2122        /* Put them into a private list first because mem_map is not up yet */
2123        INIT_LIST_HEAD(&m->list);
2124        list_add(&m->list, &huge_boot_pages);
2125        m->hstate = h;
2126        return 1;
2127}
2128
2129static void __init prep_compound_huge_page(struct page *page,
2130                unsigned int order)
2131{
2132        if (unlikely(order > (MAX_ORDER - 1)))
2133                prep_compound_gigantic_page(page, order);
2134        else
2135                prep_compound_page(page, order);
2136}
2137
2138/* Put bootmem huge pages into the standard lists after mem_map is up */
2139static void __init gather_bootmem_prealloc(void)
2140{
2141        struct huge_bootmem_page *m;
2142
2143        list_for_each_entry(m, &huge_boot_pages, list) {
2144                struct page *page = virt_to_page(m);
2145                struct hstate *h = m->hstate;
2146
2147                WARN_ON(page_count(page) != 1);
2148                prep_compound_huge_page(page, h->order);
2149                WARN_ON(PageReserved(page));
2150                prep_new_huge_page(h, page, page_to_nid(page));
2151                put_page(page); /* free it into the hugepage allocator */
2152
2153                /*
2154                 * If we had gigantic hugepages allocated at boot time, we need
2155                 * to restore the 'stolen' pages to totalram_pages in order to
2156                 * fix confusing memory reports from free(1) and another
2157                 * side-effects, like CommitLimit going negative.
2158                 */
2159                if (hstate_is_gigantic(h))
2160                        adjust_managed_page_count(page, 1 << h->order);
2161                cond_resched();
2162        }
2163}
2164
2165static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2166{
2167        unsigned long i;
2168
2169        for (i = 0; i < h->max_huge_pages; ++i) {
2170                if (hstate_is_gigantic(h)) {
2171                        if (!alloc_bootmem_huge_page(h))
2172                                break;
2173                } else if (!alloc_pool_huge_page(h,
2174                                         &node_states[N_MEMORY]))
2175                        break;
2176                cond_resched();
2177        }
2178        if (i < h->max_huge_pages) {
2179                char buf[32];
2180
2181                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2182                pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2183                        h->max_huge_pages, buf, i);
2184                h->max_huge_pages = i;
2185        }
2186}
2187
2188static void __init hugetlb_init_hstates(void)
2189{
2190        struct hstate *h;
2191
2192        for_each_hstate(h) {
2193                if (minimum_order > huge_page_order(h))
2194                        minimum_order = huge_page_order(h);
2195
2196                /* oversize hugepages were init'ed in early boot */
2197                if (!hstate_is_gigantic(h))
2198                        hugetlb_hstate_alloc_pages(h);
2199        }
2200        VM_BUG_ON(minimum_order == UINT_MAX);
2201}
2202
2203static void __init report_hugepages(void)
2204{
2205        struct hstate *h;
2206
2207        for_each_hstate(h) {
2208                char buf[32];
2209
2210                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2211                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2212                        buf, h->free_huge_pages);
2213        }
2214}
2215
2216#ifdef CONFIG_HIGHMEM
2217static void try_to_free_low(struct hstate *h, unsigned long count,
2218                                                nodemask_t *nodes_allowed)
2219{
2220        int i;
2221
2222        if (hstate_is_gigantic(h))
2223                return;
2224
2225        for_each_node_mask(i, *nodes_allowed) {
2226                struct page *page, *next;
2227                struct list_head *freel = &h->hugepage_freelists[i];
2228                list_for_each_entry_safe(page, next, freel, lru) {
2229                        if (count >= h->nr_huge_pages)
2230                                return;
2231                        if (PageHighMem(page))
2232                                continue;
2233                        list_del(&page->lru);
2234                        update_and_free_page(h, page);
2235                        h->free_huge_pages--;
2236                        h->free_huge_pages_node[page_to_nid(page)]--;
2237                }
2238        }
2239}
2240#else
2241static inline void try_to_free_low(struct hstate *h, unsigned long count,
2242                                                nodemask_t *nodes_allowed)
2243{
2244}
2245#endif
2246
2247/*
2248 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2249 * balanced by operating on them in a round-robin fashion.
2250 * Returns 1 if an adjustment was made.
2251 */
2252static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2253                                int delta)
2254{
2255        int nr_nodes, node;
2256
2257        VM_BUG_ON(delta != -1 && delta != 1);
2258
2259        if (delta < 0) {
2260                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2261                        if (h->surplus_huge_pages_node[node])
2262                                goto found;
2263                }
2264        } else {
2265                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2266                        if (h->surplus_huge_pages_node[node] <
2267                                        h->nr_huge_pages_node[node])
2268                                goto found;
2269                }
2270        }
2271        return 0;
2272
2273found:
2274        h->surplus_huge_pages += delta;
2275        h->surplus_huge_pages_node[node] += delta;
2276        return 1;
2277}
2278
2279#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2280static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2281                                                nodemask_t *nodes_allowed)
2282{
2283        unsigned long min_count, ret;
2284
2285        if (hstate_is_gigantic(h) && !gigantic_page_supported())
2286                return h->max_huge_pages;
2287
2288        /*
2289         * Increase the pool size
2290         * First take pages out of surplus state.  Then make up the
2291         * remaining difference by allocating fresh huge pages.
2292         *
2293         * We might race with alloc_surplus_huge_page() here and be unable
2294         * to convert a surplus huge page to a normal huge page. That is
2295         * not critical, though, it just means the overall size of the
2296         * pool might be one hugepage larger than it needs to be, but
2297         * within all the constraints specified by the sysctls.
2298         */
2299        spin_lock(&hugetlb_lock);
2300        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2301                if (!adjust_pool_surplus(h, nodes_allowed, -1))
2302                        break;
2303        }
2304
2305        while (count > persistent_huge_pages(h)) {
2306                /*
2307                 * If this allocation races such that we no longer need the
2308                 * page, free_huge_page will handle it by freeing the page
2309                 * and reducing the surplus.
2310                 */
2311                spin_unlock(&hugetlb_lock);
2312
2313                /* yield cpu to avoid soft lockup */
2314                cond_resched();
2315
2316                ret = alloc_pool_huge_page(h, nodes_allowed);
2317                spin_lock(&hugetlb_lock);
2318                if (!ret)
2319                        goto out;
2320
2321                /* Bail for signals. Probably ctrl-c from user */
2322                if (signal_pending(current))
2323                        goto out;
2324        }
2325
2326        /*
2327         * Decrease the pool size
2328         * First return free pages to the buddy allocator (being careful
2329         * to keep enough around to satisfy reservations).  Then place
2330         * pages into surplus state as needed so the pool will shrink
2331         * to the desired size as pages become free.
2332         *
2333         * By placing pages into the surplus state independent of the
2334         * overcommit value, we are allowing the surplus pool size to
2335         * exceed overcommit. There are few sane options here. Since
2336         * alloc_surplus_huge_page() is checking the global counter,
2337         * though, we'll note that we're not allowed to exceed surplus
2338         * and won't grow the pool anywhere else. Not until one of the
2339         * sysctls are changed, or the surplus pages go out of use.
2340         */
2341        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2342        min_count = max(count, min_count);
2343        try_to_free_low(h, min_count, nodes_allowed);
2344        while (min_count < persistent_huge_pages(h)) {
2345                if (!free_pool_huge_page(h, nodes_allowed, 0))
2346                        break;
2347                cond_resched_lock(&hugetlb_lock);
2348        }
2349        while (count < persistent_huge_pages(h)) {
2350                if (!adjust_pool_surplus(h, nodes_allowed, 1))
2351                        break;
2352        }
2353out:
2354        ret = persistent_huge_pages(h);
2355        spin_unlock(&hugetlb_lock);
2356        return ret;
2357}
2358
2359#define HSTATE_ATTR_RO(_name) \
2360        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2361
2362#define HSTATE_ATTR(_name) \
2363        static struct kobj_attribute _name##_attr = \
2364                __ATTR(_name, 0644, _name##_show, _name##_store)
2365
2366static struct kobject *hugepages_kobj;
2367static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2368
2369static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2370
2371static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2372{
2373        int i;
2374
2375        for (i = 0; i < HUGE_MAX_HSTATE; i++)
2376                if (hstate_kobjs[i] == kobj) {
2377                        if (nidp)
2378                                *nidp = NUMA_NO_NODE;
2379                        return &hstates[i];
2380                }
2381
2382        return kobj_to_node_hstate(kobj, nidp);
2383}
2384
2385static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2386                                        struct kobj_attribute *attr, char *buf)
2387{
2388        struct hstate *h;
2389        unsigned long nr_huge_pages;
2390        int nid;
2391
2392        h = kobj_to_hstate(kobj, &nid);
2393        if (nid == NUMA_NO_NODE)
2394                nr_huge_pages = h->nr_huge_pages;
2395        else
2396                nr_huge_pages = h->nr_huge_pages_node[nid];
2397
2398        return sprintf(buf, "%lu\n", nr_huge_pages);
2399}
2400
2401static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2402                                           struct hstate *h, int nid,
2403                                           unsigned long count, size_t len)
2404{
2405        int err;
2406        NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2407
2408        if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2409                err = -EINVAL;
2410                goto out;
2411        }
2412
2413        if (nid == NUMA_NO_NODE) {
2414                /*
2415                 * global hstate attribute
2416                 */
2417                if (!(obey_mempolicy &&
2418                                init_nodemask_of_mempolicy(nodes_allowed))) {
2419                        NODEMASK_FREE(nodes_allowed);
2420                        nodes_allowed = &node_states[N_MEMORY];
2421                }
2422        } else if (nodes_allowed) {
2423                /*
2424                 * per node hstate attribute: adjust count to global,
2425                 * but restrict alloc/free to the specified node.
2426                 */
2427                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2428                init_nodemask_of_node(nodes_allowed, nid);
2429        } else
2430                nodes_allowed = &node_states[N_MEMORY];
2431
2432        h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2433
2434        if (nodes_allowed != &node_states[N_MEMORY])
2435                NODEMASK_FREE(nodes_allowed);
2436
2437        return len;
2438out:
2439        NODEMASK_FREE(nodes_allowed);
2440        return err;
2441}
2442
2443static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2444                                         struct kobject *kobj, const char *buf,
2445                                         size_t len)
2446{
2447        struct hstate *h;
2448        unsigned long count;
2449        int nid;
2450        int err;
2451
2452        err = kstrtoul(buf, 10, &count);
2453        if (err)
2454                return err;
2455
2456        h = kobj_to_hstate(kobj, &nid);
2457        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2458}
2459
2460static ssize_t nr_hugepages_show(struct kobject *kobj,
2461                                       struct kobj_attribute *attr, char *buf)
2462{
2463        return nr_hugepages_show_common(kobj, attr, buf);
2464}
2465
2466static ssize_t nr_hugepages_store(struct kobject *kobj,
2467               struct kobj_attribute *attr, const char *buf, size_t len)
2468{
2469        return nr_hugepages_store_common(false, kobj, buf, len);
2470}
2471HSTATE_ATTR(nr_hugepages);
2472
2473#ifdef CONFIG_NUMA
2474
2475/*
2476 * hstate attribute for optionally mempolicy-based constraint on persistent
2477 * huge page alloc/free.
