linux/net/sched/sch_qfq.c
<<
>>
Prefs
   1/*
   2 * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
   3 *
   4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
   5 * Copyright (c) 2012 Paolo Valente.
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * version 2 as published by the Free Software Foundation.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/bitops.h>
  15#include <linux/errno.h>
  16#include <linux/netdevice.h>
  17#include <linux/pkt_sched.h>
  18#include <net/sch_generic.h>
  19#include <net/pkt_sched.h>
  20#include <net/pkt_cls.h>
  21
  22
  23/*  Quick Fair Queueing Plus
  24    ========================
  25
  26    Sources:
  27
  28    [1] Paolo Valente,
  29    "Reducing the Execution Time of Fair-Queueing Schedulers."
  30    http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
  31
  32    Sources for QFQ:
  33
  34    [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
  35    Packet Scheduling with Tight Bandwidth Distribution Guarantees."
  36
  37    See also:
  38    http://retis.sssup.it/~fabio/linux/qfq/
  39 */
  40
  41/*
  42
  43  QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
  44  classes. Each aggregate is timestamped with a virtual start time S
  45  and a virtual finish time F, and scheduled according to its
  46  timestamps. S and F are computed as a function of a system virtual
  47  time function V. The classes within each aggregate are instead
  48  scheduled with DRR.
  49
  50  To speed up operations, QFQ+ divides also aggregates into a limited
  51  number of groups. Which group a class belongs to depends on the
  52  ratio between the maximum packet length for the class and the weight
  53  of the class. Groups have their own S and F. In the end, QFQ+
  54  schedules groups, then aggregates within groups, then classes within
  55  aggregates. See [1] and [2] for a full description.
  56
  57  Virtual time computations.
  58
  59  S, F and V are all computed in fixed point arithmetic with
  60  FRAC_BITS decimal bits.
  61
  62  QFQ_MAX_INDEX is the maximum index allowed for a group. We need
  63        one bit per index.
  64  QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
  65
  66  The layout of the bits is as below:
  67
  68                   [ MTU_SHIFT ][      FRAC_BITS    ]
  69                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
  70                                 ^.__grp->index = 0
  71                                 *.__grp->slot_shift
  72
  73  where MIN_SLOT_SHIFT is derived by difference from the others.
  74
  75  The max group index corresponds to Lmax/w_min, where
  76  Lmax=1<<MTU_SHIFT, w_min = 1 .
  77  From this, and knowing how many groups (MAX_INDEX) we want,
  78  we can derive the shift corresponding to each group.
  79
  80  Because we often need to compute
  81        F = S + len/w_i  and V = V + len/wsum
  82  instead of storing w_i store the value
  83        inv_w = (1<<FRAC_BITS)/w_i
  84  so we can do F = S + len * inv_w * wsum.
  85  We use W_TOT in the formulas so we can easily move between
  86  static and adaptive weight sum.
  87
  88  The per-scheduler-instance data contain all the data structures
  89  for the scheduler: bitmaps and bucket lists.
  90
  91 */
  92
  93/*
  94 * Maximum number of consecutive slots occupied by backlogged classes
  95 * inside a group.
  96 */
  97#define QFQ_MAX_SLOTS   32
  98
  99/*
 100 * Shifts used for aggregate<->group mapping.  We allow class weights that are
 101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
 102 * group with the smallest index that can support the L_i / r_i configured
 103 * for the classes in the aggregate.
 104 *
 105 * grp->index is the index of the group; and grp->slot_shift
 106 * is the shift for the corresponding (scaled) sigma_i.
 107 */
 108#define QFQ_MAX_INDEX           24
 109#define QFQ_MAX_WSHIFT          10
 110
 111#define QFQ_MAX_WEIGHT          (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
 112#define QFQ_MAX_WSUM            (64*QFQ_MAX_WEIGHT)
 113
 114#define FRAC_BITS               30      /* fixed point arithmetic */
 115#define ONE_FP                  (1UL << FRAC_BITS)
 116
 117#define QFQ_MTU_SHIFT           16      /* to support TSO/GSO */
 118#define QFQ_MIN_LMAX            512     /* see qfq_slot_insert */
 119
 120#define QFQ_MAX_AGG_CLASSES     8 /* max num classes per aggregate allowed */
 121
 122/*
 123 * Possible group states.  These values are used as indexes for the bitmaps
 124 * array of struct qfq_queue.
 125 */
 126enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
 127
 128struct qfq_group;
 129
 130struct qfq_aggregate;
 131
 132struct qfq_class {
 133        struct Qdisc_class_common common;
 134
 135        unsigned int filter_cnt;
 136
 137        struct gnet_stats_basic_packed bstats;
 138        struct gnet_stats_queue qstats;
 139        struct net_rate_estimator __rcu *rate_est;
 140        struct Qdisc *qdisc;
 141        struct list_head alist;         /* Link for active-classes list. */
 142        struct qfq_aggregate *agg;      /* Parent aggregate. */
 143        int deficit;                    /* DRR deficit counter. */
 144};
 145
 146struct qfq_aggregate {
 147        struct hlist_node next; /* Link for the slot list. */
 148        u64 S, F;               /* flow timestamps (exact) */
 149
 150        /* group we belong to. In principle we would need the index,
 151         * which is log_2(lmax/weight), but we never reference it
 152         * directly, only the group.
