linux/mm/truncate.c
<<
>>
Prefs
   1/*
   2 * mm/truncate.c - code for taking down pages from address_spaces
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 10Sep2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/backing-dev.h>
  12#include <linux/dax.h>
  13#include <linux/gfp.h>
  14#include <linux/mm.h>
  15#include <linux/swap.h>
  16#include <linux/export.h>
  17#include <linux/pagemap.h>
  18#include <linux/highmem.h>
  19#include <linux/pagevec.h>
  20#include <linux/task_io_accounting_ops.h>
  21#include <linux/buffer_head.h>  /* grr. try_to_release_page,
  22                                   do_invalidatepage */
  23#include <linux/shmem_fs.h>
  24#include <linux/cleancache.h>
  25#include <linux/rmap.h>
  26#include "internal.h"
  27
  28/*
  29 * Regular page slots are stabilized by the page lock even without the tree
  30 * itself locked.  These unlocked entries need verification under the tree
  31 * lock.
  32 */
  33static inline void __clear_shadow_entry(struct address_space *mapping,
  34                                pgoff_t index, void *entry)
  35{
  36        XA_STATE(xas, &mapping->i_pages, index);
  37
  38        xas_set_update(&xas, workingset_update_node);
  39        if (xas_load(&xas) != entry)
  40                return;
  41        xas_store(&xas, NULL);
  42        mapping->nrexceptional--;
  43}
  44
  45static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
  46                               void *entry)
  47{
  48        xa_lock_irq(&mapping->i_pages);
  49        __clear_shadow_entry(mapping, index, entry);
  50        xa_unlock_irq(&mapping->i_pages);
  51}
  52
  53/*
  54 * Unconditionally remove exceptional entries. Usually called from truncate
  55 * path. Note that the pagevec may be altered by this function by removing
  56 * exceptional entries similar to what pagevec_remove_exceptionals does.
  57 */
  58static void truncate_exceptional_pvec_entries(struct address_space *mapping,
  59                                struct pagevec *pvec, pgoff_t *indices,
  60                                pgoff_t end)
  61{
  62        int i, j;
  63        bool dax, lock;
  64
  65        /* Handled by shmem itself */
  66        if (shmem_mapping(mapping))
  67                return;
  68
  69        for (j = 0; j < pagevec_count(pvec); j++)
  70                if (xa_is_value(pvec->pages[j]))
  71                        break;
  72
  73        if (j == pagevec_count(pvec))
  74                return;
  75
  76        dax = dax_mapping(mapping);
  77        lock = !dax && indices[j] < end;
  78        if (lock)
  79                xa_lock_irq(&mapping->i_pages);
  80
  81        for (i = j; i < pagevec_count(pvec); i++) {
  82                struct page *page = pvec->pages[i];
  83                pgoff_t index = indices[i];
  84
  85                if (!xa_is_value(page)) {
  86                        pvec->pages[j++] = page;
  87                        continue;
  88                }
  89
  90                if (index >= end)
  91                        continue;
  92
  93                if (unlikely(dax)) {
  94                        dax_delete_mapping_entry(mapping, index);
  95                        continue;
  96                }
  97
  98                __clear_shadow_entry(mapping, index, page);
  99        }
 100
 101        if (lock)
 102                xa_unlock_irq(&mapping->i_pages);
 103        pvec->nr = j;
 104}
 105
 106/*
 107 * Invalidate exceptional entry if easily possible. This handles exceptional
 108 * entries for invalidate_inode_pages().