2478 */
2479static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2480                                       struct kobj_attribute *attr, char *buf)
2481{
2482        return nr_hugepages_show_common(kobj, attr, buf);
2483}
2484
2485static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2486               struct kobj_attribute *attr, const char *buf, size_t len)
2487{
2488        return nr_hugepages_store_common(true, kobj, buf, len);
2489}
2490HSTATE_ATTR(nr_hugepages_mempolicy);
2491#endif
2492
2493
2494static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2495                                        struct kobj_attribute *attr, char *buf)
2496{
2497        struct hstate *h = kobj_to_hstate(kobj, NULL);
2498        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2499}
2500
2501static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2502                struct kobj_attribute *attr, const char *buf, size_t count)
2503{
2504        int err;
2505        unsigned long input;
2506        struct hstate *h = kobj_to_hstate(kobj, NULL);
2507
2508        if (hstate_is_gigantic(h))
2509                return -EINVAL;
2510
2511        err = kstrtoul(buf, 10, &input);
2512        if (err)
2513                return err;
2514
2515        spin_lock(&hugetlb_lock);
2516        h->nr_overcommit_huge_pages = input;
2517        spin_unlock(&hugetlb_lock);
2518
2519        return count;
2520}
2521HSTATE_ATTR(nr_overcommit_hugepages);
2522
2523static ssize_t free_hugepages_show(struct kobject *kobj,
2524                                        struct kobj_attribute *attr, char *buf)
2525{
2526        struct hstate *h;
2527        unsigned long free_huge_pages;
2528        int nid;
2529
2530        h = kobj_to_hstate(kobj, &nid);
2531        if (nid == NUMA_NO_NODE)
2532                free_huge_pages = h->free_huge_pages;
2533        else
2534                free_huge_pages = h->free_huge_pages_node[nid];
2535
2536        return sprintf(buf, "%lu\n", free_huge_pages);
2537}
2538HSTATE_ATTR_RO(free_hugepages);
2539
2540static ssize_t resv_hugepages_show(struct kobject *kobj,
2541                                        struct kobj_attribute *attr, char *buf)
2542{
2543        struct hstate *h = kobj_to_hstate(kobj, NULL);
2544        return sprintf(buf, "%lu\n", h->resv_huge_pages);
2545}
2546HSTATE_ATTR_RO(resv_hugepages);
2547
2548static ssize_t surplus_hugepages_show(struct kobject *kobj,
2549                                        struct kobj_attribute *attr, char *buf)
2550{
2551        struct hstate *h;
2552        unsigned long surplus_huge_pages;
2553        int nid;
2554
2555        h = kobj_to_hstate(kobj, &nid);
2556        if (nid == NUMA_NO_NODE)
2557                surplus_huge_pages = h->surplus_huge_pages;
2558        else
2559                surplus_huge_pages = h->surplus_huge_pages_node[nid];
2560
2561        return sprintf(buf, "%lu\n", surplus_huge_pages);
2562}
2563HSTATE_ATTR_RO(surplus_hugepages);
2564
2565static struct attribute *hstate_attrs[] = {
2566        &nr_hugepages_attr.attr,
2567        &nr_overcommit_hugepages_attr.attr,
2568        &free_hugepages_attr.attr,
2569        &resv_hugepages_attr.attr,
2570        &surplus_hugepages_attr.attr,
2571#ifdef CONFIG_NUMA
2572        &nr_hugepages_mempolicy_attr.attr,
2573#endif
2574        NULL,
2575};
2576
2577static const struct attribute_group hstate_attr_group = {
2578        .attrs = hstate_attrs,
2579};
2580
2581static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2582                                    struct kobject **hstate_kobjs,
2583                                    const struct attribute_group *hstate_attr_group)
2584{
2585        int retval;
2586        int hi = hstate_index(h);
2587
2588        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2589        if (!hstate_kobjs[hi])
2590                return -ENOMEM;
2591
2592        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2593        if (retval)
2594                kobject_put(hstate_kobjs[hi]);
2595
2596        return retval;
2597}
2598
2599static void __init hugetlb_sysfs_init(void)
2600{
2601        struct hstate *h;
2602        int err;
2603
2604        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2605        if (!hugepages_kobj)
2606                return;
2607
2608        for_each_hstate(h) {
2609                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2610                                         hstate_kobjs, &hstate_attr_group);
2611                if (err)
2612                        pr_err("Hugetlb: Unable to add hstate %s", h->name);
2613        }
2614}
2615
2616#ifdef CONFIG_NUMA
2617
2618/*
2619 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2620 * with node devices in node_devices[] using a parallel array.  The array
2621 * index of a node device or _hstate == node id.
2622 * This is here to avoid any static dependency of the node device driver, in
2623 * the base kernel, on the hugetlb module.
2624 */
2625struct node_hstate {
2626        struct kobject          *hugepages_kobj;
2627        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2628};
2629static struct node_hstate node_hstates[MAX_NUMNODES];
2630
2631/*
2632 * A subset of global hstate attributes for node devices
2633 */
2634static struct attribute *per_node_hstate_attrs[] = {
2635        &nr_hugepages_attr.attr,
2636        &free_hugepages_attr.attr,
2637        &surplus_hugepages_attr.attr,
2638        NULL,
2639};
2640
2641static const struct attribute_group per_node_hstate_attr_group = {
2642        .attrs = per_node_hstate_attrs,
2643};
2644
2645/*
2646 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2647 * Returns node id via non-NULL nidp.
2648 */
2649static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2650{
2651        int nid;
2652
2653        for (nid = 0; nid < nr_node_ids; nid++) {
2654                struct node_hstate *nhs = &node_hstates[nid];
2655                int i;
2656                for (i = 0; i < HUGE_MAX_HSTATE; i++)
2657                        if (nhs->hstate_kobjs[i] == kobj) {
2658                                if (nidp)
2659                                        *nidp = nid;
2660                                return &hstates[i];
2661                        }
2662        }
2663
2664        BUG();
2665        return NULL;
2666}
2667
2668/*
2669 * Unregister hstate attributes from a single node device.
2670 * No-op if no hstate attributes attached.
2671 */
2672static void hugetlb_unregister_node(struct node *node)
2673{
2674        struct hstate *h;
2675        struct node_hstate *nhs = &node_hstates[node->dev.id];
2676
2677        if (!nhs->hugepages_kobj)
2678                return;         /* no hstate attributes */
2679
2680        for_each_hstate(h) {
2681                int idx = hstate_index(h);
2682                if (nhs->hstate_kobjs[idx]) {
2683                        kobject_put(nhs->hstate_kobjs[idx]);
2684                        nhs->hstate_kobjs[idx] = NULL;
2685                }
2686        }
2687
2688        kobject_put(nhs->hugepages_kobj);
2689        nhs->hugepages_kobj = NULL;
2690}
2691
2692
2693/*
2694 * Register hstate attributes for a single node device.
2695 * No-op if attributes already registered.
2696 */
2697static void hugetlb_register_node(struct node *node)
2698{
2699        struct hstate *h;
2700        struct node_hstate *nhs = &node_hstates[node->dev.id];
2701        int err;
2702
2703        if (nhs->hugepages_kobj)
2704                return;         /* already allocated */
2705
2706        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2707                                                        &node->dev.kobj);
2708        if (!nhs->hugepages_kobj)
2709                return;
2710
2711        for_each_hstate(h) {
2712                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2713                                                nhs->hstate_kobjs,
2714                                                &per_node_hstate_attr_group);
2715                if (err) {
2716                        pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2717                                h->name, node->dev.id);
2718                        hugetlb_unregister_node(node);
2719                        break;
2720                }
2721        }
2722}
2723
2724/*
2725 * hugetlb init time:  register hstate attributes for all registered node
2726 * devices of nodes that have memory.  All on-line nodes should have
2727 * registered their associated device by this time.
2728 */
2729static void __init hugetlb_register_all_nodes(void)
2730{
2731        int nid;
2732
2733        for_each_node_state(nid, N_MEMORY) {
2734                struct node *node = node_devices[nid];
2735                if (node->dev.id == nid)
2736                        hugetlb_register_node(node);
2737        }
2738
2739        /*
2740         * Let the node device driver know we're here so it can
2741         * [un]register hstate attributes on node hotplug.
2742         */
2743        register_hugetlbfs_with_node(hugetlb_register_node,
2744                                     hugetlb_unregister_node);
2745}
2746#else   /* !CONFIG_NUMA */
2747
2748static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2749{
2750        BUG();
2751        if (nidp)
2752                *nidp = -1;
2753        return NULL;
2754}
2755
2756static void hugetlb_register_all_nodes(void) { }
2757
2758#endif
2759
2760static int __init hugetlb_init(void)
2761{
2762        int i;
2763
2764        if (!hugepages_supported())
2765                return 0;
2766
2767        if (!size_to_hstate(default_hstate_size)) {
2768                if (default_hstate_size != 0) {
2769                        pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2770                               default_hstate_size, HPAGE_SIZE);
2771                }
2772
2773                default_hstate_size = HPAGE_SIZE;
2774                if (!size_to_hstate(default_hstate_size))
2775                        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2776        }
2777        default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2778        if (default_hstate_max_huge_pages) {
2779                if (!default_hstate.max_huge_pages)
2780                        default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2781        }
2782
2783        hugetlb_init_hstates();
2784        gather_bootmem_prealloc();
2785        report_hugepages();
2786
2787        hugetlb_sysfs_init();
2788        hugetlb_register_all_nodes();
2789        hugetlb_cgroup_file_init();
2790
2791#ifdef CONFIG_SMP
2792        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2793#else
2794        num_fault_mutexes = 1;
2795#endif
2796        hugetlb_fault_mutex_table =
2797                kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2798                              GFP_KERNEL);
2799        BUG_ON(!hugetlb_fault_mutex_table);
2800
2801        for (i = 0; i < num_fault_mutexes; i++)
2802                mutex_init(&hugetlb_fault_mutex_table[i]);
2803        return 0;
2804}
2805subsys_initcall(hugetlb_init);
2806
2807/* Should be called on processing a hugepagesz=... option */
2808void __init hugetlb_bad_size(void)
2809{
2810        parsed_valid_hugepagesz = false;
2811}
2812
2813void __init hugetlb_add_hstate(unsigned int order)
2814{
2815        struct hstate *h;
2816        unsigned long i;
2817
2818        if (size_to_hstate(PAGE_SIZE << order)) {
2819                pr_warn("hugepagesz= specified twice, ignoring\n");
2820                return;
2821        }
2822        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2823        BUG_ON(order == 0);
2824        h = &hstates[hugetlb_max_hstate++];
2825        h->order = order;
2826        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2827        h->nr_huge_pages = 0;
2828        h->free_huge_pages = 0;
2829        for (i = 0; i < MAX_NUMNODES; ++i)
2830                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2831        INIT_LIST_HEAD(&h->hugepage_activelist);
2832        h->next_nid_to_alloc = first_memory_node;
2833        h->next_nid_to_free = first_memory_node;
2834        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2835                                        huge_page_size(h)/1024);
2836
2837        parsed_hstate = h;
2838}
2839
2840static int __init hugetlb_nrpages_setup(char *s)
2841{
2842        unsigned long *mhp;
2843        static unsigned long *last_mhp;
2844
2845        if (!parsed_valid_hugepagesz) {
2846                pr_warn("hugepages = %s preceded by "
2847                        "an unsupported hugepagesz, ignoring\n", s);
2848                parsed_valid_hugepagesz = true;
2849                return 1;
2850        }
2851        /*
2852         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2853         * so this hugepages= parameter goes to the "default hstate".
