linux/mm/page-writeback.c
<<
>>
Prefs
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002    Andrew Morton
  11 *              Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/smp.h>
  31#include <linux/sysctl.h>
  32#include <linux/cpu.h>
  33#include <linux/syscalls.h>
  34#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35#include <linux/pagevec.h>
  36#include <linux/timer.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/signal.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE               max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL      max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT    10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125struct wb_domain global_wb_domain;
 126
 127/* consolidated parameters for balance_dirty_pages() and its subroutines */
 128struct dirty_throttle_control {
 129#ifdef CONFIG_CGROUP_WRITEBACK
 130        struct wb_domain        *dom;
 131        struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
 132#endif
 133        struct bdi_writeback    *wb;
 134        struct fprop_local_percpu *wb_completions;
 135
 136        unsigned long           avail;          /* dirtyable */
 137        unsigned long           dirty;          /* file_dirty + write + nfs */
 138        unsigned long           thresh;         /* dirty threshold */
 139        unsigned long           bg_thresh;      /* dirty background threshold */
 140
 141        unsigned long           wb_dirty;       /* per-wb counterparts */
 142        unsigned long           wb_thresh;
 143        unsigned long           wb_bg_thresh;
 144
 145        unsigned long           pos_ratio;
 146};
 147
 148/*
 149 * Length of period for aging writeout fractions of bdis. This is an
 150 * arbitrarily chosen number. The longer the period, the slower fractions will
 151 * reflect changes in current writeout rate.
 152 */
 153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 154
 155#ifdef CONFIG_CGROUP_WRITEBACK
 156
 157#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 158                                .dom = &global_wb_domain,               \
 159                                .wb_completions = &(__wb)->completions
 160
 161#define GDTC_INIT_NO_WB         .dom = &global_wb_domain
 162
 163#define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
 164                                .dom = mem_cgroup_wb_domain(__wb),      \
 165                                .wb_completions = &(__wb)->memcg_completions, \
 166                                .gdtc = __gdtc
 167
 168static bool mdtc_valid(struct dirty_throttle_control *dtc)
 169{
 170        return dtc->dom;
 171}
 172
 173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 174{
 175        return dtc->dom;
 176}
 177
 178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 179{
 180        return mdtc->gdtc;
 181}
 182
 183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 184{
 185        return &wb->memcg_completions;
 186}
 187
 188static void wb_min_max_ratio(struct bdi_writeback *wb,
 189                             unsigned long *minp, unsigned long *maxp)
 190{
 191        unsigned long this_bw = wb->avg_write_bandwidth;
 192        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 193        unsigned long long min = wb->bdi->min_ratio;
 194        unsigned long long max = wb->bdi->max_ratio;
 195
 196        /*
 197         * @wb may already be clean by the time control reaches here and
 198         * the total may not include its bw.
 199         */
 200        if (this_bw < tot_bw) {
 201                if (min) {
 202                        min *= this_bw;
 203                        do_div(min, tot_bw);
 204                }
 205                if (max < 100) {
 206                        max *= this_bw;
 207                        do_div(max, tot_bw);
 208                }
 209        }
 210
 211        *minp = min;
 212        *maxp = max;
 213}
 214
 215#else   /* CONFIG_CGROUP_WRITEBACK */
 216
 217#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 218                                .wb_completions = &(__wb)->completions
 219#define GDTC_INIT_NO_WB
 220#define MDTC_INIT(__wb, __gdtc)
 221
 222static bool mdtc_valid(struct dirty_throttle_control *dtc)
 223{
 224        return false;
 225}
 226
 227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 228{
 229        return &global_wb_domain;
 230}
 231
 232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 233{
 234        return NULL;
 235}
 236
 237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 238{
 239        return NULL;
 240}
 241
 242static void wb_min_max_ratio(struct bdi_writeback *wb,
 243                             unsigned long *minp, unsigned long *maxp)
 244{
 245        *minp = wb->bdi->min_ratio;
 246        *maxp = wb->bdi->max_ratio;
 247}
 248
 249#endif  /* CONFIG_CGROUP_WRITEBACK */
 250
 251/*
 252 * In a memory zone, there is a certain amount of pages we consider
 253 * available for the page cache, which is essentially the number of
 254 * free and reclaimable pages, minus some zone reserves to protect
 255 * lowmem and the ability to uphold the zone's watermarks without
 256 * requiring writeback.
 257 *
 258 * This number of dirtyable pages is the base value of which the
 259 * user-configurable dirty ratio is the effictive number of pages that
 260 * are allowed to be actually dirtied.  Per individual zone, or
 261 * globally by using the sum of dirtyable pages over all zones.
 262 *
 263 * Because the user is allowed to specify the dirty limit globally as
 264 * absolute number of bytes, calculating the per-zone dirty limit can
 265 * require translating the configured limit into a percentage of
 266 * global dirtyable memory first.
 267 */
 268
 269/**
 270 * node_dirtyable_memory - number of dirtyable pages in a node
 271 * @pgdat: the node
 272 *
 273 * Return: the node's number of pages potentially available for dirty
 274 * page cache.  This is the base value for the per-node dirty limits.
 275 */
 276static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 277{
 278        unsigned long nr_pages = 0;
 279        int z;
 280
 281        for (z = 0; z < MAX_NR_ZONES; z++) {
 282                struct zone *zone = pgdat->node_zones + z;
 283
 284                if (!populated_zone(zone))
 285                        continue;
 286
 287                nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 288        }
 289
 290        /*
 291         * Pages reserved for the kernel should not be considered
 292         * dirtyable, to prevent a situation where reclaim has to
 293         * clean pages in order to balance the zones.
 294         */
 295        nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 296
 297        nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 298        nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 299
 300        return nr_pages;
 301}
 302
 303static unsigned long highmem_dirtyable_memory(unsigned long total)
 304{
 305#ifdef CONFIG_HIGHMEM
 306        int node;
 307        unsigned long x = 0;
 308        int i;
 309
 310        for_each_node_state(node, N_HIGH_MEMORY) {
 311                for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 312                        struct zone *z;
 313                        unsigned long nr_pages;
 314
 315                        if (!is_highmem_idx(i))
 316                                continue;
 317
 318                        z = &NODE_DATA(node)->node_zones[i];
 319                        if (!populated_zone(z))
 320                                continue;
 321
 322                        nr_pages = zone_page_state(z, NR_FREE_PAGES);
 323                        /* watch for underflows */
 324                        nr_pages -= min(nr_pages, high_wmark_pages(z));
 325                        nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 326                        nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 327                        x += nr_pages;
 328                }
 329        }
 330
 331        /*
 332         * Unreclaimable memory (kernel memory or anonymous memory
 333         * without swap) can bring down the dirtyable pages below
 334         * the zone's dirty balance reserve and the above calculation
 335         * will underflow.  However we still want to add in nodes
 336         * which are below threshold (negative values) to get a more
 337         * accurate calculation but make sure that the total never
 338         * underflows.
 339         */
 340        if ((long)x < 0)
 341                x = 0;
 342
 343        /*
 344         * Make sure that the number of highmem pages is never larger
 345         * than the number of the total dirtyable memory. This can only
 346         * occur in very strange VM situations but we want to make sure
 347         * that this does not occur.
 348         */
 349        return min(x, total);
 350#else
 351        return 0;
 352#endif
 353}
 354
 355/**
 356 * global_dirtyable_memory - number of globally dirtyable pages
 357 *
 358 * Return: the global number of pages potentially available for dirty
 359 * page cache.  This is the base value for the global dirty limits.
 360 */
 361static unsigned long global_dirtyable_memory(void)
 362{
 363        unsigned long x;
 364
 365        x = global_zone_page_state(NR_FREE_PAGES);
 366        /*
 367         * Pages reserved for the kernel should not be considered
 368         * dirtyable, to prevent a situation where reclaim has to
 369         * clean pages in order to balance the zones.
 370         */
 371        x -= min(x, totalreserve_pages);
 372
 373        x += global_node_page_state(NR_INACTIVE_FILE);
 374        x += global_node_page_state(NR_ACTIVE_FILE);
 375
 376        if (!vm_highmem_is_dirtyable)
 377                x -= highmem_dirtyable_memory(x);
 378
 379        return x + 1;   /* Ensure that we never return 0 */
 380}
 381
 382/**
 383 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 384 * @dtc: dirty_throttle_control of interest
 385 *
 386 * Calculate @dtc->thresh and ->bg_thresh considering
 387 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 388 * must ensure that @dtc->avail is set before calling this function.  The
 389 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 390 * real-time tasks.
 391 */
 392static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 393{
 394        const unsigned long available_memory = dtc->avail;
 395        struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 396        unsigned long bytes = vm_dirty_bytes;
 397        unsigned long bg_bytes = dirty_background_bytes;
 398        /* convert ratios to per-PAGE_SIZE for higher precision */
 399        unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 400        unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 401        unsigned long thresh;
 402        unsigned long bg_thresh;
 403        struct task_struct *tsk;
 404
 405        /* gdtc is !NULL iff @dtc is for memcg domain */
 406        if (gdtc) {
 407                unsigned long global_avail = gdtc->avail;
 408
 409                /*
 410                 * The byte settings can't be applied directly to memcg
 411                 * domains.  Convert them to ratios by scaling against
 412                 * globally available memory.  As the ratios are in
 413                 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 414                 * number of pages.
 415                 */
 416                if (bytes)
 417                        ratio = min(DIV_ROUND_UP(bytes, global_avail),
 418                                    PAGE_SIZE);
 419                if (bg_bytes)
 420                        bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 421                                       PAGE_SIZE);
 422                bytes = bg_bytes = 0;
 423        }
 424
 425        if (bytes)
 426                thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 427        else
 428                thresh = (ratio * available_memory) / PAGE_SIZE;
 429
 430        if (bg_bytes)
 431                bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 432        else
 433                bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 434
 435        if (bg_thresh >= thresh)
 436                bg_thresh = thresh / 2;
 437        tsk = current;
 438        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 439                bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 440                thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 441        }
 442        dtc->thresh = thresh;
 443        dtc->bg_thresh = bg_thresh;
 444
 445        /* we should eventually report the domain in the TP */
 446        if (!gdtc)
 447                trace_global_dirty_state(bg_thresh, thresh);
 448}
 449
 450/**
 451 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 452 * @pbackground: out parameter for bg_thresh
 453 * @pdirty: out parameter for thresh
 454 *
 455 * Calculate bg_thresh and thresh for global_wb_domain.  See
 456 * domain_dirty_limits() for details.
 457 */
 458void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 459{
 460        struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 461
 462        gdtc.avail = global_dirtyable_memory();
 463        domain_dirty_limits(&gdtc);
 464
 465        *pbackground = gdtc.bg_thresh;
 466        *pdirty = gdtc.thresh;
 467}
 468
 469/**
 470 * node_dirty_limit - maximum number of dirty pages allowed in a node
 471 * @pgdat: the node
 472 *
 473 * Return: the maximum number of dirty pages allowed in a node, based
 474 * on the node's dirtyable memory.