 109 */
 110static int invalidate_exceptional_entry(struct address_space *mapping,
 111                                        pgoff_t index, void *entry)
 112{
 113        /* Handled by shmem itself, or for DAX we do nothing. */
 114        if (shmem_mapping(mapping) || dax_mapping(mapping))
 115                return 1;
 116        clear_shadow_entry(mapping, index, entry);
 117        return 1;
 118}
 119
 120/*
 121 * Invalidate exceptional entry if clean. This handles exceptional entries for
 122 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
 123 */
 124static int invalidate_exceptional_entry2(struct address_space *mapping,
 125                                         pgoff_t index, void *entry)
 126{
 127        /* Handled by shmem itself */
 128        if (shmem_mapping(mapping))
 129                return 1;
 130        if (dax_mapping(mapping))
 131                return dax_invalidate_mapping_entry_sync(mapping, index);
 132        clear_shadow_entry(mapping, index, entry);
 133        return 1;
 134}
 135
 136/**
 137 * do_invalidatepage - invalidate part or all of a page
 138 * @page: the page which is affected
 139 * @offset: start of the range to invalidate
 140 * @length: length of the range to invalidate
 141 *
 142 * do_invalidatepage() is called when all or part of the page has become
 143 * invalidated by a truncate operation.
 144 *
 145 * do_invalidatepage() does not have to release all buffers, but it must
 146 * ensure that no dirty buffer is left outside @offset and that no I/O
 147 * is underway against any of the blocks which are outside the truncation
 148 * point.  Because the caller is about to free (and possibly reuse) those
 149 * blocks on-disk.
 150 */
 151void do_invalidatepage(struct page *page, unsigned int offset,
 152                       unsigned int length)
 153{
 154        void (*invalidatepage)(struct page *, unsigned int, unsigned int);
 155
 156        invalidatepage = page->mapping->a_ops->invalidatepage;
 157#ifdef CONFIG_BLOCK
 158        if (!invalidatepage)
 159                invalidatepage = block_invalidatepage;
 160#endif
 161        if (invalidatepage)
 162                (*invalidatepage)(page, offset, length);
 163}
 164
 165/*
 166 * If truncate cannot remove the fs-private metadata from the page, the page
 167 * becomes orphaned.  It will be left on the LRU and may even be mapped into
 168 * user pagetables if we're racing with filemap_fault().
 169 *
 170 * We need to bale out if page->mapping is no longer equal to the original
 171 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 172 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 173 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 174 */
 175static void
 176truncate_cleanup_page(struct address_space *mapping, struct page *page)
 177{
 178        if (page_mapped(page)) {
 179                pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1;
 180                unmap_mapping_pages(mapping, page->index, nr, false);
 181        }
 182
 183        if (page_has_private(page))
 184                do_invalidatepage(page, 0, PAGE_SIZE);
 185
 186        /*
 187         * Some filesystems seem to re-dirty the page even after
 188         * the VM has canceled the dirty bit (eg ext3 journaling).
 189         * Hence dirty accounting check is placed after invalidation.
 190         */
 191        cancel_dirty_page(page);
 192        ClearPageMappedToDisk(page);
 193}
 194
 195/*
 196 * This is for invalidate_mapping_pages().  That function can be called at
 197 * any time, and is not supposed to throw away dirty pages.  But pages can
 198 * be marked dirty at any time too, so use remove_mapping which safely
 199 * discards clean, unused pages.
 200 *
 201 * Returns non-zero if the page was successfully invalidated.
 202 */
 203static int
 204invalidate_complete_page(struct address_space *mapping, struct page *page)
 205{
 206        int ret;
 207
 208        if (page->mapping != mapping)
 209                return 0;
 210
 211        if (page_has_private(page) && !try_to_release_page(page, 0))
 212                return 0;
 213
 214        ret = remove_mapping(mapping, page);
 215
 216        return ret;
 217}
 218
 219int truncate_inode_page(struct address_space *mapping, struct page *page)
 220{
 221        VM_BUG_ON_PAGE(PageTail(page), page);
 222
 223        if (page->mapping != mapping)
 224                return -EIO;
 225
 226        truncate_cleanup_page(mapping, page);
 227        delete_from_page_cache(page);
 228        return 0;
 229}
 230
 231/*
 232 * Used to get rid of pages on hardware memory corruption.
 233 */
 234int generic_error_remove_page(struct address_space *mapping, struct page *page)
 235{
 236        if (!mapping)
 237                return -EINVAL;
 238        /*
 239         * Only punch for normal data pages for now.
 240         * Handling other types like directories would need more auditing.