2854         */
2855        else if (!hugetlb_max_hstate)
2856                mhp = &default_hstate_max_huge_pages;
2857        else
2858                mhp = &parsed_hstate->max_huge_pages;
2859
2860        if (mhp == last_mhp) {
2861                pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2862                return 1;
2863        }
2864
2865        if (sscanf(s, "%lu", mhp) <= 0)
2866                *mhp = 0;
2867
2868        /*
2869         * Global state is always initialized later in hugetlb_init.
2870         * But we need to allocate >= MAX_ORDER hstates here early to still
2871         * use the bootmem allocator.
2872         */
2873        if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2874                hugetlb_hstate_alloc_pages(parsed_hstate);
2875
2876        last_mhp = mhp;
2877
2878        return 1;
2879}
2880__setup("hugepages=", hugetlb_nrpages_setup);
2881
2882static int __init hugetlb_default_setup(char *s)
2883{
2884        default_hstate_size = memparse(s, &s);
2885        return 1;
2886}
2887__setup("default_hugepagesz=", hugetlb_default_setup);
2888
2889static unsigned int cpuset_mems_nr(unsigned int *array)
2890{
2891        int node;
2892        unsigned int nr = 0;
2893
2894        for_each_node_mask(node, cpuset_current_mems_allowed)
2895                nr += array[node];
2896
2897        return nr;
2898}
2899
2900#ifdef CONFIG_SYSCTL
2901static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2902                         struct ctl_table *table, int write,
2903                         void __user *buffer, size_t *length, loff_t *ppos)
2904{
2905        struct hstate *h = &default_hstate;
2906        unsigned long tmp = h->max_huge_pages;
2907        int ret;
2908
2909        if (!hugepages_supported())
2910                return -EOPNOTSUPP;
2911
2912        table->data = &tmp;
2913        table->maxlen = sizeof(unsigned long);
2914        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2915        if (ret)
2916                goto out;
2917
2918        if (write)
2919                ret = __nr_hugepages_store_common(obey_mempolicy, h,
2920                                                  NUMA_NO_NODE, tmp, *length);
2921out:
2922        return ret;
2923}
2924
2925int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2926                          void __user *buffer, size_t *length, loff_t *ppos)
2927{
2928
2929        return hugetlb_sysctl_handler_common(false, table, write,
2930                                                        buffer, length, ppos);
2931}
2932
2933#ifdef CONFIG_NUMA
2934int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2935                          void __user *buffer, size_t *length, loff_t *ppos)
2936{
2937        return hugetlb_sysctl_handler_common(true, table, write,
2938                                                        buffer, length, ppos);
2939}
2940#endif /* CONFIG_NUMA */
2941
2942int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2943                        void __user *buffer,
2944                        size_t *length, loff_t *ppos)
2945{
2946        struct hstate *h = &default_hstate;
2947        unsigned long tmp;
2948        int ret;
2949
2950        if (!hugepages_supported())
2951                return -EOPNOTSUPP;
2952
2953        tmp = h->nr_overcommit_huge_pages;
2954
2955        if (write && hstate_is_gigantic(h))
2956                return -EINVAL;
2957
2958        table->data = &tmp;
2959        table->maxlen = sizeof(unsigned long);
2960        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2961        if (ret)
2962                goto out;
2963
2964        if (write) {
2965                spin_lock(&hugetlb_lock);
2966                h->nr_overcommit_huge_pages = tmp;
2967                spin_unlock(&hugetlb_lock);
2968        }
2969out:
2970        return ret;
2971}
2972
2973#endif /* CONFIG_SYSCTL */
2974
2975void hugetlb_report_meminfo(struct seq_file *m)
2976{
2977        struct hstate *h;
2978        unsigned long total = 0;
2979
2980        if (!hugepages_supported())
2981                return;
2982
2983        for_each_hstate(h) {
2984                unsigned long count = h->nr_huge_pages;
2985
2986                total += (PAGE_SIZE << huge_page_order(h)) * count;
2987
2988                if (h == &default_hstate)
2989                        seq_printf(m,
2990                                   "HugePages_Total:   %5lu\n"
2991                                   "HugePages_Free:    %5lu\n"
2992                                   "HugePages_Rsvd:    %5lu\n"
2993                                   "HugePages_Surp:    %5lu\n"
2994                                   "Hugepagesize:   %8lu kB\n",
2995                                   count,
2996                                   h->free_huge_pages,
2997                                   h->resv_huge_pages,
2998                                   h->surplus_huge_pages,
2999                                   (PAGE_SIZE << huge_page_order(h)) / 1024);
3000        }
3001
3002        seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3003}
3004
3005int hugetlb_report_node_meminfo(int nid, char *buf)
3006{
3007        struct hstate *h = &default_hstate;
3008        if (!hugepages_supported())
3009                return 0;
3010        return sprintf(buf,
3011                "Node %d HugePages_Total: %5u\n"
3012                "Node %d HugePages_Free:  %5u\n"
3013                "Node %d HugePages_Surp:  %5u\n",
3014                nid, h->nr_huge_pages_node[nid],
3015                nid, h->free_huge_pages_node[nid],
3016                nid, h->surplus_huge_pages_node[nid]);
3017}
3018
3019void hugetlb_show_meminfo(void)
3020{
3021        struct hstate *h;
3022        int nid;
3023
3024        if (!hugepages_supported())
3025                return;
3026
3027        for_each_node_state(nid, N_MEMORY)
3028                for_each_hstate(h)
3029                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3030                                nid,
3031                                h->nr_huge_pages_node[nid],
3032                                h->free_huge_pages_node[nid],
3033                                h->surplus_huge_pages_node[nid],
3034                                1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3035}
3036
3037void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3038{
3039        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3040                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3041}
3042
3043/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3044unsigned long hugetlb_total_pages(void)
3045{
3046        struct hstate *h;
3047        unsigned long nr_total_pages = 0;
3048
3049        for_each_hstate(h)
3050                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3051        return nr_total_pages;
3052}
3053
3054static int hugetlb_acct_memory(struct hstate *h, long delta)
3055{
3056        int ret = -ENOMEM;
3057
3058        spin_lock(&hugetlb_lock);
3059        /*
3060         * When cpuset is configured, it breaks the strict hugetlb page
3061         * reservation as the accounting is done on a global variable. Such
3062         * reservation is completely rubbish in the presence of cpuset because
3063         * the reservation is not checked against page availability for the
3064         * current cpuset. Application can still potentially OOM'ed by kernel
3065         * with lack of free htlb page in cpuset that the task is in.
3066         * Attempt to enforce strict accounting with cpuset is almost
3067         * impossible (or too ugly) because cpuset is too fluid that
3068         * task or memory node can be dynamically moved between cpusets.
3069         *
3070         * The change of semantics for shared hugetlb mapping with cpuset is
3071         * undesirable. However, in order to preserve some of the semantics,
3072         * we fall back to check against current free page availability as
3073         * a best attempt and hopefully to minimize the impact of changing
3074         * semantics that cpuset has.
3075         */
3076        if (delta > 0) {
3077                if (gather_surplus_pages(h, delta) < 0)
3078                        goto out;
3079
3080                if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3081                        return_unused_surplus_pages(h, delta);
3082                        goto out;
3083                }
3084        }
3085
3086        ret = 0;
3087        if (delta < 0)
3088                return_unused_surplus_pages(h, (unsigned long) -delta);
3089
3090out:
3091        spin_unlock(&hugetlb_lock);
3092        return ret;
3093}
3094
3095static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3096{
3097        struct resv_map *resv = vma_resv_map(vma);
3098
3099        /*
3100         * This new VMA should share its siblings reservation map if present.
3101         * The VMA will only ever have a valid reservation map pointer where
3102         * it is being copied for another still existing VMA.  As that VMA
3103         * has a reference to the reservation map it cannot disappear until
3104         * after this open call completes.  It is therefore safe to take a
3105         * new reference here without additional locking.
3106         */
3107        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3108                kref_get(&resv->refs);
3109}
3110
3111static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3112{
3113        struct hstate *h = hstate_vma(vma);
3114        struct resv_map *resv = vma_resv_map(vma);
3115        struct hugepage_subpool *spool = subpool_vma(vma);
3116        unsigned long reserve, start, end;
3117        long gbl_reserve;
3118
3119        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3120                return;
3121
3122        start = vma_hugecache_offset(h, vma, vma->vm_start);
3123        end = vma_hugecache_offset(h, vma, vma->vm_end);
3124
3125        reserve = (end - start) - region_count(resv, start, end);
3126
3127        kref_put(&resv->refs, resv_map_release);
3128
3129        if (reserve) {
3130                /*
3131                 * Decrement reserve counts.  The global reserve count may be
3132                 * adjusted if the subpool has a minimum size.
3133                 */
3134                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3135                hugetlb_acct_memory(h, -gbl_reserve);
3136        }
3137}
3138
3139static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3140{
3141        if (addr & ~(huge_page_mask(hstate_vma(vma))))
3142                return -EINVAL;
3143        return 0;
3144}
3145
3146static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3147{
3148        struct hstate *hstate = hstate_vma(vma);
3149
3150        return 1UL << huge_page_shift(hstate);
3151}
3152
3153/*
3154 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3155 * handle_mm_fault() to try to instantiate regular-sized pages in the
3156 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3157 * this far.
3158 */
3159static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3160{
3161        BUG();
3162        return 0;
3163}
3164
3165/*
3166 * When a new function is introduced to vm_operations_struct and added
3167 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3168 * This is because under System V memory model, mappings created via
3169 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3170 * their original vm_ops are overwritten with shm_vm_ops.
3171 */
3172const struct vm_operations_struct hugetlb_vm_ops = {
3173        .fault = hugetlb_vm_op_fault,
3174        .open = hugetlb_vm_op_open,
3175        .close = hugetlb_vm_op_close,
3176        .split = hugetlb_vm_op_split,
3177        .pagesize = hugetlb_vm_op_pagesize,
3178};
3179
3180static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3181                                int writable)
3182{
3183        pte_t entry;
3184
3185        if (writable) {
3186                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3187                                         vma->vm_page_prot)));
3188        } else {
3189                entry = huge_pte_wrprotect(mk_huge_pte(page,
3190                                           vma->vm_page_prot));
3191        }
3192        entry = pte_mkyoung(entry);
3193        entry = pte_mkhuge(entry);
3194        entry = arch_make_huge_pte(entry, vma, page, writable);
3195
3196        return entry;
3197}
3198
3199static void set_huge_ptep_writable(struct vm_area_struct *vma,
3200                                   unsigned long address, pte_t *ptep)
3201{
3202        pte_t entry;
3203
3204        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3205        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3206                update_mmu_cache(vma, address, ptep);
3207}
3208
3209bool is_hugetlb_entry_migration(pte_t pte)
3210{
3211        swp_entry_t swp;
3212
3213        if (huge_pte_none(pte) || pte_present(pte))
3214                return false;
3215        swp = pte_to_swp_entry(pte);
3216        if (non_swap_entry(swp) && is_migration_entry(swp))
3217                return true;
3218        else
3219                return false;
3220}
3221
3222static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3223{
3224        swp_entry_t swp;
3225
3226        if (huge_pte_none(pte) || pte_present(pte))
3227                return 0;
3228        swp = pte_to_swp_entry(pte);
3229        if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3230                return 1;
3231        else
3232                return 0;
3233}
3234
3235int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3236                            struct vm_area_struct *vma)
3237{
3238        pte_t *src_pte, *dst_pte, entry, dst_entry;
3239        struct page *ptepage;
3240        unsigned long addr;
3241        int cow;
3242        struct hstate *h = hstate_vma(vma);
3243        unsigned long sz = huge_page_size(h);
3244        struct mmu_notifier_range range;
3245        int ret = 0;
3246
3247        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3248
3249        if (cow) {
3250                mmu_notifier_range_init(&range, src, vma->vm_start,
3251                                        vma->vm_end);
3252                mmu_notifier_invalidate_range_start(&range);
3253        }
3254
3255        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3256                spinlock_t *src_ptl, *dst_ptl;
3257                src_pte = huge_pte_offset(src, addr, sz);
3258                if (!src_pte)
3259                        continue;
3260                dst_pte = huge_pte_alloc(dst, addr, sz);
3261                if (!dst_pte) {
3262                        ret = -ENOMEM;
3263                        break;
3264                }
3265
3266                /*
3267                 * If the pagetables are shared don't copy or take references.