 153         */
 154        struct qfq_group *grp;
 155
 156        /* these are copied from the flowset. */
 157        u32     class_weight; /* Weight of each class in this aggregate. */
 158        /* Max pkt size for the classes in this aggregate, DRR quantum. */
 159        int     lmax;
 160
 161        u32     inv_w;      /* ONE_FP/(sum of weights of classes in aggr.). */
 162        u32     budgetmax;  /* Max budget for this aggregate. */
 163        u32     initial_budget, budget;     /* Initial and current budget. */
 164
 165        int               num_classes;  /* Number of classes in this aggr. */
 166        struct list_head  active;       /* DRR queue of active classes. */
 167
 168        struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
 169};
 170
 171struct qfq_group {
 172        u64 S, F;                       /* group timestamps (approx). */
 173        unsigned int slot_shift;        /* Slot shift. */
 174        unsigned int index;             /* Group index. */
 175        unsigned int front;             /* Index of the front slot. */
 176        unsigned long full_slots;       /* non-empty slots */
 177
 178        /* Array of RR lists of active aggregates. */
 179        struct hlist_head slots[QFQ_MAX_SLOTS];
 180};
 181
 182struct qfq_sched {
 183        struct tcf_proto __rcu *filter_list;
 184        struct tcf_block        *block;
 185        struct Qdisc_class_hash clhash;
 186
 187        u64                     oldV, V;        /* Precise virtual times. */
 188        struct qfq_aggregate    *in_serv_agg;   /* Aggregate being served. */
 189        u32                     wsum;           /* weight sum */
 190        u32                     iwsum;          /* inverse weight sum */
 191
 192        unsigned long bitmaps[QFQ_MAX_STATE];       /* Group bitmaps. */
 193        struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
 194        u32 min_slot_shift;     /* Index of the group-0 bit in the bitmaps. */
 195
 196        u32 max_agg_classes;            /* Max number of classes per aggr. */
 197        struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
 198};
 199
 200/*
 201 * Possible reasons why the timestamps of an aggregate are updated
 202 * enqueue: the aggregate switches from idle to active and must scheduled
 203 *          for service
 204 * requeue: the aggregate finishes its budget, so it stops being served and
 205 *          must be rescheduled for service
 206 */
 207enum update_reason {enqueue, requeue};
 208
 209static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
 210{
 211        struct qfq_sched *q = qdisc_priv(sch);
 212        struct Qdisc_class_common *clc;
 213
 214        clc = qdisc_class_find(&q->clhash, classid);
 215        if (clc == NULL)
 216                return NULL;
 217        return container_of(clc, struct qfq_class, common);
 218}
 219
 220static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
 221        [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
 222        [TCA_QFQ_LMAX] = { .type = NLA_U32 },
 223};
 224
 225/*
 226 * Calculate a flow index, given its weight and maximum packet length.
 227 * index = log_2(maxlen/weight) but we need to apply the scaling.
 228 * This is used only once at flow creation.
 229 */
 230static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
 231{
 232        u64 slot_size = (u64)maxlen * inv_w;
 233        unsigned long size_map;
 234        int index = 0;
 235
 236        size_map = slot_size >> min_slot_shift;
 237        if (!size_map)
 238                goto out;
 239
 240        index = __fls(size_map) + 1;    /* basically a log_2 */
 241        index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
 242
 243        if (index < 0)
 244                index = 0;
 245out:
 246        pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
 247                 (unsigned long) ONE_FP/inv_w, maxlen, index);
 248
 249        return index;
 250}
 251
 252static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
 253static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
 254                             enum update_reason);
 255
 256static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
 257                         u32 lmax, u32 weight)
 258{
 259        INIT_LIST_HEAD(&agg->active);
 260        hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
 261
 262        agg->lmax = lmax;
 263        agg->class_weight = weight;
 264}
 265
 266static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
 267                                          u32 lmax, u32 weight)
 268{
 269        struct qfq_aggregate *agg;
 270
 271        hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
 272                if (agg->lmax == lmax && agg->class_weight == weight)
 273                        return agg;
 274
 275        return NULL;
 276}
 277
 278
 279/* Update aggregate as a function of the new number of classes. */
 280static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
 281                           int new_num_classes)
 282{
 283        u32 new_agg_weight;
 284
 285        if (new_num_classes == q->max_agg_classes)
 286                hlist_del_init(&agg->nonfull_next);
 287
 288        if (agg->num_classes > new_num_classes &&
 289            new_num_classes == q->max_agg_classes - 1) /* agg no more full */
 290                hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
 291
 292        /* The next assignment may let
 293         * agg->initial_budget > agg->budgetmax
 294         * hold, we will take it into account in charge_actual_service().