 475 */
 476static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 477{
 478        unsigned long node_memory = node_dirtyable_memory(pgdat);
 479        struct task_struct *tsk = current;
 480        unsigned long dirty;
 481
 482        if (vm_dirty_bytes)
 483                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 484                        node_memory / global_dirtyable_memory();
 485        else
 486                dirty = vm_dirty_ratio * node_memory / 100;
 487
 488        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 489                dirty += dirty / 4;
 490
 491        return dirty;
 492}
 493
 494/**
 495 * node_dirty_ok - tells whether a node is within its dirty limits
 496 * @pgdat: the node to check
 497 *
 498 * Return: %true when the dirty pages in @pgdat are within the node's
 499 * dirty limit, %false if the limit is exceeded.
 500 */
 501bool node_dirty_ok(struct pglist_data *pgdat)
 502{
 503        unsigned long limit = node_dirty_limit(pgdat);
 504        unsigned long nr_pages = 0;
 505
 506        nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 507        nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
 508        nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 509
 510        return nr_pages <= limit;
 511}
 512
 513int dirty_background_ratio_handler(struct ctl_table *table, int write,
 514                void __user *buffer, size_t *lenp,
 515                loff_t *ppos)
 516{
 517        int ret;
 518
 519        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 520        if (ret == 0 && write)
 521                dirty_background_bytes = 0;
 522        return ret;
 523}
 524
 525int dirty_background_bytes_handler(struct ctl_table *table, int write,
 526                void __user *buffer, size_t *lenp,
 527                loff_t *ppos)
 528{
 529        int ret;
 530
 531        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 532        if (ret == 0 && write)
 533                dirty_background_ratio = 0;
 534        return ret;
 535}
 536
 537int dirty_ratio_handler(struct ctl_table *table, int write,
 538                void __user *buffer, size_t *lenp,
 539                loff_t *ppos)
 540{
 541        int old_ratio = vm_dirty_ratio;
 542        int ret;
 543
 544        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 545        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 546                writeback_set_ratelimit();
 547                vm_dirty_bytes = 0;
 548        }
 549        return ret;
 550}
 551
 552int dirty_bytes_handler(struct ctl_table *table, int write,
 553                void __user *buffer, size_t *lenp,
 554                loff_t *ppos)
 555{
 556        unsigned long old_bytes = vm_dirty_bytes;
 557        int ret;
 558
 559        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 560        if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 561                writeback_set_ratelimit();
 562                vm_dirty_ratio = 0;
 563        }
 564        return ret;
 565}
 566
 567static unsigned long wp_next_time(unsigned long cur_time)
 568{
 569        cur_time += VM_COMPLETIONS_PERIOD_LEN;
 570        /* 0 has a special meaning... */
 571        if (!cur_time)
 572                return 1;
 573        return cur_time;
 574}
 575
 576static void wb_domain_writeout_inc(struct wb_domain *dom,
 577                                   struct fprop_local_percpu *completions,
 578                                   unsigned int max_prop_frac)
 579{
 580        __fprop_inc_percpu_max(&dom->completions, completions,
 581                               max_prop_frac);
 582        /* First event after period switching was turned off? */
 583        if (unlikely(!dom->period_time)) {
 584                /*
 585                 * We can race with other __bdi_writeout_inc calls here but
 586                 * it does not cause any harm since the resulting time when
 587                 * timer will fire and what is in writeout_period_time will be
 588                 * roughly the same.
 589                 */
 590                dom->period_time = wp_next_time(jiffies);
 591                mod_timer(&dom->period_timer, dom->period_time);
 592        }
 593}
 594
 595/*
 596 * Increment @wb's writeout completion count and the global writeout
 597 * completion count. Called from test_clear_page_writeback().
 598 */
 599static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 600{
 601        struct wb_domain *cgdom;
 602
 603        inc_wb_stat(wb, WB_WRITTEN);
 604        wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 605                               wb->bdi->max_prop_frac);
 606
 607        cgdom = mem_cgroup_wb_domain(wb);
 608        if (cgdom)
 609                wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 610                                       wb->bdi->max_prop_frac);
 611}
 612
 613void wb_writeout_inc(struct bdi_writeback *wb)
 614{
 615        unsigned long flags;
 616
 617        local_irq_save(flags);
 618        __wb_writeout_inc(wb);
 619        local_irq_restore(flags);
 620}
 621EXPORT_SYMBOL_GPL(wb_writeout_inc);
 622
 623/*
 624 * On idle system, we can be called long after we scheduled because we use
 625 * deferred timers so count with missed periods.
 626 */
 627static void writeout_period(struct timer_list *t)
 628{
 629        struct wb_domain *dom = from_timer(dom, t, period_timer);
 630        int miss_periods = (jiffies - dom->period_time) /
 631                                                 VM_COMPLETIONS_PERIOD_LEN;
 632
 633        if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 634                dom->period_time = wp_next_time(dom->period_time +
 635                                miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 636                mod_timer(&dom->period_timer, dom->period_time);
 637        } else {
 638                /*
 639                 * Aging has zeroed all fractions. Stop wasting CPU on period
 640                 * updates.
 641                 */
 642                dom->period_time = 0;
 643        }
 644}
 645
 646int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 647{
 648        memset(dom, 0, sizeof(*dom));
 649
 650        spin_lock_init(&dom->lock);
 651
 652        timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 653
 654        dom->dirty_limit_tstamp = jiffies;
 655
 656        return fprop_global_init(&dom->completions, gfp);
 657}
 658
 659#ifdef CONFIG_CGROUP_WRITEBACK
 660void wb_domain_exit(struct wb_domain *dom)
 661{
 662        del_timer_sync(&dom->period_timer);
 663        fprop_global_destroy(&dom->completions);
 664}
 665#endif
 666
 667/*
 668 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 669 * registered backing devices, which, for obvious reasons, can not
 670 * exceed 100%.
 671 */
 672static unsigned int bdi_min_ratio;
 673
 674int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 675{
 676        int ret = 0;
 677
 678        spin_lock_bh(&bdi_lock);
 679        if (min_ratio > bdi->max_ratio) {
 680                ret = -EINVAL;
 681        } else {
 682                min_ratio -= bdi->min_ratio;
 683                if (bdi_min_ratio + min_ratio < 100) {
 684                        bdi_min_ratio += min_ratio;
 685                        bdi->min_ratio += min_ratio;
 686                } else {
 687                        ret = -EINVAL;
 688                }
 689        }
 690        spin_unlock_bh(&bdi_lock);
 691
 692        return ret;
 693}
 694
 695int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 696{
 697        int ret = 0;
 698
 699        if (max_ratio > 100)
 700                return -EINVAL;
 701
 702        spin_lock_bh(&bdi_lock);
 703        if (bdi->min_ratio > max_ratio) {
 704                ret = -EINVAL;
 705        } else {
 706                bdi->max_ratio = max_ratio;
 707                bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 708        }
 709        spin_unlock_bh(&bdi_lock);
 710
 711        return ret;
 712}
 713EXPORT_SYMBOL(bdi_set_max_ratio);
 714
 715static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 716                                           unsigned long bg_thresh)
 717{
 718        return (thresh + bg_thresh) / 2;
 719}
 720
 721static unsigned long hard_dirty_limit(struct wb_domain *dom,
 722                                      unsigned long thresh)
 723{
 724        return max(thresh, dom->dirty_limit);
 725}
 726
 727/*
 728 * Memory which can be further allocated to a memcg domain is capped by
 729 * system-wide clean memory excluding the amount being used in the domain.
 730 */
 731static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 732                            unsigned long filepages, unsigned long headroom)
 733{
 734        struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 735        unsigned long clean = filepages - min(filepages, mdtc->dirty);
 736        unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 737        unsigned long other_clean = global_clean - min(global_clean, clean);
 738
 739        mdtc->avail = filepages + min(headroom, other_clean);
 740}
 741
 742/**
 743 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 744 * @dtc: dirty_throttle_context of interest
 745 *
 746 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 747 * when sleeping max_pause per page is not enough to keep the dirty pages under
 748 * control. For example, when the device is completely stalled due to some error
 749 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 750 * In the other normal situations, it acts more gently by throttling the tasks
 751 * more (rather than completely block them) when the wb dirty pages go high.
 752 *
 753 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 754 * - starving fast devices
 755 * - piling up dirty pages (that will take long time to sync) on slow devices
 756 *
 757 * The wb's share of dirty limit will be adapting to its throughput and
 758 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 759 *
 760 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
 761 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 762 */
 763static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 764{
 765        struct wb_domain *dom = dtc_dom(dtc);
 766        unsigned long thresh = dtc->thresh;
 767        u64 wb_thresh;
 768        long numerator, denominator;
 769        unsigned long wb_min_ratio, wb_max_ratio;
 770
 771        /*
 772         * Calculate this BDI's share of the thresh ratio.
 773         */
 774        fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 775                              &numerator, &denominator);
 776
 777        wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 778        wb_thresh *= numerator;
 779        do_div(wb_thresh, denominator);
 780
 781        wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 782
 783        wb_thresh += (thresh * wb_min_ratio) / 100;
 784        if (wb_thresh > (thresh * wb_max_ratio) / 100)
 785                wb_thresh = thresh * wb_max_ratio / 100;
 786
 787        return wb_thresh;
 788}
 789
 790unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 791{
 792        struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 793                                               .thresh = thresh };
 794        return __wb_calc_thresh(&gdtc);
 795}
 796
 797/*
 798 *                           setpoint - dirty 3
 799 *        f(dirty) := 1.0 + (----------------)
 800 *                           limit - setpoint
 801 *
 802 * it's a 3rd order polynomial that subjects to
 803 *
 804 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 805 * (2) f(setpoint) = 1.0 => the balance point
 806 * (3) f(limit)    = 0   => the hard limit
 807 * (4) df/dx      <= 0   => negative feedback control
 808 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 809 *     => fast response on large errors; small oscillation near setpoint
 810 */
 811static long long pos_ratio_polynom(unsigned long setpoint,
 812                                          unsigned long dirty,
 813                                          unsigned long limit)
 814{
 815        long long pos_ratio;
 816        long x;
 817
 818        x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 819                      (limit - setpoint) | 1);
 820        pos_ratio = x;
 821        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 822        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 823        pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 824
 825        return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 826}
 827
 828/*
 829 * Dirty position control.
 830 *
 831 * (o) global/bdi setpoints
 832 *
 833 * We want the dirty pages be balanced around the global/wb setpoints.
 834 * When the number of dirty pages is higher/lower than the setpoint, the
 835 * dirty position control ratio (and hence task dirty ratelimit) will be
 836 * decreased/increased to bring the dirty pages back to the setpoint.