 241         */
 242        if (!S_ISREG(mapping->host->i_mode))
 243                return -EIO;
 244        return truncate_inode_page(mapping, page);
 245}
 246EXPORT_SYMBOL(generic_error_remove_page);
 247
 248/*
 249 * Safely invalidate one page from its pagecache mapping.
 250 * It only drops clean, unused pages. The page must be locked.
 251 *
 252 * Returns 1 if the page is successfully invalidated, otherwise 0.
 253 */
 254int invalidate_inode_page(struct page *page)
 255{
 256        struct address_space *mapping = page_mapping(page);
 257        if (!mapping)
 258                return 0;
 259        if (PageDirty(page) || PageWriteback(page))
 260                return 0;
 261        if (page_mapped(page))
 262                return 0;
 263        return invalidate_complete_page(mapping, page);
 264}
 265
 266/**
 267 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
 268 * @mapping: mapping to truncate
 269 * @lstart: offset from which to truncate
 270 * @lend: offset to which to truncate (inclusive)
 271 *
 272 * Truncate the page cache, removing the pages that are between
 273 * specified offsets (and zeroing out partial pages
 274 * if lstart or lend + 1 is not page aligned).
 275 *
 276 * Truncate takes two passes - the first pass is nonblocking.  It will not
 277 * block on page locks and it will not block on writeback.  The second pass
 278 * will wait.  This is to prevent as much IO as possible in the affected region.
 279 * The first pass will remove most pages, so the search cost of the second pass
 280 * is low.
 281 *
 282 * We pass down the cache-hot hint to the page freeing code.  Even if the
 283 * mapping is large, it is probably the case that the final pages are the most
 284 * recently touched, and freeing happens in ascending file offset order.
 285 *
 286 * Note that since ->invalidatepage() accepts range to invalidate
 287 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
 288 * page aligned properly.
 289 */
 290void truncate_inode_pages_range(struct address_space *mapping,
 291                                loff_t lstart, loff_t lend)
 292{
 293        pgoff_t         start;          /* inclusive */
 294        pgoff_t         end;            /* exclusive */
 295        unsigned int    partial_start;  /* inclusive */
 296        unsigned int    partial_end;    /* exclusive */
 297        struct pagevec  pvec;
 298        pgoff_t         indices[PAGEVEC_SIZE];
 299        pgoff_t         index;
 300        int             i;
 301
 302        if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
 303                goto out;
 304
 305        /* Offsets within partial pages */
 306        partial_start = lstart & (PAGE_SIZE - 1);
 307        partial_end = (lend + 1) & (PAGE_SIZE - 1);
 308
 309        /*
 310         * 'start' and 'end' always covers the range of pages to be fully
 311         * truncated. Partial pages are covered with 'partial_start' at the
 312         * start of the range and 'partial_end' at the end of the range.
 313         * Note that 'end' is exclusive while 'lend' is inclusive.
 314         */
 315        start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 316        if (lend == -1)
 317                /*
 318                 * lend == -1 indicates end-of-file so we have to set 'end'
 319                 * to the highest possible pgoff_t and since the type is
 320                 * unsigned we're using -1.
 321                 */
 322                end = -1;
 323        else
 324                end = (lend + 1) >> PAGE_SHIFT;
 325
 326        pagevec_init(&pvec);
 327        index = start;
 328        while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
 329                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 330                        indices)) {
 331                /*
 332                 * Pagevec array has exceptional entries and we may also fail
 333                 * to lock some pages. So we store pages that can be deleted
 334                 * in a new pagevec.