 295         */
 296        agg->budgetmax = new_num_classes * agg->lmax;
 297        new_agg_weight = agg->class_weight * new_num_classes;
 298        agg->inv_w = ONE_FP/new_agg_weight;
 299
 300        if (agg->grp == NULL) {
 301                int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
 302                                       q->min_slot_shift);
 303                agg->grp = &q->groups[i];
 304        }
 305
 306        q->wsum +=
 307                (int) agg->class_weight * (new_num_classes - agg->num_classes);
 308        q->iwsum = ONE_FP / q->wsum;
 309
 310        agg->num_classes = new_num_classes;
 311}
 312
 313/* Add class to aggregate. */
 314static void qfq_add_to_agg(struct qfq_sched *q,
 315                           struct qfq_aggregate *agg,
 316                           struct qfq_class *cl)
 317{
 318        cl->agg = agg;
 319
 320        qfq_update_agg(q, agg, agg->num_classes+1);
 321        if (cl->qdisc->q.qlen > 0) { /* adding an active class */
 322                list_add_tail(&cl->alist, &agg->active);
 323                if (list_first_entry(&agg->active, struct qfq_class, alist) ==
 324                    cl && q->in_serv_agg != agg) /* agg was inactive */
 325                        qfq_activate_agg(q, agg, enqueue); /* schedule agg */
 326        }
 327}
 328
 329static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
 330
 331static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
 332{
 333        hlist_del_init(&agg->nonfull_next);
 334        q->wsum -= agg->class_weight;
 335        if (q->wsum != 0)
 336                q->iwsum = ONE_FP / q->wsum;
 337
 338        if (q->in_serv_agg == agg)
 339                q->in_serv_agg = qfq_choose_next_agg(q);
 340        kfree(agg);
 341}
 342
 343/* Deschedule class from within its parent aggregate. */
 344static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
 345{
 346        struct qfq_aggregate *agg = cl->agg;
 347
 348
 349        list_del(&cl->alist); /* remove from RR queue of the aggregate */
 350        if (list_empty(&agg->active)) /* agg is now inactive */
 351                qfq_deactivate_agg(q, agg);
 352}
 353
 354/* Remove class from its parent aggregate. */
 355static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
 356{
 357        struct qfq_aggregate *agg = cl->agg;
 358
 359        cl->agg = NULL;
 360        if (agg->num_classes == 1) { /* agg being emptied, destroy it */
 361                qfq_destroy_agg(q, agg);
 362                return;
 363        }
 364        qfq_update_agg(q, agg, agg->num_classes-1);
 365}
 366
 367/* Deschedule class and remove it from its parent aggregate. */
 368static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
 369{
 370        if (cl->qdisc->q.qlen > 0) /* class is active */
 371                qfq_deactivate_class(q, cl);
 372
 373        qfq_rm_from_agg(q, cl);
 374}
 375
 376/* Move class to a new aggregate, matching the new class weight and/or lmax */
 377static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
 378                           u32 lmax)
 379{
 380        struct qfq_sched *q = qdisc_priv(sch);
 381        struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
 382
 383        if (new_agg == NULL) { /* create new aggregate */
 384                new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
 385                if (new_agg == NULL)
 386                        return -ENOBUFS;
 387                qfq_init_agg(q, new_agg, lmax, weight);
 388        }
 389        qfq_deact_rm_from_agg(q, cl);
 390        qfq_add_to_agg(q, new_agg, cl);
 391
 392        return 0;
 393}
 394
 395static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
 396                            struct nlattr **tca, unsigned long *arg,
 397                            struct netlink_ext_ack *extack)
 398{
 399        struct qfq_sched *q = qdisc_priv(sch);
 400        struct qfq_class *cl = (struct qfq_class *)*arg;
 401        bool existing = false;
 402        struct nlattr *tb[TCA_QFQ_MAX + 1];
 403        struct qfq_aggregate *new_agg = NULL;
 404        u32 weight, lmax, inv_w;
 405        int err;
 406        int delta_w;
 407
 408        if (tca[TCA_OPTIONS] == NULL) {
 409                pr_notice("qfq: no options\n");
 410                return -EINVAL;
 411        }
 412
 413        err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy,
 414                               NULL);
 415        if (err < 0)
 416                return err;
 417
 418        if (tb[TCA_QFQ_WEIGHT]) {
 419                weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
 420                if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
 421                        pr_notice("qfq: invalid weight %u\n", weight);
 422                        return -EINVAL;
 423                }
 424        } else
 425                weight = 1;
 426
 427        if (tb[TCA_QFQ_LMAX]) {
 428                lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
 429                if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
 430                        pr_notice("qfq: invalid max length %u\n", lmax);
 431                        return -EINVAL;
 432                }
 433        } else
 434                lmax = psched_mtu(qdisc_dev(sch));
 435
 436        inv_w = ONE_FP / weight;
 437        weight = ONE_FP / inv_w;
 438
 439        if (cl != NULL &&
 440            lmax == cl->agg->lmax &&
 441            weight == cl->agg->class_weight)
 442                return 0; /* nothing to change */
 443
 444        delta_w = weight - (cl ? cl->agg->class_weight : 0);
 445
 446        if (q->wsum + delta_w > QFQ_MAX_WSUM) {
 447                pr_notice("qfq: total weight out of range (%d + %u)\n",
 448                          delta_w, q->wsum);
 449                return -EINVAL;
 450        }
 451
 452        if (cl != NULL) { /* modify existing class */
 453                if (tca[TCA_RATE]) {
 454                        err = gen_replace_estimator(&cl->bstats, NULL,
 455                                                    &cl->rate_est,
 456                                                    NULL,
 457                                                    qdisc_root_sleeping_running(sch),
 458                                                    tca[TCA_RATE]);
 459                        if (err)
 460                                return err;
 461                }
 462                existing = true;
 463                goto set_change_agg;
 464        }
 465
 466        /* create and init new class */
 467        cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
 468        if (cl == NULL)
 469                return -ENOBUFS;
 470
 471        cl->common.classid = classid;
 472        cl->deficit = lmax;
 473
 474        cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