 837 *
 838 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 839 *
 840 *     if (dirty < setpoint) scale up   pos_ratio
 841 *     if (dirty > setpoint) scale down pos_ratio
 842 *
 843 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 844 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 845 *
 846 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 847 *
 848 * (o) global control line
 849 *
 850 *     ^ pos_ratio
 851 *     |
 852 *     |            |<===== global dirty control scope ======>|
 853 * 2.0 .............*
 854 *     |            .*
 855 *     |            . *
 856 *     |            .   *
 857 *     |            .     *
 858 *     |            .        *
 859 *     |            .            *
 860 * 1.0 ................................*
 861 *     |            .                  .     *
 862 *     |            .                  .          *
 863 *     |            .                  .              *
 864 *     |            .                  .                 *
 865 *     |            .                  .                    *
 866 *   0 +------------.------------------.----------------------*------------->
 867 *           freerun^          setpoint^                 limit^   dirty pages
 868 *
 869 * (o) wb control line
 870 *
 871 *     ^ pos_ratio
 872 *     |
 873 *     |            *
 874 *     |              *
 875 *     |                *
 876 *     |                  *
 877 *     |                    * |<=========== span ============>|
 878 * 1.0 .......................*
 879 *     |                      . *
 880 *     |                      .   *
 881 *     |                      .     *
 882 *     |                      .       *
 883 *     |                      .         *
 884 *     |                      .           *
 885 *     |                      .             *
 886 *     |                      .               *
 887 *     |                      .                 *
 888 *     |                      .                   *
 889 *     |                      .                     *
 890 * 1/4 ...............................................* * * * * * * * * * * *
 891 *     |                      .                         .
 892 *     |                      .                           .
 893 *     |                      .                             .
 894 *   0 +----------------------.-------------------------------.------------->
 895 *                wb_setpoint^                    x_intercept^
 896 *
 897 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 898 * be smoothly throttled down to normal if it starts high in situations like
 899 * - start writing to a slow SD card and a fast disk at the same time. The SD
 900 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 901 * - the wb dirty thresh drops quickly due to change of JBOD workload
 902 */
 903static void wb_position_ratio(struct dirty_throttle_control *dtc)
 904{
 905        struct bdi_writeback *wb = dtc->wb;
 906        unsigned long write_bw = wb->avg_write_bandwidth;
 907        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 908        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 909        unsigned long wb_thresh = dtc->wb_thresh;
 910        unsigned long x_intercept;
 911        unsigned long setpoint;         /* dirty pages' target balance point */
 912        unsigned long wb_setpoint;
 913        unsigned long span;
 914        long long pos_ratio;            /* for scaling up/down the rate limit */
 915        long x;
 916
 917        dtc->pos_ratio = 0;
 918
 919        if (unlikely(dtc->dirty >= limit))
 920                return;
 921
 922        /*
 923         * global setpoint
 924         *
 925         * See comment for pos_ratio_polynom().
 926         */
 927        setpoint = (freerun + limit) / 2;
 928        pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 929
 930        /*
 931         * The strictlimit feature is a tool preventing mistrusted filesystems
 932         * from growing a large number of dirty pages before throttling. For
 933         * such filesystems balance_dirty_pages always checks wb counters
 934         * against wb limits. Even if global "nr_dirty" is under "freerun".
 935         * This is especially important for fuse which sets bdi->max_ratio to
 936         * 1% by default. Without strictlimit feature, fuse writeback may
 937         * consume arbitrary amount of RAM because it is accounted in
 938         * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 939         *
 940         * Here, in wb_position_ratio(), we calculate pos_ratio based on
 941         * two values: wb_dirty and wb_thresh. Let's consider an example:
 942         * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 943         * limits are set by default to 10% and 20% (background and throttle).
 944         * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 945         * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 946         * about ~6K pages (as the average of background and throttle wb
 947         * limits). The 3rd order polynomial will provide positive feedback if
 948         * wb_dirty is under wb_setpoint and vice versa.
 949         *
 950         * Note, that we cannot use global counters in these calculations
 951         * because we want to throttle process writing to a strictlimit wb
 952         * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 953         * in the example above).
 954         */
 955        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 956                long long wb_pos_ratio;
 957
 958                if (dtc->wb_dirty < 8) {
 959                        dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 960                                           2 << RATELIMIT_CALC_SHIFT);
 961                        return;
 962                }
 963
 964                if (dtc->wb_dirty >= wb_thresh)
 965                        return;
 966
 967                wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 968                                                    dtc->wb_bg_thresh);
 969
 970                if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 971                        return;
 972
 973                wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 974                                                 wb_thresh);
 975
 976                /*
 977                 * Typically, for strictlimit case, wb_setpoint << setpoint
 978                 * and pos_ratio >> wb_pos_ratio. In the other words global
 979                 * state ("dirty") is not limiting factor and we have to
 980                 * make decision based on wb counters. But there is an
 981                 * important case when global pos_ratio should get precedence:
 982                 * global limits are exceeded (e.g. due to activities on other
 983                 * wb's) while given strictlimit wb is below limit.
 984                 *
 985                 * "pos_ratio * wb_pos_ratio" would work for the case above,
 986                 * but it would look too non-natural for the case of all
 987                 * activity in the system coming from a single strictlimit wb
 988                 * with bdi->max_ratio == 100%.
 989                 *
 990                 * Note that min() below somewhat changes the dynamics of the
 991                 * control system. Normally, pos_ratio value can be well over 3
 992                 * (when globally we are at freerun and wb is well below wb
 993                 * setpoint). Now the maximum pos_ratio in the same situation
 994                 * is 2. We might want to tweak this if we observe the control
 995                 * system is too slow to adapt.
 996                 */
 997                dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 998                return;
 999        }
1000
1001        /*
1002         * We have computed basic pos_ratio above based on global situation. If
1003         * the wb is over/under its share of dirty pages, we want to scale
1004         * pos_ratio further down/up. That is done by the following mechanism.
1005         */
1006
1007        /*
1008         * wb setpoint
1009         *
1010         *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1011         *
1012         *                        x_intercept - wb_dirty
1013         *                     := --------------------------
1014         *                        x_intercept - wb_setpoint
1015         *
1016         * The main wb control line is a linear function that subjects to
1017         *
1018         * (1) f(wb_setpoint) = 1.0
1019         * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1020         *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1021         *
1022         * For single wb case, the dirty pages are observed to fluctuate
1023         * regularly within range
1024         *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1025         * for various filesystems, where (2) can yield in a reasonable 12.5%
1026         * fluctuation range for pos_ratio.
1027         *
1028         * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1029         * own size, so move the slope over accordingly and choose a slope that
1030         * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1031         */
1032        if (unlikely(wb_thresh > dtc->thresh))
1033                wb_thresh = dtc->thresh;
1034        /*
1035         * It's very possible that wb_thresh is close to 0 not because the
1036         * device is slow, but that it has remained inactive for long time.
1037         * Honour such devices a reasonable good (hopefully IO efficient)
1038         * threshold, so that the occasional writes won't be blocked and active
1039         * writes can rampup the threshold quickly.
1040         */
1041        wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1042        /*
1043         * scale global setpoint to wb's:
1044         *      wb_setpoint = setpoint * wb_thresh / thresh
1045         */
1046        x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1047        wb_setpoint = setpoint * (u64)x >> 16;
1048        /*
1049         * Use span=(8*write_bw) in single wb case as indicated by
1050         * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1051         *
1052         *        wb_thresh                    thresh - wb_thresh
1053         * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1054         *         thresh                           thresh
1055         */
1056        span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1057        x_intercept = wb_setpoint + span;
1058
1059        if (dtc->wb_dirty < x_intercept - span / 4) {
1060                pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1061                                      (x_intercept - wb_setpoint) | 1);
1062        } else
1063                pos_ratio /= 4;
1064
1065        /*
1066         * wb reserve area, safeguard against dirty pool underrun and disk idle
1067         * It may push the desired control point of global dirty pages higher
1068         * than setpoint.
1069         */
1070        x_intercept = wb_thresh / 2;
1071        if (dtc->wb_dirty < x_intercept) {
1072                if (dtc->wb_dirty > x_intercept / 8)
1073                        pos_ratio = div_u64(pos_ratio * x_intercept,
1074                                            dtc->wb_dirty);
1075                else
1076                        pos_ratio *= 8;
1077        }
1078
1079        dtc->pos_ratio = pos_ratio;
1080}
1081
1082static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1083                                      unsigned long elapsed,
1084                                      unsigned long written)
1085{
1086        const unsigned long period = roundup_pow_of_two(3 * HZ);
1087        unsigned long avg = wb->avg_write_bandwidth;
1088        unsigned long old = wb->write_bandwidth;
1089        u64 bw;
1090
1091        /*
1092         * bw = written * HZ / elapsed
1093         *
1094         *                   bw * elapsed + write_bandwidth * (period - elapsed)
1095         * write_bandwidth = ---------------------------------------------------
1096         *                                          period
1097         *
1098         * @written may have decreased due to account_page_redirty().
1099         * Avoid underflowing @bw calculation.
1100         */
1101        bw = written - min(written, wb->written_stamp);
1102        bw *= HZ;
1103        if (unlikely(elapsed > period)) {
1104                do_div(bw, elapsed);
1105                avg = bw;
1106                goto out;
1107        }
1108        bw += (u64)wb->write_bandwidth * (period - elapsed);
1109        bw >>= ilog2(period);
1110
1111        /*
1112         * one more level of smoothing, for filtering out sudden spikes
1113         */
1114        if (avg > old && old >= (unsigned long)bw)
1115                avg -= (avg - old) >> 3;
1116
1117        if (avg < old && old <= (unsigned long)bw)
1118                avg += (old - avg) >> 3;
1119
1120out:
1121        /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1122        avg = max(avg, 1LU);
1123        if (wb_has_dirty_io(wb)) {
1124                long delta = avg - wb->avg_write_bandwidth;
1125                WARN_ON_ONCE(atomic_long_add_return(delta,
1126                                        &wb->bdi->tot_write_bandwidth) <= 0);
1127        }
1128        wb->write_bandwidth = bw;
1129        wb->avg_write_bandwidth = avg;
1130}
1131
1132static void update_dirty_limit(struct dirty_throttle_control *dtc)
1133{
1134        struct wb_domain *dom = dtc_dom(dtc);
1135        unsigned long thresh = dtc->thresh;
1136        unsigned long limit = dom->dirty_limit;
1137
1138        /*
1139         * Follow up in one step.
1140         */
1141        if (limit < thresh) {
1142                limit = thresh;
1143                goto update;
1144        }
1145
1146        /*
1147         * Follow down slowly. Use the higher one as the target, because thresh
1148         * may drop below dirty. This is exactly the reason to introduce
1149         * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1150         */
1151        thresh = max(thresh, dtc->dirty);
1152        if (limit > thresh) {
1153                limit -= (limit - thresh) >> 5;
1154                goto update;
1155        }
1156        return;
1157update:
1158        dom->dirty_limit = limit;
1159}
1160
1161static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1162                                    unsigned long now)
1163{
1164        struct wb_domain *dom = dtc_dom(dtc);
1165
1166        /*
1167         * check locklessly first to optimize away locking for the most time
1168         */
1169        if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1170                return;
1171
1172        spin_lock(&dom->lock);
1173        if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1174                update_dirty_limit(dtc);
1175                dom->dirty_limit_tstamp = now;
1176        }
1177        spin_unlock(&dom->lock);
1178}
1179
1180/*
1181 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1182 *
1183 * Normal wb tasks will be curbed at or below it in long term.