 335                 */
 336                struct pagevec locked_pvec;
 337
 338                pagevec_init(&locked_pvec);
 339                for (i = 0; i < pagevec_count(&pvec); i++) {
 340                        struct page *page = pvec.pages[i];
 341
 342                        /* We rely upon deletion not changing page->index */
 343                        index = indices[i];
 344                        if (index >= end)
 345                                break;
 346
 347                        if (xa_is_value(page))
 348                                continue;
 349
 350                        if (!trylock_page(page))
 351                                continue;
 352                        WARN_ON(page_to_index(page) != index);
 353                        if (PageWriteback(page)) {
 354                                unlock_page(page);
 355                                continue;
 356                        }
 357                        if (page->mapping != mapping) {
 358                                unlock_page(page);
 359                                continue;
 360                        }
 361                        pagevec_add(&locked_pvec, page);
 362                }
 363                for (i = 0; i < pagevec_count(&locked_pvec); i++)
 364                        truncate_cleanup_page(mapping, locked_pvec.pages[i]);
 365                delete_from_page_cache_batch(mapping, &locked_pvec);
 366                for (i = 0; i < pagevec_count(&locked_pvec); i++)
 367                        unlock_page(locked_pvec.pages[i]);
 368                truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
 369                pagevec_release(&pvec);
 370                cond_resched();
 371                index++;
 372        }
 373        if (partial_start) {
 374                struct page *page = find_lock_page(mapping, start - 1);
 375                if (page) {
 376                        unsigned int top = PAGE_SIZE;
 377                        if (start > end) {
 378                                /* Truncation within a single page */
 379                                top = partial_end;
 380                                partial_end = 0;
 381                        }
 382                        wait_on_page_writeback(page);
 383                        zero_user_segment(page, partial_start, top);
 384                        cleancache_invalidate_page(mapping, page);
 385                        if (page_has_private(page))
 386                                do_invalidatepage(page, partial_start,
 387                                                  top - partial_start);
 388                        unlock_page(page);
 389                        put_page(page);
 390                }
 391        }
 392        if (partial_end) {
 393                struct page *page = find_lock_page(mapping, end);
 394                if (page) {
 395                        wait_on_page_writeback(page);
 396                        zero_user_segment(page, 0, partial_end);
 397                        cleancache_invalidate_page(mapping, page);
 398                        if (page_has_private(page))
 399                                do_invalidatepage(page, 0,
 400                                                  partial_end);
 401                        unlock_page(page);
 402                        put_page(page);
 403                }
 404        }
 405        /*
 406         * If the truncation happened within a single page no pages
 407         * will be released, just zeroed, so we can bail out now.
 408         */
 409        if (start >= end)
 410                goto out;
 411
 412        index = start;
 413        for ( ; ; ) {
 414                cond_resched();
 415                if (!pagevec_lookup_entries(&pvec, mapping, index,
 416                        min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
 417                        /* If all gone from start onwards, we're done */
 418                        if (index == start)
 419                                break;
 420                        /* Otherwise restart to make sure all gone */
 421                        index = start;
 422                        continue;
 423                }
 424                if (index == start && indices[0] >= end) {
 425                        /* All gone out of hole to be punched, we're done */
 426                        pagevec_remove_exceptionals(&pvec);
 427                        pagevec_release(&pvec);
 428                        break;
 429                }
 430
 431                for (i = 0; i < pagevec_count(&pvec); i++) {
 432                        struct page *page = pvec.pages[i];
 433
 434                        /* We rely upon deletion not changing page->index */
 435                        index = indices[i];
 436                        if (index >= end) {
 437                                /* Restart punch to make sure all gone */
 438                                index = start - 1;
 439                                break;
 440                        }
 441
 442                        if (xa_is_value(page))
 443                                continue;
 444
 445                        lock_page(page);
 446                        WARN_ON(page_to_index(page) != index);
 447                        wait_on_page_writeback(page);
 448                        truncate_inode_page(mapping, page);
 449                        unlock_page(page);
 450                }
 451                truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
 452                pagevec_release(&pvec);
 453                index++;
 454        }
 455
 456out:
 457        cleancache_invalidate_inode(mapping);
 458}
 459EXPORT_SYMBOL(truncate_inode_pages_range);
 460
 461/**
 462 * truncate_inode_pages - truncate *all* the pages from an offset
 463 * @mapping: mapping to truncate
 464 * @lstart: offset from which to truncate
 465 *
 466 * Called under (and serialised by) inode->i_mutex.
