linux/mm/ksm.c
<<
>>
Prefs
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *      Izik Eidus
  10 *      Andrea Arcangeli
  11 *      Chris Wright
  12 *      Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/sched/mm.h>
  23#include <linux/sched/coredump.h>
  24#include <linux/rwsem.h>
  25#include <linux/pagemap.h>
  26#include <linux/rmap.h>
  27#include <linux/spinlock.h>
  28#include <linux/xxhash.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/wait.h>
  32#include <linux/slab.h>
  33#include <linux/rbtree.h>
  34#include <linux/memory.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/swap.h>
  37#include <linux/ksm.h>
  38#include <linux/hashtable.h>
  39#include <linux/freezer.h>
  40#include <linux/oom.h>
  41#include <linux/numa.h>
  42
  43#include <asm/tlbflush.h>
  44#include "internal.h"
  45
  46#ifdef CONFIG_NUMA
  47#define NUMA(x)         (x)
  48#define DO_NUMA(x)      do { (x); } while (0)
  49#else
  50#define NUMA(x)         (0)
  51#define DO_NUMA(x)      do { } while (0)
  52#endif
  53
  54/**
  55 * DOC: Overview
  56 *
  57 * A few notes about the KSM scanning process,
  58 * to make it easier to understand the data structures below:
  59 *
  60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  61 * contents into a data structure that holds pointers to the pages' locations.
  62 *
  63 * Since the contents of the pages may change at any moment, KSM cannot just
  64 * insert the pages into a normal sorted tree and expect it to find anything.
  65 * Therefore KSM uses two data structures - the stable and the unstable tree.
  66 *
  67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  68 * by their contents.  Because each such page is write-protected, searching on
  69 * this tree is fully assured to be working (except when pages are unmapped),
  70 * and therefore this tree is called the stable tree.
  71 *
  72 * The stable tree node includes information required for reverse
  73 * mapping from a KSM page to virtual addresses that map this page.
  74 *
  75 * In order to avoid large latencies of the rmap walks on KSM pages,
  76 * KSM maintains two types of nodes in the stable tree:
  77 *
  78 * * the regular nodes that keep the reverse mapping structures in a
  79 *   linked list
  80 * * the "chains" that link nodes ("dups") that represent the same
  81 *   write protected memory content, but each "dup" corresponds to a
  82 *   different KSM page copy of that content
  83 *
  84 * Internally, the regular nodes, "dups" and "chains" are represented
  85 * using the same :c:type:`struct stable_node` structure.
  86 *
  87 * In addition to the stable tree, KSM uses a second data structure called the
  88 * unstable tree: this tree holds pointers to pages which have been found to
  89 * be "unchanged for a period of time".  The unstable tree sorts these pages
  90 * by their contents, but since they are not write-protected, KSM cannot rely
  91 * upon the unstable tree to work correctly - the unstable tree is liable to
  92 * be corrupted as its contents are modified, and so it is called unstable.
  93 *
  94 * KSM solves this problem by several techniques:
  95 *
  96 * 1) The unstable tree is flushed every time KSM completes scanning all
  97 *    memory areas, and then the tree is rebuilt again from the beginning.
  98 * 2) KSM will only insert into the unstable tree, pages whose hash value
  99 *    has not changed since the previous scan of all memory areas.
 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
 101 *    colors of the nodes and not on their contents, assuring that even when
 102 *    the tree gets "corrupted" it won't get out of balance, so scanning time
 103 *    remains the same (also, searching and inserting nodes in an rbtree uses
 104 *    the same algorithm, so we have no overhead when we flush and rebuild).
 105 * 4) KSM never flushes the stable tree, which means that even if it were to
 106 *    take 10 attempts to find a page in the unstable tree, once it is found,
 107 *    it is secured in the stable tree.  (When we scan a new page, we first
 108 *    compare it against the stable tree, and then against the unstable tree.)
 109 *
 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
 111 * stable trees and multiple unstable trees: one of each for each NUMA node.
 112 */
 113
 114/**
 115 * struct mm_slot - ksm information per mm that is being scanned
 116 * @link: link to the mm_slots hash list
 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 119 * @mm: the mm that this information is valid for
 120 */
 121struct mm_slot {
 122        struct hlist_node link;
 123        struct list_head mm_list;
 124        struct rmap_item *rmap_list;
 125        struct mm_struct *mm;
 126};
 127
 128/**
 129 * struct ksm_scan - cursor for scanning
 130 * @mm_slot: the current mm_slot we are scanning
 131 * @address: the next address inside that to be scanned
 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 133 * @seqnr: count of completed full scans (needed when removing unstable node)
 134 *
 135 * There is only the one ksm_scan instance of this cursor structure.
 136 */
 137struct ksm_scan {
 138        struct mm_slot *mm_slot;
 139        unsigned long address;
 140        struct rmap_item **rmap_list;
 141        unsigned long seqnr;
 142};
 143
 144/**
 145 * struct stable_node - node of the stable rbtree
 146 * @node: rb node of this ksm page in the stable tree
 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 149 * @list: linked into migrate_nodes, pending placement in the proper node tree
 150 * @hlist: hlist head of rmap_items using this ksm page
 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 152 * @chain_prune_time: time of the last full garbage collection
 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 155 */
 156struct stable_node {
 157        union {
 158                struct rb_node node;    /* when node of stable tree */
 159                struct {                /* when listed for migration */
 160                        struct list_head *head;
 161                        struct {
 162                                struct hlist_node hlist_dup;
 163                                struct list_head list;
 164                        };
 165                };
 166        };
 167        struct hlist_head hlist;
 168        union {
 169                unsigned long kpfn;
 170                unsigned long chain_prune_time;
 171        };
 172        /*
 173         * STABLE_NODE_CHAIN can be any negative number in
 174         * rmap_hlist_len negative range, but better not -1 to be able
 175         * to reliably detect underflows.
 176         */
 177#define STABLE_NODE_CHAIN -1024
 178        int rmap_hlist_len;
 179#ifdef CONFIG_NUMA
 180        int nid;
 181#endif
 182};
 183
 184/**
 185 * struct rmap_item - reverse mapping item for virtual addresses
 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 189 * @mm: the memory structure this rmap_item is pointing into
 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 191 * @oldchecksum: previous checksum of the page at that virtual address
 192 * @node: rb node of this rmap_item in the unstable tree
 193 * @head: pointer to stable_node heading this list in the stable tree
 194 * @hlist: link into hlist of rmap_items hanging off that stable_node
 195 */
 196struct rmap_item {
 197        struct rmap_item *rmap_list;
 198        union {
 199                struct anon_vma *anon_vma;      /* when stable */
 200#ifdef CONFIG_NUMA
 201                int nid;                /* when node of unstable tree */
 202#endif
 203        };
 204        struct mm_struct *mm;
 205        unsigned long address;          /* + low bits used for flags below */
 206        unsigned int oldchecksum;       /* when unstable */
 207        union {
 208                struct rb_node node;    /* when node of unstable tree */
 209                struct {                /* when listed from stable tree */
 210                        struct stable_node *head;
 211                        struct hlist_node hlist;
 212                };
 213        };
 214};
 215
 216#define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
 217#define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
 218#define STABLE_FLAG     0x200   /* is listed from the stable tree */
 219#define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
 220                                /* to mask all the flags */
 221
 222/* The stable and unstable tree heads */
 223static struct rb_root one_stable_tree[1] = { RB_ROOT };
 224static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 225static struct rb_root *root_stable_tree = one_stable_tree;
 226static struct rb_root *root_unstable_tree = one_unstable_tree;
 227
 228/* Recently migrated nodes of stable tree, pending proper placement */
 229static LIST_HEAD(migrate_nodes);
 230#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 231
 232#define MM_SLOTS_HASH_BITS 10
 233static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 234
 235static struct mm_slot ksm_mm_head = {
 236        .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 237};
 238static struct ksm_scan ksm_scan = {
 239        .mm_slot = &ksm_mm_head,
 240};
 241
 242static struct kmem_cache *rmap_item_cache;
 243static struct kmem_cache *stable_node_cache;
 244static struct kmem_cache *mm_slot_cache;
 245
 246/* The number of nodes in the stable tree */
 247static unsigned long ksm_pages_shared;
 248
 249/* The number of page slots additionally sharing those nodes */
 250static unsigned long ksm_pages_sharing;
 251
 252/* The number of nodes in the unstable tree */
 253static unsigned long ksm_pages_unshared;
 254
 255/* The number of rmap_items in use: to calculate pages_volatile */
 256static unsigned long ksm_rmap_items;
 257
 258/* The number of stable_node chains */
 259static unsigned long ksm_stable_node_chains;
 260
 261/* The number of stable_node dups linked to the stable_node chains */
 262static unsigned long ksm_stable_node_dups;
 263
 264/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 265static int ksm_stable_node_chains_prune_millisecs = 2000;
 266
 267/* Maximum number of page slots sharing a stable node */
 268static int ksm_max_page_sharing = 256;
 269
 270/* Number of pages ksmd should scan in one batch */
 271static unsigned int ksm_thread_pages_to_scan = 100;
 272
 273/* Milliseconds ksmd should sleep between batches */
 274static unsigned int ksm_thread_sleep_millisecs = 20;
 275
 276/* Checksum of an empty (zeroed) page */
 277static unsigned int zero_checksum __read_mostly;
 278
 279/* Whether to merge empty (zeroed) pages with actual zero pages */
 280static bool ksm_use_zero_pages __read_mostly;
 281
 282#ifdef CONFIG_NUMA
 283/* Zeroed when merging across nodes is not allowed */
 284static unsigned int ksm_merge_across_nodes = 1;
 285static int ksm_nr_node_ids = 1;
 286#else
 287#define ksm_merge_across_nodes  1U
 288#define ksm_nr_node_ids         1
 289#endif
 290
 291#define KSM_RUN_STOP    0
 292#define KSM_RUN_MERGE   1
 293#define KSM_RUN_UNMERGE 2
 294#define KSM_RUN_OFFLINE 4
 295static unsigned long ksm_run = KSM_RUN_STOP;
 296static void wait_while_offlining(void);
 297
 298static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 299static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
 300static DEFINE_MUTEX(ksm_thread_mutex);
 301static DEFINE_SPINLOCK(ksm_mmlist_lock);
 302
 303#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 304                sizeof(struct __struct), __alignof__(struct __struct),\
 305                (__flags), NULL)
 306
 307static int __init ksm_slab_init(void)
 308{
 309        rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 310        if (!rmap_item_cache)
 311                goto out;
 312
 313        stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 314        if (!stable_node_cache)
 315                goto out_free1;
 316
 317        mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 318        if (!mm_slot_cache)
 319                goto out_free2;
 320
 321        return 0;
 322
 323out_free2:
 324        kmem_cache_destroy(stable_node_cache);
 325out_free1:
 326        kmem_cache_destroy(rmap_item_cache);
 327out:
 328        return -ENOMEM;
 329}
 330
 331static void __init ksm_slab_free(void)
 332{
 333        kmem_cache_destroy(mm_slot_cache);
 334        kmem_cache_destroy(stable_node_cache);
 335        kmem_cache_destroy(rmap_item_cache);
 336        mm_slot_cache = NULL;
 337}
 338
 339static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 340{
 341        return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 342}
 343
 344static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 345{
 346        return dup->head == STABLE_NODE_DUP_HEAD;
 347}
 348
 349static inline void stable_node_chain_add_dup(struct stable_node *dup,
 350                                             struct stable_node *chain)
 351{
 352        VM_BUG_ON(is_stable_node_dup(dup));
 353        dup->head = STABLE_NODE_DUP_HEAD;
 354        VM_BUG_ON(!is_stable_node_chain(chain));
 355        hlist_add_head(&dup->hlist_dup, &chain->hlist);
 356        ksm_stable_node_dups++;
 357}
 358
 359static inline void __stable_node_dup_del(struct stable_node *dup)
 360{
 361        VM_BUG_ON(!is_stable_node_dup(dup));
 362        hlist_del(&dup->hlist_dup);
 363        ksm_stable_node_dups--;
 364}
 365
 366static inline void stable_node_dup_del(struct stable_node *dup)
 367{
 368        VM_BUG_ON(is_stable_node_chain(dup));
 369        if (is_stable_node_dup(dup))
 370                __stable_node_dup_del(dup);
 371        else
 372                rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 373#ifdef CONFIG_DEBUG_VM
 374        dup->head = NULL;
 375#endif
 376}
 377
 378static inline struct rmap_item *alloc_rmap_item(void)
 379{
 380        struct rmap_item *rmap_item;
 381
 382        rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 383                                                __GFP_NORETRY | __GFP_NOWARN);
 384        if (rmap_item)
 385                ksm_rmap_items++;
 386        return rmap_item;
 387}
 388
 389static inline void free_rmap_item(struct rmap_item *rmap_item)
 390{
 391        ksm_rmap_items--;
 392        rmap_item->mm = NULL;   /* debug safety */
 393        kmem_cache_free(rmap_item_cache, rmap_item);
 394}
 395
 396static inline struct stable_node *alloc_stable_node(void)
 397{
 398        /*
 399         * The allocation can take too long with GFP_KERNEL when memory is under
 400         * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 401         * grants access to memory reserves, helping to avoid this problem.