 475                                      classid, NULL);
 476        if (cl->qdisc == NULL)
 477                cl->qdisc = &noop_qdisc;
 478
 479        if (tca[TCA_RATE]) {
 480                err = gen_new_estimator(&cl->bstats, NULL,
 481                                        &cl->rate_est,
 482                                        NULL,
 483                                        qdisc_root_sleeping_running(sch),
 484                                        tca[TCA_RATE]);
 485                if (err)
 486                        goto destroy_class;
 487        }
 488
 489        if (cl->qdisc != &noop_qdisc)
 490                qdisc_hash_add(cl->qdisc, true);
 491        sch_tree_lock(sch);
 492        qdisc_class_hash_insert(&q->clhash, &cl->common);
 493        sch_tree_unlock(sch);
 494
 495        qdisc_class_hash_grow(sch, &q->clhash);
 496
 497set_change_agg:
 498        sch_tree_lock(sch);
 499        new_agg = qfq_find_agg(q, lmax, weight);
 500        if (new_agg == NULL) { /* create new aggregate */
 501                sch_tree_unlock(sch);
 502                new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
 503                if (new_agg == NULL) {
 504                        err = -ENOBUFS;
 505                        gen_kill_estimator(&cl->rate_est);
 506                        goto destroy_class;
 507                }
 508                sch_tree_lock(sch);
 509                qfq_init_agg(q, new_agg, lmax, weight);
 510        }
 511        if (existing)
 512                qfq_deact_rm_from_agg(q, cl);
 513        qfq_add_to_agg(q, new_agg, cl);
 514        sch_tree_unlock(sch);
 515
 516        *arg = (unsigned long)cl;
 517        return 0;
 518
 519destroy_class:
 520        qdisc_put(cl->qdisc);
 521        kfree(cl);
 522        return err;
 523}
 524
 525static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
 526{
 527        struct qfq_sched *q = qdisc_priv(sch);
 528
 529        qfq_rm_from_agg(q, cl);
 530        gen_kill_estimator(&cl->rate_est);
 531        qdisc_put(cl->qdisc);
 532        kfree(cl);
 533}
 534
 535static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
 536{
 537        struct qfq_sched *q = qdisc_priv(sch);
 538        struct qfq_class *cl = (struct qfq_class *)arg;
 539
 540        if (cl->filter_cnt > 0)
 541                return -EBUSY;
 542
 543        sch_tree_lock(sch);
 544
 545        qdisc_purge_queue(cl->qdisc);
 546        qdisc_class_hash_remove(&q->clhash, &cl->common);
 547
 548        sch_tree_unlock(sch);
 549
 550        qfq_destroy_class(sch, cl);
 551        return 0;
 552}
 553
 554static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
 555{
 556        return (unsigned long)qfq_find_class(sch, classid);
 557}
 558
 559static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
 560                                       struct netlink_ext_ack *extack)
 561{
 562        struct qfq_sched *q = qdisc_priv(sch);
 563
 564        if (cl)
 565                return NULL;
 566
 567        return q->block;
 568}
 569
 570static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
 571                                  u32 classid)
 572{
 573        struct qfq_class *cl = qfq_find_class(sch, classid);
 574
 575        if (cl != NULL)
 576                cl->filter_cnt++;
 577
 578        return (unsigned long)cl;
 579}
 580
 581static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
 582{
 583        struct qfq_class *cl = (struct qfq_class *)arg;
 584
 585        cl->filter_cnt--;
 586}
 587
 588static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
 589                           struct Qdisc *new, struct Qdisc **old,
 590                           struct netlink_ext_ack *extack)
 591{
 592        struct qfq_class *cl = (struct qfq_class *)arg;
 593
 594        if (new == NULL) {
 595                new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
 596                                        cl->common.classid, NULL);
 597                if (new == NULL)
 598                        new = &noop_qdisc;
 599        }
 600
 601        *old = qdisc_replace(sch, new, &cl->qdisc);
 602        return 0;
 603}
 604
 605static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
 606{
 607        struct qfq_class *cl = (struct qfq_class *)arg;
 608
 609        return cl->qdisc;
 610}
 611
 612static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
 613                          struct sk_buff *skb, struct tcmsg *tcm)
 614{
 615        struct qfq_class *cl = (struct qfq_class *)arg;
 616        struct nlattr *nest;
 617
 618        tcm->tcm_parent = TC_H_ROOT;
 619        tcm->tcm_handle = cl->common.classid;
 620        tcm->tcm_info   = cl->qdisc->handle;
 621
 622        nest = nla_nest_start(skb, TCA_OPTIONS);
 623        if (nest == NULL)
 624                goto nla_put_failure;
 625        if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
 626            nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
 627                goto nla_put_failure;
 628        return nla_nest_end(skb, nest);
 629
 630nla_put_failure:
 631        nla_nest_cancel(skb, nest);
 632        return -EMSGSIZE;
 633}
 634
 635static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
 636                                struct gnet_dump *d)
 637{
 638        struct qfq_class *cl = (struct qfq_class *)arg;
 639        struct tc_qfq_stats xstats;
 640
 641        memset(&xstats, 0, sizeof(xstats));
 642
 643        xstats.weight = cl->agg->class_weight;
 644        xstats.lmax = cl->agg->lmax;
 645
 646        if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
 647                                  d, NULL, &cl->bstats) < 0 ||
 648            gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
 649            qdisc_qstats_copy(d, cl->qdisc) < 0)
 650                return -1;
 651
 652        return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
 653}
 654
 655static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
 656{
 657        struct qfq_sched *q = qdisc_priv(sch);
 658        struct qfq_class *cl;
 659        unsigned int i;
 660
 661        if (arg->stop)
 662                return;
 663
 664        for (i = 0; i < q->clhash.hashsize; i++) {
 665                hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
 666                        if (arg->count < arg->skip) {
 667                                arg->count++;
 668                                continue;
 669                        }
 670                        if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
 671                                arg->stop = 1;
 672                                return;
 673                        }
 674                        arg->count++;
 675                }
 676        }
 677}
 678
 679static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