 467 *
 468 * Note: When this function returns, there can be a page in the process of
 469 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
 470 * mapping->nrpages can be non-zero when this function returns even after
 471 * truncation of the whole mapping.
 472 */
 473void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 474{
 475        truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 476}
 477EXPORT_SYMBOL(truncate_inode_pages);
 478
 479/**
 480 * truncate_inode_pages_final - truncate *all* pages before inode dies
 481 * @mapping: mapping to truncate
 482 *
 483 * Called under (and serialized by) inode->i_mutex.
 484 *
 485 * Filesystems have to use this in the .evict_inode path to inform the
 486 * VM that this is the final truncate and the inode is going away.
 487 */
 488void truncate_inode_pages_final(struct address_space *mapping)
 489{
 490        unsigned long nrexceptional;
 491        unsigned long nrpages;
 492
 493        /*
 494         * Page reclaim can not participate in regular inode lifetime
 495         * management (can't call iput()) and thus can race with the
 496         * inode teardown.  Tell it when the address space is exiting,
 497         * so that it does not install eviction information after the
 498         * final truncate has begun.
 499         */
 500        mapping_set_exiting(mapping);
 501
 502        /*
 503         * When reclaim installs eviction entries, it increases
 504         * nrexceptional first, then decreases nrpages.  Make sure we see
 505         * this in the right order or we might miss an entry.
 506         */
 507        nrpages = mapping->nrpages;
 508        smp_rmb();
 509        nrexceptional = mapping->nrexceptional;
 510
 511        if (nrpages || nrexceptional) {
 512                /*
 513                 * As truncation uses a lockless tree lookup, cycle
 514                 * the tree lock to make sure any ongoing tree
 515                 * modification that does not see AS_EXITING is
 516                 * completed before starting the final truncate.
 517                 */
 518                xa_lock_irq(&mapping->i_pages);
 519                xa_unlock_irq(&mapping->i_pages);
 520        }
 521
 522        /*
 523         * Cleancache needs notification even if there are no pages or shadow
 524         * entries.
 525         */
 526        truncate_inode_pages(mapping, 0);
 527}
 528EXPORT_SYMBOL(truncate_inode_pages_final);
 529
 530/**
 531 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 532 * @mapping: the address_space which holds the pages to invalidate
 533 * @start: the offset 'from' which to invalidate
 534 * @end: the offset 'to' which to invalidate (inclusive)
 535 *
 536 * This function only removes the unlocked pages, if you want to
 537 * remove all the pages of one inode, you must call truncate_inode_pages.
 538 *
 539 * invalidate_mapping_pages() will not block on IO activity. It will not
 540 * invalidate pages which are dirty, locked, under writeback or mapped into
 541 * pagetables.
 542 *
 543 * Return: the number of the pages that were invalidated
 544 */
 545unsigned long invalidate_mapping_pages(struct address_space *mapping,
 546                pgoff_t start, pgoff_t end)
 547{
 548        pgoff_t indices[PAGEVEC_SIZE];
 549        struct pagevec pvec;
 550        pgoff_t index = start;
 551        unsigned long ret;
 552        unsigned long count = 0;
 553        int i;
 554
 555        pagevec_init(&pvec);
 556        while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 557                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 558                        indices)) {
 559                for (i = 0; i < pagevec_count(&pvec); i++) {
 560                        struct page *page = pvec.pages[i];
 561
 562                        /* We rely upon deletion not changing page->index */
 563                        index = indices[i];
 564                        if (index > end)
 565                                break;
 566
 567                        if (xa_is_value(page)) {
 568                                invalidate_exceptional_entry(mapping, index,
 569                                                             page);
 570                                continue;
 571                        }
 572
 573                        if (!trylock_page(page))
 574                                continue;
 575
 576                        WARN_ON(page_to_index(page) != index);
 577
 578                        /* Middle of THP: skip */
 579                        if (PageTransTail(page)) {
 580                                unlock_page(page);
 581                                continue;
 582                        } else if (PageTransHuge(page)) {
 583                                index += HPAGE_PMD_NR - 1;
 584                                i += HPAGE_PMD_NR - 1;
 585                                /*
 586                                 * 'end' is in the middle of THP. Don't
 587                                 * invalidate the page as the part outside of
 588                                 * 'end' could be still useful.