3268                 * dst_pte == src_pte is the common case of src/dest sharing.
3269                 *
3270                 * However, src could have 'unshared' and dst shares with
3271                 * another vma.  If dst_pte !none, this implies sharing.
3272                 * Check here before taking page table lock, and once again
3273                 * after taking the lock below.
3274                 */
3275                dst_entry = huge_ptep_get(dst_pte);
3276                if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3277                        continue;
3278
3279                dst_ptl = huge_pte_lock(h, dst, dst_pte);
3280                src_ptl = huge_pte_lockptr(h, src, src_pte);
3281                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3282                entry = huge_ptep_get(src_pte);
3283                dst_entry = huge_ptep_get(dst_pte);
3284                if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3285                        /*
3286                         * Skip if src entry none.  Also, skip in the
3287                         * unlikely case dst entry !none as this implies
3288                         * sharing with another vma.
3289                         */
3290                        ;
3291                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3292                                    is_hugetlb_entry_hwpoisoned(entry))) {
3293                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
3294
3295                        if (is_write_migration_entry(swp_entry) && cow) {
3296                                /*
3297                                 * COW mappings require pages in both
3298                                 * parent and child to be set to read.
3299                                 */
3300                                make_migration_entry_read(&swp_entry);
3301                                entry = swp_entry_to_pte(swp_entry);
3302                                set_huge_swap_pte_at(src, addr, src_pte,
3303                                                     entry, sz);
3304                        }
3305                        set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3306                } else {
3307                        if (cow) {
3308                                /*
3309                                 * No need to notify as we are downgrading page
3310                                 * table protection not changing it to point
3311                                 * to a new page.
3312                                 *
3313                                 * See Documentation/vm/mmu_notifier.rst
3314                                 */
3315                                huge_ptep_set_wrprotect(src, addr, src_pte);
3316                        }
3317                        entry = huge_ptep_get(src_pte);
3318                        ptepage = pte_page(entry);
3319                        get_page(ptepage);
3320                        page_dup_rmap(ptepage, true);
3321                        set_huge_pte_at(dst, addr, dst_pte, entry);
3322                        hugetlb_count_add(pages_per_huge_page(h), dst);
3323                }
3324                spin_unlock(src_ptl);
3325                spin_unlock(dst_ptl);
3326        }
3327
3328        if (cow)
3329                mmu_notifier_invalidate_range_end(&range);
3330
3331        return ret;
3332}
3333
3334void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3335                            unsigned long start, unsigned long end,
3336                            struct page *ref_page)
3337{
3338        struct mm_struct *mm = vma->vm_mm;
3339        unsigned long address;
3340        pte_t *ptep;
3341        pte_t pte;
3342        spinlock_t *ptl;
3343        struct page *page;
3344        struct hstate *h = hstate_vma(vma);
3345        unsigned long sz = huge_page_size(h);
3346        struct mmu_notifier_range range;
3347
3348        WARN_ON(!is_vm_hugetlb_page(vma));
3349        BUG_ON(start & ~huge_page_mask(h));
3350        BUG_ON(end & ~huge_page_mask(h));
3351
3352        /*
3353         * This is a hugetlb vma, all the pte entries should point
3354         * to huge page.
3355         */
3356        tlb_remove_check_page_size_change(tlb, sz);
3357        tlb_start_vma(tlb, vma);
3358
3359        /*
3360         * If sharing possible, alert mmu notifiers of worst case.
3361         */
3362        mmu_notifier_range_init(&range, mm, start, end);
3363        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3364        mmu_notifier_invalidate_range_start(&range);
3365        address = start;
3366        for (; address < end; address += sz) {
3367                ptep = huge_pte_offset(mm, address, sz);
3368                if (!ptep)
3369                        continue;
3370
3371                ptl = huge_pte_lock(h, mm, ptep);
3372                if (huge_pmd_unshare(mm, &address, ptep)) {
3373                        spin_unlock(ptl);
3374                        /*
3375                         * We just unmapped a page of PMDs by clearing a PUD.
3376                         * The caller's TLB flush range should cover this area.
3377                         */
3378                        continue;
3379                }
3380
3381                pte = huge_ptep_get(ptep);
3382                if (huge_pte_none(pte)) {
3383                        spin_unlock(ptl);
3384                        continue;
3385                }
3386
3387                /*
3388                 * Migrating hugepage or HWPoisoned hugepage is already
3389                 * unmapped and its refcount is dropped, so just clear pte here.
3390                 */
3391                if (unlikely(!pte_present(pte))) {
3392                        huge_pte_clear(mm, address, ptep, sz);
3393                        spin_unlock(ptl);
3394                        continue;
3395                }
3396
3397                page = pte_page(pte);
3398                /*
3399                 * If a reference page is supplied, it is because a specific
3400                 * page is being unmapped, not a range. Ensure the page we
3401                 * are about to unmap is the actual page of interest.
3402                 */
3403                if (ref_page) {
3404                        if (page != ref_page) {
3405                                spin_unlock(ptl);
3406                                continue;
3407                        }
3408                        /*
3409                         * Mark the VMA as having unmapped its page so that
3410                         * future faults in this VMA will fail rather than
3411                         * looking like data was lost
3412                         */
3413                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3414                }
3415
3416                pte = huge_ptep_get_and_clear(mm, address, ptep);
3417                tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3418                if (huge_pte_dirty(pte))
3419                        set_page_dirty(page);
3420
3421                hugetlb_count_sub(pages_per_huge_page(h), mm);
3422                page_remove_rmap(page, true);
3423
3424                spin_unlock(ptl);
3425                tlb_remove_page_size(tlb, page, huge_page_size(h));
3426                /*
3427                 * Bail out after unmapping reference page if supplied
3428                 */
3429                if (ref_page)
3430                        break;
3431        }
3432        mmu_notifier_invalidate_range_end(&range);
3433        tlb_end_vma(tlb, vma);
3434}
3435
3436void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3437                          struct vm_area_struct *vma, unsigned long start,
3438                          unsigned long end, struct page *ref_page)
3439{
3440        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3441
3442        /*
3443         * Clear this flag so that x86's huge_pmd_share page_table_shareable
3444         * test will fail on a vma being torn down, and not grab a page table
3445         * on its way out.  We're lucky that the flag has such an appropriate
3446         * name, and can in fact be safely cleared here. We could clear it
3447         * before the __unmap_hugepage_range above, but all that's necessary
3448         * is to clear it before releasing the i_mmap_rwsem. This works
3449         * because in the context this is called, the VMA is about to be
3450         * destroyed and the i_mmap_rwsem is held.
3451         */
3452        vma->vm_flags &= ~VM_MAYSHARE;
3453}
3454
3455void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3456                          unsigned long end, struct page *ref_page)
3457{
3458        struct mm_struct *mm;
3459        struct mmu_gather tlb;
3460        unsigned long tlb_start = start;
3461        unsigned long tlb_end = end;
3462
3463        /*
3464         * If shared PMDs were possibly used within this vma range, adjust
3465         * start/end for worst case tlb flushing.
3466         * Note that we can not be sure if PMDs are shared until we try to
3467         * unmap pages.  However, we want to make sure TLB flushing covers
3468         * the largest possible range.
3469         */
3470        adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3471
3472        mm = vma->vm_mm;
3473
3474        tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3475        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3476        tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3477}
3478
3479/*
3480 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3481 * mappping it owns the reserve page for. The intention is to unmap the page
3482 * from other VMAs and let the children be SIGKILLed if they are faulting the
3483 * same region.
3484 */
3485static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3486                              struct page *page, unsigned long address)
3487{
3488        struct hstate *h = hstate_vma(vma);
3489        struct vm_area_struct *iter_vma;
3490        struct address_space *mapping;
3491        pgoff_t pgoff;
3492
3493        /*
3494         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3495         * from page cache lookup which is in HPAGE_SIZE units.
3496         */
3497        address = address & huge_page_mask(h);
3498        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3499                        vma->vm_pgoff;
3500        mapping = vma->vm_file->f_mapping;
3501
3502        /*
3503         * Take the mapping lock for the duration of the table walk. As
3504         * this mapping should be shared between all the VMAs,
3505         * __unmap_hugepage_range() is called as the lock is already held
3506         */
3507        i_mmap_lock_write(mapping);
3508        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3509                /* Do not unmap the current VMA */
3510                if (iter_vma == vma)
3511                        continue;
3512
3513                /*
3514                 * Shared VMAs have their own reserves and do not affect
3515                 * MAP_PRIVATE accounting but it is possible that a shared
3516                 * VMA is using the same page so check and skip such VMAs.
3517                 */
3518                if (iter_vma->vm_flags & VM_MAYSHARE)
3519                        continue;
3520
3521                /*
3522                 * Unmap the page from other VMAs without their own reserves.
3523                 * They get marked to be SIGKILLed if they fault in these
3524                 * areas. This is because a future no-page fault on this VMA
3525                 * could insert a zeroed page instead of the data existing
3526                 * from the time of fork. This would look like data corruption
3527                 */
3528                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3529                        unmap_hugepage_range(iter_vma, address,
3530                                             address + huge_page_size(h), page);
3531        }
3532        i_mmap_unlock_write(mapping);
3533}
3534
3535/*
3536 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3537 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3538 * cannot race with other handlers or page migration.
3539 * Keep the pte_same checks anyway to make transition from the mutex easier.
3540 */
3541static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3542                       unsigned long address, pte_t *ptep,
3543                       struct page *pagecache_page, spinlock_t *ptl)
3544{
3545        pte_t pte;
3546        struct hstate *h = hstate_vma(vma);
3547        struct page *old_page, *new_page;
3548        int outside_reserve = 0;
3549        vm_fault_t ret = 0;
3550        unsigned long haddr = address & huge_page_mask(h);
3551        struct mmu_notifier_range range;
3552
3553        pte = huge_ptep_get(ptep);
3554        old_page = pte_page(pte);
3555
3556retry_avoidcopy:
3557        /* If no-one else is actually using this page, avoid the copy
3558         * and just make the page writable */
3559        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3560                page_move_anon_rmap(old_page, vma);
3561                set_huge_ptep_writable(vma, haddr, ptep);
3562                return 0;
3563        }
3564
3565        /*
3566         * If the process that created a MAP_PRIVATE mapping is about to
3567         * perform a COW due to a shared page count, attempt to satisfy
3568         * the allocation without using the existing reserves. The pagecache
3569         * page is used to determine if the reserve at this address was
3570         * consumed or not. If reserves were used, a partial faulted mapping
3571         * at the time of fork() could consume its reserves on COW instead
3572         * of the full address range.