 402         */
 403        return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 404}
 405
 406static inline void free_stable_node(struct stable_node *stable_node)
 407{
 408        VM_BUG_ON(stable_node->rmap_hlist_len &&
 409                  !is_stable_node_chain(stable_node));
 410        kmem_cache_free(stable_node_cache, stable_node);
 411}
 412
 413static inline struct mm_slot *alloc_mm_slot(void)
 414{
 415        if (!mm_slot_cache)     /* initialization failed */
 416                return NULL;
 417        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 418}
 419
 420static inline void free_mm_slot(struct mm_slot *mm_slot)
 421{
 422        kmem_cache_free(mm_slot_cache, mm_slot);
 423}
 424
 425static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 426{
 427        struct mm_slot *slot;
 428
 429        hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 430                if (slot->mm == mm)
 431                        return slot;
 432
 433        return NULL;
 434}
 435
 436static void insert_to_mm_slots_hash(struct mm_struct *mm,
 437                                    struct mm_slot *mm_slot)
 438{
 439        mm_slot->mm = mm;
 440        hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 441}
 442
 443/*
 444 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 445 * page tables after it has passed through ksm_exit() - which, if necessary,
 446 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 447 * a special flag: they can just back out as soon as mm_users goes to zero.
 448 * ksm_test_exit() is used throughout to make this test for exit: in some
 449 * places for correctness, in some places just to avoid unnecessary work.
 450 */
 451static inline bool ksm_test_exit(struct mm_struct *mm)
 452{
 453        return atomic_read(&mm->mm_users) == 0;
 454}
 455
 456/*
 457 * We use break_ksm to break COW on a ksm page: it's a stripped down
 458 *
 459 *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
 460 *              put_page(page);
 461 *
 462 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 463 * in case the application has unmapped and remapped mm,addr meanwhile.
 464 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 465 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 466 *
 467 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 468 * of the process that owns 'vma'.  We also do not want to enforce
 469 * protection keys here anyway.
 470 */
 471static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 472{
 473        struct page *page;
 474        vm_fault_t ret = 0;
 475
 476        do {
 477                cond_resched();
 478                page = follow_page(vma, addr,
 479                                FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 480                if (IS_ERR_OR_NULL(page))
 481                        break;
 482                if (PageKsm(page))
 483                        ret = handle_mm_fault(vma, addr,
 484                                        FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
 485                else
 486                        ret = VM_FAULT_WRITE;
 487                put_page(page);
 488        } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 489        /*
 490         * We must loop because handle_mm_fault() may back out if there's
 491         * any difficulty e.g. if pte accessed bit gets updated concurrently.
 492         *
 493         * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 494         * COW has been broken, even if the vma does not permit VM_WRITE;
 495         * but note that a concurrent fault might break PageKsm for us.
 496         *
 497         * VM_FAULT_SIGBUS could occur if we race with truncation of the
 498         * backing file, which also invalidates anonymous pages: that's
 499         * okay, that truncation will have unmapped the PageKsm for us.
 500         *
 501         * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 502         * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 503         * current task has TIF_MEMDIE set, and will be OOM killed on return
 504         * to user; and ksmd, having no mm, would never be chosen for that.
 505         *
 506         * But if the mm is in a limited mem_cgroup, then the fault may fail
 507         * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 508         * even ksmd can fail in this way - though it's usually breaking ksm
 509         * just to undo a merge it made a moment before, so unlikely to oom.
 510         *
 511         * That's a pity: we might therefore have more kernel pages allocated
 512         * than we're counting as nodes in the stable tree; but ksm_do_scan
 513         * will retry to break_cow on each pass, so should recover the page
 514         * in due course.  The important thing is to not let VM_MERGEABLE
 515         * be cleared while any such pages might remain in the area.
 516         */
 517        return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 518}
 519
 520static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 521                unsigned long addr)
 522{
 523        struct vm_area_struct *vma;
 524        if (ksm_test_exit(mm))
 525                return NULL;
 526        vma = find_vma(mm, addr);
 527        if (!vma || vma->vm_start > addr)
 528                return NULL;
 529        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 530                return NULL;
 531        return vma;
 532}
 533
 534static void break_cow(struct rmap_item *rmap_item)
 535{
 536        struct mm_struct *mm = rmap_item->mm;
 537        unsigned long addr = rmap_item->address;
 538        struct vm_area_struct *vma;
 539
 540        /*
 541         * It is not an accident that whenever we want to break COW
 542         * to undo, we also need to drop a reference to the anon_vma.
 543         */
 544        put_anon_vma(rmap_item->anon_vma);
 545
 546        down_read(&mm->mmap_sem);
 547        vma = find_mergeable_vma(mm, addr);
 548        if (vma)
 549                break_ksm(vma, addr);
 550        up_read(&mm->mmap_sem);
 551}
 552
 553static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 554{
 555        struct mm_struct *mm = rmap_item->mm;
 556        unsigned long addr = rmap_item->address;
 557        struct vm_area_struct *vma;
 558        struct page *page;
 559
 560        down_read(&mm->mmap_sem);
 561        vma = find_mergeable_vma(mm, addr);
 562        if (!vma)
 563                goto out;
 564
 565        page = follow_page(vma, addr, FOLL_GET);
 566        if (IS_ERR_OR_NULL(page))
 567                goto out;
 568        if (PageAnon(page)) {
 569                flush_anon_page(vma, page, addr);
 570                flush_dcache_page(page);
 571        } else {
 572                put_page(page);
 573out:
 574                page = NULL;
 575        }
 576        up_read(&mm->mmap_sem);
 577        return page;
 578}
 579
 580/*
 581 * This helper is used for getting right index into array of tree roots.
 582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 583 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 584 * every node has its own stable and unstable tree.
 585 */
 586static inline int get_kpfn_nid(unsigned long kpfn)
 587{
 588        return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 589}
 590
 591static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 592                                                   struct rb_root *root)
 593{
 594        struct stable_node *chain = alloc_stable_node();
 595        VM_BUG_ON(is_stable_node_chain(dup));
 596        if (likely(chain)) {
 597                INIT_HLIST_HEAD(&chain->hlist);
 598                chain->chain_prune_time = jiffies;
 599                chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 600#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 601                chain->nid = NUMA_NO_NODE; /* debug */
 602#endif
 603                ksm_stable_node_chains++;
 604
 605                /*
 606                 * Put the stable node chain in the first dimension of
 607                 * the stable tree and at the same time remove the old
 608                 * stable node.
 609                 */
 610                rb_replace_node(&dup->node, &chain->node, root);
 611
 612                /*
 613                 * Move the old stable node to the second dimension
 614                 * queued in the hlist_dup. The invariant is that all
 615                 * dup stable_nodes in the chain->hlist point to pages
 616                 * that are wrprotected and have the exact same
 617                 * content.
 618                 */
 619                stable_node_chain_add_dup(dup, chain);
 620        }
 621        return chain;
 622}
 623
 624static inline void free_stable_node_chain(struct stable_node *chain,
 625                                          struct rb_root *root)
 626{
 627        rb_erase(&chain->node, root);
 628        free_stable_node(chain);
 629        ksm_stable_node_chains--;
 630}
 631
 632static void remove_node_from_stable_tree(struct stable_node *stable_node)
 633{
 634        struct rmap_item *rmap_item;
 635
 636        /* check it's not STABLE_NODE_CHAIN or negative */
 637        BUG_ON(stable_node->rmap_hlist_len < 0);
 638
 639        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 640                if (rmap_item->hlist.next)
 641                        ksm_pages_sharing--;
 642                else
 643                        ksm_pages_shared--;
 644                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 645                stable_node->rmap_hlist_len--;
 646                put_anon_vma(rmap_item->anon_vma);
 647                rmap_item->address &= PAGE_MASK;
 648                cond_resched();
 649        }
 650
 651        /*
 652         * We need the second aligned pointer of the migrate_nodes
 653         * list_head to stay clear from the rb_parent_color union
 654         * (aligned and different than any node) and also different
 655         * from &migrate_nodes. This will verify that future list.h changes
 656         * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
 657         */
 658#if defined(GCC_VERSION) && GCC_VERSION >= 40903
 659        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 660        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 661#endif
 662
 663        if (stable_node->head == &migrate_nodes)
 664                list_del(&stable_node->list);
 665        else
 666                stable_node_dup_del(stable_node);
 667        free_stable_node(stable_node);
 668}
 669
 670enum get_ksm_page_flags {
 671        GET_KSM_PAGE_NOLOCK,
 672        GET_KSM_PAGE_LOCK,
 673        GET_KSM_PAGE_TRYLOCK
 674};
 675
 676/*
 677 * get_ksm_page: checks if the page indicated by the stable node
 678 * is still its ksm page, despite having held no reference to it.
 679 * In which case we can trust the content of the page, and it
 680 * returns the gotten page; but if the page has now been zapped,
 681 * remove the stale node from the stable tree and return NULL.
 682 * But beware, the stable node's page might be being migrated.
 683 *
 684 * You would expect the stable_node to hold a reference to the ksm page.
 685 * But if it increments the page's count, swapping out has to wait for
 686 * ksmd to come around again before it can free the page, which may take
 687 * seconds or even minutes: much too unresponsive.  So instead we use a
 688 * "keyhole reference": access to the ksm page from the stable node peeps
 689 * out through its keyhole to see if that page still holds the right key,
 690 * pointing back to this stable node.  This relies on freeing a PageAnon
 691 * page to reset its page->mapping to NULL, and relies on no other use of
 692 * a page to put something that might look like our key in page->mapping.
 693 * is on its way to being freed; but it is an anomaly to bear in mind.
 694 */
 695static struct page *get_ksm_page(struct stable_node *stable_node,
 696                                 enum get_ksm_page_flags flags)
 697{
 698        struct page *page;
 699        void *expected_mapping;
 700        unsigned long kpfn;
 701
 702        expected_mapping = (void *)((unsigned long)stable_node |
 703                                        PAGE_MAPPING_KSM);
 704again:
 705        kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 706        page = pfn_to_page(kpfn);
 707        if (READ_ONCE(page->mapping) != expected_mapping)
 708                goto stale;
 709
 710        /*
 711         * We cannot do anything with the page while its refcount is 0.
 712         * Usually 0 means free, or tail of a higher-order page: in which
 713         * case this node is no longer referenced, and should be freed;
 714         * however, it might mean that the page is under page_ref_freeze().
 715         * The __remove_mapping() case is easy, again the node is now stale;
 716         * the same is in reuse_ksm_page() case; but if page is swapcache
 717         * in migrate_page_move_mapping(), it might still be our page,
 718         * in which case it's essential to keep the node.
 719         */
 720        while (!get_page_unless_zero(page)) {
 721                /*
 722                 * Another check for page->mapping != expected_mapping would
 723                 * work here too.  We have chosen the !PageSwapCache test to
 724                 * optimize the common case, when the page is or is about to
 725                 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 726                 * in the ref_freeze section of __remove_mapping(); but Anon
 727                 * page->mapping reset to NULL later, in free_pages_prepare().
 728                 */
 729                if (!PageSwapCache(page))
 730                        goto stale;
 731                cpu_relax();
 732        }
 733
 734        if (READ_ONCE(page->mapping) != expected_mapping) {
 735                put_page(page);
 736                goto stale;
 737        }
 738
 739        if (flags == GET_KSM_PAGE_TRYLOCK) {
 740                if (!trylock_page(page)) {
 741                        put_page(page);
 742                        return ERR_PTR(-EBUSY);
 743                }
 744        } else if (flags == GET_KSM_PAGE_LOCK)
 745                lock_page(page);
 746
 747        if (flags != GET_KSM_PAGE_NOLOCK) {
 748                if (READ_ONCE(page->mapping) != expected_mapping) {
 749                        unlock_page(page);
 750                        put_page(page);
 751                        goto stale;
 752                }
 753        }
 754        return page;
 755
 756stale:
 757        /*
 758         * We come here from above when page->mapping or !PageSwapCache
 759         * suggests that the node is stale; but it might be under migration.
 760         * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 761         * before checking whether node->kpfn has been changed.
 762         */
 763        smp_rmb();
 764        if (READ_ONCE(stable_node->kpfn) != kpfn)
 765                goto again;
 766        remove_node_from_stable_tree(stable_node);
 767        return NULL;
 768}
 769
 770/*
 771 * Removing rmap_item from stable or unstable tree.
 772 * This function will clean the information from the stable/unstable tree.
 773 */
 774static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 775{
 776        if (rmap_item->address & STABLE_FLAG) {
 777                struct stable_node *stable_node;
 778                struct page *page;
 779
 780                stable_node = rmap_item->head;
 781                page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 782                if (!page)
 783                        goto out;
 784
 785                hlist_del(&rmap_item->hlist);
 786                unlock_page(page);
 787                put_page(page);
 788
 789                if (!hlist_empty(&stable_node->hlist))
 790                        ksm_pages_sharing--;
 791                else
 792                        ksm_pages_shared--;
 793                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 794                stable_node->rmap_hlist_len--;
 795
 796                put_anon_vma(rmap_item->anon_vma);
 797                rmap_item->address &= PAGE_MASK;
 798
 799        } else if (rmap_item->address & UNSTABLE_FLAG) {
 800                unsigned char age;
 801                /*
 802                 * Usually ksmd can and must skip the rb_erase, because
 803                 * root_unstable_tree was already reset to RB_ROOT.
 804                 * But be careful when an mm is exiting: do the rb_erase
 805                 * if this rmap_item was inserted by this scan, rather
 806                 * than left over from before.