 589                                 */
 590                                if (index > end) {
 591                                        unlock_page(page);
 592                                        continue;
 593                                }
 594                        }
 595
 596                        ret = invalidate_inode_page(page);
 597                        unlock_page(page);
 598                        /*
 599                         * Invalidation is a hint that the page is no longer
 600                         * of interest and try to speed up its reclaim.
 601                         */
 602                        if (!ret)
 603                                deactivate_file_page(page);
 604                        count += ret;
 605                }
 606                pagevec_remove_exceptionals(&pvec);
 607                pagevec_release(&pvec);
 608                cond_resched();
 609                index++;
 610        }
 611        return count;
 612}
 613EXPORT_SYMBOL(invalidate_mapping_pages);
 614
 615/*
 616 * This is like invalidate_complete_page(), except it ignores the page's
 617 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 618 * invalidation guarantees, and cannot afford to leave pages behind because
 619 * shrink_page_list() has a temp ref on them, or because they're transiently
 620 * sitting in the lru_cache_add() pagevecs.
 621 */
 622static int
 623invalidate_complete_page2(struct address_space *mapping, struct page *page)
 624{
 625        unsigned long flags;
 626
 627        if (page->mapping != mapping)
 628                return 0;
 629
 630        if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 631                return 0;
 632
 633        xa_lock_irqsave(&mapping->i_pages, flags);
 634        if (PageDirty(page))
 635                goto failed;
 636
 637        BUG_ON(page_has_private(page));
 638        __delete_from_page_cache(page, NULL);
 639        xa_unlock_irqrestore(&mapping->i_pages, flags);
 640
 641        if (mapping->a_ops->freepage)
 642                mapping->a_ops->freepage(page);
 643
 644        put_page(page); /* pagecache ref */
 645        return 1;
 646failed:
 647        xa_unlock_irqrestore(&mapping->i_pages, flags);
 648        return 0;
 649}
 650
 651static int do_launder_page(struct address_space *mapping, struct page *page)
 652{
 653        if (!PageDirty(page))
 654                return 0;
 655        if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 656                return 0;
 657        return mapping->a_ops->launder_page(page);
 658}
 659
 660/**
 661 * invalidate_inode_pages2_range - remove range of pages from an address_space
 662 * @mapping: the address_space
 663 * @start: the page offset 'from' which to invalidate
 664 * @end: the page offset 'to' which to invalidate (inclusive)
 665 *
 666 * Any pages which are found to be mapped into pagetables are unmapped prior to
 667 * invalidation.
 668 *
 669 * Return: -EBUSY if any pages could not be invalidated.
 670 */
 671int invalidate_inode_pages2_range(struct address_space *mapping,
 672                                  pgoff_t start, pgoff_t end)
 673{
 674        pgoff_t indices[PAGEVEC_SIZE];
 675        struct pagevec pvec;
 676        pgoff_t index;
 677        int i;
 678        int ret = 0;
 679        int ret2 = 0;
 680        int did_range_unmap = 0;
 681
 682        if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
 683                goto out;
 684
 685        pagevec_init(&pvec);
 686        index = start;
 687        while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 688                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 689                        indices)) {
 690                for (i = 0; i < pagevec_count(&pvec); i++) {
 691                        struct page *page = pvec.pages[i];
 692
 693                        /* We rely upon deletion not changing page->index */
 694                        index = indices[i];
 695                        if (index > end)
 696                                break;
 697
 698                        if (xa_is_value(page)) {
 699                                if (!invalidate_exceptional_entry2(mapping,
 700                                                                   index, page))
 701                                        ret = -EBUSY;
 702                                continue;
 703                        }
 704
 705                        lock_page(page);
 706                        WARN_ON(page_to_index(page) != index);
 707                        if (page->mapping != mapping) {
 708                                unlock_page(page);
 709                                continue;
 710                        }
 711                        wait_on_page_writeback(page);
 712                        if (page_mapped(page)) {
 713                                if (!did_range_unmap) {
 714                                        /*
 715                                         * Zap the rest of the file in one hit.