1184 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1185 */
1186static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1187                                      unsigned long dirtied,
1188                                      unsigned long elapsed)
1189{
1190        struct bdi_writeback *wb = dtc->wb;
1191        unsigned long dirty = dtc->dirty;
1192        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1193        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1194        unsigned long setpoint = (freerun + limit) / 2;
1195        unsigned long write_bw = wb->avg_write_bandwidth;
1196        unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1197        unsigned long dirty_rate;
1198        unsigned long task_ratelimit;
1199        unsigned long balanced_dirty_ratelimit;
1200        unsigned long step;
1201        unsigned long x;
1202        unsigned long shift;
1203
1204        /*
1205         * The dirty rate will match the writeout rate in long term, except
1206         * when dirty pages are truncated by userspace or re-dirtied by FS.
1207         */
1208        dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1209
1210        /*
1211         * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1212         */
1213        task_ratelimit = (u64)dirty_ratelimit *
1214                                        dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1215        task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1216
1217        /*
1218         * A linear estimation of the "balanced" throttle rate. The theory is,
1219         * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1220         * dirty_rate will be measured to be (N * task_ratelimit). So the below
1221         * formula will yield the balanced rate limit (write_bw / N).
1222         *
1223         * Note that the expanded form is not a pure rate feedback:
1224         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1225         * but also takes pos_ratio into account:
1226         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1227         *
1228         * (1) is not realistic because pos_ratio also takes part in balancing
1229         * the dirty rate.  Consider the state
1230         *      pos_ratio = 0.5                                              (3)
1231         *      rate = 2 * (write_bw / N)                                    (4)
1232         * If (1) is used, it will stuck in that state! Because each dd will
1233         * be throttled at
1234         *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1235         * yielding
1236         *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1237         * put (6) into (1) we get
1238         *      rate_(i+1) = rate_(i)                                        (7)
1239         *
1240         * So we end up using (2) to always keep
1241         *      rate_(i+1) ~= (write_bw / N)                                 (8)
1242         * regardless of the value of pos_ratio. As long as (8) is satisfied,
1243         * pos_ratio is able to drive itself to 1.0, which is not only where
1244         * the dirty count meet the setpoint, but also where the slope of
1245         * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1246         */
1247        balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1248                                           dirty_rate | 1);
1249        /*
1250         * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1251         */
1252        if (unlikely(balanced_dirty_ratelimit > write_bw))
1253                balanced_dirty_ratelimit = write_bw;
1254
1255        /*
1256         * We could safely do this and return immediately:
1257         *
1258         *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1259         *
1260         * However to get a more stable dirty_ratelimit, the below elaborated
1261         * code makes use of task_ratelimit to filter out singular points and
1262         * limit the step size.
1263         *
1264         * The below code essentially only uses the relative value of
1265         *
1266         *      task_ratelimit - dirty_ratelimit
1267         *      = (pos_ratio - 1) * dirty_ratelimit
1268         *
1269         * which reflects the direction and size of dirty position error.
1270         */
1271
1272        /*
1273         * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1274         * task_ratelimit is on the same side of dirty_ratelimit, too.
1275         * For example, when
1276         * - dirty_ratelimit > balanced_dirty_ratelimit
1277         * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1278         * lowering dirty_ratelimit will help meet both the position and rate
1279         * control targets. Otherwise, don't update dirty_ratelimit if it will
1280         * only help meet the rate target. After all, what the users ultimately
1281         * feel and care are stable dirty rate and small position error.
1282         *
1283         * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1284         * and filter out the singular points of balanced_dirty_ratelimit. Which
1285         * keeps jumping around randomly and can even leap far away at times
1286         * due to the small 200ms estimation period of dirty_rate (we want to
1287         * keep that period small to reduce time lags).
1288         */
1289        step = 0;
1290
1291        /*
1292         * For strictlimit case, calculations above were based on wb counters
1293         * and limits (starting from pos_ratio = wb_position_ratio() and up to
1294         * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1295         * Hence, to calculate "step" properly, we have to use wb_dirty as
1296         * "dirty" and wb_setpoint as "setpoint".
1297         *
1298         * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1299         * it's possible that wb_thresh is close to zero due to inactivity
1300         * of backing device.
1301         */
1302        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1303                dirty = dtc->wb_dirty;
1304                if (dtc->wb_dirty < 8)
1305                        setpoint = dtc->wb_dirty + 1;
1306                else
1307                        setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1308        }
1309
1310        if (dirty < setpoint) {
1311                x = min3(wb->balanced_dirty_ratelimit,
1312                         balanced_dirty_ratelimit, task_ratelimit);
1313                if (dirty_ratelimit < x)
1314                        step = x - dirty_ratelimit;
1315        } else {
1316                x = max3(wb->balanced_dirty_ratelimit,
1317                         balanced_dirty_ratelimit, task_ratelimit);
1318                if (dirty_ratelimit > x)
1319                        step = dirty_ratelimit - x;
1320        }
1321
1322        /*
1323         * Don't pursue 100% rate matching. It's impossible since the balanced
1324         * rate itself is constantly fluctuating. So decrease the track speed
1325         * when it gets close to the target. Helps eliminate pointless tremors.
1326         */
1327        shift = dirty_ratelimit / (2 * step + 1);
1328        if (shift < BITS_PER_LONG)
1329                step = DIV_ROUND_UP(step >> shift, 8);
1330        else
1331                step = 0;
1332
1333        if (dirty_ratelimit < balanced_dirty_ratelimit)
1334                dirty_ratelimit += step;
1335        else
1336                dirty_ratelimit -= step;
1337
1338        wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1339        wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1340
1341        trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1342}
1343
1344static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1345                                  struct dirty_throttle_control *mdtc,
1346                                  unsigned long start_time,
1347                                  bool update_ratelimit)
1348{
1349        struct bdi_writeback *wb = gdtc->wb;
1350        unsigned long now = jiffies;
1351        unsigned long elapsed = now - wb->bw_time_stamp;
1352        unsigned long dirtied;
1353        unsigned long written;
1354
1355        lockdep_assert_held(&wb->list_lock);
1356
1357        /*
1358         * rate-limit, only update once every 200ms.
1359         */
1360        if (elapsed < BANDWIDTH_INTERVAL)
1361                return;
1362
1363        dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1364        written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1365
1366        /*
1367         * Skip quiet periods when disk bandwidth is under-utilized.
1368         * (at least 1s idle time between two flusher runs)
1369         */
1370        if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1371                goto snapshot;
1372
1373        if (update_ratelimit) {
1374                domain_update_bandwidth(gdtc, now);
1375                wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1376
1377                /*
1378                 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1379                 * compiler has no way to figure that out.  Help it.
1380                 */
1381                if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1382                        domain_update_bandwidth(mdtc, now);
1383                        wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1384                }
1385        }
1386        wb_update_write_bandwidth(wb, elapsed, written);
1387
1388snapshot:
1389        wb->dirtied_stamp = dirtied;
1390        wb->written_stamp = written;
1391        wb->bw_time_stamp = now;
1392}
1393
1394void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1395{
1396        struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1397
1398        __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1399}
1400
1401/*
1402 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1403 * will look to see if it needs to start dirty throttling.
1404 *
1405 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1406 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1407 * (the number of pages we may dirty without exceeding the dirty limits).
1408 */
1409static unsigned long dirty_poll_interval(unsigned long dirty,
1410                                         unsigned long thresh)
1411{
1412        if (thresh > dirty)
1413                return 1UL << (ilog2(thresh - dirty) >> 1);
1414
1415        return 1;
1416}
1417
1418static unsigned long wb_max_pause(struct bdi_writeback *wb,
1419                                  unsigned long wb_dirty)
1420{
1421        unsigned long bw = wb->avg_write_bandwidth;
1422        unsigned long t;
1423
1424        /*
1425         * Limit pause time for small memory systems. If sleeping for too long
1426         * time, a small pool of dirty/writeback pages may go empty and disk go
1427         * idle.
1428         *
1429         * 8 serves as the safety ratio.
1430         */
1431        t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1432        t++;
1433
1434        return min_t(unsigned long, t, MAX_PAUSE);
1435}
1436
1437static long wb_min_pause(struct bdi_writeback *wb,
1438                         long max_pause,
1439                         unsigned long task_ratelimit,
1440                         unsigned long dirty_ratelimit,
1441                         int *nr_dirtied_pause)
1442{
1443        long hi = ilog2(wb->avg_write_bandwidth);
1444        long lo = ilog2(wb->dirty_ratelimit);
1445        long t;         /* target pause */
1446        long pause;     /* estimated next pause */
1447        int pages;      /* target nr_dirtied_pause */
1448
1449        /* target for 10ms pause on 1-dd case */
1450        t = max(1, HZ / 100);
1451
1452        /*
1453         * Scale up pause time for concurrent dirtiers in order to reduce CPU
1454         * overheads.
1455         *
1456         * (N * 10ms) on 2^N concurrent tasks.
1457         */
1458        if (hi > lo)
1459                t += (hi - lo) * (10 * HZ) / 1024;
1460
1461        /*
1462         * This is a bit convoluted. We try to base the next nr_dirtied_pause
1463         * on the much more stable dirty_ratelimit. However the next pause time
1464         * will be computed based on task_ratelimit and the two rate limits may
1465         * depart considerably at some time. Especially if task_ratelimit goes
1466         * below dirty_ratelimit/2 and the target pause is max_pause, the next
1467         * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1468         * result task_ratelimit won't be executed faithfully, which could
1469         * eventually bring down dirty_ratelimit.
1470         *
1471         * We apply two rules to fix it up:
1472         * 1) try to estimate the next pause time and if necessary, use a lower
1473         *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1474         *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1475         * 2) limit the target pause time to max_pause/2, so that the normal
1476         *    small fluctuations of task_ratelimit won't trigger rule (1) and
1477         *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1478         */
1479        t = min(t, 1 + max_pause / 2);
1480        pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1481
1482        /*
1483         * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1484         * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1485         * When the 16 consecutive reads are often interrupted by some dirty
1486         * throttling pause during the async writes, cfq will go into idles
1487         * (deadline is fine). So push nr_dirtied_pause as high as possible
1488         * until reaches DIRTY_POLL_THRESH=32 pages.
1489         */
1490        if (pages < DIRTY_POLL_THRESH) {
1491                t = max_pause;
1492                pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1493                if (pages > DIRTY_POLL_THRESH) {
1494                        pages = DIRTY_POLL_THRESH;
1495                        t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1496                }
1497        }
1498
1499        pause = HZ * pages / (task_ratelimit + 1);
1500        if (pause > max_pause) {
1501                t = max_pause;
1502                pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1503        }
1504
1505        *nr_dirtied_pause = pages;
1506        /*
1507         * The minimal pause time will normally be half the target pause time.
1508         */
1509        return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1510}
1511
1512static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1513{
1514        struct bdi_writeback *wb = dtc->wb;
1515        unsigned long wb_reclaimable;
1516
1517        /*
1518         * wb_thresh is not treated as some limiting factor as
1519         * dirty_thresh, due to reasons
1520         * - in JBOD setup, wb_thresh can fluctuate a lot
1521         * - in a system with HDD and USB key, the USB key may somehow
1522         *   go into state (wb_dirty >> wb_thresh) either because
1523         *   wb_dirty starts high, or because wb_thresh drops low.