 807                 */
 808                age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 809                BUG_ON(age > 1);
 810                if (!age)
 811                        rb_erase(&rmap_item->node,
 812                                 root_unstable_tree + NUMA(rmap_item->nid));
 813                ksm_pages_unshared--;
 814                rmap_item->address &= PAGE_MASK;
 815        }
 816out:
 817        cond_resched();         /* we're called from many long loops */
 818}
 819
 820static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 821                                       struct rmap_item **rmap_list)
 822{
 823        while (*rmap_list) {
 824                struct rmap_item *rmap_item = *rmap_list;
 825                *rmap_list = rmap_item->rmap_list;
 826                remove_rmap_item_from_tree(rmap_item);
 827                free_rmap_item(rmap_item);
 828        }
 829}
 830
 831/*
 832 * Though it's very tempting to unmerge rmap_items from stable tree rather
 833 * than check every pte of a given vma, the locking doesn't quite work for
 834 * that - an rmap_item is assigned to the stable tree after inserting ksm
 835 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 836 * rmap_items from parent to child at fork time (so as not to waste time
 837 * if exit comes before the next scan reaches it).
 838 *
 839 * Similarly, although we'd like to remove rmap_items (so updating counts
 840 * and freeing memory) when unmerging an area, it's easier to leave that
 841 * to the next pass of ksmd - consider, for example, how ksmd might be
 842 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 843 */
 844static int unmerge_ksm_pages(struct vm_area_struct *vma,
 845                             unsigned long start, unsigned long end)
 846{
 847        unsigned long addr;
 848        int err = 0;
 849
 850        for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 851                if (ksm_test_exit(vma->vm_mm))
 852                        break;
 853                if (signal_pending(current))
 854                        err = -ERESTARTSYS;
 855                else
 856                        err = break_ksm(vma, addr);
 857        }
 858        return err;
 859}
 860
 861static inline struct stable_node *page_stable_node(struct page *page)
 862{
 863        return PageKsm(page) ? page_rmapping(page) : NULL;
 864}
 865
 866static inline void set_page_stable_node(struct page *page,
 867                                        struct stable_node *stable_node)
 868{
 869        page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
 870}
 871
 872#ifdef CONFIG_SYSFS
 873/*
 874 * Only called through the sysfs control interface:
 875 */
 876static int remove_stable_node(struct stable_node *stable_node)
 877{
 878        struct page *page;
 879        int err;
 880
 881        page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 882        if (!page) {
 883                /*
 884                 * get_ksm_page did remove_node_from_stable_tree itself.
 885                 */
 886                return 0;
 887        }
 888
 889        if (WARN_ON_ONCE(page_mapped(page))) {
 890                /*
 891                 * This should not happen: but if it does, just refuse to let
 892                 * merge_across_nodes be switched - there is no need to panic.
 893                 */
 894                err = -EBUSY;
 895        } else {
 896                /*
 897                 * The stable node did not yet appear stale to get_ksm_page(),
 898                 * since that allows for an unmapped ksm page to be recognized
 899                 * right up until it is freed; but the node is safe to remove.
 900                 * This page might be in a pagevec waiting to be freed,
 901                 * or it might be PageSwapCache (perhaps under writeback),
 902                 * or it might have been removed from swapcache a moment ago.
 903                 */
 904                set_page_stable_node(page, NULL);
 905                remove_node_from_stable_tree(stable_node);
 906                err = 0;
 907        }
 908
 909        unlock_page(page);
 910        put_page(page);
 911        return err;
 912}
 913
 914static int remove_stable_node_chain(struct stable_node *stable_node,
 915                                    struct rb_root *root)
 916{
 917        struct stable_node *dup;
 918        struct hlist_node *hlist_safe;
 919
 920        if (!is_stable_node_chain(stable_node)) {
 921                VM_BUG_ON(is_stable_node_dup(stable_node));
 922                if (remove_stable_node(stable_node))
 923                        return true;
 924                else
 925                        return false;
 926        }
 927
 928        hlist_for_each_entry_safe(dup, hlist_safe,
 929                                  &stable_node->hlist, hlist_dup) {
 930                VM_BUG_ON(!is_stable_node_dup(dup));
 931                if (remove_stable_node(dup))
 932                        return true;
 933        }
 934        BUG_ON(!hlist_empty(&stable_node->hlist));
 935        free_stable_node_chain(stable_node, root);
 936        return false;
 937}
 938
 939static int remove_all_stable_nodes(void)
 940{
 941        struct stable_node *stable_node, *next;
 942        int nid;
 943        int err = 0;
 944
 945        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 946                while (root_stable_tree[nid].rb_node) {
 947                        stable_node = rb_entry(root_stable_tree[nid].rb_node,
 948                                                struct stable_node, node);
 949                        if (remove_stable_node_chain(stable_node,
 950                                                     root_stable_tree + nid)) {
 951                                err = -EBUSY;
 952                                break;  /* proceed to next nid */
 953                        }
 954                        cond_resched();
 955                }
 956        }
 957        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 958                if (remove_stable_node(stable_node))
 959                        err = -EBUSY;
 960                cond_resched();
 961        }
 962        return err;
 963}
 964
 965static int unmerge_and_remove_all_rmap_items(void)
 966{
 967        struct mm_slot *mm_slot;
 968        struct mm_struct *mm;
 969        struct vm_area_struct *vma;
 970        int err = 0;
 971
 972        spin_lock(&ksm_mmlist_lock);
 973        ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 974                                                struct mm_slot, mm_list);
 975        spin_unlock(&ksm_mmlist_lock);
 976
 977        for (mm_slot = ksm_scan.mm_slot;
 978                        mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 979                mm = mm_slot->mm;
 980                down_read(&mm->mmap_sem);
 981                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 982                        if (ksm_test_exit(mm))
 983                                break;
 984                        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 985                                continue;
 986                        err = unmerge_ksm_pages(vma,
 987                                                vma->vm_start, vma->vm_end);
 988                        if (err)
 989                                goto error;
 990                }
 991
 992                remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 993                up_read(&mm->mmap_sem);
 994
 995                spin_lock(&ksm_mmlist_lock);
 996                ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 997                                                struct mm_slot, mm_list);
 998                if (ksm_test_exit(mm)) {
 999                        hash_del(&mm_slot->link);
1000                        list_del(&mm_slot->mm_list);
1001                        spin_unlock(&ksm_mmlist_lock);
1002
1003                        free_mm_slot(mm_slot);
1004                        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1005                        mmdrop(mm);
1006                } else
1007                        spin_unlock(&ksm_mmlist_lock);
1008        }
1009
1010        /* Clean up stable nodes, but don't worry if some are still busy */
1011        remove_all_stable_nodes();
1012        ksm_scan.seqnr = 0;
1013        return 0;
1014
1015error:
1016        up_read(&mm->mmap_sem);
1017        spin_lock(&ksm_mmlist_lock);
1018        ksm_scan.mm_slot = &ksm_mm_head;
1019        spin_unlock(&ksm_mmlist_lock);
1020        return err;
1021}
1022#endif /* CONFIG_SYSFS */
1023
1024static u32 calc_checksum(struct page *page)
1025{
1026        u32 checksum;
1027        void *addr = kmap_atomic(page);
1028        checksum = xxhash(addr, PAGE_SIZE, 0);
1029        kunmap_atomic(addr);
1030        return checksum;
1031}
1032
1033static int memcmp_pages(struct page *page1, struct page *page2)
1034{
1035        char *addr1, *addr2;
1036        int ret;
1037
1038        addr1 = kmap_atomic(page1);
1039        addr2 = kmap_atomic(page2);
1040        ret = memcmp(addr1, addr2, PAGE_SIZE);
1041        kunmap_atomic(addr2);
1042        kunmap_atomic(addr1);
1043        return ret;
1044}
1045
1046static inline int pages_identical(struct page *page1, struct page *page2)
1047{
1048        return !memcmp_pages(page1, page2);
1049}
1050
1051static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1052                              pte_t *orig_pte)
1053{
1054        struct mm_struct *mm = vma->vm_mm;
1055        struct page_vma_mapped_walk pvmw = {
1056                .page = page,
1057                .vma = vma,
1058        };
1059        int swapped;
1060        int err = -EFAULT;
1061        struct mmu_notifier_range range;
1062
1063        pvmw.address = page_address_in_vma(page, vma);
1064        if (pvmw.address == -EFAULT)
1065                goto out;
1066
1067        BUG_ON(PageTransCompound(page));
1068
1069        mmu_notifier_range_init(&range, mm, pvmw.address,
1070                                pvmw.address + PAGE_SIZE);
1071        mmu_notifier_invalidate_range_start(&range);
1072
1073        if (!page_vma_mapped_walk(&pvmw))
1074                goto out_mn;
1075        if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1076                goto out_unlock;
1077
1078        if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1079            (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1080                                                mm_tlb_flush_pending(mm)) {
1081                pte_t entry;
1082
1083                swapped = PageSwapCache(page);
1084                flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1085                /*
1086                 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1087                 * take any lock, therefore the check that we are going to make
1088                 * with the pagecount against the mapcount is racey and
1089                 * O_DIRECT can happen right after the check.
1090                 * So we clear the pte and flush the tlb before the check
1091                 * this assure us that no O_DIRECT can happen after the check
1092                 * or in the middle of the check.
1093                 *
1094                 * No need to notify as we are downgrading page table to read
1095                 * only not changing it to point to a new page.
1096                 *
1097                 * See Documentation/vm/mmu_notifier.rst
1098                 */
1099                entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1100                /*
1101                 * Check that no O_DIRECT or similar I/O is in progress on the
1102                 * page
1103                 */
1104                if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1105                        set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1106                        goto out_unlock;
1107                }
1108                if (pte_dirty(entry))
1109                        set_page_dirty(page);
1110
1111                if (pte_protnone(entry))
1112                        entry = pte_mkclean(pte_clear_savedwrite(entry));
1113                else
1114                        entry = pte_mkclean(pte_wrprotect(entry));
1115                set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1116        }
1117        *orig_pte = *pvmw.pte;
1118        err = 0;
1119
1120out_unlock:
1121        page_vma_mapped_walk_done(&pvmw);
1122out_mn:
1123        mmu_notifier_invalidate_range_end(&range);
1124out:
1125        return err;
1126}
1127
1128/**
1129 * replace_page - replace page in vma by new ksm page
1130 * @vma:      vma that holds the pte pointing to page
1131 * @page:     the page we are replacing by kpage
1132 * @kpage:    the ksm page we replace page by
1133 * @orig_pte: the original value of the pte
1134 *
1135 * Returns 0 on success, -EFAULT on failure.
1136 */
1137static int replace_page(struct vm_area_struct *vma, struct page *page,
1138                        struct page *kpage, pte_t orig_pte)
1139{
1140        struct mm_struct *mm = vma->vm_mm;
1141        pmd_t *pmd;
1142        pte_t *ptep;
1143        pte_t newpte;
1144        spinlock_t *ptl;
1145        unsigned long addr;
1146        int err = -EFAULT;
1147        struct mmu_notifier_range range;
1148
1149        addr = page_address_in_vma(page, vma);
1150        if (addr == -EFAULT)
1151                goto out;
1152
1153        pmd = mm_find_pmd(mm, addr);
1154        if (!pmd)
1155                goto out;
1156
1157        mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
1158        mmu_notifier_invalidate_range_start(&range);
1159
1160        ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1161        if (!pte_same(*ptep, orig_pte)) {
1162                pte_unmap_unlock(ptep, ptl);
1163                goto out_mn;
1164        }
1165
1166        /*
1167         * No need to check ksm_use_zero_pages here: we can only have a
1168         * zero_page here if ksm_use_zero_pages was enabled alreaady.
1169         */
1170        if (!is_zero_pfn(page_to_pfn(kpage))) {
1171                get_page(kpage);
1172                page_add_anon_rmap(kpage, vma, addr, false);
1173                newpte = mk_pte(kpage, vma->vm_page_prot);
1174        } else {
1175                newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1176                                               vma->vm_page_prot));
1177                /*
1178                 * We're replacing an anonymous page with a zero page, which is
1179                 * not anonymous. We need to do proper accounting otherwise we
1180                 * will get wrong values in /proc, and a BUG message in dmesg
1181                 * when tearing down the mm.
1182                 */
1183                dec_mm_counter(mm, MM_ANONPAGES);
1184        }
1185
1186        flush_cache_page(vma, addr, pte_pfn(*ptep));
1187        /*
1188         * No need to notify as we are replacing a read only page with another
1189         * read only page with the same content.
1190         *
1191         * See Documentation/vm/mmu_notifier.rst
1192         */
1193        ptep_clear_flush(vma, addr, ptep);
1194        set_pte_at_notify(mm, addr, ptep, newpte);
1195
1196        page_remove_rmap(page, false);
1197        if (!page_mapped(page))
1198                try_to_free_swap(page);
1199        put_page(page);
1200
1201        pte_unmap_unlock(ptep, ptl);
1202        err = 0;
1203out_mn:
1204        mmu_notifier_invalidate_range_end(&range);
1205out:
1206        return err;
1207}
1208
1209/*
1210 * try_to_merge_one_page - take two pages and merge them into one
1211 * @vma: the vma that holds the pte pointing to page
1212 * @page: the PageAnon page that we want to replace with kpage
1213 * @kpage: the PageKsm page that we want to map instead of page,
1214 *         or NULL the first time when we want to use page as kpage.