 716                                         */
 717                                        unmap_mapping_pages(mapping, index,
 718                                                (1 + end - index), false);
 719                                        did_range_unmap = 1;
 720                                } else {
 721                                        /*
 722                                         * Just zap this page
 723                                         */
 724                                        unmap_mapping_pages(mapping, index,
 725                                                                1, false);
 726                                }
 727                        }
 728                        BUG_ON(page_mapped(page));
 729                        ret2 = do_launder_page(mapping, page);
 730                        if (ret2 == 0) {
 731                                if (!invalidate_complete_page2(mapping, page))
 732                                        ret2 = -EBUSY;
 733                        }
 734                        if (ret2 < 0)
 735                                ret = ret2;
 736                        unlock_page(page);
 737                }
 738                pagevec_remove_exceptionals(&pvec);
 739                pagevec_release(&pvec);
 740                cond_resched();
 741                index++;
 742        }
 743        /*
 744         * For DAX we invalidate page tables after invalidating page cache.  We
 745         * could invalidate page tables while invalidating each entry however
 746         * that would be expensive. And doing range unmapping before doesn't
 747         * work as we have no cheap way to find whether page cache entry didn't
 748         * get remapped later.
 749         */
 750        if (dax_mapping(mapping)) {
 751                unmap_mapping_pages(mapping, start, end - start + 1, false);
 752        }
 753out:
 754        cleancache_invalidate_inode(mapping);
 755        return ret;
 756}
 757EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 758
 759/**
 760 * invalidate_inode_pages2 - remove all pages from an address_space
 761 * @mapping: the address_space
 762 *
 763 * Any pages which are found to be mapped into pagetables are unmapped prior to
 764 * invalidation.
 765 *
 766 * Return: -EBUSY if any pages could not be invalidated.
 767 */
 768int invalidate_inode_pages2(struct address_space *mapping)
 769{
 770        return invalidate_inode_pages2_range(mapping, 0, -1);
 771}
 772EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 773
 774/**
 775 * truncate_pagecache - unmap and remove pagecache that has been truncated
 776 * @inode: inode
 777 * @newsize: new file size
 778 *
 779 * inode's new i_size must already be written before truncate_pagecache
 780 * is called.
 781 *
 782 * This function should typically be called before the filesystem
 783 * releases resources associated with the freed range (eg. deallocates
 784 * blocks). This way, pagecache will always stay logically coherent
 785 * with on-disk format, and the filesystem would not have to deal with
 786 * situations such as writepage being called for a page that has already
 787 * had its underlying blocks deallocated.
 788 */
 789void truncate_pagecache(struct inode *inode, loff_t newsize)
 790{
 791        struct address_space *mapping = inode->i_mapping;
 792        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 793
 794        /*
 795         * unmap_mapping_range is called twice, first simply for
 796         * efficiency so that truncate_inode_pages does fewer
 797         * single-page unmaps.  However after this first call, and
 798         * before truncate_inode_pages finishes, it is possible for
 799         * private pages to be COWed, which remain after
 800         * truncate_inode_pages finishes, hence the second
 801         * unmap_mapping_range call must be made for correctness.
 802         */
 803        unmap_mapping_range(mapping, holebegin, 0, 1);
 804        truncate_inode_pages(mapping, newsize);
 805        unmap_mapping_range(mapping, holebegin, 0, 1);
 806}
 807EXPORT_SYMBOL(truncate_pagecache);
 808
 809/**
 810 * truncate_setsize - update inode and pagecache for a new file size
 811 * @inode: inode
 812 * @newsize: new file size
 813 *
 814 * truncate_setsize updates i_size and performs pagecache truncation (if
 815 * necessary) to @newsize. It will be typically be called from the filesystem's
 816 * setattr function when ATTR_SIZE is passed in.