 680                                      int *qerr)
 681{
 682        struct qfq_sched *q = qdisc_priv(sch);
 683        struct qfq_class *cl;
 684        struct tcf_result res;
 685        struct tcf_proto *fl;
 686        int result;
 687
 688        if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
 689                pr_debug("qfq_classify: found %d\n", skb->priority);
 690                cl = qfq_find_class(sch, skb->priority);
 691                if (cl != NULL)
 692                        return cl;
 693        }
 694
 695        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 696        fl = rcu_dereference_bh(q->filter_list);
 697        result = tcf_classify(skb, fl, &res, false);
 698        if (result >= 0) {
 699#ifdef CONFIG_NET_CLS_ACT
 700                switch (result) {
 701                case TC_ACT_QUEUED:
 702                case TC_ACT_STOLEN:
 703                case TC_ACT_TRAP:
 704                        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
 705                        /* fall through */
 706                case TC_ACT_SHOT:
 707                        return NULL;
 708                }
 709#endif
 710                cl = (struct qfq_class *)res.class;
 711                if (cl == NULL)
 712                        cl = qfq_find_class(sch, res.classid);
 713                return cl;
 714        }
 715
 716        return NULL;
 717}
 718
 719/* Generic comparison function, handling wraparound. */
 720static inline int qfq_gt(u64 a, u64 b)
 721{
 722        return (s64)(a - b) > 0;
 723}
 724
 725/* Round a precise timestamp to its slotted value. */
 726static inline u64 qfq_round_down(u64 ts, unsigned int shift)
 727{
 728        return ts & ~((1ULL << shift) - 1);
 729}
 730
 731/* return the pointer to the group with lowest index in the bitmap */
 732static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
 733                                        unsigned long bitmap)
 734{
 735        int index = __ffs(bitmap);
 736        return &q->groups[index];
 737}
 738/* Calculate a mask to mimic what would be ffs_from(). */
 739static inline unsigned long mask_from(unsigned long bitmap, int from)
 740{
 741        return bitmap & ~((1UL << from) - 1);
 742}
 743
 744/*
 745 * The state computation relies on ER=0, IR=1, EB=2, IB=3
 746 * First compute eligibility comparing grp->S, q->V,
 747 * then check if someone is blocking us and possibly add EB
 748 */
 749static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
 750{
 751        /* if S > V we are not eligible */
 752        unsigned int state = qfq_gt(grp->S, q->V);
 753        unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
 754        struct qfq_group *next;
 755
 756        if (mask) {
 757                next = qfq_ffs(q, mask);
 758                if (qfq_gt(grp->F, next->F))
 759                        state |= EB;
 760        }
 761
 762        return state;
 763}
 764
 765
 766/*
 767 * In principle
 768 *      q->bitmaps[dst] |= q->bitmaps[src] & mask;
 769 *      q->bitmaps[src] &= ~mask;
 770 * but we should make sure that src != dst
 771 */
 772static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
 773                                   int src, int dst)
 774{
 775        q->bitmaps[dst] |= q->bitmaps[src] & mask;
 776        q->bitmaps[src] &= ~mask;
 777}
 778
 779static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
 780{
 781        unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
 782        struct qfq_group *next;
 783
 784        if (mask) {
 785                next = qfq_ffs(q, mask);
 786                if (!qfq_gt(next->F, old_F))
 787                        return;
 788        }
 789
 790        mask = (1UL << index) - 1;
 791        qfq_move_groups(q, mask, EB, ER);
 792        qfq_move_groups(q, mask, IB, IR);
 793}
 794
 795/*
 796 * perhaps
 797 *
 798        old_V ^= q->V;
 799        old_V >>= q->min_slot_shift;
 800        if (old_V) {
 801                ...
 802        }
 803 *
 804 */
 805static void qfq_make_eligible(struct qfq_sched *q)
 806{
 807        unsigned long vslot = q->V >> q->min_slot_shift;
 808        unsigned long old_vslot = q->oldV >> q->min_slot_shift;
 809
 810        if (vslot != old_vslot) {
 811                unsigned long mask;
 812                int last_flip_pos = fls(vslot ^ old_vslot);
 813
 814                if (last_flip_pos > 31) /* higher than the number of groups */
 815                        mask = ~0UL;    /* make all groups eligible */
 816                else
 817                        mask = (1UL << last_flip_pos) - 1;
 818
 819                qfq_move_groups(q, mask, IR, ER);
 820                qfq_move_groups(q, mask, IB, EB);
 821        }
 822}
 823
 824/*
 825 * The index of the slot in which the input aggregate agg is to be
 826 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
 827 * and not a '-1' because the start time of the group may be moved
 828 * backward by one slot after the aggregate has been inserted, and
 829 * this would cause non-empty slots to be right-shifted by one
 830 * position.
 831 *
 832 * QFQ+ fully satisfies this bound to the slot index if the parameters
 833 * of the classes are not changed dynamically, and if QFQ+ never
 834 * happens to postpone the service of agg unjustly, i.e., it never
 835 * happens that the aggregate becomes backlogged and eligible, or just
 836 * eligible, while an aggregate with a higher approximated finish time
 837 * is being served. In particular, in this case QFQ+ guarantees that
 838 * the timestamps of agg are low enough that the slot index is never
 839 * higher than 2. Unfortunately, QFQ+ cannot provide the same
 840 * guarantee if it happens to unjustly postpone the service of agg, or
 841 * if the parameters of some class are changed.
 842 *
 843 * As for the first event, i.e., an out-of-order service, the
 844 * upper bound to the slot index guaranteed by QFQ+ grows to
 845 * 2 +
 846 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
 847 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
 848 *
 849 * The following function deals with this problem by backward-shifting
 850 * the timestamps of agg, if needed, so as to guarantee that the slot
 851 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
 852 * cause the service of other aggregates to be postponed, yet the
 853 * worst-case guarantees of these aggregates are not violated.  In
 854 * fact, in case of no out-of-order service, the timestamps of agg
 855 * would have been even lower than they are after the backward shift,
 856 * because QFQ+ would have guaranteed a maximum value equal to 2 for
 857 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
 858 * service is postponed because of the backward-shift would have
 859 * however waited for the service of agg before being served.