3573         */
3574        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3575                        old_page != pagecache_page)
3576                outside_reserve = 1;
3577
3578        get_page(old_page);
3579
3580        /*
3581         * Drop page table lock as buddy allocator may be called. It will
3582         * be acquired again before returning to the caller, as expected.
3583         */
3584        spin_unlock(ptl);
3585        new_page = alloc_huge_page(vma, haddr, outside_reserve);
3586
3587        if (IS_ERR(new_page)) {
3588                /*
3589                 * If a process owning a MAP_PRIVATE mapping fails to COW,
3590                 * it is due to references held by a child and an insufficient
3591                 * huge page pool. To guarantee the original mappers
3592                 * reliability, unmap the page from child processes. The child
3593                 * may get SIGKILLed if it later faults.
3594                 */
3595                if (outside_reserve) {
3596                        put_page(old_page);
3597                        BUG_ON(huge_pte_none(pte));
3598                        unmap_ref_private(mm, vma, old_page, haddr);
3599                        BUG_ON(huge_pte_none(pte));
3600                        spin_lock(ptl);
3601                        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3602                        if (likely(ptep &&
3603                                   pte_same(huge_ptep_get(ptep), pte)))
3604                                goto retry_avoidcopy;
3605                        /*
3606                         * race occurs while re-acquiring page table
3607                         * lock, and our job is done.
3608                         */
3609                        return 0;
3610                }
3611
3612                ret = vmf_error(PTR_ERR(new_page));
3613                goto out_release_old;
3614        }
3615
3616        /*
3617         * When the original hugepage is shared one, it does not have
3618         * anon_vma prepared.
3619         */
3620        if (unlikely(anon_vma_prepare(vma))) {
3621                ret = VM_FAULT_OOM;
3622                goto out_release_all;
3623        }
3624
3625        copy_user_huge_page(new_page, old_page, address, vma,
3626                            pages_per_huge_page(h));
3627        __SetPageUptodate(new_page);
3628
3629        mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
3630        mmu_notifier_invalidate_range_start(&range);
3631
3632        /*
3633         * Retake the page table lock to check for racing updates
3634         * before the page tables are altered
3635         */
3636        spin_lock(ptl);
3637        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3638        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3639                ClearPagePrivate(new_page);
3640
3641                /* Break COW */
3642                huge_ptep_clear_flush(vma, haddr, ptep);
3643                mmu_notifier_invalidate_range(mm, range.start, range.end);
3644                set_huge_pte_at(mm, haddr, ptep,
3645                                make_huge_pte(vma, new_page, 1));
3646                page_remove_rmap(old_page, true);
3647                hugepage_add_new_anon_rmap(new_page, vma, haddr);
3648                set_page_huge_active(new_page);
3649                /* Make the old page be freed below */
3650                new_page = old_page;
3651        }
3652        spin_unlock(ptl);
3653        mmu_notifier_invalidate_range_end(&range);
3654out_release_all:
3655        restore_reserve_on_error(h, vma, haddr, new_page);
3656        put_page(new_page);
3657out_release_old:
3658        put_page(old_page);
3659
3660        spin_lock(ptl); /* Caller expects lock to be held */
3661        return ret;
3662}
3663
3664/* Return the pagecache page at a given address within a VMA */
3665static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3666                        struct vm_area_struct *vma, unsigned long address)
3667{
3668        struct address_space *mapping;
3669        pgoff_t idx;
3670
3671        mapping = vma->vm_file->f_mapping;
3672        idx = vma_hugecache_offset(h, vma, address);
3673
3674        return find_lock_page(mapping, idx);
3675}
3676
3677/*
3678 * Return whether there is a pagecache page to back given address within VMA.
3679 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3680 */
3681static bool hugetlbfs_pagecache_present(struct hstate *h,
3682                        struct vm_area_struct *vma, unsigned long address)
3683{
3684        struct address_space *mapping;
3685        pgoff_t idx;
3686        struct page *page;
3687
3688        mapping = vma->vm_file->f_mapping;
3689        idx = vma_hugecache_offset(h, vma, address);
3690
3691        page = find_get_page(mapping, idx);
3692        if (page)
3693                put_page(page);
3694        return page != NULL;
3695}
3696
3697int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3698                           pgoff_t idx)
3699{
3700        struct inode *inode = mapping->host;
3701        struct hstate *h = hstate_inode(inode);
3702        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3703
3704        if (err)
3705                return err;
3706        ClearPagePrivate(page);
3707
3708        /*
3709         * set page dirty so that it will not be removed from cache/file
3710         * by non-hugetlbfs specific code paths.
3711         */
3712        set_page_dirty(page);
3713
3714        spin_lock(&inode->i_lock);
3715        inode->i_blocks += blocks_per_huge_page(h);
3716        spin_unlock(&inode->i_lock);
3717        return 0;
3718}
3719
3720static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3721                        struct vm_area_struct *vma,
3722                        struct address_space *mapping, pgoff_t idx,
3723                        unsigned long address, pte_t *ptep, unsigned int flags)
3724{
3725        struct hstate *h = hstate_vma(vma);
3726        vm_fault_t ret = VM_FAULT_SIGBUS;
3727        int anon_rmap = 0;
3728        unsigned long size;
3729        struct page *page;
3730        pte_t new_pte;
3731        spinlock_t *ptl;
3732        unsigned long haddr = address & huge_page_mask(h);
3733        bool new_page = false;
3734
3735        /*
3736         * Currently, we are forced to kill the process in the event the
3737         * original mapper has unmapped pages from the child due to a failed
3738         * COW. Warn that such a situation has occurred as it may not be obvious
3739         */
3740        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3741                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3742                           current->pid);
3743                return ret;
3744        }
3745
3746        /*
3747         * Use page lock to guard against racing truncation
3748         * before we get page_table_lock.
3749         */
3750retry:
3751        page = find_lock_page(mapping, idx);
3752        if (!page) {
3753                size = i_size_read(mapping->host) >> huge_page_shift(h);
3754                if (idx >= size)
3755                        goto out;
3756
3757                /*
3758                 * Check for page in userfault range
3759                 */
3760                if (userfaultfd_missing(vma)) {
3761                        u32 hash;
3762                        struct vm_fault vmf = {
3763                                .vma = vma,
3764                                .address = haddr,
3765                                .flags = flags,
3766                                /*
3767                                 * Hard to debug if it ends up being
3768                                 * used by a callee that assumes
3769                                 * something about the other
3770                                 * uninitialized fields... same as in
3771                                 * memory.c
3772                                 */
3773                        };
3774
3775                        /*
3776                         * hugetlb_fault_mutex must be dropped before
3777                         * handling userfault.  Reacquire after handling
3778                         * fault to make calling code simpler.
3779                         */
3780                        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3781                                                        idx, haddr);
3782                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3783                        ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3784                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3785                        goto out;
3786                }
3787
3788                page = alloc_huge_page(vma, haddr, 0);
3789                if (IS_ERR(page)) {
3790                        ret = vmf_error(PTR_ERR(page));
3791                        goto out;
3792                }
3793                clear_huge_page(page, address, pages_per_huge_page(h));
3794                __SetPageUptodate(page);
3795                new_page = true;
3796
3797                if (vma->vm_flags & VM_MAYSHARE) {
3798                        int err = huge_add_to_page_cache(page, mapping, idx);
3799                        if (err) {
3800                                put_page(page);
3801                                if (err == -EEXIST)
3802                                        goto retry;
3803                                goto out;
3804                        }
3805                } else {
3806                        lock_page(page);
3807                        if (unlikely(anon_vma_prepare(vma))) {
3808                                ret = VM_FAULT_OOM;
3809                                goto backout_unlocked;
3810                        }
3811                        anon_rmap = 1;
3812                }
3813        } else {
3814                /*
3815                 * If memory error occurs between mmap() and fault, some process
3816                 * don't have hwpoisoned swap entry for errored virtual address.
3817                 * So we need to block hugepage fault by PG_hwpoison bit check.
3818                 */
3819                if (unlikely(PageHWPoison(page))) {
3820                        ret = VM_FAULT_HWPOISON |
3821                                VM_FAULT_SET_HINDEX(hstate_index(h));
3822                        goto backout_unlocked;
3823                }
3824        }
3825
3826        /*
3827         * If we are going to COW a private mapping later, we examine the
3828         * pending reservations for this page now. This will ensure that
3829         * any allocations necessary to record that reservation occur outside
3830         * the spinlock.
3831         */
3832        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3833                if (vma_needs_reservation(h, vma, haddr) < 0) {
3834                        ret = VM_FAULT_OOM;
3835                        goto backout_unlocked;
3836                }
3837                /* Just decrements count, does not deallocate */
3838                vma_end_reservation(h, vma, haddr);
3839        }
3840
3841        ptl = huge_pte_lock(h, mm, ptep);
3842        size = i_size_read(mapping->host) >> huge_page_shift(h);
3843        if (idx >= size)
3844                goto backout;
3845
3846        ret = 0;
3847        if (!huge_pte_none(huge_ptep_get(ptep)))
3848                goto backout;
3849
3850        if (anon_rmap) {
3851                ClearPagePrivate(page);
3852                hugepage_add_new_anon_rmap(page, vma, haddr);
3853        } else
3854                page_dup_rmap(page, true);
3855        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3856                                && (vma->vm_flags & VM_SHARED)));
3857        set_huge_pte_at(mm, haddr, ptep, new_pte);
3858
3859        hugetlb_count_add(pages_per_huge_page(h), mm);
3860        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3861                /* Optimization, do the COW without a second fault */
3862                ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3863        }
3864
3865        spin_unlock(ptl);
3866
3867        /*
3868         * Only make newly allocated pages active.  Existing pages found
3869         * in the pagecache could be !page_huge_active() if they have been
3870         * isolated for migration.
3871         */
3872        if (new_page)
3873                set_page_huge_active(page);
3874
3875        unlock_page(page);
3876out:
3877        return ret;
3878
3879backout:
3880        spin_unlock(ptl);
3881backout_unlocked:
3882        unlock_page(page);
3883        restore_reserve_on_error(h, vma, haddr, page);
3884        put_page(page);
3885        goto out;
3886}
3887
3888#ifdef CONFIG_SMP
3889u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3890                            struct vm_area_struct *vma,
3891                            struct address_space *mapping,
3892                            pgoff_t idx, unsigned long address)
3893{
3894        unsigned long key[2];
3895        u32 hash;
3896
3897        if (vma->vm_flags & VM_SHARED) {
3898                key[0] = (unsigned long) mapping;
3899                key[1] = idx;
3900        } else {
3901                key[0] = (unsigned long) mm;
3902                key[1] = address >> huge_page_shift(h);
3903        }
3904
3905        hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3906
3907        return hash & (num_fault_mutexes - 1);
3908}
3909#else
3910/*
3911 * For uniprocesor systems we always use a single mutex, so just
3912 * return 0 and avoid the hashing overhead.