1215 *
1216 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1217 */
1218static int try_to_merge_one_page(struct vm_area_struct *vma,
1219                                 struct page *page, struct page *kpage)
1220{
1221        pte_t orig_pte = __pte(0);
1222        int err = -EFAULT;
1223
1224        if (page == kpage)                      /* ksm page forked */
1225                return 0;
1226
1227        if (!PageAnon(page))
1228                goto out;
1229
1230        /*
1231         * We need the page lock to read a stable PageSwapCache in
1232         * write_protect_page().  We use trylock_page() instead of
1233         * lock_page() because we don't want to wait here - we
1234         * prefer to continue scanning and merging different pages,
1235         * then come back to this page when it is unlocked.
1236         */
1237        if (!trylock_page(page))
1238                goto out;
1239
1240        if (PageTransCompound(page)) {
1241                if (split_huge_page(page))
1242                        goto out_unlock;
1243        }
1244
1245        /*
1246         * If this anonymous page is mapped only here, its pte may need
1247         * to be write-protected.  If it's mapped elsewhere, all of its
1248         * ptes are necessarily already write-protected.  But in either
1249         * case, we need to lock and check page_count is not raised.
1250         */
1251        if (write_protect_page(vma, page, &orig_pte) == 0) {
1252                if (!kpage) {
1253                        /*
1254                         * While we hold page lock, upgrade page from
1255                         * PageAnon+anon_vma to PageKsm+NULL stable_node:
1256                         * stable_tree_insert() will update stable_node.
1257                         */
1258                        set_page_stable_node(page, NULL);
1259                        mark_page_accessed(page);
1260                        /*
1261                         * Page reclaim just frees a clean page with no dirty
1262                         * ptes: make sure that the ksm page would be swapped.
1263                         */
1264                        if (!PageDirty(page))
1265                                SetPageDirty(page);
1266                        err = 0;
1267                } else if (pages_identical(page, kpage))
1268                        err = replace_page(vma, page, kpage, orig_pte);
1269        }
1270
1271        if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1272                munlock_vma_page(page);
1273                if (!PageMlocked(kpage)) {
1274                        unlock_page(page);
1275                        lock_page(kpage);
1276                        mlock_vma_page(kpage);
1277                        page = kpage;           /* for final unlock */
1278                }
1279        }
1280
1281out_unlock:
1282        unlock_page(page);
1283out:
1284        return err;
1285}
1286
1287/*
1288 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1289 * but no new kernel page is allocated: kpage must already be a ksm page.
1290 *
1291 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1292 */
1293static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1294                                      struct page *page, struct page *kpage)
1295{
1296        struct mm_struct *mm = rmap_item->mm;
1297        struct vm_area_struct *vma;
1298        int err = -EFAULT;
1299
1300        down_read(&mm->mmap_sem);
1301        vma = find_mergeable_vma(mm, rmap_item->address);
1302        if (!vma)
1303                goto out;
1304
1305        err = try_to_merge_one_page(vma, page, kpage);
1306        if (err)
1307                goto out;
1308
1309        /* Unstable nid is in union with stable anon_vma: remove first */
1310        remove_rmap_item_from_tree(rmap_item);
1311
1312        /* Must get reference to anon_vma while still holding mmap_sem */
1313        rmap_item->anon_vma = vma->anon_vma;
1314        get_anon_vma(vma->anon_vma);
1315out:
1316        up_read(&mm->mmap_sem);
1317        return err;
1318}
1319
1320/*
1321 * try_to_merge_two_pages - take two identical pages and prepare them
1322 * to be merged into one page.
1323 *
1324 * This function returns the kpage if we successfully merged two identical
1325 * pages into one ksm page, NULL otherwise.
1326 *
1327 * Note that this function upgrades page to ksm page: if one of the pages
1328 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1329 */
1330static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1331                                           struct page *page,
1332                                           struct rmap_item *tree_rmap_item,
1333                                           struct page *tree_page)
1334{
1335        int err;
1336
1337        err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1338        if (!err) {
1339                err = try_to_merge_with_ksm_page(tree_rmap_item,
1340                                                        tree_page, page);
1341                /*
1342                 * If that fails, we have a ksm page with only one pte
1343                 * pointing to it: so break it.
1344                 */
1345                if (err)
1346                        break_cow(rmap_item);
1347        }
1348        return err ? NULL : page;
1349}
1350
1351static __always_inline
1352bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1353{
1354        VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1355        /*
1356         * Check that at least one mapping still exists, otherwise
1357         * there's no much point to merge and share with this
1358         * stable_node, as the underlying tree_page of the other
1359         * sharer is going to be freed soon.
1360         */
1361        return stable_node->rmap_hlist_len &&
1362                stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1363}
1364
1365static __always_inline
1366bool is_page_sharing_candidate(struct stable_node *stable_node)
1367{
1368        return __is_page_sharing_candidate(stable_node, 0);
1369}
1370
1371static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1372                                    struct stable_node **_stable_node,
1373                                    struct rb_root *root,
1374                                    bool prune_stale_stable_nodes)
1375{
1376        struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1377        struct hlist_node *hlist_safe;
1378        struct page *_tree_page, *tree_page = NULL;
1379        int nr = 0;
1380        int found_rmap_hlist_len;
1381
1382        if (!prune_stale_stable_nodes ||
1383            time_before(jiffies, stable_node->chain_prune_time +
1384                        msecs_to_jiffies(
1385                                ksm_stable_node_chains_prune_millisecs)))
1386                prune_stale_stable_nodes = false;
1387        else
1388                stable_node->chain_prune_time = jiffies;
1389
1390        hlist_for_each_entry_safe(dup, hlist_safe,
1391                                  &stable_node->hlist, hlist_dup) {
1392                cond_resched();
1393                /*
1394                 * We must walk all stable_node_dup to prune the stale
1395                 * stable nodes during lookup.
1396                 *
1397                 * get_ksm_page can drop the nodes from the
1398                 * stable_node->hlist if they point to freed pages
1399                 * (that's why we do a _safe walk). The "dup"
1400                 * stable_node parameter itself will be freed from
1401                 * under us if it returns NULL.
1402                 */
1403                _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1404                if (!_tree_page)
1405                        continue;
1406                nr += 1;
1407                if (is_page_sharing_candidate(dup)) {
1408                        if (!found ||
1409                            dup->rmap_hlist_len > found_rmap_hlist_len) {
1410                                if (found)
1411                                        put_page(tree_page);
1412                                found = dup;
1413                                found_rmap_hlist_len = found->rmap_hlist_len;
1414                                tree_page = _tree_page;
1415
1416                                /* skip put_page for found dup */
1417                                if (!prune_stale_stable_nodes)
1418                                        break;
1419                                continue;
1420                        }
1421                }
1422                put_page(_tree_page);
1423        }
1424
1425        if (found) {
1426                /*
1427                 * nr is counting all dups in the chain only if
1428                 * prune_stale_stable_nodes is true, otherwise we may
1429                 * break the loop at nr == 1 even if there are
1430                 * multiple entries.
1431                 */
1432                if (prune_stale_stable_nodes && nr == 1) {
1433                        /*
1434                         * If there's not just one entry it would
1435                         * corrupt memory, better BUG_ON. In KSM
1436                         * context with no lock held it's not even
1437                         * fatal.
1438                         */
1439                        BUG_ON(stable_node->hlist.first->next);
1440
1441                        /*
1442                         * There's just one entry and it is below the
1443                         * deduplication limit so drop the chain.
1444                         */
1445                        rb_replace_node(&stable_node->node, &found->node,
1446                                        root);
1447                        free_stable_node(stable_node);
1448                        ksm_stable_node_chains--;
1449                        ksm_stable_node_dups--;
1450                        /*
1451                         * NOTE: the caller depends on the stable_node
1452                         * to be equal to stable_node_dup if the chain
1453                         * was collapsed.
1454                         */
1455                        *_stable_node = found;
1456                        /*
1457                         * Just for robustneess as stable_node is
1458                         * otherwise left as a stable pointer, the
1459                         * compiler shall optimize it away at build
1460                         * time.
1461                         */
1462                        stable_node = NULL;
1463                } else if (stable_node->hlist.first != &found->hlist_dup &&
1464                           __is_page_sharing_candidate(found, 1)) {
1465                        /*
1466                         * If the found stable_node dup can accept one
1467                         * more future merge (in addition to the one
1468                         * that is underway) and is not at the head of
1469                         * the chain, put it there so next search will
1470                         * be quicker in the !prune_stale_stable_nodes
1471                         * case.
1472                         *
1473                         * NOTE: it would be inaccurate to use nr > 1
1474                         * instead of checking the hlist.first pointer
1475                         * directly, because in the
1476                         * prune_stale_stable_nodes case "nr" isn't
1477                         * the position of the found dup in the chain,
1478                         * but the total number of dups in the chain.
1479                         */
1480                        hlist_del(&found->hlist_dup);
1481                        hlist_add_head(&found->hlist_dup,
1482                                       &stable_node->hlist);
1483                }
1484        }
1485
1486        *_stable_node_dup = found;
1487        return tree_page;
1488}
1489
1490static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1491                                               struct rb_root *root)
1492{
1493        if (!is_stable_node_chain(stable_node))
1494                return stable_node;
1495        if (hlist_empty(&stable_node->hlist)) {
1496                free_stable_node_chain(stable_node, root);
1497                return NULL;
1498        }
1499        return hlist_entry(stable_node->hlist.first,
1500                           typeof(*stable_node), hlist_dup);
1501}
1502
1503/*
1504 * Like for get_ksm_page, this function can free the *_stable_node and
1505 * *_stable_node_dup if the returned tree_page is NULL.
1506 *
1507 * It can also free and overwrite *_stable_node with the found
1508 * stable_node_dup if the chain is collapsed (in which case
1509 * *_stable_node will be equal to *_stable_node_dup like if the chain
1510 * never existed). It's up to the caller to verify tree_page is not
1511 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1512 *
1513 * *_stable_node_dup is really a second output parameter of this
1514 * function and will be overwritten in all cases, the caller doesn't
1515 * need to initialize it.
1516 */
1517static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1518                                        struct stable_node **_stable_node,
1519                                        struct rb_root *root,
1520                                        bool prune_stale_stable_nodes)
1521{
1522        struct stable_node *stable_node = *_stable_node;
1523        if (!is_stable_node_chain(stable_node)) {
1524                if (is_page_sharing_candidate(stable_node)) {
1525                        *_stable_node_dup = stable_node;
1526                        return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1527                }
1528                /*
1529                 * _stable_node_dup set to NULL means the stable_node
1530                 * reached the ksm_max_page_sharing limit.
1531                 */
1532                *_stable_node_dup = NULL;
1533                return NULL;
1534        }
1535        return stable_node_dup(_stable_node_dup, _stable_node, root,
1536                               prune_stale_stable_nodes);
1537}
1538
1539static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1540                                                struct stable_node **s_n,
1541                                                struct rb_root *root)
1542{
1543        return __stable_node_chain(s_n_d, s_n, root, true);
1544}
1545
1546static __always_inline struct page *chain(struct stable_node **s_n_d,
1547                                          struct stable_node *s_n,
1548                                          struct rb_root *root)
1549{
1550        struct stable_node *old_stable_node = s_n;
1551        struct page *tree_page;
1552
1553        tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1554        /* not pruning dups so s_n cannot have changed */
1555        VM_BUG_ON(s_n != old_stable_node);
1556        return tree_page;
1557}
1558
1559/*
1560 * stable_tree_search - search for page inside the stable tree
1561 *
1562 * This function checks if there is a page inside the stable tree
1563 * with identical content to the page that we are scanning right now.
1564 *
1565 * This function returns the stable tree node of identical content if found,
1566 * NULL otherwise.
1567 */
1568static struct page *stable_tree_search(struct page *page)
1569{
1570        int nid;
1571        struct rb_root *root;
1572        struct rb_node **new;
1573        struct rb_node *parent;
1574        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1575        struct stable_node *page_node;
1576
1577        page_node = page_stable_node(page);
1578        if (page_node && page_node->head != &migrate_nodes) {
1579                /* ksm page forked */
1580                get_page(page);
1581                return page;
1582        }
1583
1584        nid = get_kpfn_nid(page_to_pfn(page));
1585        root = root_stable_tree + nid;
1586again:
1587        new = &root->rb_node;
1588        parent = NULL;
1589
1590        while (*new) {
1591                struct page *tree_page;
1592                int ret;
1593
1594                cond_resched();
1595                stable_node = rb_entry(*new, struct stable_node, node);
1596                stable_node_any = NULL;
1597                tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1598                /*
1599                 * NOTE: stable_node may have been freed by
1600                 * chain_prune() if the returned stable_node_dup is
1601                 * not NULL. stable_node_dup may have been inserted in
1602                 * the rbtree instead as a regular stable_node (in
1603                 * order to collapse the stable_node chain if a single
1604                 * stable_node dup was found in it). In such case the
1605                 * stable_node is overwritten by the calleee to point
1606                 * to the stable_node_dup that was collapsed in the
1607                 * stable rbtree and stable_node will be equal to
1608                 * stable_node_dup like if the chain never existed.
1609                 */
1610                if (!stable_node_dup) {
1611                        /*
1612                         * Either all stable_node dups were full in
1613                         * this stable_node chain, or this chain was
1614                         * empty and should be rb_erased.
1615                         */
1616                        stable_node_any = stable_node_dup_any(stable_node,
1617                                                              root);
1618                        if (!stable_node_any) {
1619                                /* rb_erase just run */
1620                                goto again;
1621                        }
1622                        /*
1623                         * Take any of the stable_node dups page of
1624                         * this stable_node chain to let the tree walk
1625                         * continue. All KSM pages belonging to the
1626                         * stable_node dups in a stable_node chain
1627                         * have the same content and they're
1628                         * wrprotected at all times. Any will work
1629                         * fine to continue the walk.