1524         *   In this case we don't want to hard throttle the USB key
1525         *   dirtiers for 100 seconds until wb_dirty drops under
1526         *   wb_thresh. Instead the auxiliary wb control line in
1527         *   wb_position_ratio() will let the dirtier task progress
1528         *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1529         */
1530        dtc->wb_thresh = __wb_calc_thresh(dtc);
1531        dtc->wb_bg_thresh = dtc->thresh ?
1532                div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1533
1534        /*
1535         * In order to avoid the stacked BDI deadlock we need
1536         * to ensure we accurately count the 'dirty' pages when
1537         * the threshold is low.
1538         *
1539         * Otherwise it would be possible to get thresh+n pages
1540         * reported dirty, even though there are thresh-m pages
1541         * actually dirty; with m+n sitting in the percpu
1542         * deltas.
1543         */
1544        if (dtc->wb_thresh < 2 * wb_stat_error()) {
1545                wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1546                dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1547        } else {
1548                wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1549                dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1550        }
1551}
1552
1553/*
1554 * balance_dirty_pages() must be called by processes which are generating dirty
1555 * data.  It looks at the number of dirty pages in the machine and will force
1556 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1557 * If we're over `background_thresh' then the writeback threads are woken to
1558 * perform some writeout.
1559 */
1560static void balance_dirty_pages(struct bdi_writeback *wb,
1561                                unsigned long pages_dirtied)
1562{
1563        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1564        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1565        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1566        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1567                                                     &mdtc_stor : NULL;
1568        struct dirty_throttle_control *sdtc;
1569        unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1570        long period;
1571        long pause;
1572        long max_pause;
1573        long min_pause;
1574        int nr_dirtied_pause;
1575        bool dirty_exceeded = false;
1576        unsigned long task_ratelimit;
1577        unsigned long dirty_ratelimit;
1578        struct backing_dev_info *bdi = wb->bdi;
1579        bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1580        unsigned long start_time = jiffies;
1581
1582        for (;;) {
1583                unsigned long now = jiffies;
1584                unsigned long dirty, thresh, bg_thresh;
1585                unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1586                unsigned long m_thresh = 0;
1587                unsigned long m_bg_thresh = 0;
1588
1589                /*
1590                 * Unstable writes are a feature of certain networked
1591                 * filesystems (i.e. NFS) in which data may have been
1592                 * written to the server's write cache, but has not yet
1593                 * been flushed to permanent storage.
1594                 */
1595                nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1596                                        global_node_page_state(NR_UNSTABLE_NFS);
1597                gdtc->avail = global_dirtyable_memory();
1598                gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1599
1600                domain_dirty_limits(gdtc);
1601
1602                if (unlikely(strictlimit)) {
1603                        wb_dirty_limits(gdtc);
1604
1605                        dirty = gdtc->wb_dirty;
1606                        thresh = gdtc->wb_thresh;
1607                        bg_thresh = gdtc->wb_bg_thresh;
1608                } else {
1609                        dirty = gdtc->dirty;
1610                        thresh = gdtc->thresh;
1611                        bg_thresh = gdtc->bg_thresh;
1612                }
1613
1614                if (mdtc) {
1615                        unsigned long filepages, headroom, writeback;
1616
1617                        /*
1618                         * If @wb belongs to !root memcg, repeat the same
1619                         * basic calculations for the memcg domain.
1620                         */
1621                        mem_cgroup_wb_stats(wb, &filepages, &headroom,
1622                                            &mdtc->dirty, &writeback);
1623                        mdtc->dirty += writeback;
1624                        mdtc_calc_avail(mdtc, filepages, headroom);
1625
1626                        domain_dirty_limits(mdtc);
1627
1628                        if (unlikely(strictlimit)) {
1629                                wb_dirty_limits(mdtc);
1630                                m_dirty = mdtc->wb_dirty;
1631                                m_thresh = mdtc->wb_thresh;
1632                                m_bg_thresh = mdtc->wb_bg_thresh;
1633                        } else {
1634                                m_dirty = mdtc->dirty;
1635                                m_thresh = mdtc->thresh;
1636                                m_bg_thresh = mdtc->bg_thresh;
1637                        }
1638                }
1639
1640                /*
1641                 * Throttle it only when the background writeback cannot
1642                 * catch-up. This avoids (excessively) small writeouts
1643                 * when the wb limits are ramping up in case of !strictlimit.
1644                 *
1645                 * In strictlimit case make decision based on the wb counters
1646                 * and limits. Small writeouts when the wb limits are ramping
1647                 * up are the price we consciously pay for strictlimit-ing.
1648                 *
1649                 * If memcg domain is in effect, @dirty should be under
1650                 * both global and memcg freerun ceilings.
1651                 */
1652                if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1653                    (!mdtc ||
1654                     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1655                        unsigned long intv = dirty_poll_interval(dirty, thresh);
1656                        unsigned long m_intv = ULONG_MAX;
1657
1658                        current->dirty_paused_when = now;
1659                        current->nr_dirtied = 0;
1660                        if (mdtc)
1661                                m_intv = dirty_poll_interval(m_dirty, m_thresh);
1662                        current->nr_dirtied_pause = min(intv, m_intv);
1663                        break;
1664                }
1665
1666                if (unlikely(!writeback_in_progress(wb)))
1667                        wb_start_background_writeback(wb);
1668
1669                /*
1670                 * Calculate global domain's pos_ratio and select the
1671                 * global dtc by default.
1672                 */
1673                if (!strictlimit)
1674                        wb_dirty_limits(gdtc);
1675
1676                dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1677                        ((gdtc->dirty > gdtc->thresh) || strictlimit);
1678
1679                wb_position_ratio(gdtc);
1680                sdtc = gdtc;
1681
1682                if (mdtc) {
1683                        /*
1684                         * If memcg domain is in effect, calculate its
1685                         * pos_ratio.  @wb should satisfy constraints from
1686                         * both global and memcg domains.  Choose the one
1687                         * w/ lower pos_ratio.
1688                         */
1689                        if (!strictlimit)
1690                                wb_dirty_limits(mdtc);
1691
1692                        dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1693                                ((mdtc->dirty > mdtc->thresh) || strictlimit);
1694
1695                        wb_position_ratio(mdtc);
1696                        if (mdtc->pos_ratio < gdtc->pos_ratio)
1697                                sdtc = mdtc;
1698                }
1699
1700                if (dirty_exceeded && !wb->dirty_exceeded)
1701                        wb->dirty_exceeded = 1;
1702
1703                if (time_is_before_jiffies(wb->bw_time_stamp +
1704                                           BANDWIDTH_INTERVAL)) {
1705                        spin_lock(&wb->list_lock);
1706                        __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1707                        spin_unlock(&wb->list_lock);
1708                }
1709
1710                /* throttle according to the chosen dtc */
1711                dirty_ratelimit = wb->dirty_ratelimit;
1712                task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1713                                                        RATELIMIT_CALC_SHIFT;
1714                max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1715                min_pause = wb_min_pause(wb, max_pause,
1716                                         task_ratelimit, dirty_ratelimit,
1717                                         &nr_dirtied_pause);
1718
1719                if (unlikely(task_ratelimit == 0)) {
1720                        period = max_pause;
1721                        pause = max_pause;
1722                        goto pause;
1723                }
1724                period = HZ * pages_dirtied / task_ratelimit;
1725                pause = period;
1726                if (current->dirty_paused_when)
1727                        pause -= now - current->dirty_paused_when;
1728                /*
1729                 * For less than 1s think time (ext3/4 may block the dirtier
1730                 * for up to 800ms from time to time on 1-HDD; so does xfs,
1731                 * however at much less frequency), try to compensate it in
1732                 * future periods by updating the virtual time; otherwise just
1733                 * do a reset, as it may be a light dirtier.
1734                 */
1735                if (pause < min_pause) {
1736                        trace_balance_dirty_pages(wb,
1737                                                  sdtc->thresh,
1738                                                  sdtc->bg_thresh,
1739                                                  sdtc->dirty,
1740                                                  sdtc->wb_thresh,
1741                                                  sdtc->wb_dirty,
1742                                                  dirty_ratelimit,
1743                                                  task_ratelimit,
1744                                                  pages_dirtied,
1745                                                  period,
1746                                                  min(pause, 0L),
1747                                                  start_time);
1748                        if (pause < -HZ) {
1749                                current->dirty_paused_when = now;
1750                                current->nr_dirtied = 0;
1751                        } else if (period) {
1752                                current->dirty_paused_when += period;
1753                                current->nr_dirtied = 0;
1754                        } else if (current->nr_dirtied_pause <= pages_dirtied)
1755                                current->nr_dirtied_pause += pages_dirtied;
1756                        break;
1757                }
1758                if (unlikely(pause > max_pause)) {
1759                        /* for occasional dropped task_ratelimit */
1760                        now += min(pause - max_pause, max_pause);
1761                        pause = max_pause;
1762                }
1763
1764pause:
1765                trace_balance_dirty_pages(wb,
1766                                          sdtc->thresh,
1767                                          sdtc->bg_thresh,
1768                                          sdtc->dirty,
1769                                          sdtc->wb_thresh,
1770                                          sdtc->wb_dirty,
1771                                          dirty_ratelimit,
1772                                          task_ratelimit,
1773                                          pages_dirtied,
1774                                          period,
1775                                          pause,
1776                                          start_time);
1777                __set_current_state(TASK_KILLABLE);
1778                wb->dirty_sleep = now;
1779                io_schedule_timeout(pause);
1780
1781                current->dirty_paused_when = now + pause;
1782                current->nr_dirtied = 0;
1783                current->nr_dirtied_pause = nr_dirtied_pause;
1784
1785                /*
1786                 * This is typically equal to (dirty < thresh) and can also
1787                 * keep "1000+ dd on a slow USB stick" under control.
1788                 */
1789                if (task_ratelimit)
1790                        break;
1791
1792                /*
1793                 * In the case of an unresponding NFS server and the NFS dirty
1794                 * pages exceeds dirty_thresh, give the other good wb's a pipe
1795                 * to go through, so that tasks on them still remain responsive.
1796                 *
1797                 * In theory 1 page is enough to keep the consumer-producer
1798                 * pipe going: the flusher cleans 1 page => the task dirties 1
1799                 * more page. However wb_dirty has accounting errors.  So use
1800                 * the larger and more IO friendly wb_stat_error.
1801                 */
1802                if (sdtc->wb_dirty <= wb_stat_error())
1803                        break;
1804
1805                if (fatal_signal_pending(current))
1806                        break;
1807        }
1808
1809        if (!dirty_exceeded && wb->dirty_exceeded)
1810                wb->dirty_exceeded = 0;
1811
1812        if (writeback_in_progress(wb))
1813                return;
1814
1815        /*
1816         * In laptop mode, we wait until hitting the higher threshold before
1817         * starting background writeout, and then write out all the way down
1818         * to the lower threshold.  So slow writers cause minimal disk activity.
1819         *
1820         * In normal mode, we start background writeout at the lower
1821         * background_thresh, to keep the amount of dirty memory low.