3913 */
3914u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3915                            struct vm_area_struct *vma,
3916                            struct address_space *mapping,
3917                            pgoff_t idx, unsigned long address)
3918{
3919        return 0;
3920}
3921#endif
3922
3923vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3924                        unsigned long address, unsigned int flags)
3925{
3926        pte_t *ptep, entry;
3927        spinlock_t *ptl;
3928        vm_fault_t ret;
3929        u32 hash;
3930        pgoff_t idx;
3931        struct page *page = NULL;
3932        struct page *pagecache_page = NULL;
3933        struct hstate *h = hstate_vma(vma);
3934        struct address_space *mapping;
3935        int need_wait_lock = 0;
3936        unsigned long haddr = address & huge_page_mask(h);
3937
3938        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3939        if (ptep) {
3940                entry = huge_ptep_get(ptep);
3941                if (unlikely(is_hugetlb_entry_migration(entry))) {
3942                        migration_entry_wait_huge(vma, mm, ptep);
3943                        return 0;
3944                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3945                        return VM_FAULT_HWPOISON_LARGE |
3946                                VM_FAULT_SET_HINDEX(hstate_index(h));
3947        } else {
3948                ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3949                if (!ptep)
3950                        return VM_FAULT_OOM;
3951        }
3952
3953        mapping = vma->vm_file->f_mapping;
3954        idx = vma_hugecache_offset(h, vma, haddr);
3955
3956        /*
3957         * Serialize hugepage allocation and instantiation, so that we don't
3958         * get spurious allocation failures if two CPUs race to instantiate
3959         * the same page in the page cache.
3960         */
3961        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3962        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3963
3964        entry = huge_ptep_get(ptep);
3965        if (huge_pte_none(entry)) {
3966                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3967                goto out_mutex;
3968        }
3969
3970        ret = 0;
3971
3972        /*
3973         * entry could be a migration/hwpoison entry at this point, so this
3974         * check prevents the kernel from going below assuming that we have
3975         * a active hugepage in pagecache. This goto expects the 2nd page fault,
3976         * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3977         * handle it.
3978         */
3979        if (!pte_present(entry))
3980                goto out_mutex;
3981
3982        /*
3983         * If we are going to COW the mapping later, we examine the pending
3984         * reservations for this page now. This will ensure that any
3985         * allocations necessary to record that reservation occur outside the
3986         * spinlock. For private mappings, we also lookup the pagecache
3987         * page now as it is used to determine if a reservation has been
3988         * consumed.
3989         */
3990        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3991                if (vma_needs_reservation(h, vma, haddr) < 0) {
3992                        ret = VM_FAULT_OOM;
3993                        goto out_mutex;
3994                }
3995                /* Just decrements count, does not deallocate */
3996                vma_end_reservation(h, vma, haddr);
3997
3998                if (!(vma->vm_flags & VM_MAYSHARE))
3999                        pagecache_page = hugetlbfs_pagecache_page(h,
4000                                                                vma, haddr);
4001        }
4002
4003        ptl = huge_pte_lock(h, mm, ptep);
4004
4005        /* Check for a racing update before calling hugetlb_cow */
4006        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4007                goto out_ptl;
4008
4009        /*
4010         * hugetlb_cow() requires page locks of pte_page(entry) and
4011         * pagecache_page, so here we need take the former one
4012         * when page != pagecache_page or !pagecache_page.
4013         */
4014        page = pte_page(entry);
4015        if (page != pagecache_page)
4016                if (!trylock_page(page)) {
4017                        need_wait_lock = 1;
4018                        goto out_ptl;
4019                }
4020
4021        get_page(page);
4022
4023        if (flags & FAULT_FLAG_WRITE) {
4024                if (!huge_pte_write(entry)) {
4025                        ret = hugetlb_cow(mm, vma, address, ptep,
4026                                          pagecache_page, ptl);
4027                        goto out_put_page;
4028                }
4029                entry = huge_pte_mkdirty(entry);
4030        }
4031        entry = pte_mkyoung(entry);
4032        if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4033                                                flags & FAULT_FLAG_WRITE))
4034                update_mmu_cache(vma, haddr, ptep);
4035out_put_page:
4036        if (page != pagecache_page)
4037                unlock_page(page);
4038        put_page(page);
4039out_ptl:
4040        spin_unlock(ptl);
4041
4042        if (pagecache_page) {
4043                unlock_page(pagecache_page);
4044                put_page(pagecache_page);
4045        }
4046out_mutex:
4047        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4048        /*
4049         * Generally it's safe to hold refcount during waiting page lock. But
4050         * here we just wait to defer the next page fault to avoid busy loop and
4051         * the page is not used after unlocked before returning from the current
4052         * page fault. So we are safe from accessing freed page, even if we wait
4053         * here without taking refcount.
4054         */
4055        if (need_wait_lock)
4056                wait_on_page_locked(page);
4057        return ret;
4058}
4059
4060/*
4061 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4062 * modifications for huge pages.
4063 */
4064int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4065                            pte_t *dst_pte,
4066                            struct vm_area_struct *dst_vma,
4067                            unsigned long dst_addr,
4068                            unsigned long src_addr,
4069                            struct page **pagep)
4070{
4071        struct address_space *mapping;
4072        pgoff_t idx;
4073        unsigned long size;
4074        int vm_shared = dst_vma->vm_flags & VM_SHARED;
4075        struct hstate *h = hstate_vma(dst_vma);
4076        pte_t _dst_pte;
4077        spinlock_t *ptl;
4078        int ret;
4079        struct page *page;
4080
4081        if (!*pagep) {
4082                ret = -ENOMEM;
4083                page = alloc_huge_page(dst_vma, dst_addr, 0);
4084                if (IS_ERR(page))
4085                        goto out;
4086
4087                ret = copy_huge_page_from_user(page,
4088                                                (const void __user *) src_addr,
4089                                                pages_per_huge_page(h), false);
4090
4091                /* fallback to copy_from_user outside mmap_sem */
4092                if (unlikely(ret)) {
4093                        ret = -ENOENT;
4094                        *pagep = page;
4095                        /* don't free the page */
4096                        goto out;
4097                }
4098        } else {
4099                page = *pagep;
4100                *pagep = NULL;
4101        }
4102
4103        /*
4104         * The memory barrier inside __SetPageUptodate makes sure that
4105         * preceding stores to the page contents become visible before
4106         * the set_pte_at() write.
4107         */
4108        __SetPageUptodate(page);
4109
4110        mapping = dst_vma->vm_file->f_mapping;
4111        idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4112
4113        /*
4114         * If shared, add to page cache
4115         */
4116        if (vm_shared) {
4117                size = i_size_read(mapping->host) >> huge_page_shift(h);
4118                ret = -EFAULT;
4119                if (idx >= size)
4120                        goto out_release_nounlock;
4121
4122                /*
4123                 * Serialization between remove_inode_hugepages() and
4124                 * huge_add_to_page_cache() below happens through the
4125                 * hugetlb_fault_mutex_table that here must be hold by
4126                 * the caller.
4127                 */
4128                ret = huge_add_to_page_cache(page, mapping, idx);
4129                if (ret)
4130                        goto out_release_nounlock;
4131        }
4132
4133        ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4134        spin_lock(ptl);
4135
4136        /*
4137         * Recheck the i_size after holding PT lock to make sure not
4138         * to leave any page mapped (as page_mapped()) beyond the end
4139         * of the i_size (remove_inode_hugepages() is strict about
4140         * enforcing that). If we bail out here, we'll also leave a
4141         * page in the radix tree in the vm_shared case beyond the end
4142         * of the i_size, but remove_inode_hugepages() will take care
4143         * of it as soon as we drop the hugetlb_fault_mutex_table.
4144         */
4145        size = i_size_read(mapping->host) >> huge_page_shift(h);
4146        ret = -EFAULT;
4147        if (idx >= size)
4148                goto out_release_unlock;
4149
4150        ret = -EEXIST;
4151        if (!huge_pte_none(huge_ptep_get(dst_pte)))
4152                goto out_release_unlock;
4153
4154        if (vm_shared) {
4155                page_dup_rmap(page, true);
4156        } else {
4157                ClearPagePrivate(page);
4158                hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4159        }
4160
4161        _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4162        if (dst_vma->vm_flags & VM_WRITE)
4163                _dst_pte = huge_pte_mkdirty(_dst_pte);
4164        _dst_pte = pte_mkyoung(_dst_pte);
4165
4166        set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4167
4168        (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4169                                        dst_vma->vm_flags & VM_WRITE);
4170        hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4171
4172        /* No need to invalidate - it was non-present before */
4173        update_mmu_cache(dst_vma, dst_addr, dst_pte);
4174
4175        spin_unlock(ptl);
4176        set_page_huge_active(page);
4177        if (vm_shared)
4178                unlock_page(page);
4179        ret = 0;
4180out:
4181        return ret;
4182out_release_unlock:
4183        spin_unlock(ptl);
4184        if (vm_shared)
4185                unlock_page(page);
4186out_release_nounlock:
4187        put_page(page);
4188        goto out;
4189}
4190
4191long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4192                         struct page **pages, struct vm_area_struct **vmas,
4193                         unsigned long *position, unsigned long *nr_pages,
4194                         long i, unsigned int flags, int *nonblocking)
4195{
4196        unsigned long pfn_offset;
4197        unsigned long vaddr = *position;
4198        unsigned long remainder = *nr_pages;
4199        struct hstate *h = hstate_vma(vma);
4200        int err = -EFAULT;
4201
4202        while (vaddr < vma->vm_end && remainder) {
4203                pte_t *pte;
4204                spinlock_t *ptl = NULL;
4205                int absent;
4206                struct page *page;
4207
4208                /*
4209                 * If we have a pending SIGKILL, don't keep faulting pages and
4210                 * potentially allocating memory.
4211                 */
4212                if (fatal_signal_pending(current)) {
4213                        remainder = 0;
4214                        break;
4215                }
4216
4217                /*
4218                 * Some archs (sparc64, sh*) have multiple pte_ts to
4219                 * each hugepage.  We have to make sure we get the
4220                 * first, for the page indexing below to work.
4221                 *
4222                 * Note that page table lock is not held when pte is null.
4223                 */
4224                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4225                                      huge_page_size(h));
4226                if (pte)
4227                        ptl = huge_pte_lock(h, mm, pte);
4228                absent = !pte || huge_pte_none(huge_ptep_get(pte));
4229
4230                /*
4231                 * When coredumping, it suits get_dump_page if we just return
4232                 * an error where there's an empty slot with no huge pagecache
4233                 * to back it.  This way, we avoid allocating a hugepage, and
4234                 * the sparse dumpfile avoids allocating disk blocks, but its
4235                 * huge holes still show up with zeroes where they need to be.
4236                 */
4237                if (absent && (flags & FOLL_DUMP) &&
4238                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4239                        if (pte)
4240                                spin_unlock(ptl);
4241                        remainder = 0;
4242                        break;
4243                }
4244
4245                /*
4246                 * We need call hugetlb_fault for both hugepages under migration
4247                 * (in which case hugetlb_fault waits for the migration,) and
4248                 * hwpoisoned hugepages (in which case we need to prevent the
4249                 * caller from accessing to them.) In order to do this, we use
4250                 * here is_swap_pte instead of is_hugetlb_entry_migration and
4251                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4252                 * both cases, and because we can't follow correct pages
4253                 * directly from any kind of swap entries.