 860 *
 861 * The other event that may cause the slot index to be higher than 2
 862 * for agg is a recent change of the parameters of some class. If the
 863 * weight of a class is increased or the lmax (max_pkt_size) of the
 864 * class is decreased, then a new aggregate with smaller slot size
 865 * than the original parent aggregate of the class may happen to be
 866 * activated. The activation of this aggregate should be properly
 867 * delayed to when the service of the class has finished in the ideal
 868 * system tracked by QFQ+. If the activation of the aggregate is not
 869 * delayed to this reference time instant, then this aggregate may be
 870 * unjustly served before other aggregates waiting for service. This
 871 * may cause the above bound to the slot index to be violated for some
 872 * of these unlucky aggregates.
 873 *
 874 * Instead of delaying the activation of the new aggregate, which is
 875 * quite complex, the above-discussed capping of the slot index is
 876 * used to handle also the consequences of a change of the parameters
 877 * of a class.
 878 */
 879static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
 880                            u64 roundedS)
 881{
 882        u64 slot = (roundedS - grp->S) >> grp->slot_shift;
 883        unsigned int i; /* slot index in the bucket list */
 884
 885        if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
 886                u64 deltaS = roundedS - grp->S -
 887                        ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
 888                agg->S -= deltaS;
 889                agg->F -= deltaS;
 890                slot = QFQ_MAX_SLOTS - 2;
 891        }
 892
 893        i = (grp->front + slot) % QFQ_MAX_SLOTS;
 894
 895        hlist_add_head(&agg->next, &grp->slots[i]);
 896        __set_bit(slot, &grp->full_slots);
 897}
 898
 899/* Maybe introduce hlist_first_entry?? */
 900static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
 901{
 902        return hlist_entry(grp->slots[grp->front].first,
 903                           struct qfq_aggregate, next);
 904}
 905
 906/*
 907 * remove the entry from the slot
 908 */
 909static void qfq_front_slot_remove(struct qfq_group *grp)
 910{
 911        struct qfq_aggregate *agg = qfq_slot_head(grp);
 912
 913        BUG_ON(!agg);
 914        hlist_del(&agg->next);
 915        if (hlist_empty(&grp->slots[grp->front]))
 916                __clear_bit(0, &grp->full_slots);
 917}
 918
 919/*
 920 * Returns the first aggregate in the first non-empty bucket of the
 921 * group. As a side effect, adjusts the bucket list so the first
 922 * non-empty bucket is at position 0 in full_slots.
 923 */
 924static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
 925{
 926        unsigned int i;
 927
 928        pr_debug("qfq slot_scan: grp %u full %#lx\n",
 929                 grp->index, grp->full_slots);
 930
 931        if (grp->full_slots == 0)
 932                return NULL;
 933
 934        i = __ffs(grp->full_slots);  /* zero based */
 935        if (i > 0) {
 936                grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
 937                grp->full_slots >>= i;
 938        }
 939
 940        return qfq_slot_head(grp);
 941}
 942
 943/*
 944 * adjust the bucket list. When the start time of a group decreases,
 945 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
 946 * move the objects. The mask of occupied slots must be shifted
 947 * because we use ffs() to find the first non-empty slot.
 948 * This covers decreases in the group's start time, but what about
 949 * increases of the start time ?
 950 * Here too we should make sure that i is less than 32
 951 */
 952static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
 953{
 954        unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
 955
 956        grp->full_slots <<= i;
 957        grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
 958}
 959
 960static void qfq_update_eligible(struct qfq_sched *q)
 961{
 962        struct qfq_group *grp;
 963        unsigned long ineligible;
 964
 965        ineligible = q->bitmaps[IR] | q->bitmaps[IB];
 966        if (ineligible) {
 967                if (!q->bitmaps[ER]) {
 968                        grp = qfq_ffs(q, ineligible);
 969                        if (qfq_gt(grp->S, q->V))
 970                                q->V = grp->S;
 971                }
 972                qfq_make_eligible(q);
 973        }
 974}
 975
 976/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
 977static void agg_dequeue(struct qfq_aggregate *agg,
 978                        struct qfq_class *cl, unsigned int len)
 979{
 980        qdisc_dequeue_peeked(cl->qdisc);
 981
 982        cl->deficit -= (int) len;
 983
 984        if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
 985                list_del(&cl->alist);
 986        else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
 987                cl->deficit += agg->lmax;
 988                list_move_tail(&cl->alist, &agg->active);
 989        }
 990}
 991
 992static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
 993                                           struct qfq_class **cl,
 994                                           unsigned int *len)
 995{
 996        struct sk_buff *skb;
 997
 998        *cl = list_first_entry(&agg->active, struct qfq_class, alist);
 999        skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1000        if (skb == NULL)
1001                WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1002        else
1003                *len = qdisc_pkt_len(skb);
1004
1005        return skb;
1006}
1007
1008/* Update F according to the actual service received by the aggregate. */
1009static inline void charge_actual_service(struct qfq_aggregate *agg)
1010{
1011        /* Compute the service received by the aggregate, taking into
1012         * account that, after decreasing the number of classes in
1013         * agg, it may happen that
1014         * agg->initial_budget - agg->budget > agg->bugdetmax
1015         */
1016        u32 service_received = min(agg->budgetmax,
1017                                   agg->initial_budget - agg->budget);
1018
1019        agg->F = agg->S + (u64)service_received * agg->inv_w;
1020}
1021
1022/* Assign a reasonable start time for a new aggregate in group i.
1023 * Admissible values for \hat(F) are multiples of \sigma_i
1024 * no greater than V+\sigma_i . Larger values mean that
1025 * we had a wraparound so we consider the timestamp to be stale.
1026 *
1027 * If F is not stale and F >= V then we set S = F.
1028 * Otherwise we should assign S = V, but this may violate
1029 * the ordering in EB (see [2]). So, if we have groups in ER,
1030 * set S to the F_j of the first group j which would be blocking us.