1630                         */
1631                        tree_page = get_ksm_page(stable_node_any,
1632                                                 GET_KSM_PAGE_NOLOCK);
1633                }
1634                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1635                if (!tree_page) {
1636                        /*
1637                         * If we walked over a stale stable_node,
1638                         * get_ksm_page() will call rb_erase() and it
1639                         * may rebalance the tree from under us. So
1640                         * restart the search from scratch. Returning
1641                         * NULL would be safe too, but we'd generate
1642                         * false negative insertions just because some
1643                         * stable_node was stale.
1644                         */
1645                        goto again;
1646                }
1647
1648                ret = memcmp_pages(page, tree_page);
1649                put_page(tree_page);
1650
1651                parent = *new;
1652                if (ret < 0)
1653                        new = &parent->rb_left;
1654                else if (ret > 0)
1655                        new = &parent->rb_right;
1656                else {
1657                        if (page_node) {
1658                                VM_BUG_ON(page_node->head != &migrate_nodes);
1659                                /*
1660                                 * Test if the migrated page should be merged
1661                                 * into a stable node dup. If the mapcount is
1662                                 * 1 we can migrate it with another KSM page
1663                                 * without adding it to the chain.
1664                                 */
1665                                if (page_mapcount(page) > 1)
1666                                        goto chain_append;
1667                        }
1668
1669                        if (!stable_node_dup) {
1670                                /*
1671                                 * If the stable_node is a chain and
1672                                 * we got a payload match in memcmp
1673                                 * but we cannot merge the scanned
1674                                 * page in any of the existing
1675                                 * stable_node dups because they're
1676                                 * all full, we need to wait the
1677                                 * scanned page to find itself a match
1678                                 * in the unstable tree to create a
1679                                 * brand new KSM page to add later to
1680                                 * the dups of this stable_node.
1681                                 */
1682                                return NULL;
1683                        }
1684
1685                        /*
1686                         * Lock and unlock the stable_node's page (which
1687                         * might already have been migrated) so that page
1688                         * migration is sure to notice its raised count.
1689                         * It would be more elegant to return stable_node
1690                         * than kpage, but that involves more changes.
1691                         */
1692                        tree_page = get_ksm_page(stable_node_dup,
1693                                                 GET_KSM_PAGE_TRYLOCK);
1694
1695                        if (PTR_ERR(tree_page) == -EBUSY)
1696                                return ERR_PTR(-EBUSY);
1697
1698                        if (unlikely(!tree_page))
1699                                /*
1700                                 * The tree may have been rebalanced,
1701                                 * so re-evaluate parent and new.
1702                                 */
1703                                goto again;
1704                        unlock_page(tree_page);
1705
1706                        if (get_kpfn_nid(stable_node_dup->kpfn) !=
1707                            NUMA(stable_node_dup->nid)) {
1708                                put_page(tree_page);
1709                                goto replace;
1710                        }
1711                        return tree_page;
1712                }
1713        }
1714
1715        if (!page_node)
1716                return NULL;
1717
1718        list_del(&page_node->list);
1719        DO_NUMA(page_node->nid = nid);
1720        rb_link_node(&page_node->node, parent, new);
1721        rb_insert_color(&page_node->node, root);
1722out:
1723        if (is_page_sharing_candidate(page_node)) {
1724                get_page(page);
1725                return page;
1726        } else
1727                return NULL;
1728
1729replace:
1730        /*
1731         * If stable_node was a chain and chain_prune collapsed it,
1732         * stable_node has been updated to be the new regular
1733         * stable_node. A collapse of the chain is indistinguishable
1734         * from the case there was no chain in the stable
1735         * rbtree. Otherwise stable_node is the chain and
1736         * stable_node_dup is the dup to replace.
1737         */
1738        if (stable_node_dup == stable_node) {
1739                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1740                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1741                /* there is no chain */
1742                if (page_node) {
1743                        VM_BUG_ON(page_node->head != &migrate_nodes);
1744                        list_del(&page_node->list);
1745                        DO_NUMA(page_node->nid = nid);
1746                        rb_replace_node(&stable_node_dup->node,
1747                                        &page_node->node,
1748                                        root);
1749                        if (is_page_sharing_candidate(page_node))
1750                                get_page(page);
1751                        else
1752                                page = NULL;
1753                } else {
1754                        rb_erase(&stable_node_dup->node, root);
1755                        page = NULL;
1756                }
1757        } else {
1758                VM_BUG_ON(!is_stable_node_chain(stable_node));
1759                __stable_node_dup_del(stable_node_dup);
1760                if (page_node) {
1761                        VM_BUG_ON(page_node->head != &migrate_nodes);
1762                        list_del(&page_node->list);
1763                        DO_NUMA(page_node->nid = nid);
1764                        stable_node_chain_add_dup(page_node, stable_node);
1765                        if (is_page_sharing_candidate(page_node))
1766                                get_page(page);
1767                        else
1768                                page = NULL;
1769                } else {
1770                        page = NULL;
1771                }
1772        }
1773        stable_node_dup->head = &migrate_nodes;
1774        list_add(&stable_node_dup->list, stable_node_dup->head);
1775        return page;
1776
1777chain_append:
1778        /* stable_node_dup could be null if it reached the limit */
1779        if (!stable_node_dup)
1780                stable_node_dup = stable_node_any;
1781        /*
1782         * If stable_node was a chain and chain_prune collapsed it,
1783         * stable_node has been updated to be the new regular
1784         * stable_node. A collapse of the chain is indistinguishable
1785         * from the case there was no chain in the stable
1786         * rbtree. Otherwise stable_node is the chain and
1787         * stable_node_dup is the dup to replace.
1788         */
1789        if (stable_node_dup == stable_node) {
1790                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1791                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1792                /* chain is missing so create it */
1793                stable_node = alloc_stable_node_chain(stable_node_dup,
1794                                                      root);
1795                if (!stable_node)
1796                        return NULL;
1797        }
1798        /*
1799         * Add this stable_node dup that was
1800         * migrated to the stable_node chain
1801         * of the current nid for this page
1802         * content.
1803         */
1804        VM_BUG_ON(!is_stable_node_chain(stable_node));
1805        VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1806        VM_BUG_ON(page_node->head != &migrate_nodes);
1807        list_del(&page_node->list);
1808        DO_NUMA(page_node->nid = nid);
1809        stable_node_chain_add_dup(page_node, stable_node);
1810        goto out;
1811}
1812
1813/*
1814 * stable_tree_insert - insert stable tree node pointing to new ksm page
1815 * into the stable tree.
1816 *
1817 * This function returns the stable tree node just allocated on success,
1818 * NULL otherwise.
1819 */
1820static struct stable_node *stable_tree_insert(struct page *kpage)
1821{
1822        int nid;
1823        unsigned long kpfn;
1824        struct rb_root *root;
1825        struct rb_node **new;
1826        struct rb_node *parent;
1827        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1828        bool need_chain = false;
1829
1830        kpfn = page_to_pfn(kpage);
1831        nid = get_kpfn_nid(kpfn);
1832        root = root_stable_tree + nid;
1833again:
1834        parent = NULL;
1835        new = &root->rb_node;
1836
1837        while (*new) {
1838                struct page *tree_page;
1839                int ret;
1840
1841                cond_resched();
1842                stable_node = rb_entry(*new, struct stable_node, node);
1843                stable_node_any = NULL;
1844                tree_page = chain(&stable_node_dup, stable_node, root);
1845                if (!stable_node_dup) {
1846                        /*
1847                         * Either all stable_node dups were full in
1848                         * this stable_node chain, or this chain was
1849                         * empty and should be rb_erased.
1850                         */
1851                        stable_node_any = stable_node_dup_any(stable_node,
1852                                                              root);
1853                        if (!stable_node_any) {
1854                                /* rb_erase just run */
1855                                goto again;
1856                        }
1857                        /*
1858                         * Take any of the stable_node dups page of
1859                         * this stable_node chain to let the tree walk
1860                         * continue. All KSM pages belonging to the
1861                         * stable_node dups in a stable_node chain
1862                         * have the same content and they're
1863                         * wrprotected at all times. Any will work
1864                         * fine to continue the walk.
1865                         */
1866                        tree_page = get_ksm_page(stable_node_any,
1867                                                 GET_KSM_PAGE_NOLOCK);
1868                }
1869                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1870                if (!tree_page) {
1871                        /*
1872                         * If we walked over a stale stable_node,
1873                         * get_ksm_page() will call rb_erase() and it
1874                         * may rebalance the tree from under us. So
1875                         * restart the search from scratch. Returning
1876                         * NULL would be safe too, but we'd generate
1877                         * false negative insertions just because some
1878                         * stable_node was stale.
1879                         */
1880                        goto again;
1881                }
1882
1883                ret = memcmp_pages(kpage, tree_page);
1884                put_page(tree_page);
1885
1886                parent = *new;
1887                if (ret < 0)
1888                        new = &parent->rb_left;
1889                else if (ret > 0)
1890                        new = &parent->rb_right;
1891                else {
1892                        need_chain = true;
1893                        break;
1894                }
1895        }
1896
1897        stable_node_dup = alloc_stable_node();
1898        if (!stable_node_dup)
1899                return NULL;
1900
1901        INIT_HLIST_HEAD(&stable_node_dup->hlist);
1902        stable_node_dup->kpfn = kpfn;
1903        set_page_stable_node(kpage, stable_node_dup);
1904        stable_node_dup->rmap_hlist_len = 0;
1905        DO_NUMA(stable_node_dup->nid = nid);
1906        if (!need_chain) {
1907                rb_link_node(&stable_node_dup->node, parent, new);
1908                rb_insert_color(&stable_node_dup->node, root);
1909        } else {
1910                if (!is_stable_node_chain(stable_node)) {
1911                        struct stable_node *orig = stable_node;
1912                        /* chain is missing so create it */
1913                        stable_node = alloc_stable_node_chain(orig, root);
1914                        if (!stable_node) {
1915                                free_stable_node(stable_node_dup);
1916                                return NULL;
1917                        }
1918                }
1919                stable_node_chain_add_dup(stable_node_dup, stable_node);
1920        }
1921
1922        return stable_node_dup;
1923}
1924
1925/*
1926 * unstable_tree_search_insert - search for identical page,
1927 * else insert rmap_item into the unstable tree.
1928 *
1929 * This function searches for a page in the unstable tree identical to the
1930 * page currently being scanned; and if no identical page is found in the
1931 * tree, we insert rmap_item as a new object into the unstable tree.
1932 *
1933 * This function returns pointer to rmap_item found to be identical
1934 * to the currently scanned page, NULL otherwise.
1935 *
1936 * This function does both searching and inserting, because they share
1937 * the same walking algorithm in an rbtree.
1938 */
1939static
1940struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1941                                              struct page *page,
1942                                              struct page **tree_pagep)
1943{
1944        struct rb_node **new;
1945        struct rb_root *root;
1946        struct rb_node *parent = NULL;
1947        int nid;
1948
1949        nid = get_kpfn_nid(page_to_pfn(page));
1950        root = root_unstable_tree + nid;
1951        new = &root->rb_node;
1952
1953        while (*new) {
1954                struct rmap_item *tree_rmap_item;
1955                struct page *tree_page;
1956                int ret;
1957
1958                cond_resched();
1959                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1960                tree_page = get_mergeable_page(tree_rmap_item);
1961                if (!tree_page)
1962                        return NULL;
1963
1964                /*
1965                 * Don't substitute a ksm page for a forked page.
1966                 */
1967                if (page == tree_page) {
1968                        put_page(tree_page);
1969                        return NULL;
1970                }
1971
1972                ret = memcmp_pages(page, tree_page);
1973
1974                parent = *new;
1975                if (ret < 0) {
1976                        put_page(tree_page);
1977                        new = &parent->rb_left;
1978                } else if (ret > 0) {
1979                        put_page(tree_page);
1980                        new = &parent->rb_right;
1981                } else if (!ksm_merge_across_nodes &&
1982                           page_to_nid(tree_page) != nid) {
1983                        /*
1984                         * If tree_page has been migrated to another NUMA node,
1985                         * it will be flushed out and put in the right unstable
1986                         * tree next time: only merge with it when across_nodes.
1987                         */
1988                        put_page(tree_page);
1989                        return NULL;
1990                } else {
1991                        *tree_pagep = tree_page;
1992                        return tree_rmap_item;
1993                }
1994        }
1995
1996        rmap_item->address |= UNSTABLE_FLAG;
1997        rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1998        DO_NUMA(rmap_item->nid = nid);
1999        rb_link_node(&rmap_item->node, parent, new);
2000        rb_insert_color(&rmap_item->node, root);
2001
2002        ksm_pages_unshared++;
2003        return NULL;
2004}
2005
2006/*
2007 * stable_tree_append - add another rmap_item to the linked list of
2008 * rmap_items hanging off a given node of the stable tree, all sharing
2009 * the same ksm page.
2010 */
2011static void stable_tree_append(struct rmap_item *rmap_item,
2012                               struct stable_node *stable_node,
2013                               bool max_page_sharing_bypass)
2014{
2015        /*
2016         * rmap won't find this mapping if we don't insert the
2017         * rmap_item in the right stable_node
2018         * duplicate. page_migration could break later if rmap breaks,
2019         * so we can as well crash here. We really need to check for
2020         * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2021         * for other negative values as an undeflow if detected here
2022         * for the first time (and not when decreasing rmap_hlist_len)
2023         * would be sign of memory corruption in the stable_node.