 817 *
 818 * Must be called with a lock serializing truncates and writes (generally
 819 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
 820 * specific block truncation has been performed.
 821 */
 822void truncate_setsize(struct inode *inode, loff_t newsize)
 823{
 824        loff_t oldsize = inode->i_size;
 825
 826        i_size_write(inode, newsize);
 827        if (newsize > oldsize)
 828                pagecache_isize_extended(inode, oldsize, newsize);
 829        truncate_pagecache(inode, newsize);
 830}
 831EXPORT_SYMBOL(truncate_setsize);
 832
 833/**
 834 * pagecache_isize_extended - update pagecache after extension of i_size
 835 * @inode:      inode for which i_size was extended
 836 * @from:       original inode size
 837 * @to:         new inode size
 838 *
 839 * Handle extension of inode size either caused by extending truncate or by
 840 * write starting after current i_size. We mark the page straddling current
 841 * i_size RO so that page_mkwrite() is called on the nearest write access to
 842 * the page.  This way filesystem can be sure that page_mkwrite() is called on
 843 * the page before user writes to the page via mmap after the i_size has been
 844 * changed.
 845 *
 846 * The function must be called after i_size is updated so that page fault
 847 * coming after we unlock the page will already see the new i_size.
 848 * The function must be called while we still hold i_mutex - this not only
 849 * makes sure i_size is stable but also that userspace cannot observe new
 850 * i_size value before we are prepared to store mmap writes at new inode size.
 851 */
 852void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
 853{
 854        int bsize = i_blocksize(inode);
 855        loff_t rounded_from;
 856        struct page *page;
 857        pgoff_t index;
 858
 859        WARN_ON(to > inode->i_size);
 860
 861        if (from >= to || bsize == PAGE_SIZE)
 862                return;
 863        /* Page straddling @from will not have any hole block created? */
 864        rounded_from = round_up(from, bsize);
 865        if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
 866                return;
 867
 868        index = from >> PAGE_SHIFT;
 869        page = find_lock_page(inode->i_mapping, index);
 870        /* Page not cached? Nothing to do */
 871        if (!page)
 872                return;
 873        /*
 874         * See clear_page_dirty_for_io() for details why set_page_dirty()
 875         * is needed.
 876         */
 877        if (page_mkclean(page))
 878                set_page_dirty(page);
 879        unlock_page(page);
 880        put_page(page);
 881}
 882EXPORT_SYMBOL(pagecache_isize_extended);
 883
 884/**
 885 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
 886 * @inode: inode
 887 * @lstart: offset of beginning of hole
 888 * @lend: offset of last byte of hole
 889 *
 890 * This function should typically be called before the filesystem
 891 * releases resources associated with the freed range (eg. deallocates
 892 * blocks). This way, pagecache will always stay logically coherent
 893 * with on-disk format, and the filesystem would not have to deal with
 894 * situations such as writepage being called for a page that has already
 895 * had its underlying blocks deallocated.
 896 */
 897void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
 898{
 899        struct address_space *mapping = inode->i_mapping;
 900        loff_t unmap_start = round_up(lstart, PAGE_SIZE);
 901        loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
 902        /*
 903         * This rounding is currently just for example: unmap_mapping_range
 904         * expands its hole outwards, whereas we want it to contract the hole
 905         * inwards.  However, existing callers of truncate_pagecache_range are
 906         * doing their own page rounding first.  Note that unmap_mapping_range
 907         * allows holelen 0 for all, and we allow lend -1 for end of file.
 908         */
 909
 910        /*
 911         * Unlike in truncate_pagecache, unmap_mapping_range is called only
 912         * once (before truncating pagecache), and without "even_cows" flag:
 913         * hole-punching should not remove private COWed pages from the hole.
 914         */
 915        if ((u64)unmap_end > (u64)unmap_start)
 916                unmap_mapping_range(mapping, unmap_start,
 917                                    1 + unmap_end - unmap_start, 0);
 918        truncate_inode_pages_range(mapping, lstart, lend);
 919}
 920EXPORT_SYMBOL(truncate_pagecache_range);
 921