1822         */
1823        if (laptop_mode)
1824                return;
1825
1826        if (nr_reclaimable > gdtc->bg_thresh)
1827                wb_start_background_writeback(wb);
1828}
1829
1830static DEFINE_PER_CPU(int, bdp_ratelimits);
1831
1832/*
1833 * Normal tasks are throttled by
1834 *      loop {
1835 *              dirty tsk->nr_dirtied_pause pages;
1836 *              take a snap in balance_dirty_pages();
1837 *      }
1838 * However there is a worst case. If every task exit immediately when dirtied
1839 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1840 * called to throttle the page dirties. The solution is to save the not yet
1841 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1842 * randomly into the running tasks. This works well for the above worst case,
1843 * as the new task will pick up and accumulate the old task's leaked dirty
1844 * count and eventually get throttled.
1845 */
1846DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1847
1848/**
1849 * balance_dirty_pages_ratelimited - balance dirty memory state
1850 * @mapping: address_space which was dirtied
1851 *
1852 * Processes which are dirtying memory should call in here once for each page
1853 * which was newly dirtied.  The function will periodically check the system's
1854 * dirty state and will initiate writeback if needed.
1855 *
1856 * On really big machines, get_writeback_state is expensive, so try to avoid
1857 * calling it too often (ratelimiting).  But once we're over the dirty memory
1858 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1859 * from overshooting the limit by (ratelimit_pages) each.
1860 */
1861void balance_dirty_pages_ratelimited(struct address_space *mapping)
1862{
1863        struct inode *inode = mapping->host;
1864        struct backing_dev_info *bdi = inode_to_bdi(inode);
1865        struct bdi_writeback *wb = NULL;
1866        int ratelimit;
1867        int *p;
1868
1869        if (!bdi_cap_account_dirty(bdi))
1870                return;
1871
1872        if (inode_cgwb_enabled(inode))
1873                wb = wb_get_create_current(bdi, GFP_KERNEL);
1874        if (!wb)
1875                wb = &bdi->wb;
1876
1877        ratelimit = current->nr_dirtied_pause;
1878        if (wb->dirty_exceeded)
1879                ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1880
1881        preempt_disable();
1882        /*
1883         * This prevents one CPU to accumulate too many dirtied pages without
1884         * calling into balance_dirty_pages(), which can happen when there are
1885         * 1000+ tasks, all of them start dirtying pages at exactly the same
1886         * time, hence all honoured too large initial task->nr_dirtied_pause.
1887         */
1888        p =  this_cpu_ptr(&bdp_ratelimits);
1889        if (unlikely(current->nr_dirtied >= ratelimit))
1890                *p = 0;
1891        else if (unlikely(*p >= ratelimit_pages)) {
1892                *p = 0;
1893                ratelimit = 0;
1894        }
1895        /*
1896         * Pick up the dirtied pages by the exited tasks. This avoids lots of
1897         * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1898         * the dirty throttling and livelock other long-run dirtiers.
1899         */
1900        p = this_cpu_ptr(&dirty_throttle_leaks);
1901        if (*p > 0 && current->nr_dirtied < ratelimit) {
1902                unsigned long nr_pages_dirtied;
1903                nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1904                *p -= nr_pages_dirtied;
1905                current->nr_dirtied += nr_pages_dirtied;
1906        }
1907        preempt_enable();
1908
1909        if (unlikely(current->nr_dirtied >= ratelimit))
1910                balance_dirty_pages(wb, current->nr_dirtied);
1911
1912        wb_put(wb);
1913}
1914EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1915
1916/**
1917 * wb_over_bg_thresh - does @wb need to be written back?
1918 * @wb: bdi_writeback of interest
1919 *
1920 * Determines whether background writeback should keep writing @wb or it's
1921 * clean enough.
1922 *
1923 * Return: %true if writeback should continue.
1924 */
1925bool wb_over_bg_thresh(struct bdi_writeback *wb)
1926{
1927        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1928        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1929        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1930        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1931                                                     &mdtc_stor : NULL;
1932
1933        /*
1934         * Similar to balance_dirty_pages() but ignores pages being written
1935         * as we're trying to decide whether to put more under writeback.
1936         */
1937        gdtc->avail = global_dirtyable_memory();
1938        gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1939                      global_node_page_state(NR_UNSTABLE_NFS);
1940        domain_dirty_limits(gdtc);
1941
1942        if (gdtc->dirty > gdtc->bg_thresh)
1943                return true;
1944
1945        if (wb_stat(wb, WB_RECLAIMABLE) >
1946            wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1947                return true;
1948
1949        if (mdtc) {
1950                unsigned long filepages, headroom, writeback;
1951
1952                mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1953                                    &writeback);
1954                mdtc_calc_avail(mdtc, filepages, headroom);
1955                domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1956
1957                if (mdtc->dirty > mdtc->bg_thresh)
1958                        return true;
1959
1960                if (wb_stat(wb, WB_RECLAIMABLE) >
1961                    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1962                        return true;
1963        }
1964
1965        return false;
1966}
1967
1968/*
1969 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1970 */
1971int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1972        void __user *buffer, size_t *length, loff_t *ppos)
1973{
1974        unsigned int old_interval = dirty_writeback_interval;
1975        int ret;
1976
1977        ret = proc_dointvec(table, write, buffer, length, ppos);
1978
1979        /*
1980         * Writing 0 to dirty_writeback_interval will disable periodic writeback
1981         * and a different non-zero value will wakeup the writeback threads.
1982         * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1983         * iterate over all bdis and wbs.
1984         * The reason we do this is to make the change take effect immediately.
1985         */
1986        if (!ret && write && dirty_writeback_interval &&
1987                dirty_writeback_interval != old_interval)
1988                wakeup_flusher_threads(WB_REASON_PERIODIC);
1989
1990        return ret;
1991}
1992
1993#ifdef CONFIG_BLOCK
1994void laptop_mode_timer_fn(struct timer_list *t)
1995{
1996        struct backing_dev_info *backing_dev_info =
1997                from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1998
1999        wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2000}
2001
2002/*
2003 * We've spun up the disk and we're in laptop mode: schedule writeback
2004 * of all dirty data a few seconds from now.  If the flush is already scheduled
2005 * then push it back - the user is still using the disk.
2006 */
2007void laptop_io_completion(struct backing_dev_info *info)
2008{
2009        mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2010}
2011
2012/*
2013 * We're in laptop mode and we've just synced. The sync's writes will have
2014 * caused another writeback to be scheduled by laptop_io_completion.
2015 * Nothing needs to be written back anymore, so we unschedule the writeback.
2016 */
2017void laptop_sync_completion(void)
2018{
2019        struct backing_dev_info *bdi;
2020
2021        rcu_read_lock();
2022
2023        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2024                del_timer(&bdi->laptop_mode_wb_timer);
2025
2026        rcu_read_unlock();
2027}
2028#endif
2029
2030/*
2031 * If ratelimit_pages is too high then we can get into dirty-data overload
2032 * if a large number of processes all perform writes at the same time.
2033 * If it is too low then SMP machines will call the (expensive)
2034 * get_writeback_state too often.
2035 *
2036 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2037 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2038 * thresholds.
2039 */
2040
2041void writeback_set_ratelimit(void)
2042{
2043        struct wb_domain *dom = &global_wb_domain;
2044        unsigned long background_thresh;
2045        unsigned long dirty_thresh;
2046
2047        global_dirty_limits(&background_thresh, &dirty_thresh);
2048        dom->dirty_limit = dirty_thresh;
2049        ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2050        if (ratelimit_pages < 16)
2051                ratelimit_pages = 16;
2052}
2053
2054static int page_writeback_cpu_online(unsigned int cpu)
2055{
2056        writeback_set_ratelimit();
2057        return 0;
2058}
2059
2060/*
2061 * Called early on to tune the page writeback dirty limits.
2062 *
2063 * We used to scale dirty pages according to how total memory
2064 * related to pages that could be allocated for buffers (by
2065 * comparing nr_free_buffer_pages() to vm_total_pages.
2066 *
2067 * However, that was when we used "dirty_ratio" to scale with
2068 * all memory, and we don't do that any more. "dirty_ratio"
2069 * is now applied to total non-HIGHPAGE memory (by subtracting
2070 * totalhigh_pages from vm_total_pages), and as such we can't
2071 * get into the old insane situation any more where we had
2072 * large amounts of dirty pages compared to a small amount of
2073 * non-HIGHMEM memory.
2074 *
2075 * But we might still want to scale the dirty_ratio by how
2076 * much memory the box has..
2077 */
2078void __init page_writeback_init(void)
2079{
2080        BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2081
2082        cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2083                          page_writeback_cpu_online, NULL);
2084        cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2085                          page_writeback_cpu_online);
2086}
2087
2088/**
2089 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2090 * @mapping: address space structure to write
2091 * @start: starting page index
2092 * @end: ending page index (inclusive)
2093 *
2094 * This function scans the page range from @start to @end (inclusive) and tags
2095 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2096 * that write_cache_pages (or whoever calls this function) will then use
2097 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2098 * used to avoid livelocking of writeback by a process steadily creating new
2099 * dirty pages in the file (thus it is important for this function to be quick
2100 * so that it can tag pages faster than a dirtying process can create them).
2101 */
2102void tag_pages_for_writeback(struct address_space *mapping,
2103                             pgoff_t start, pgoff_t end)
2104{
2105        XA_STATE(xas, &mapping->i_pages, start);
2106        unsigned int tagged = 0;
2107        void *page;
2108
2109        xas_lock_irq(&xas);
2110        xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2111                xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2112                if (++tagged % XA_CHECK_SCHED)
2113                        continue;
2114
2115                xas_pause(&xas);
2116                xas_unlock_irq(&xas);
2117                cond_resched();
2118                xas_lock_irq(&xas);
2119        }
2120        xas_unlock_irq(&xas);
2121}
2122EXPORT_SYMBOL(tag_pages_for_writeback);
2123
2124/**
2125 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2126 * @mapping: address space structure to write
2127 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2128 * @writepage: function called for each page
2129 * @data: data passed to writepage function
2130 *
2131 * If a page is already under I/O, write_cache_pages() skips it, even
2132 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2133 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2134 * and msync() need to guarantee that all the data which was dirty at the time
2135 * the call was made get new I/O started against them.  If wbc->sync_mode is
2136 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2137 * existing IO to complete.
2138 *
2139 * To avoid livelocks (when other process dirties new pages), we first tag
2140 * pages which should be written back with TOWRITE tag and only then start
2141 * writing them. For data-integrity sync we have to be careful so that we do
2142 * not miss some pages (e.g., because some other process has cleared TOWRITE
2143 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2144 * by the process clearing the DIRTY tag (and submitting the page for IO).
2145 *
2146 * To avoid deadlocks between range_cyclic writeback and callers that hold
2147 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2148 * we do not loop back to the start of the file. Doing so causes a page
2149 * lock/page writeback access order inversion - we should only ever lock
2150 * multiple pages in ascending page->index order, and looping back to the start
2151 * of the file violates that rule and causes deadlocks.