1031 * We are guaranteed not to move S backward because
1032 * otherwise our group i would still be blocked.
1033 */
1034static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1035{
1036        unsigned long mask;
1037        u64 limit, roundedF;
1038        int slot_shift = agg->grp->slot_shift;
1039
1040        roundedF = qfq_round_down(agg->F, slot_shift);
1041        limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1042
1043        if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1044                /* timestamp was stale */
1045                mask = mask_from(q->bitmaps[ER], agg->grp->index);
1046                if (mask) {
1047                        struct qfq_group *next = qfq_ffs(q, mask);
1048                        if (qfq_gt(roundedF, next->F)) {
1049                                if (qfq_gt(limit, next->F))
1050                                        agg->S = next->F;
1051                                else /* preserve timestamp correctness */
1052                                        agg->S = limit;
1053                                return;
1054                        }
1055                }
1056                agg->S = q->V;
1057        } else  /* timestamp is not stale */
1058                agg->S = agg->F;
1059}
1060
1061/* Update the timestamps of agg before scheduling/rescheduling it for
1062 * service.  In particular, assign to agg->F its maximum possible
1063 * value, i.e., the virtual finish time with which the aggregate
1064 * should be labeled if it used all its budget once in service.
1065 */
1066static inline void
1067qfq_update_agg_ts(struct qfq_sched *q,
1068                    struct qfq_aggregate *agg, enum update_reason reason)
1069{
1070        if (reason != requeue)
1071                qfq_update_start(q, agg);
1072        else /* just charge agg for the service received */
1073                agg->S = agg->F;
1074
1075        agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1076}
1077
1078static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1079
1080static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1081{
1082        struct qfq_sched *q = qdisc_priv(sch);
1083        struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1084        struct qfq_class *cl;
1085        struct sk_buff *skb = NULL;
1086        /* next-packet len, 0 means no more active classes in in-service agg */
1087        unsigned int len = 0;
1088
1089        if (in_serv_agg == NULL)
1090                return NULL;
1091
1092        if (!list_empty(&in_serv_agg->active))
1093                skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1094
1095        /*
1096         * If there are no active classes in the in-service aggregate,
1097         * or if the aggregate has not enough budget to serve its next
1098         * class, then choose the next aggregate to serve.
1099         */
1100        if (len == 0 || in_serv_agg->budget < len) {
1101                charge_actual_service(in_serv_agg);
1102
1103                /* recharge the budget of the aggregate */
1104                in_serv_agg->initial_budget = in_serv_agg->budget =
1105                        in_serv_agg->budgetmax;
1106
1107                if (!list_empty(&in_serv_agg->active)) {
1108                        /*
1109                         * Still active: reschedule for
1110                         * service. Possible optimization: if no other
1111                         * aggregate is active, then there is no point
1112                         * in rescheduling this aggregate, and we can
1113                         * just keep it as the in-service one. This
1114                         * should be however a corner case, and to
1115                         * handle it, we would need to maintain an
1116                         * extra num_active_aggs field.
1117                        */
1118                        qfq_update_agg_ts(q, in_serv_agg, requeue);
1119                        qfq_schedule_agg(q, in_serv_agg);
1120                } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1121                        q->in_serv_agg = NULL;
1122                        return NULL;
1123                }
1124
1125                /*
1126                 * If we get here, there are other aggregates queued:
1127                 * choose the new aggregate to serve.
1128                 */
1129                in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1130                skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1131        }
1132        if (!skb)
1133                return NULL;
1134
1135        qdisc_qstats_backlog_dec(sch, skb);
1136        sch->q.qlen--;
1137        qdisc_bstats_update(sch, skb);
1138
1139        agg_dequeue(in_serv_agg, cl, len);
1140        /* If lmax is lowered, through qfq_change_class, for a class
1141         * owning pending packets with larger size than the new value
1142         * of lmax, then the following condition may hold.
1143         */
1144        if (unlikely(in_serv_agg->budget < len))
1145                in_serv_agg->budget = 0;
1146        else
1147                in_serv_agg->budget -= len;
1148
1149        q->V += (u64)len * q->iwsum;
1150        pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1151                 len, (unsigned long long) in_serv_agg->F,
1152                 (unsigned long long) q->V);
1153
1154        return skb;
1155}
1156
1157static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1158{
1159        struct qfq_group *grp;
1160        struct qfq_aggregate *agg, *new_front_agg;
1161        u64 old_F;
1162
1163        qfq_update_eligible(q);
1164        q->oldV = q->V;
1165
1166        if (!q->bitmaps[ER])
1167                return NULL;
1168
1169        grp = qfq_ffs(q, q->bitmaps[ER]);
1170        old_F = grp->F;
1171
1172        agg = qfq_slot_head(grp);
1173
1174        /* agg starts to be served, remove it from schedule */
1175        qfq_front_slot_remove(grp);
1176
1177        new_front_agg = qfq_slot_scan(grp);
1178
1179        if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1180                __clear_bit(grp->index, &q->bitmaps[ER]);
1181        else {
1182                u64 roundedS = qfq_round_down(new_front_agg->S,
1183                                              grp->slot_shift);
1184                unsigned int s;
1185
1186                if (grp->S == roundedS)
1187                        return agg;
1188                grp->S = roundedS;
1189                grp->F = roundedS + (2ULL << grp->slot_shift);
1190                __clear_bit(grp->index, &q->bitmaps[ER]);