4254                 */
4255                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4256                    ((flags & FOLL_WRITE) &&
4257                      !huge_pte_write(huge_ptep_get(pte)))) {
4258                        vm_fault_t ret;
4259                        unsigned int fault_flags = 0;
4260
4261                        if (pte)
4262                                spin_unlock(ptl);
4263                        if (flags & FOLL_WRITE)
4264                                fault_flags |= FAULT_FLAG_WRITE;
4265                        if (nonblocking)
4266                                fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4267                        if (flags & FOLL_NOWAIT)
4268                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4269                                        FAULT_FLAG_RETRY_NOWAIT;
4270                        if (flags & FOLL_TRIED) {
4271                                VM_WARN_ON_ONCE(fault_flags &
4272                                                FAULT_FLAG_ALLOW_RETRY);
4273                                fault_flags |= FAULT_FLAG_TRIED;
4274                        }
4275                        ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4276                        if (ret & VM_FAULT_ERROR) {
4277                                err = vm_fault_to_errno(ret, flags);
4278                                remainder = 0;
4279                                break;
4280                        }
4281                        if (ret & VM_FAULT_RETRY) {
4282                                if (nonblocking &&
4283                                    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4284                                        *nonblocking = 0;
4285                                *nr_pages = 0;
4286                                /*
4287                                 * VM_FAULT_RETRY must not return an
4288                                 * error, it will return zero
4289                                 * instead.
4290                                 *
4291                                 * No need to update "position" as the
4292                                 * caller will not check it after
4293                                 * *nr_pages is set to 0.
4294                                 */
4295                                return i;
4296                        }
4297                        continue;
4298                }
4299
4300                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4301                page = pte_page(huge_ptep_get(pte));
4302
4303                /*
4304                 * Instead of doing 'try_get_page()' below in the same_page
4305                 * loop, just check the count once here.
4306                 */
4307                if (unlikely(page_count(page) <= 0)) {
4308                        if (pages) {
4309                                spin_unlock(ptl);
4310                                remainder = 0;
4311                                err = -ENOMEM;
4312                                break;
4313                        }
4314                }
4315same_page:
4316                if (pages) {
4317                        pages[i] = mem_map_offset(page, pfn_offset);
4318                        get_page(pages[i]);
4319                }
4320
4321                if (vmas)
4322                        vmas[i] = vma;
4323
4324                vaddr += PAGE_SIZE;
4325                ++pfn_offset;
4326                --remainder;
4327                ++i;
4328                if (vaddr < vma->vm_end && remainder &&
4329                                pfn_offset < pages_per_huge_page(h)) {
4330                        /*
4331                         * We use pfn_offset to avoid touching the pageframes
4332                         * of this compound page.
4333                         */
4334                        goto same_page;
4335                }
4336                spin_unlock(ptl);
4337        }
4338        *nr_pages = remainder;
4339        /*
4340         * setting position is actually required only if remainder is
4341         * not zero but it's faster not to add a "if (remainder)"
4342         * branch.
4343         */
4344        *position = vaddr;
4345
4346        return i ? i : err;
4347}
4348
4349#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4350/*
4351 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4352 * implement this.
4353 */
4354#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4355#endif
4356
4357unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4358                unsigned long address, unsigned long end, pgprot_t newprot)
4359{
4360        struct mm_struct *mm = vma->vm_mm;
4361        unsigned long start = address;
4362        pte_t *ptep;
4363        pte_t pte;
4364        struct hstate *h = hstate_vma(vma);
4365        unsigned long pages = 0;
4366        bool shared_pmd = false;
4367        struct mmu_notifier_range range;
4368
4369        /*
4370         * In the case of shared PMDs, the area to flush could be beyond
4371         * start/end.  Set range.start/range.end to cover the maximum possible
4372         * range if PMD sharing is possible.
4373         */
4374        mmu_notifier_range_init(&range, mm, start, end);
4375        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4376
4377        BUG_ON(address >= end);
4378        flush_cache_range(vma, range.start, range.end);
4379
4380        mmu_notifier_invalidate_range_start(&range);
4381        i_mmap_lock_write(vma->vm_file->f_mapping);
4382        for (; address < end; address += huge_page_size(h)) {
4383                spinlock_t *ptl;
4384                ptep = huge_pte_offset(mm, address, huge_page_size(h));
4385                if (!ptep)
4386                        continue;
4387                ptl = huge_pte_lock(h, mm, ptep);
4388                if (huge_pmd_unshare(mm, &address, ptep)) {
4389                        pages++;
4390                        spin_unlock(ptl);
4391                        shared_pmd = true;
4392                        continue;
4393                }
4394                pte = huge_ptep_get(ptep);
4395                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4396                        spin_unlock(ptl);
4397                        continue;
4398                }
4399                if (unlikely(is_hugetlb_entry_migration(pte))) {
4400                        swp_entry_t entry = pte_to_swp_entry(pte);
4401
4402                        if (is_write_migration_entry(entry)) {
4403                                pte_t newpte;
4404
4405                                make_migration_entry_read(&entry);
4406                                newpte = swp_entry_to_pte(entry);
4407                                set_huge_swap_pte_at(mm, address, ptep,
4408                                                     newpte, huge_page_size(h));
4409                                pages++;
4410                        }
4411                        spin_unlock(ptl);
4412                        continue;
4413                }
4414                if (!huge_pte_none(pte)) {
4415                        pte_t old_pte;
4416
4417                        old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4418                        pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4419                        pte = arch_make_huge_pte(pte, vma, NULL, 0);
4420                        huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4421                        pages++;
4422                }
4423                spin_unlock(ptl);
4424        }
4425        /*
4426         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4427         * may have cleared our pud entry and done put_page on the page table:
4428         * once we release i_mmap_rwsem, another task can do the final put_page
4429         * and that page table be reused and filled with junk.  If we actually
4430         * did unshare a page of pmds, flush the range corresponding to the pud.
4431         */
4432        if (shared_pmd)
4433                flush_hugetlb_tlb_range(vma, range.start, range.end);
4434        else
4435                flush_hugetlb_tlb_range(vma, start, end);
4436        /*
4437         * No need to call mmu_notifier_invalidate_range() we are downgrading
4438         * page table protection not changing it to point to a new page.
4439         *
4440         * See Documentation/vm/mmu_notifier.rst
4441         */
4442        i_mmap_unlock_write(vma->vm_file->f_mapping);
4443        mmu_notifier_invalidate_range_end(&range);
4444
4445        return pages << h->order;
4446}
4447
4448int hugetlb_reserve_pages(struct inode *inode,
4449                                        long from, long to,
4450                                        struct vm_area_struct *vma,
4451                                        vm_flags_t vm_flags)
4452{
4453        long ret, chg;
4454        struct hstate *h = hstate_inode(inode);
4455        struct hugepage_subpool *spool = subpool_inode(inode);
4456        struct resv_map *resv_map;
4457        long gbl_reserve;
4458
4459        /* This should never happen */
4460        if (from > to) {
4461                VM_WARN(1, "%s called with a negative range\n", __func__);
4462                return -EINVAL;
4463        }
4464
4465        /*
4466         * Only apply hugepage reservation if asked. At fault time, an
4467         * attempt will be made for VM_NORESERVE to allocate a page
4468         * without using reserves
4469         */
4470        if (vm_flags & VM_NORESERVE)
4471                return 0;
4472
4473        /*
4474         * Shared mappings base their reservation on the number of pages that
4475         * are already allocated on behalf of the file. Private mappings need
4476         * to reserve the full area even if read-only as mprotect() may be
4477         * called to make the mapping read-write. Assume !vma is a shm mapping
4478         */
4479        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4480                resv_map = inode_resv_map(inode);
4481
4482                chg = region_chg(resv_map, from, to);
4483
4484        } else {
4485                resv_map = resv_map_alloc();
4486                if (!resv_map)
4487                        return -ENOMEM;
4488
4489                chg = to - from;
4490
4491                set_vma_resv_map(vma, resv_map);
4492                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4493        }
4494
4495        if (chg < 0) {
4496                ret = chg;
4497                goto out_err;
4498        }
4499
4500        /*
4501         * There must be enough pages in the subpool for the mapping. If
4502         * the subpool has a minimum size, there may be some global
4503         * reservations already in place (gbl_reserve).
4504         */
4505        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4506        if (gbl_reserve < 0) {
4507                ret = -ENOSPC;
4508                goto out_err;
4509        }
4510
4511        /*
4512         * Check enough hugepages are available for the reservation.
4513         * Hand the pages back to the subpool if there are not
4514         */
4515        ret = hugetlb_acct_memory(h, gbl_reserve);
4516        if (ret < 0) {
4517                /* put back original number of pages, chg */
4518                (void)hugepage_subpool_put_pages(spool, chg);
4519                goto out_err;
4520        }
4521
4522        /*
4523         * Account for the reservations made. Shared mappings record regions
4524         * that have reservations as they are shared by multiple VMAs.
4525         * When the last VMA disappears, the region map says how much
4526         * the reservation was and the page cache tells how much of
4527         * the reservation was consumed. Private mappings are per-VMA and
4528         * only the consumed reservations are tracked. When the VMA
4529         * disappears, the original reservation is the VMA size and the
4530         * consumed reservations are stored in the map. Hence, nothing
4531         * else has to be done for private mappings here
4532         */
4533        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4534                long add = region_add(resv_map, from, to);
4535
4536                if (unlikely(chg > add)) {
4537                        /*
4538                         * pages in this range were added to the reserve
4539                         * map between region_chg and region_add.  This
4540                         * indicates a race with alloc_huge_page.  Adjust
4541                         * the subpool and reserve counts modified above
4542                         * based on the difference.
4543                         */
4544                        long rsv_adjust;
4545
4546                        rsv_adjust = hugepage_subpool_put_pages(spool,
4547                                                                chg - add);
4548                        hugetlb_acct_memory(h, -rsv_adjust);
4549                }
4550        }
4551        return 0;
4552out_err:
4553        if (!vma || vma->vm_flags & VM_MAYSHARE)
4554                /* Don't call region_abort if region_chg failed */
4555                if (chg >= 0)
4556                        region_abort(resv_map, from, to);
4557        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4558                kref_put(&resv_map->refs, resv_map_release);
4559        return ret;
4560}
4561
4562long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4563                                                                long freed)
4564{
4565        struct hstate *h = hstate_inode(inode);
4566        struct resv_map *resv_map = inode_resv_map(inode);
4567        long chg = 0;
4568        struct hugepage_subpool *spool = subpool_inode(inode);
4569        long gbl_reserve;
4570
4571        if (resv_map) {
4572                chg = region_del(resv_map, start, end);
4573                /*
4574                 * region_del() can fail in the rare case where a region
4575                 * must be split and another region descriptor can not be
4576                 * allocated.  If end == LONG_MAX, it will not fail.
4577                 */
4578                if (chg < 0)
4579                        return chg;
4580        }
4581
4582        spin_lock(&inode->i_lock);
4583        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4584        spin_unlock(&inode->i_lock);
4585
4586        /*
4587         * If the subpool has a minimum size, the number of global
4588         * reservations to be released may be adjusted.