2024         */
2025        BUG_ON(stable_node->rmap_hlist_len < 0);
2026
2027        stable_node->rmap_hlist_len++;
2028        if (!max_page_sharing_bypass)
2029                /* possibly non fatal but unexpected overflow, only warn */
2030                WARN_ON_ONCE(stable_node->rmap_hlist_len >
2031                             ksm_max_page_sharing);
2032
2033        rmap_item->head = stable_node;
2034        rmap_item->address |= STABLE_FLAG;
2035        hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2036
2037        if (rmap_item->hlist.next)
2038                ksm_pages_sharing++;
2039        else
2040                ksm_pages_shared++;
2041}
2042
2043/*
2044 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2045 * if not, compare checksum to previous and if it's the same, see if page can
2046 * be inserted into the unstable tree, or merged with a page already there and
2047 * both transferred to the stable tree.
2048 *
2049 * @page: the page that we are searching identical page to.
2050 * @rmap_item: the reverse mapping into the virtual address of this page
2051 */
2052static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2053{
2054        struct mm_struct *mm = rmap_item->mm;
2055        struct rmap_item *tree_rmap_item;
2056        struct page *tree_page = NULL;
2057        struct stable_node *stable_node;
2058        struct page *kpage;
2059        unsigned int checksum;
2060        int err;
2061        bool max_page_sharing_bypass = false;
2062
2063        stable_node = page_stable_node(page);
2064        if (stable_node) {
2065                if (stable_node->head != &migrate_nodes &&
2066                    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2067                    NUMA(stable_node->nid)) {
2068                        stable_node_dup_del(stable_node);
2069                        stable_node->head = &migrate_nodes;
2070                        list_add(&stable_node->list, stable_node->head);
2071                }
2072                if (stable_node->head != &migrate_nodes &&
2073                    rmap_item->head == stable_node)
2074                        return;
2075                /*
2076                 * If it's a KSM fork, allow it to go over the sharing limit
2077                 * without warnings.
2078                 */
2079                if (!is_page_sharing_candidate(stable_node))
2080                        max_page_sharing_bypass = true;
2081        }
2082
2083        /* We first start with searching the page inside the stable tree */
2084        kpage = stable_tree_search(page);
2085        if (kpage == page && rmap_item->head == stable_node) {
2086                put_page(kpage);
2087                return;
2088        }
2089
2090        remove_rmap_item_from_tree(rmap_item);
2091
2092        if (kpage) {
2093                if (PTR_ERR(kpage) == -EBUSY)
2094                        return;
2095
2096                err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2097                if (!err) {
2098                        /*
2099                         * The page was successfully merged:
2100                         * add its rmap_item to the stable tree.
2101                         */
2102                        lock_page(kpage);
2103                        stable_tree_append(rmap_item, page_stable_node(kpage),
2104                                           max_page_sharing_bypass);
2105                        unlock_page(kpage);
2106                }
2107                put_page(kpage);
2108                return;
2109        }
2110
2111        /*
2112         * If the hash value of the page has changed from the last time
2113         * we calculated it, this page is changing frequently: therefore we
2114         * don't want to insert it in the unstable tree, and we don't want
2115         * to waste our time searching for something identical to it there.
2116         */
2117        checksum = calc_checksum(page);
2118        if (rmap_item->oldchecksum != checksum) {
2119                rmap_item->oldchecksum = checksum;
2120                return;
2121        }
2122
2123        /*
2124         * Same checksum as an empty page. We attempt to merge it with the
2125         * appropriate zero page if the user enabled this via sysfs.
2126         */
2127        if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2128                struct vm_area_struct *vma;
2129
2130                down_read(&mm->mmap_sem);
2131                vma = find_mergeable_vma(mm, rmap_item->address);
2132                err = try_to_merge_one_page(vma, page,
2133                                            ZERO_PAGE(rmap_item->address));
2134                up_read(&mm->mmap_sem);
2135                /*
2136                 * In case of failure, the page was not really empty, so we
2137                 * need to continue. Otherwise we're done.
2138                 */
2139                if (!err)
2140                        return;
2141        }
2142        tree_rmap_item =
2143                unstable_tree_search_insert(rmap_item, page, &tree_page);
2144        if (tree_rmap_item) {
2145                bool split;
2146
2147                kpage = try_to_merge_two_pages(rmap_item, page,
2148                                                tree_rmap_item, tree_page);
2149                /*
2150                 * If both pages we tried to merge belong to the same compound
2151                 * page, then we actually ended up increasing the reference
2152                 * count of the same compound page twice, and split_huge_page
2153                 * failed.
2154                 * Here we set a flag if that happened, and we use it later to
2155                 * try split_huge_page again. Since we call put_page right
2156                 * afterwards, the reference count will be correct and
2157                 * split_huge_page should succeed.
2158                 */
2159                split = PageTransCompound(page)
2160                        && compound_head(page) == compound_head(tree_page);
2161                put_page(tree_page);
2162                if (kpage) {
2163                        /*
2164                         * The pages were successfully merged: insert new
2165                         * node in the stable tree and add both rmap_items.
2166                         */
2167                        lock_page(kpage);
2168                        stable_node = stable_tree_insert(kpage);
2169                        if (stable_node) {
2170                                stable_tree_append(tree_rmap_item, stable_node,
2171                                                   false);
2172                                stable_tree_append(rmap_item, stable_node,
2173                                                   false);
2174                        }
2175                        unlock_page(kpage);
2176
2177                        /*
2178                         * If we fail to insert the page into the stable tree,
2179                         * we will have 2 virtual addresses that are pointing
2180                         * to a ksm page left outside the stable tree,
2181                         * in which case we need to break_cow on both.
2182                         */
2183                        if (!stable_node) {
2184                                break_cow(tree_rmap_item);
2185                                break_cow(rmap_item);
2186                        }
2187                } else if (split) {
2188                        /*
2189                         * We are here if we tried to merge two pages and
2190                         * failed because they both belonged to the same
2191                         * compound page. We will split the page now, but no
2192                         * merging will take place.
2193                         * We do not want to add the cost of a full lock; if
2194                         * the page is locked, it is better to skip it and
2195                         * perhaps try again later.
2196                         */
2197                        if (!trylock_page(page))
2198                                return;
2199                        split_huge_page(page);
2200                        unlock_page(page);
2201                }
2202        }
2203}
2204
2205static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2206                                            struct rmap_item **rmap_list,
2207                                            unsigned long addr)
2208{
2209        struct rmap_item *rmap_item;
2210
2211        while (*rmap_list) {
2212                rmap_item = *rmap_list;
2213                if ((rmap_item->address & PAGE_MASK) == addr)
2214                        return rmap_item;
2215                if (rmap_item->address > addr)
2216                        break;
2217                *rmap_list = rmap_item->rmap_list;
2218                remove_rmap_item_from_tree(rmap_item);
2219                free_rmap_item(rmap_item);
2220        }
2221
2222        rmap_item = alloc_rmap_item();
2223        if (rmap_item) {
2224                /* It has already been zeroed */
2225                rmap_item->mm = mm_slot->mm;
2226                rmap_item->address = addr;
2227                rmap_item->rmap_list = *rmap_list;
2228                *rmap_list = rmap_item;
2229        }
2230        return rmap_item;
2231}
2232
2233static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2234{
2235        struct mm_struct *mm;
2236        struct mm_slot *slot;
2237        struct vm_area_struct *vma;
2238        struct rmap_item *rmap_item;
2239        int nid;
2240
2241        if (list_empty(&ksm_mm_head.mm_list))
2242                return NULL;
2243
2244        slot = ksm_scan.mm_slot;
2245        if (slot == &ksm_mm_head) {
2246                /*
2247                 * A number of pages can hang around indefinitely on per-cpu
2248                 * pagevecs, raised page count preventing write_protect_page
2249                 * from merging them.  Though it doesn't really matter much,
2250                 * it is puzzling to see some stuck in pages_volatile until
2251                 * other activity jostles them out, and they also prevented
2252                 * LTP's KSM test from succeeding deterministically; so drain
2253                 * them here (here rather than on entry to ksm_do_scan(),
2254                 * so we don't IPI too often when pages_to_scan is set low).
2255                 */
2256                lru_add_drain_all();
2257
2258                /*
2259                 * Whereas stale stable_nodes on the stable_tree itself
2260                 * get pruned in the regular course of stable_tree_search(),
2261                 * those moved out to the migrate_nodes list can accumulate:
2262                 * so prune them once before each full scan.
2263                 */
2264                if (!ksm_merge_across_nodes) {
2265                        struct stable_node *stable_node, *next;
2266                        struct page *page;
2267
2268                        list_for_each_entry_safe(stable_node, next,
2269                                                 &migrate_nodes, list) {
2270                                page = get_ksm_page(stable_node,
2271                                                    GET_KSM_PAGE_NOLOCK);
2272                                if (page)
2273                                        put_page(page);
2274                                cond_resched();
2275                        }
2276                }
2277
2278                for (nid = 0; nid < ksm_nr_node_ids; nid++)
2279                        root_unstable_tree[nid] = RB_ROOT;
2280
2281                spin_lock(&ksm_mmlist_lock);
2282                slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2283                ksm_scan.mm_slot = slot;
2284                spin_unlock(&ksm_mmlist_lock);
2285                /*
2286                 * Although we tested list_empty() above, a racing __ksm_exit
2287                 * of the last mm on the list may have removed it since then.
2288                 */
2289                if (slot == &ksm_mm_head)
2290                        return NULL;
2291next_mm:
2292                ksm_scan.address = 0;
2293                ksm_scan.rmap_list = &slot->rmap_list;
2294        }
2295
2296        mm = slot->mm;
2297        down_read(&mm->mmap_sem);
2298        if (ksm_test_exit(mm))
2299                vma = NULL;
2300        else
2301                vma = find_vma(mm, ksm_scan.address);
2302
2303        for (; vma; vma = vma->vm_next) {
2304                if (!(vma->vm_flags & VM_MERGEABLE))
2305                        continue;
2306                if (ksm_scan.address < vma->vm_start)
2307                        ksm_scan.address = vma->vm_start;
2308                if (!vma->anon_vma)
2309                        ksm_scan.address = vma->vm_end;
2310
2311                while (ksm_scan.address < vma->vm_end) {
2312                        if (ksm_test_exit(mm))
2313                                break;
2314                        *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2315                        if (IS_ERR_OR_NULL(*page)) {
2316                                ksm_scan.address += PAGE_SIZE;
2317                                cond_resched();
2318                                continue;
2319                        }
2320                        if (PageAnon(*page)) {
2321                                flush_anon_page(vma, *page, ksm_scan.address);
2322                                flush_dcache_page(*page);
2323                                rmap_item = get_next_rmap_item(slot,
2324                                        ksm_scan.rmap_list, ksm_scan.address);
2325                                if (rmap_item) {
2326                                        ksm_scan.rmap_list =
2327                                                        &rmap_item->rmap_list;
2328                                        ksm_scan.address += PAGE_SIZE;
2329                                } else
2330                                        put_page(*page);
2331                                up_read(&mm->mmap_sem);
2332                                return rmap_item;
2333                        }
2334                        put_page(*page);
2335                        ksm_scan.address += PAGE_SIZE;
2336                        cond_resched();
2337                }
2338        }
2339
2340        if (ksm_test_exit(mm)) {
2341                ksm_scan.address = 0;
2342                ksm_scan.rmap_list = &slot->rmap_list;
2343        }
2344        /*
2345         * Nuke all the rmap_items that are above this current rmap:
2346         * because there were no VM_MERGEABLE vmas with such addresses.
2347         */
2348        remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2349
2350        spin_lock(&ksm_mmlist_lock);
2351        ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2352                                                struct mm_slot, mm_list);
2353        if (ksm_scan.address == 0) {
2354                /*
2355                 * We've completed a full scan of all vmas, holding mmap_sem
2356                 * throughout, and found no VM_MERGEABLE: so do the same as
2357                 * __ksm_exit does to remove this mm from all our lists now.
2358                 * This applies either when cleaning up after __ksm_exit
2359                 * (but beware: we can reach here even before __ksm_exit),
2360                 * or when all VM_MERGEABLE areas have been unmapped (and
2361                 * mmap_sem then protects against race with MADV_MERGEABLE).
2362                 */
2363                hash_del(&slot->link);
2364                list_del(&slot->mm_list);
2365                spin_unlock(&ksm_mmlist_lock);
2366
2367                free_mm_slot(slot);
2368                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2369                up_read(&mm->mmap_sem);
2370                mmdrop(mm);
2371        } else {
2372                up_read(&mm->mmap_sem);
2373                /*
2374                 * up_read(&mm->mmap_sem) first because after
2375                 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2376                 * already have been freed under us by __ksm_exit()
2377                 * because the "mm_slot" is still hashed and
2378                 * ksm_scan.mm_slot doesn't point to it anymore.
2379                 */
2380                spin_unlock(&ksm_mmlist_lock);
2381        }
2382
2383        /* Repeat until we've completed scanning the whole list */
2384        slot = ksm_scan.mm_slot;
2385        if (slot != &ksm_mm_head)
2386                goto next_mm;
2387
2388        ksm_scan.seqnr++;
2389        return NULL;
2390}
2391
2392/**
2393 * ksm_do_scan  - the ksm scanner main worker function.
2394 * @scan_npages:  number of pages we want to scan before we return.