2152 *
2153 * Return: %0 on success, negative error code otherwise
2154 */
2155int write_cache_pages(struct address_space *mapping,
2156                      struct writeback_control *wbc, writepage_t writepage,
2157                      void *data)
2158{
2159        int ret = 0;
2160        int done = 0;
2161        int error;
2162        struct pagevec pvec;
2163        int nr_pages;
2164        pgoff_t uninitialized_var(writeback_index);
2165        pgoff_t index;
2166        pgoff_t end;            /* Inclusive */
2167        pgoff_t done_index;
2168        int range_whole = 0;
2169        xa_mark_t tag;
2170
2171        pagevec_init(&pvec);
2172        if (wbc->range_cyclic) {
2173                writeback_index = mapping->writeback_index; /* prev offset */
2174                index = writeback_index;
2175                end = -1;
2176        } else {
2177                index = wbc->range_start >> PAGE_SHIFT;
2178                end = wbc->range_end >> PAGE_SHIFT;
2179                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2180                        range_whole = 1;
2181        }
2182        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2183                tag = PAGECACHE_TAG_TOWRITE;
2184        else
2185                tag = PAGECACHE_TAG_DIRTY;
2186        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2187                tag_pages_for_writeback(mapping, index, end);
2188        done_index = index;
2189        while (!done && (index <= end)) {
2190                int i;
2191
2192                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2193                                tag);
2194                if (nr_pages == 0)
2195                        break;
2196
2197                for (i = 0; i < nr_pages; i++) {
2198                        struct page *page = pvec.pages[i];
2199
2200                        done_index = page->index;
2201
2202                        lock_page(page);
2203
2204                        /*
2205                         * Page truncated or invalidated. We can freely skip it
2206                         * then, even for data integrity operations: the page
2207                         * has disappeared concurrently, so there could be no
2208                         * real expectation of this data interity operation
2209                         * even if there is now a new, dirty page at the same
2210                         * pagecache address.
2211                         */
2212                        if (unlikely(page->mapping != mapping)) {
2213continue_unlock:
2214                                unlock_page(page);
2215                                continue;
2216                        }
2217
2218                        if (!PageDirty(page)) {
2219                                /* someone wrote it for us */
2220                                goto continue_unlock;
2221                        }
2222
2223                        if (PageWriteback(page)) {
2224                                if (wbc->sync_mode != WB_SYNC_NONE)
2225                                        wait_on_page_writeback(page);
2226                                else
2227                                        goto continue_unlock;
2228                        }
2229
2230                        BUG_ON(PageWriteback(page));
2231                        if (!clear_page_dirty_for_io(page))
2232                                goto continue_unlock;
2233
2234                        trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2235                        error = (*writepage)(page, wbc, data);
2236                        if (unlikely(error)) {
2237                                /*
2238                                 * Handle errors according to the type of
2239                                 * writeback. There's no need to continue for
2240                                 * background writeback. Just push done_index
2241                                 * past this page so media errors won't choke
2242                                 * writeout for the entire file. For integrity
2243                                 * writeback, we must process the entire dirty
2244                                 * set regardless of errors because the fs may
2245                                 * still have state to clear for each page. In
2246                                 * that case we continue processing and return
2247                                 * the first error.
2248                                 */
2249                                if (error == AOP_WRITEPAGE_ACTIVATE) {
2250                                        unlock_page(page);
2251                                        error = 0;
2252                                } else if (wbc->sync_mode != WB_SYNC_ALL) {
2253                                        ret = error;
2254                                        done_index = page->index + 1;
2255                                        done = 1;
2256                                        break;
2257                                }
2258                                if (!ret)
2259                                        ret = error;
2260                        }
2261
2262                        /*
2263                         * We stop writing back only if we are not doing
2264                         * integrity sync. In case of integrity sync we have to
2265                         * keep going until we have written all the pages
2266                         * we tagged for writeback prior to entering this loop.
2267                         */
2268                        if (--wbc->nr_to_write <= 0 &&
2269                            wbc->sync_mode == WB_SYNC_NONE) {
2270                                done = 1;
2271                                break;
2272                        }
2273                }
2274                pagevec_release(&pvec);
2275                cond_resched();
2276        }
2277
2278        /*
2279         * If we hit the last page and there is more work to be done: wrap
2280         * back the index back to the start of the file for the next
2281         * time we are called.
2282         */
2283        if (wbc->range_cyclic && !done)
2284                done_index = 0;
2285        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2286                mapping->writeback_index = done_index;
2287
2288        return ret;
2289}
2290EXPORT_SYMBOL(write_cache_pages);
2291
2292/*
2293 * Function used by generic_writepages to call the real writepage
2294 * function and set the mapping flags on error
2295 */
2296static int __writepage(struct page *page, struct writeback_control *wbc,
2297                       void *data)
2298{
2299        struct address_space *mapping = data;
2300        int ret = mapping->a_ops->writepage(page, wbc);
2301        mapping_set_error(mapping, ret);
2302        return ret;
2303}
2304
2305/**
2306 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2307 * @mapping: address space structure to write
2308 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2309 *
2310 * This is a library function, which implements the writepages()
2311 * address_space_operation.
2312 *
2313 * Return: %0 on success, negative error code otherwise
2314 */
2315int generic_writepages(struct address_space *mapping,
2316                       struct writeback_control *wbc)
2317{
2318        struct blk_plug plug;
2319        int ret;
2320
2321        /* deal with chardevs and other special file */
2322        if (!mapping->a_ops->writepage)
2323                return 0;
2324
2325        blk_start_plug(&plug);
2326        ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2327        blk_finish_plug(&plug);
2328        return ret;
2329}
2330
2331EXPORT_SYMBOL(generic_writepages);
2332
2333int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2334{
2335        int ret;
2336
2337        if (wbc->nr_to_write <= 0)
2338                return 0;
2339        while (1) {
2340                if (mapping->a_ops->writepages)
2341                        ret = mapping->a_ops->writepages(mapping, wbc);
2342                else
2343                        ret = generic_writepages(mapping, wbc);
2344                if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2345                        break;
2346                cond_resched();
2347                congestion_wait(BLK_RW_ASYNC, HZ/50);
2348        }
2349        return ret;
2350}
2351
2352/**
2353 * write_one_page - write out a single page and wait on I/O
2354 * @page: the page to write
2355 *
2356 * The page must be locked by the caller and will be unlocked upon return.
2357 *
2358 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2359 * function returns.
2360 *
2361 * Return: %0 on success, negative error code otherwise
2362 */
2363int write_one_page(struct page *page)
2364{
2365        struct address_space *mapping = page->mapping;
2366        int ret = 0;
2367        struct writeback_control wbc = {
2368                .sync_mode = WB_SYNC_ALL,
2369                .nr_to_write = 1,
2370        };
2371
2372        BUG_ON(!PageLocked(page));
2373
2374        wait_on_page_writeback(page);
2375
2376        if (clear_page_dirty_for_io(page)) {
2377                get_page(page);
2378                ret = mapping->a_ops->writepage(page, &wbc);
2379                if (ret == 0)
2380                        wait_on_page_writeback(page);
2381                put_page(page);
2382        } else {
2383                unlock_page(page);
2384        }
2385
2386        if (!ret)
2387                ret = filemap_check_errors(mapping);
2388        return ret;
2389}
2390EXPORT_SYMBOL(write_one_page);
2391
2392/*
2393 * For address_spaces which do not use buffers nor write back.
2394 */
2395int __set_page_dirty_no_writeback(struct page *page)
2396{
2397        if (!PageDirty(page))
2398                return !TestSetPageDirty(page);
2399        return 0;
2400}
2401
2402/*
2403 * Helper function for set_page_dirty family.
2404 *
2405 * Caller must hold lock_page_memcg().
2406 *
2407 * NOTE: This relies on being atomic wrt interrupts.
2408 */
2409void account_page_dirtied(struct page *page, struct address_space *mapping)
2410{
2411        struct inode *inode = mapping->host;
2412
2413        trace_writeback_dirty_page(page, mapping);
2414
2415        if (mapping_cap_account_dirty(mapping)) {
2416                struct bdi_writeback *wb;
2417
2418                inode_attach_wb(inode, page);
2419                wb = inode_to_wb(inode);
2420
2421                __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2422                __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2423                __inc_node_page_state(page, NR_DIRTIED);
2424                inc_wb_stat(wb, WB_RECLAIMABLE);
2425                inc_wb_stat(wb, WB_DIRTIED);
2426                task_io_account_write(PAGE_SIZE);
2427                current->nr_dirtied++;
2428                this_cpu_inc(bdp_ratelimits);
2429        }
2430}
2431EXPORT_SYMBOL(account_page_dirtied);
2432
2433/*
2434 * Helper function for deaccounting dirty page without writeback.
2435 *
2436 * Caller must hold lock_page_memcg().
2437 */
2438void account_page_cleaned(struct page *page, struct address_space *mapping,
2439                          struct bdi_writeback *wb)
2440{
2441        if (mapping_cap_account_dirty(mapping)) {
2442                dec_lruvec_page_state(page, NR_FILE_DIRTY);
2443                dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2444                dec_wb_stat(wb, WB_RECLAIMABLE);
2445                task_io_account_cancelled_write(PAGE_SIZE);
2446        }
2447}
2448
2449/*
2450 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2451 * the xarray.
2452 *
2453 * This is also used when a single buffer is being dirtied: we want to set the
2454 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2455 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2456 *
2457 * The caller must ensure this doesn't race with truncation.  Most will simply
2458 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2459 * the pte lock held, which also locks out truncation.
2460 */
2461int __set_page_dirty_nobuffers(struct page *page)
2462{
2463        lock_page_memcg(page);
2464        if (!TestSetPageDirty(page)) {
2465                struct address_space *mapping = page_mapping(page);
2466                unsigned long flags;
2467
2468                if (!mapping) {
2469                        unlock_page_memcg(page);
2470                        return 1;
2471                }
2472
2473                xa_lock_irqsave(&mapping->i_pages, flags);
2474                BUG_ON(page_mapping(page) != mapping);
2475                WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2476                account_page_dirtied(page, mapping);
2477                __xa_set_mark(&mapping->i_pages, page_index(page),
2478                                   PAGECACHE_TAG_DIRTY);
2479                xa_unlock_irqrestore(&mapping->i_pages, flags);
2480                unlock_page_memcg(page);
2481
2482                if (mapping->host) {
2483                        /* !PageAnon && !swapper_space */
2484                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2485                }
2486                return 1;
2487        }
2488        unlock_page_memcg(page);
2489        return 0;
2490}
2491EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2492
2493/*
2494 * Call this whenever redirtying a page, to de-account the dirty counters
2495 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2496 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2497 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2498 * control.
2499 */
2500void account_page_redirty(struct page *page)
2501{
2502        struct address_space *mapping = page->mapping;
2503
2504        if (mapping && mapping_cap_account_dirty(mapping)) {
2505                struct inode *inode = mapping->host;
2506                struct bdi_writeback *wb;
2507                struct wb_lock_cookie cookie = {};
2508
2509                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2510                current->nr_dirtied--;
2511                dec_node_page_state(page, NR_DIRTIED);
2512                dec_wb_stat(wb, WB_DIRTIED);
2513                unlocked_inode_to_wb_end(inode, &cookie);
2514        }
2515}
2516EXPORT_SYMBOL(account_page_redirty);
2517
2518/*
2519 * When a writepage implementation decides that it doesn't want to write this
2520 * page for some reason, it should redirty the locked page via
2521 * redirty_page_for_writepage() and it should then unlock the page and return 0
2522 */
2523int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2524{
2525        int ret;
2526
2527        wbc->pages_skipped++;
2528        ret = __set_page_dirty_nobuffers(page);
2529        account_page_redirty(page);
2530        return ret;
2531}
2532EXPORT_SYMBOL(redirty_page_for_writepage);
2533
2534/*
2535 * Dirty a page.