4589         */
4590        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4591        hugetlb_acct_memory(h, -gbl_reserve);
4592
4593        return 0;
4594}
4595
4596#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4597static unsigned long page_table_shareable(struct vm_area_struct *svma,
4598                                struct vm_area_struct *vma,
4599                                unsigned long addr, pgoff_t idx)
4600{
4601        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4602                                svma->vm_start;
4603        unsigned long sbase = saddr & PUD_MASK;
4604        unsigned long s_end = sbase + PUD_SIZE;
4605
4606        /* Allow segments to share if only one is marked locked */
4607        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4608        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4609
4610        /*
4611         * match the virtual addresses, permission and the alignment of the
4612         * page table page.
4613         */
4614        if (pmd_index(addr) != pmd_index(saddr) ||
4615            vm_flags != svm_flags ||
4616            sbase < svma->vm_start || svma->vm_end < s_end)
4617                return 0;
4618
4619        return saddr;
4620}
4621
4622static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4623{
4624        unsigned long base = addr & PUD_MASK;
4625        unsigned long end = base + PUD_SIZE;
4626
4627        /*
4628         * check on proper vm_flags and page table alignment
4629         */
4630        if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4631                return true;
4632        return false;
4633}
4634
4635/*
4636 * Determine if start,end range within vma could be mapped by shared pmd.
4637 * If yes, adjust start and end to cover range associated with possible
4638 * shared pmd mappings.
4639 */
4640void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4641                                unsigned long *start, unsigned long *end)
4642{
4643        unsigned long check_addr = *start;
4644
4645        if (!(vma->vm_flags & VM_MAYSHARE))
4646                return;
4647
4648        for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4649                unsigned long a_start = check_addr & PUD_MASK;
4650                unsigned long a_end = a_start + PUD_SIZE;
4651
4652                /*
4653                 * If sharing is possible, adjust start/end if necessary.
4654                 */
4655                if (range_in_vma(vma, a_start, a_end)) {
4656                        if (a_start < *start)
4657                                *start = a_start;
4658                        if (a_end > *end)
4659                                *end = a_end;
4660                }
4661        }
4662}
4663
4664/*
4665 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4666 * and returns the corresponding pte. While this is not necessary for the
4667 * !shared pmd case because we can allocate the pmd later as well, it makes the
4668 * code much cleaner. pmd allocation is essential for the shared case because
4669 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4670 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4671 * bad pmd for sharing.
4672 */
4673pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4674{
4675        struct vm_area_struct *vma = find_vma(mm, addr);
4676        struct address_space *mapping = vma->vm_file->f_mapping;
4677        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4678                        vma->vm_pgoff;
4679        struct vm_area_struct *svma;
4680        unsigned long saddr;
4681        pte_t *spte = NULL;
4682        pte_t *pte;
4683        spinlock_t *ptl;
4684
4685        if (!vma_shareable(vma, addr))
4686                return (pte_t *)pmd_alloc(mm, pud, addr);
4687
4688        i_mmap_lock_write(mapping);
4689        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4690                if (svma == vma)
4691                        continue;
4692
4693                saddr = page_table_shareable(svma, vma, addr, idx);
4694                if (saddr) {
4695                        spte = huge_pte_offset(svma->vm_mm, saddr,
4696                                               vma_mmu_pagesize(svma));
4697                        if (spte) {
4698                                get_page(virt_to_page(spte));
4699                                break;
4700                        }
4701                }
4702        }
4703
4704        if (!spte)
4705                goto out;
4706
4707        ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4708        if (pud_none(*pud)) {
4709                pud_populate(mm, pud,
4710                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
4711                mm_inc_nr_pmds(mm);
4712        } else {
4713                put_page(virt_to_page(spte));
4714        }
4715        spin_unlock(ptl);
4716out:
4717        pte = (pte_t *)pmd_alloc(mm, pud, addr);
4718        i_mmap_unlock_write(mapping);
4719        return pte;
4720}
4721
4722/*
4723 * unmap huge page backed by shared pte.
4724 *
4725 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4726 * indicated by page_count > 1, unmap is achieved by clearing pud and
4727 * decrementing the ref count. If count == 1, the pte page is not shared.
4728 *
4729 * called with page table lock held.
4730 *
4731 * returns: 1 successfully unmapped a shared pte page
4732 *          0 the underlying pte page is not shared, or it is the last user
4733 */
4734int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4735{
4736        pgd_t *pgd = pgd_offset(mm, *addr);
4737        p4d_t *p4d = p4d_offset(pgd, *addr);
4738        pud_t *pud = pud_offset(p4d, *addr);
4739
4740        BUG_ON(page_count(virt_to_page(ptep)) == 0);
4741        if (page_count(virt_to_page(ptep)) == 1)
4742                return 0;
4743
4744        pud_clear(pud);
4745        put_page(virt_to_page(ptep));
4746        mm_dec_nr_pmds(mm);
4747        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4748        return 1;
4749}
4750#define want_pmd_share()        (1)
4751#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4752pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4753{
4754        return NULL;
4755}
4756
4757int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4758{
4759        return 0;
4760}
4761
4762void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4763                                unsigned long *start, unsigned long *end)
4764{
4765}
4766#define want_pmd_share()        (0)
4767#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4768
4769#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4770pte_t *huge_pte_alloc(struct mm_struct *mm,
4771                        unsigned long addr, unsigned long sz)
4772{
4773        pgd_t *pgd;
4774        p4d_t *p4d;
4775        pud_t *pud;
4776        pte_t *pte = NULL;
4777
4778        pgd = pgd_offset(mm, addr);
4779        p4d = p4d_alloc(mm, pgd, addr);
4780        if (!p4d)
4781                return NULL;
4782        pud = pud_alloc(mm, p4d, addr);
4783        if (pud) {
4784                if (sz == PUD_SIZE) {
4785                        pte = (pte_t *)pud;
4786                } else {
4787                        BUG_ON(sz != PMD_SIZE);
4788                        if (want_pmd_share() && pud_none(*pud))
4789                                pte = huge_pmd_share(mm, addr, pud);
4790                        else
4791                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
4792                }
4793        }
4794        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4795
4796        return pte;
4797}
4798
4799/*
4800 * huge_pte_offset() - Walk the page table to resolve the hugepage
4801 * entry at address @addr
4802 *
4803 * Return: Pointer to page table or swap entry (PUD or PMD) for
4804 * address @addr, or NULL if a p*d_none() entry is encountered and the
4805 * size @sz doesn't match the hugepage size at this level of the page
4806 * table.
4807 */
4808pte_t *huge_pte_offset(struct mm_struct *mm,
4809                       unsigned long addr, unsigned long sz)
4810{
4811        pgd_t *pgd;
4812        p4d_t *p4d;
4813        pud_t *pud;
4814        pmd_t *pmd;
4815
4816        pgd = pgd_offset(mm, addr);
4817        if (!pgd_present(*pgd))
4818                return NULL;
4819        p4d = p4d_offset(pgd, addr);
4820        if (!p4d_present(*p4d))
4821                return NULL;
4822
4823        pud = pud_offset(p4d, addr);
4824        if (sz != PUD_SIZE && pud_none(*pud))
4825                return NULL;
4826        /* hugepage or swap? */
4827        if (pud_huge(*pud) || !pud_present(*pud))
4828                return (pte_t *)pud;
4829
4830        pmd = pmd_offset(pud, addr);
4831        if (sz != PMD_SIZE && pmd_none(*pmd))
4832                return NULL;
4833        /* hugepage or swap? */
4834        if (pmd_huge(*pmd) || !pmd_present(*pmd))
4835                return (pte_t *)pmd;
4836
4837        return NULL;
4838}
4839
4840#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4841
4842/*
4843 * These functions are overwritable if your architecture needs its own
4844 * behavior.
4845 */
4846struct page * __weak
4847follow_huge_addr(struct mm_struct *mm, unsigned long address,
4848                              int write)
4849{
4850        return ERR_PTR(-EINVAL);
4851}
4852
4853struct page * __weak
4854follow_huge_pd(struct vm_area_struct *vma,
4855               unsigned long address, hugepd_t hpd, int flags, int pdshift)
4856{
4857        WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4858        return NULL;
4859}
4860
4861struct page * __weak
4862follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4863                pmd_t *pmd, int flags)
4864{
4865        struct page *page = NULL;
4866        spinlock_t *ptl;
4867        pte_t pte;
4868retry:
4869        ptl = pmd_lockptr(mm, pmd);
4870        spin_lock(ptl);
4871        /*
4872         * make sure that the address range covered by this pmd is not
4873         * unmapped from other threads.
4874         */
4875        if (!pmd_huge(*pmd))
4876                goto out;
4877        pte = huge_ptep_get((pte_t *)pmd);
4878        if (pte_present(pte)) {
4879                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4880                if (flags & FOLL_GET)
4881                        get_page(page);
4882        } else {
4883                if (is_hugetlb_entry_migration(pte)) {
4884                        spin_unlock(ptl);
4885                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4886                        goto retry;
4887                }
4888                /*
4889                 * hwpoisoned entry is treated as no_page_table in
4890                 * follow_page_mask().
4891                 */
4892        }
4893out:
4894        spin_unlock(ptl);
4895        return page;
4896}
4897
4898struct page * __weak
4899follow_huge_pud(struct mm_struct *mm, unsigned long address,
4900                pud_t *pud, int flags)
4901{
4902        if (flags & FOLL_GET)
4903                return NULL;
4904
4905        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4906}
4907
4908struct page * __weak
4909follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4910{
4911        if (flags & FOLL_GET)
4912                return NULL;
4913
4914        return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4915}
4916
4917bool isolate_huge_page(struct page *page, struct list_head *list)
4918{
4919        bool ret = true;
4920
4921        VM_BUG_ON_PAGE(!PageHead(page), page);
4922        spin_lock(&hugetlb_lock);
4923        if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4924                ret = false;
4925                goto unlock;
4926        }
4927        clear_page_huge_active(page);
4928        list_move_tail(&page->lru, list);
4929unlock:
4930        spin_unlock(&hugetlb_lock);
4931        return ret;
4932}
4933
4934void putback_active_hugepage(struct page *page)
4935{
4936        VM_BUG_ON_PAGE(!PageHead(page), page);
4937        spin_lock(&hugetlb_lock);
4938        set_page_huge_active(page);
4939        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4940        spin_unlock(&hugetlb_lock);
4941        put_page(page);
4942}
4943
4944void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4945{
4946        struct hstate *h = page_hstate(oldpage);
4947
4948        hugetlb_cgroup_migrate(oldpage, newpage);
4949        set_page_owner_migrate_reason(newpage, reason);
4950
4951        /*
4952         * transfer temporary state of the new huge page. This is
4953         * reverse to other transitions because the newpage is going to
4954         * be final while the old one will be freed so it takes over
4955         * the temporary status.
4956         *
4957         * Also note that we have to transfer the per-node surplus state
4958         * here as well otherwise the global surplus count will not match
4959         * the per-node's.
4960         */
4961        if (PageHugeTemporary(newpage)) {
4962                int old_nid = page_to_nid(oldpage);
4963                int new_nid = page_to_nid(newpage);
4964
4965                SetPageHugeTemporary(oldpage);
4966                ClearPageHugeTemporary(newpage);
4967
4968                spin_lock(&hugetlb_lock);
4969                if (h->surplus_huge_pages_node[old_nid]) {
4970                        h->surplus_huge_pages_node[old_nid]--;
4971                        h->surplus_huge_pages_node[new_nid]++;
4972                }
4973                spin_unlock(&hugetlb_lock);
4974        }
4975}
4976