2395 */
2396static void ksm_do_scan(unsigned int scan_npages)
2397{
2398        struct rmap_item *rmap_item;
2399        struct page *uninitialized_var(page);
2400
2401        while (scan_npages-- && likely(!freezing(current))) {
2402                cond_resched();
2403                rmap_item = scan_get_next_rmap_item(&page);
2404                if (!rmap_item)
2405                        return;
2406                cmp_and_merge_page(page, rmap_item);
2407                put_page(page);
2408        }
2409}
2410
2411static int ksmd_should_run(void)
2412{
2413        return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2414}
2415
2416static int ksm_scan_thread(void *nothing)
2417{
2418        unsigned int sleep_ms;
2419
2420        set_freezable();
2421        set_user_nice(current, 5);
2422
2423        while (!kthread_should_stop()) {
2424                mutex_lock(&ksm_thread_mutex);
2425                wait_while_offlining();
2426                if (ksmd_should_run())
2427                        ksm_do_scan(ksm_thread_pages_to_scan);
2428                mutex_unlock(&ksm_thread_mutex);
2429
2430                try_to_freeze();
2431
2432                if (ksmd_should_run()) {
2433                        sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2434                        wait_event_interruptible_timeout(ksm_iter_wait,
2435                                sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2436                                msecs_to_jiffies(sleep_ms));
2437                } else {
2438                        wait_event_freezable(ksm_thread_wait,
2439                                ksmd_should_run() || kthread_should_stop());
2440                }
2441        }
2442        return 0;
2443}
2444
2445int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2446                unsigned long end, int advice, unsigned long *vm_flags)
2447{
2448        struct mm_struct *mm = vma->vm_mm;
2449        int err;
2450
2451        switch (advice) {
2452        case MADV_MERGEABLE:
2453                /*
2454                 * Be somewhat over-protective for now!
2455                 */
2456                if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2457                                 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2458                                 VM_HUGETLB | VM_MIXEDMAP))
2459                        return 0;               /* just ignore the advice */
2460
2461                if (vma_is_dax(vma))
2462                        return 0;
2463
2464#ifdef VM_SAO
2465                if (*vm_flags & VM_SAO)
2466                        return 0;
2467#endif
2468#ifdef VM_SPARC_ADI
2469                if (*vm_flags & VM_SPARC_ADI)
2470                        return 0;
2471#endif
2472
2473                if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2474                        err = __ksm_enter(mm);
2475                        if (err)
2476                                return err;
2477                }
2478
2479                *vm_flags |= VM_MERGEABLE;
2480                break;
2481
2482        case MADV_UNMERGEABLE:
2483                if (!(*vm_flags & VM_MERGEABLE))
2484                        return 0;               /* just ignore the advice */
2485
2486                if (vma->anon_vma) {
2487                        err = unmerge_ksm_pages(vma, start, end);
2488                        if (err)
2489                                return err;
2490                }
2491
2492                *vm_flags &= ~VM_MERGEABLE;
2493                break;
2494        }
2495
2496        return 0;
2497}
2498
2499int __ksm_enter(struct mm_struct *mm)
2500{
2501        struct mm_slot *mm_slot;
2502        int needs_wakeup;
2503
2504        mm_slot = alloc_mm_slot();
2505        if (!mm_slot)
2506                return -ENOMEM;
2507
2508        /* Check ksm_run too?  Would need tighter locking */
2509        needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2510
2511        spin_lock(&ksm_mmlist_lock);
2512        insert_to_mm_slots_hash(mm, mm_slot);
2513        /*
2514         * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2515         * insert just behind the scanning cursor, to let the area settle
2516         * down a little; when fork is followed by immediate exec, we don't
2517         * want ksmd to waste time setting up and tearing down an rmap_list.
2518         *
2519         * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2520         * scanning cursor, otherwise KSM pages in newly forked mms will be
2521         * missed: then we might as well insert at the end of the list.
2522         */
2523        if (ksm_run & KSM_RUN_UNMERGE)
2524                list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2525        else
2526                list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2527        spin_unlock(&ksm_mmlist_lock);
2528
2529        set_bit(MMF_VM_MERGEABLE, &mm->flags);
2530        mmgrab(mm);
2531
2532        if (needs_wakeup)
2533                wake_up_interruptible(&ksm_thread_wait);
2534
2535        return 0;
2536}
2537
2538void __ksm_exit(struct mm_struct *mm)
2539{
2540        struct mm_slot *mm_slot;
2541        int easy_to_free = 0;
2542
2543        /*
2544         * This process is exiting: if it's straightforward (as is the
2545         * case when ksmd was never running), free mm_slot immediately.
2546         * But if it's at the cursor or has rmap_items linked to it, use
2547         * mmap_sem to synchronize with any break_cows before pagetables
2548         * are freed, and leave the mm_slot on the list for ksmd to free.
2549         * Beware: ksm may already have noticed it exiting and freed the slot.
2550         */
2551
2552        spin_lock(&ksm_mmlist_lock);
2553        mm_slot = get_mm_slot(mm);
2554        if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2555                if (!mm_slot->rmap_list) {
2556                        hash_del(&mm_slot->link);
2557                        list_del(&mm_slot->mm_list);
2558                        easy_to_free = 1;
2559                } else {
2560                        list_move(&mm_slot->mm_list,
2561                                  &ksm_scan.mm_slot->mm_list);
2562                }
2563        }
2564        spin_unlock(&ksm_mmlist_lock);
2565
2566        if (easy_to_free) {
2567                free_mm_slot(mm_slot);
2568                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2569                mmdrop(mm);
2570        } else if (mm_slot) {
2571                down_write(&mm->mmap_sem);
2572                up_write(&mm->mmap_sem);
2573        }
2574}
2575
2576struct page *ksm_might_need_to_copy(struct page *page,
2577                        struct vm_area_struct *vma, unsigned long address)
2578{
2579        struct anon_vma *anon_vma = page_anon_vma(page);
2580        struct page *new_page;
2581
2582        if (PageKsm(page)) {
2583                if (page_stable_node(page) &&
2584                    !(ksm_run & KSM_RUN_UNMERGE))
2585                        return page;    /* no need to copy it */
2586        } else if (!anon_vma) {
2587                return page;            /* no need to copy it */
2588        } else if (anon_vma->root == vma->anon_vma->root &&
2589                 page->index == linear_page_index(vma, address)) {
2590                return page;            /* still no need to copy it */
2591        }
2592        if (!PageUptodate(page))
2593                return page;            /* let do_swap_page report the error */
2594
2595        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2596        if (new_page) {
2597                copy_user_highpage(new_page, page, address, vma);
2598
2599                SetPageDirty(new_page);
2600                __SetPageUptodate(new_page);
2601                __SetPageLocked(new_page);
2602        }
2603
2604        return new_page;
2605}
2606
2607void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2608{
2609        struct stable_node *stable_node;
2610        struct rmap_item *rmap_item;
2611        int search_new_forks = 0;
2612
2613        VM_BUG_ON_PAGE(!PageKsm(page), page);
2614
2615        /*
2616         * Rely on the page lock to protect against concurrent modifications
2617         * to that page's node of the stable tree.
2618         */
2619        VM_BUG_ON_PAGE(!PageLocked(page), page);
2620
2621        stable_node = page_stable_node(page);
2622        if (!stable_node)
2623                return;
2624again:
2625        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2626                struct anon_vma *anon_vma = rmap_item->anon_vma;
2627                struct anon_vma_chain *vmac;
2628                struct vm_area_struct *vma;
2629
2630                cond_resched();
2631                anon_vma_lock_read(anon_vma);
2632                anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2633                                               0, ULONG_MAX) {
2634                        unsigned long addr;
2635
2636                        cond_resched();
2637                        vma = vmac->vma;
2638
2639                        /* Ignore the stable/unstable/sqnr flags */
2640                        addr = rmap_item->address & ~KSM_FLAG_MASK;
2641
2642                        if (addr < vma->vm_start || addr >= vma->vm_end)
2643                                continue;
2644                        /*
2645                         * Initially we examine only the vma which covers this
2646                         * rmap_item; but later, if there is still work to do,
2647                         * we examine covering vmas in other mms: in case they
2648                         * were forked from the original since ksmd passed.
2649                         */
2650                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2651                                continue;
2652
2653                        if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2654                                continue;
2655
2656                        if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2657                                anon_vma_unlock_read(anon_vma);
2658                                return;
2659                        }
2660                        if (rwc->done && rwc->done(page)) {
2661                                anon_vma_unlock_read(anon_vma);
2662                                return;
2663                        }
2664                }
2665                anon_vma_unlock_read(anon_vma);
2666        }
2667        if (!search_new_forks++)
2668                goto again;
2669}
2670
2671bool reuse_ksm_page(struct page *page,
2672                    struct vm_area_struct *vma,
2673                    unsigned long address)
2674{
2675#ifdef CONFIG_DEBUG_VM
2676        if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2677                        WARN_ON(!page_mapped(page)) ||
2678                        WARN_ON(!PageLocked(page))) {
2679                dump_page(page, "reuse_ksm_page");
2680                return false;
2681        }
2682#endif
2683
2684        if (PageSwapCache(page) || !page_stable_node(page))
2685                return false;
2686        /* Prohibit parallel get_ksm_page() */
2687        if (!page_ref_freeze(page, 1))
2688                return false;
2689
2690        page_move_anon_rmap(page, vma);
2691        page->index = linear_page_index(vma, address);
2692        page_ref_unfreeze(page, 1);
2693
2694        return true;
2695}
2696#ifdef CONFIG_MIGRATION
2697void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2698{
2699        struct stable_node *stable_node;
2700
2701        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2702        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2703        VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2704
2705        stable_node = page_stable_node(newpage);
2706        if (stable_node) {
2707                VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2708                stable_node->kpfn = page_to_pfn(newpage);
2709                /*
2710                 * newpage->mapping was set in advance; now we need smp_wmb()
2711                 * to make sure that the new stable_node->kpfn is visible
2712                 * to get_ksm_page() before it can see that oldpage->mapping
2713                 * has gone stale (or that PageSwapCache has been cleared).
2714                 */
2715                smp_wmb();
2716                set_page_stable_node(oldpage, NULL);
2717        }
2718}
2719#endif /* CONFIG_MIGRATION */
2720
2721#ifdef CONFIG_MEMORY_HOTREMOVE
2722static void wait_while_offlining(void)
2723{
2724        while (ksm_run & KSM_RUN_OFFLINE) {
2725                mutex_unlock(&ksm_thread_mutex);
2726                wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2727                            TASK_UNINTERRUPTIBLE);
2728                mutex_lock(&ksm_thread_mutex);
2729        }
2730}
2731
2732static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2733                                         unsigned long start_pfn,
2734                                         unsigned long end_pfn)
2735{
2736        if (stable_node->kpfn >= start_pfn &&
2737            stable_node->kpfn < end_pfn) {
2738                /*
2739                 * Don't get_ksm_page, page has already gone:
2740                 * which is why we keep kpfn instead of page*
2741                 */
2742                remove_node_from_stable_tree(stable_node);
2743                return true;
2744        }
2745        return false;
2746}
2747
2748static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2749                                           unsigned long start_pfn,
2750                                           unsigned long end_pfn,
2751                                           struct rb_root *root)
2752{
2753        struct stable_node *dup;
2754        struct hlist_node *hlist_safe;
2755
2756        if (!is_stable_node_chain(stable_node)) {
2757                VM_BUG_ON(is_stable_node_dup(stable_node));
2758                return stable_node_dup_remove_range(stable_node, start_pfn,
2759                                                    end_pfn);
2760        }
2761
2762        hlist_for_each_entry_safe(dup, hlist_safe,
2763                                  &stable_node->hlist, hlist_dup) {
2764                VM_BUG_ON(!is_stable_node_dup(dup));
2765                stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2766        }
2767        if (hlist_empty(&stable_node->hlist)) {
2768                free_stable_node_chain(stable_node, root);
2769                return true; /* notify caller that tree was rebalanced */
2770        } else
2771                return false;
2772}
2773
2774static void ksm_check_stable_tree(unsigned long start_pfn,
2775                                  unsigned long end_pfn)
2776{
2777        struct stable_node *stable_node, *next;
2778        struct rb_node *node;
2779        int nid;
2780
2781        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2782                node = rb_first(root_stable_tree + nid);
2783                while (node) {
2784                        stable_node = rb_entry(node, struct stable_node, node);
2785                        if (stable_node_chain_remove_range(stable_node,
2786                                                           start_pfn, end_pfn,
2787                                                           root_stable_tree +
2788                                                           nid))
2789                                node = rb_first(root_stable_tree + nid);
2790                        else
2791                                node = rb_next(node);
2792                        cond_resched();
2793                }
2794        }
2795        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2796                if (stable_node->kpfn >= start_pfn &&
2797                    stable_node->kpfn < end_pfn)
2798                        remove_node_from_stable_tree(stable_node);
2799                cond_resched();
2800        }
2801}
2802
2803static int ksm_memory_callback(struct notifier_block *self,
2804                               unsigned long action, void *arg)
2805{
2806        struct memory_notify *mn = arg;
2807
2808        switch (action) {
2809        case MEM_GOING_OFFLINE:
2810                /*
2811                 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2812                 * and remove_all_stable_nodes() while memory is going offline:
2813                 * it is unsafe for them to touch the stable tree at this time.
2814                 * But unmerge_ksm_pages(), rmap lookups and other entry points
2815                 * which do not need the ksm_thread_mutex are all safe.