2536 *
2537 * For pages with a mapping this should be done under the page lock
2538 * for the benefit of asynchronous memory errors who prefer a consistent
2539 * dirty state. This rule can be broken in some special cases,
2540 * but should be better not to.
2541 *
2542 * If the mapping doesn't provide a set_page_dirty a_op, then
2543 * just fall through and assume that it wants buffer_heads.
2544 */
2545int set_page_dirty(struct page *page)
2546{
2547        struct address_space *mapping = page_mapping(page);
2548
2549        page = compound_head(page);
2550        if (likely(mapping)) {
2551                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2552                /*
2553                 * readahead/lru_deactivate_page could remain
2554                 * PG_readahead/PG_reclaim due to race with end_page_writeback
2555                 * About readahead, if the page is written, the flags would be
2556                 * reset. So no problem.
2557                 * About lru_deactivate_page, if the page is redirty, the flag
2558                 * will be reset. So no problem. but if the page is used by readahead
2559                 * it will confuse readahead and make it restart the size rampup
2560                 * process. But it's a trivial problem.
2561                 */
2562                if (PageReclaim(page))
2563                        ClearPageReclaim(page);
2564#ifdef CONFIG_BLOCK
2565                if (!spd)
2566                        spd = __set_page_dirty_buffers;
2567#endif
2568                return (*spd)(page);
2569        }
2570        if (!PageDirty(page)) {
2571                if (!TestSetPageDirty(page))
2572                        return 1;
2573        }
2574        return 0;
2575}
2576EXPORT_SYMBOL(set_page_dirty);
2577
2578/*
2579 * set_page_dirty() is racy if the caller has no reference against
2580 * page->mapping->host, and if the page is unlocked.  This is because another
2581 * CPU could truncate the page off the mapping and then free the mapping.
2582 *
2583 * Usually, the page _is_ locked, or the caller is a user-space process which
2584 * holds a reference on the inode by having an open file.
2585 *
2586 * In other cases, the page should be locked before running set_page_dirty().
2587 */
2588int set_page_dirty_lock(struct page *page)
2589{
2590        int ret;
2591
2592        lock_page(page);
2593        ret = set_page_dirty(page);
2594        unlock_page(page);
2595        return ret;
2596}
2597EXPORT_SYMBOL(set_page_dirty_lock);
2598
2599/*
2600 * This cancels just the dirty bit on the kernel page itself, it does NOT
2601 * actually remove dirty bits on any mmap's that may be around. It also
2602 * leaves the page tagged dirty, so any sync activity will still find it on
2603 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2604 * look at the dirty bits in the VM.
2605 *
2606 * Doing this should *normally* only ever be done when a page is truncated,
2607 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2608 * this when it notices that somebody has cleaned out all the buffers on a
2609 * page without actually doing it through the VM. Can you say "ext3 is
2610 * horribly ugly"? Thought you could.
2611 */
2612void __cancel_dirty_page(struct page *page)
2613{
2614        struct address_space *mapping = page_mapping(page);
2615
2616        if (mapping_cap_account_dirty(mapping)) {
2617                struct inode *inode = mapping->host;
2618                struct bdi_writeback *wb;
2619                struct wb_lock_cookie cookie = {};
2620
2621                lock_page_memcg(page);
2622                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2623
2624                if (TestClearPageDirty(page))
2625                        account_page_cleaned(page, mapping, wb);
2626
2627                unlocked_inode_to_wb_end(inode, &cookie);
2628                unlock_page_memcg(page);
2629        } else {
2630                ClearPageDirty(page);
2631        }
2632}
2633EXPORT_SYMBOL(__cancel_dirty_page);
2634
2635/*
2636 * Clear a page's dirty flag, while caring for dirty memory accounting.
2637 * Returns true if the page was previously dirty.
2638 *
2639 * This is for preparing to put the page under writeout.  We leave the page
2640 * tagged as dirty in the xarray so that a concurrent write-for-sync
2641 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2642 * implementation will run either set_page_writeback() or set_page_dirty(),
2643 * at which stage we bring the page's dirty flag and xarray dirty tag
2644 * back into sync.
2645 *
2646 * This incoherency between the page's dirty flag and xarray tag is
2647 * unfortunate, but it only exists while the page is locked.
2648 */
2649int clear_page_dirty_for_io(struct page *page)
2650{
2651        struct address_space *mapping = page_mapping(page);
2652        int ret = 0;
2653
2654        BUG_ON(!PageLocked(page));
2655
2656        if (mapping && mapping_cap_account_dirty(mapping)) {
2657                struct inode *inode = mapping->host;
2658                struct bdi_writeback *wb;
2659                struct wb_lock_cookie cookie = {};
2660
2661                /*
2662                 * Yes, Virginia, this is indeed insane.
2663                 *
2664                 * We use this sequence to make sure that
2665                 *  (a) we account for dirty stats properly
2666                 *  (b) we tell the low-level filesystem to
2667                 *      mark the whole page dirty if it was
2668                 *      dirty in a pagetable. Only to then
2669                 *  (c) clean the page again and return 1 to
2670                 *      cause the writeback.
2671                 *
2672                 * This way we avoid all nasty races with the
2673                 * dirty bit in multiple places and clearing
2674                 * them concurrently from different threads.
2675                 *
2676                 * Note! Normally the "set_page_dirty(page)"
2677                 * has no effect on the actual dirty bit - since
2678                 * that will already usually be set. But we
2679                 * need the side effects, and it can help us
2680                 * avoid races.
2681                 *
2682                 * We basically use the page "master dirty bit"
2683                 * as a serialization point for all the different
2684                 * threads doing their things.
2685                 */
2686                if (page_mkclean(page))
2687                        set_page_dirty(page);
2688                /*
2689                 * We carefully synchronise fault handlers against
2690                 * installing a dirty pte and marking the page dirty
2691                 * at this point.  We do this by having them hold the
2692                 * page lock while dirtying the page, and pages are
2693                 * always locked coming in here, so we get the desired
2694                 * exclusion.
2695                 */
2696                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2697                if (TestClearPageDirty(page)) {
2698                        dec_lruvec_page_state(page, NR_FILE_DIRTY);
2699                        dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2700                        dec_wb_stat(wb, WB_RECLAIMABLE);
2701                        ret = 1;
2702                }
2703                unlocked_inode_to_wb_end(inode, &cookie);
2704                return ret;
2705        }
2706        return TestClearPageDirty(page);
2707}
2708EXPORT_SYMBOL(clear_page_dirty_for_io);
2709
2710int test_clear_page_writeback(struct page *page)
2711{
2712        struct address_space *mapping = page_mapping(page);
2713        struct mem_cgroup *memcg;
2714        struct lruvec *lruvec;
2715        int ret;
2716
2717        memcg = lock_page_memcg(page);
2718        lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2719        if (mapping && mapping_use_writeback_tags(mapping)) {
2720                struct inode *inode = mapping->host;
2721                struct backing_dev_info *bdi = inode_to_bdi(inode);
2722                unsigned long flags;
2723
2724                xa_lock_irqsave(&mapping->i_pages, flags);
2725                ret = TestClearPageWriteback(page);
2726                if (ret) {
2727                        __xa_clear_mark(&mapping->i_pages, page_index(page),
2728                                                PAGECACHE_TAG_WRITEBACK);
2729                        if (bdi_cap_account_writeback(bdi)) {
2730                                struct bdi_writeback *wb = inode_to_wb(inode);
2731
2732                                dec_wb_stat(wb, WB_WRITEBACK);
2733                                __wb_writeout_inc(wb);
2734                        }
2735                }
2736
2737                if (mapping->host && !mapping_tagged(mapping,
2738                                                     PAGECACHE_TAG_WRITEBACK))
2739                        sb_clear_inode_writeback(mapping->host);
2740
2741                xa_unlock_irqrestore(&mapping->i_pages, flags);
2742        } else {
2743                ret = TestClearPageWriteback(page);
2744        }
2745        /*
2746         * NOTE: Page might be free now! Writeback doesn't hold a page
2747         * reference on its own, it relies on truncation to wait for
2748         * the clearing of PG_writeback. The below can only access
2749         * page state that is static across allocation cycles.
2750         */
2751        if (ret) {
2752                dec_lruvec_state(lruvec, NR_WRITEBACK);
2753                dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2754                inc_node_page_state(page, NR_WRITTEN);
2755        }
2756        __unlock_page_memcg(memcg);
2757        return ret;
2758}
2759
2760int __test_set_page_writeback(struct page *page, bool keep_write)
2761{
2762        struct address_space *mapping = page_mapping(page);
2763        int ret;
2764
2765        lock_page_memcg(page);
2766        if (mapping && mapping_use_writeback_tags(mapping)) {
2767                XA_STATE(xas, &mapping->i_pages, page_index(page));
2768                struct inode *inode = mapping->host;
2769                struct backing_dev_info *bdi = inode_to_bdi(inode);
2770                unsigned long flags;
2771
2772                xas_lock_irqsave(&xas, flags);
2773                xas_load(&xas);
2774                ret = TestSetPageWriteback(page);
2775                if (!ret) {
2776                        bool on_wblist;
2777
2778                        on_wblist = mapping_tagged(mapping,
2779                                                   PAGECACHE_TAG_WRITEBACK);
2780
2781                        xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2782                        if (bdi_cap_account_writeback(bdi))
2783                                inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2784
2785                        /*
2786                         * We can come through here when swapping anonymous
2787                         * pages, so we don't necessarily have an inode to track
2788                         * for sync.
2789                         */
2790                        if (mapping->host && !on_wblist)
2791                                sb_mark_inode_writeback(mapping->host);
2792                }
2793                if (!PageDirty(page))
2794                        xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2795                if (!keep_write)
2796                        xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2797                xas_unlock_irqrestore(&xas, flags);
2798        } else {
2799                ret = TestSetPageWriteback(page);
2800        }
2801        if (!ret) {
2802                inc_lruvec_page_state(page, NR_WRITEBACK);
2803                inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2804        }
2805        unlock_page_memcg(page);
2806        return ret;
2807
2808}
2809EXPORT_SYMBOL(__test_set_page_writeback);
2810
2811/**
2812 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2813 * @page:       The page to wait on.
2814 *
2815 * This function determines if the given page is related to a backing device
2816 * that requires page contents to be held stable during writeback.  If so, then
2817 * it will wait for any pending writeback to complete.
2818 */
2819void wait_for_stable_page(struct page *page)
2820{
2821        if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2822                wait_on_page_writeback(page);
2823}
2824EXPORT_SYMBOL_GPL(wait_for_stable_page);
2825