2816                 */
2817                mutex_lock(&ksm_thread_mutex);
2818                ksm_run |= KSM_RUN_OFFLINE;
2819                mutex_unlock(&ksm_thread_mutex);
2820                break;
2821
2822        case MEM_OFFLINE:
2823                /*
2824                 * Most of the work is done by page migration; but there might
2825                 * be a few stable_nodes left over, still pointing to struct
2826                 * pages which have been offlined: prune those from the tree,
2827                 * otherwise get_ksm_page() might later try to access a
2828                 * non-existent struct page.
2829                 */
2830                ksm_check_stable_tree(mn->start_pfn,
2831                                      mn->start_pfn + mn->nr_pages);
2832                /* fallthrough */
2833
2834        case MEM_CANCEL_OFFLINE:
2835                mutex_lock(&ksm_thread_mutex);
2836                ksm_run &= ~KSM_RUN_OFFLINE;
2837                mutex_unlock(&ksm_thread_mutex);
2838
2839                smp_mb();       /* wake_up_bit advises this */
2840                wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2841                break;
2842        }
2843        return NOTIFY_OK;
2844}
2845#else
2846static void wait_while_offlining(void)
2847{
2848}
2849#endif /* CONFIG_MEMORY_HOTREMOVE */
2850
2851#ifdef CONFIG_SYSFS
2852/*
2853 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2854 */
2855
2856#define KSM_ATTR_RO(_name) \
2857        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2858#define KSM_ATTR(_name) \
2859        static struct kobj_attribute _name##_attr = \
2860                __ATTR(_name, 0644, _name##_show, _name##_store)
2861
2862static ssize_t sleep_millisecs_show(struct kobject *kobj,
2863                                    struct kobj_attribute *attr, char *buf)
2864{
2865        return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2866}
2867
2868static ssize_t sleep_millisecs_store(struct kobject *kobj,
2869                                     struct kobj_attribute *attr,
2870                                     const char *buf, size_t count)
2871{
2872        unsigned long msecs;
2873        int err;
2874
2875        err = kstrtoul(buf, 10, &msecs);
2876        if (err || msecs > UINT_MAX)
2877                return -EINVAL;
2878
2879        ksm_thread_sleep_millisecs = msecs;
2880        wake_up_interruptible(&ksm_iter_wait);
2881
2882        return count;
2883}
2884KSM_ATTR(sleep_millisecs);
2885
2886static ssize_t pages_to_scan_show(struct kobject *kobj,
2887                                  struct kobj_attribute *attr, char *buf)
2888{
2889        return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2890}
2891
2892static ssize_t pages_to_scan_store(struct kobject *kobj,
2893                                   struct kobj_attribute *attr,
2894                                   const char *buf, size_t count)
2895{
2896        int err;
2897        unsigned long nr_pages;
2898
2899        err = kstrtoul(buf, 10, &nr_pages);
2900        if (err || nr_pages > UINT_MAX)
2901                return -EINVAL;
2902
2903        ksm_thread_pages_to_scan = nr_pages;
2904
2905        return count;
2906}
2907KSM_ATTR(pages_to_scan);
2908
2909static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2910                        char *buf)
2911{
2912        return sprintf(buf, "%lu\n", ksm_run);
2913}
2914
2915static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2916                         const char *buf, size_t count)
2917{
2918        int err;
2919        unsigned long flags;
2920
2921        err = kstrtoul(buf, 10, &flags);
2922        if (err || flags > UINT_MAX)
2923                return -EINVAL;
2924        if (flags > KSM_RUN_UNMERGE)
2925                return -EINVAL;
2926
2927        /*
2928         * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2929         * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2930         * breaking COW to free the pages_shared (but leaves mm_slots
2931         * on the list for when ksmd may be set running again).
2932         */
2933
2934        mutex_lock(&ksm_thread_mutex);
2935        wait_while_offlining();
2936        if (ksm_run != flags) {
2937                ksm_run = flags;
2938                if (flags & KSM_RUN_UNMERGE) {
2939                        set_current_oom_origin();
2940                        err = unmerge_and_remove_all_rmap_items();
2941                        clear_current_oom_origin();
2942                        if (err) {
2943                                ksm_run = KSM_RUN_STOP;
2944                                count = err;
2945                        }
2946                }
2947        }
2948        mutex_unlock(&ksm_thread_mutex);
2949
2950        if (flags & KSM_RUN_MERGE)
2951                wake_up_interruptible(&ksm_thread_wait);
2952
2953        return count;
2954}
2955KSM_ATTR(run);
2956
2957#ifdef CONFIG_NUMA
2958static ssize_t merge_across_nodes_show(struct kobject *kobj,
2959                                struct kobj_attribute *attr, char *buf)
2960{
2961        return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2962}
2963
2964static ssize_t merge_across_nodes_store(struct kobject *kobj,
2965                                   struct kobj_attribute *attr,
2966                                   const char *buf, size_t count)
2967{
2968        int err;
2969        unsigned long knob;
2970
2971        err = kstrtoul(buf, 10, &knob);
2972        if (err)
2973                return err;
2974        if (knob > 1)
2975                return -EINVAL;
2976
2977        mutex_lock(&ksm_thread_mutex);
2978        wait_while_offlining();
2979        if (ksm_merge_across_nodes != knob) {
2980                if (ksm_pages_shared || remove_all_stable_nodes())
2981                        err = -EBUSY;
2982                else if (root_stable_tree == one_stable_tree) {
2983                        struct rb_root *buf;
2984                        /*
2985                         * This is the first time that we switch away from the
2986                         * default of merging across nodes: must now allocate
2987                         * a buffer to hold as many roots as may be needed.
2988                         * Allocate stable and unstable together:
2989                         * MAXSMP NODES_SHIFT 10 will use 16kB.
2990                         */
2991                        buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2992                                      GFP_KERNEL);
2993                        /* Let us assume that RB_ROOT is NULL is zero */
2994                        if (!buf)
2995                                err = -ENOMEM;
2996                        else {
2997                                root_stable_tree = buf;
2998                                root_unstable_tree = buf + nr_node_ids;
2999                                /* Stable tree is empty but not the unstable */
3000                                root_unstable_tree[0] = one_unstable_tree[0];
3001                        }
3002                }
3003                if (!err) {
3004                        ksm_merge_across_nodes = knob;
3005                        ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3006                }
3007        }
3008        mutex_unlock(&ksm_thread_mutex);
3009
3010        return err ? err : count;
3011}
3012KSM_ATTR(merge_across_nodes);
3013#endif
3014
3015static ssize_t use_zero_pages_show(struct kobject *kobj,
3016                                struct kobj_attribute *attr, char *buf)
3017{
3018        return sprintf(buf, "%u\n", ksm_use_zero_pages);
3019}
3020static ssize_t use_zero_pages_store(struct kobject *kobj,
3021                                   struct kobj_attribute *attr,
3022                                   const char *buf, size_t count)
3023{
3024        int err;
3025        bool value;
3026
3027        err = kstrtobool(buf, &value);
3028        if (err)
3029                return -EINVAL;
3030
3031        ksm_use_zero_pages = value;
3032
3033        return count;
3034}
3035KSM_ATTR(use_zero_pages);
3036
3037static ssize_t max_page_sharing_show(struct kobject *kobj,
3038                                     struct kobj_attribute *attr, char *buf)
3039{
3040        return sprintf(buf, "%u\n", ksm_max_page_sharing);
3041}
3042
3043static ssize_t max_page_sharing_store(struct kobject *kobj,
3044                                      struct kobj_attribute *attr,
3045                                      const char *buf, size_t count)
3046{
3047        int err;
3048        int knob;
3049
3050        err = kstrtoint(buf, 10, &knob);
3051        if (err)
3052                return err;
3053        /*
3054         * When a KSM page is created it is shared by 2 mappings. This
3055         * being a signed comparison, it implicitly verifies it's not
3056         * negative.
3057         */
3058        if (knob < 2)
3059                return -EINVAL;
3060
3061        if (READ_ONCE(ksm_max_page_sharing) == knob)
3062                return count;
3063
3064        mutex_lock(&ksm_thread_mutex);
3065        wait_while_offlining();
3066        if (ksm_max_page_sharing != knob) {
3067                if (ksm_pages_shared || remove_all_stable_nodes())
3068                        err = -EBUSY;
3069                else
3070                        ksm_max_page_sharing = knob;
3071        }
3072        mutex_unlock(&ksm_thread_mutex);
3073
3074        return err ? err : count;
3075}
3076KSM_ATTR(max_page_sharing);
3077
3078static ssize_t pages_shared_show(struct kobject *kobj,
3079                                 struct kobj_attribute *attr, char *buf)
3080{
3081        return sprintf(buf, "%lu\n", ksm_pages_shared);
3082}
3083KSM_ATTR_RO(pages_shared);
3084
3085static ssize_t pages_sharing_show(struct kobject *kobj,
3086                                  struct kobj_attribute *attr, char *buf)
3087{
3088        return sprintf(buf, "%lu\n", ksm_pages_sharing);
3089}
3090KSM_ATTR_RO(pages_sharing);
3091
3092static ssize_t pages_unshared_show(struct kobject *kobj,
3093                                   struct kobj_attribute *attr, char *buf)
3094{
3095        return sprintf(buf, "%lu\n", ksm_pages_unshared);
3096}
3097KSM_ATTR_RO(pages_unshared);
3098
3099static ssize_t pages_volatile_show(struct kobject *kobj,
3100                                   struct kobj_attribute *attr, char *buf)
3101{
3102        long ksm_pages_volatile;
3103
3104        ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3105                                - ksm_pages_sharing - ksm_pages_unshared;
3106        /*
3107         * It was not worth any locking to calculate that statistic,
3108         * but it might therefore sometimes be negative: conceal that.
3109         */
3110        if (ksm_pages_volatile < 0)
3111                ksm_pages_volatile = 0;
3112        return sprintf(buf, "%ld\n", ksm_pages_volatile);
3113}
3114KSM_ATTR_RO(pages_volatile);
3115
3116static ssize_t stable_node_dups_show(struct kobject *kobj,
3117                                     struct kobj_attribute *attr, char *buf)
3118{
3119        return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3120}
3121KSM_ATTR_RO(stable_node_dups);
3122
3123static ssize_t stable_node_chains_show(struct kobject *kobj,
3124                                       struct kobj_attribute *attr, char *buf)
3125{
3126        return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3127}
3128KSM_ATTR_RO(stable_node_chains);
3129
3130static ssize_t
3131stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3132                                        struct kobj_attribute *attr,
3133                                        char *buf)
3134{
3135        return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3136}
3137
3138static ssize_t
3139stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3140                                         struct kobj_attribute *attr,
3141                                         const char *buf, size_t count)
3142{
3143        unsigned long msecs;
3144        int err;
3145
3146        err = kstrtoul(buf, 10, &msecs);
3147        if (err || msecs > UINT_MAX)
3148                return -EINVAL;
3149
3150        ksm_stable_node_chains_prune_millisecs = msecs;
3151
3152        return count;
3153}
3154KSM_ATTR(stable_node_chains_prune_millisecs);
3155
3156static ssize_t full_scans_show(struct kobject *kobj,
3157                               struct kobj_attribute *attr, char *buf)
3158{
3159        return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3160}
3161KSM_ATTR_RO(full_scans);
3162
3163static struct attribute *ksm_attrs[] = {
3164        &sleep_millisecs_attr.attr,
3165        &pages_to_scan_attr.attr,
3166        &run_attr.attr,
3167        &pages_shared_attr.attr,
3168        &pages_sharing_attr.attr,
3169        &pages_unshared_attr.attr,
3170        &pages_volatile_attr.attr,
3171        &full_scans_attr.attr,
3172#ifdef CONFIG_NUMA
3173        &merge_across_nodes_attr.attr,
3174#endif
3175        &max_page_sharing_attr.attr,
3176        &stable_node_chains_attr.attr,
3177        &stable_node_dups_attr.attr,
3178        &stable_node_chains_prune_millisecs_attr.attr,
3179        &use_zero_pages_attr.attr,
3180        NULL,
3181};
3182
3183static const struct attribute_group ksm_attr_group = {
3184        .attrs = ksm_attrs,
3185        .name = "ksm",
3186};
3187#endif /* CONFIG_SYSFS */
3188
3189static int __init ksm_init(void)
3190{
3191        struct task_struct *ksm_thread;
3192        int err;
3193
3194        /* The correct value depends on page size and endianness */
3195        zero_checksum = calc_checksum(ZERO_PAGE(0));
3196        /* Default to false for backwards compatibility */
3197        ksm_use_zero_pages = false;
3198
3199        err = ksm_slab_init();
3200        if (err)
3201                goto out;
3202
3203        ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3204        if (IS_ERR(ksm_thread)) {
3205                pr_err("ksm: creating kthread failed\n");
3206                err = PTR_ERR(ksm_thread);
3207                goto out_free;
3208        }
3209
3210#ifdef CONFIG_SYSFS
3211        err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3212        if (err) {
3213                pr_err("ksm: register sysfs failed\n");
3214                kthread_stop(ksm_thread);
3215                goto out_free;
3216        }
3217#else
3218        ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3219
3220#endif /* CONFIG_SYSFS */
3221
3222#ifdef CONFIG_MEMORY_HOTREMOVE
3223        /* There is no significance to this priority 100 */
3224        hotplug_memory_notifier(ksm_memory_callback, 100);
3225#endif
3226        return 0;
3227
3228out_free:
3229        ksm_slab_free();
3230out:
3231        return err;
3232}
3233subsys_initcall(ksm_init);
3234