1191                s = qfq_calc_state(q, grp);
1192                __set_bit(grp->index, &q->bitmaps[s]);
1193        }
1194
1195        qfq_unblock_groups(q, grp->index, old_F);
1196
1197        return agg;
1198}
1199
1200static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1201                       struct sk_buff **to_free)
1202{
1203        unsigned int len = qdisc_pkt_len(skb), gso_segs;
1204        struct qfq_sched *q = qdisc_priv(sch);
1205        struct qfq_class *cl;
1206        struct qfq_aggregate *agg;
1207        int err = 0;
1208        bool first;
1209
1210        cl = qfq_classify(skb, sch, &err);
1211        if (cl == NULL) {
1212                if (err & __NET_XMIT_BYPASS)
1213                        qdisc_qstats_drop(sch);
1214                __qdisc_drop(skb, to_free);
1215                return err;
1216        }
1217        pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1218
1219        if (unlikely(cl->agg->lmax < len)) {
1220                pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1221                         cl->agg->lmax, len, cl->common.classid);
1222                err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1223                if (err) {
1224                        cl->qstats.drops++;
1225                        return qdisc_drop(skb, sch, to_free);
1226                }
1227        }
1228
1229        gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1230        first = !cl->qdisc->q.qlen;
1231        err = qdisc_enqueue(skb, cl->qdisc, to_free);
1232        if (unlikely(err != NET_XMIT_SUCCESS)) {
1233                pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1234                if (net_xmit_drop_count(err)) {
1235                        cl->qstats.drops++;
1236                        qdisc_qstats_drop(sch);
1237                }
1238                return err;
1239        }
1240
1241        cl->bstats.bytes += len;
1242        cl->bstats.packets += gso_segs;
1243        sch->qstats.backlog += len;
1244        ++sch->q.qlen;
1245
1246        agg = cl->agg;
1247        /* if the queue was not empty, then done here */
1248        if (!first) {
1249                if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1250                    list_first_entry(&agg->active, struct qfq_class, alist)
1251                    == cl && cl->deficit < len)
1252                        list_move_tail(&cl->alist, &agg->active);
1253
1254                return err;
1255        }
1256
1257        /* schedule class for service within the aggregate */
1258        cl->deficit = agg->lmax;
1259        list_add_tail(&cl->alist, &agg->active);
1260
1261        if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1262            q->in_serv_agg == agg)
1263                return err; /* non-empty or in service, nothing else to do */
1264
1265        qfq_activate_agg(q, agg, enqueue);
1266
1267        return err;
1268}
1269
1270/*
1271 * Schedule aggregate according to its timestamps.
1272 */
1273static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1274{
1275        struct qfq_group *grp = agg->grp;
1276        u64 roundedS;
1277        int s;
1278
1279        roundedS = qfq_round_down(agg->S, grp->slot_shift);
1280
1281        /*
1282         * Insert agg in the correct bucket.
1283         * If agg->S >= grp->S we don't need to adjust the
1284         * bucket list and simply go to the insertion phase.
1285         * Otherwise grp->S is decreasing, we must make room
1286         * in the bucket list, and also recompute the group state.
1287         * Finally, if there were no flows in this group and nobody
1288         * was in ER make sure to adjust V.
1289         */
1290        if (grp->full_slots) {
1291                if (!qfq_gt(grp->S, agg->S))
1292                        goto skip_update;
1293
1294                /* create a slot for this agg->S */
1295                qfq_slot_rotate(grp, roundedS);
1296                /* group was surely ineligible, remove */
1297                __clear_bit(grp->index, &q->bitmaps[IR]);
1298                __clear_bit(grp->index, &q->bitmaps[IB]);
1299        } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1300                   q->in_serv_agg == NULL)
1301                q->V = roundedS;
1302
1303        grp->S = roundedS;
1304        grp->F = roundedS + (2ULL << grp->slot_shift);
1305        s = qfq_calc_state(q, grp);
1306        __set_bit(grp->index, &q->bitmaps[s]);
1307
1308        pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1309                 s, q->bitmaps[s],
1310                 (unsigned long long) agg->S,
1311                 (unsigned long long) agg->F,
1312                 (unsigned long long) q->V);
1313
1314skip_update:
1315        qfq_slot_insert(grp, agg, roundedS);
1316}
1317
1318
1319/* Update agg ts and schedule agg for service */
1320static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1321                             enum update_reason reason)
1322{
1323        agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1324
1325        qfq_update_agg_ts(q, agg, reason);
1326        if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1327                q->in_serv_agg = agg; /* start serving this aggregate */
1328                 /* update V: to be in service, agg must be eligible */
1329                q->oldV = q->V = agg->S;
1330        } else if (agg != q->in_serv_agg)
1331                qfq_schedule_agg(q, agg);
1332}
1333
1334static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1335                            struct qfq_aggregate *agg)
1336{
1337        unsigned int i, offset;
1338        u64 roundedS;
1339
1340        roundedS = qfq_round_down(agg->S, grp->slot_shift);
1341        offset = (roundedS - grp->S) >> grp->slot_shift;
1342
1343        i = (grp->front + offset) % QFQ_MAX_SLOTS;
1344
1345        hlist_del(&agg->next);
1346        if (hlist_empty(&grp->slots[i]))
1347                __clear_bit(offset, &grp->full_slots);
1348}
1349
1350/*
1351 * Called to forcibly deschedule an aggregate.  If the aggregate is
1352 * not in the front bucket, or if the latter has other aggregates in
1353 * the front bucket, we can simply remove the aggregate with no other
1354 * side effects.
1355 * Otherwise we must propagate the event up.
1356 */
1357static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1358{
1359        struct qfq_group *grp = agg->grp;
1360        unsigned long mask;
1361        u64 roundedS;
1362        int s;
1363
1364        if (agg == q->in_serv_agg) {
1365                charge_actual_service(agg);
1366                q->in_serv_agg = qfq_choose_next_agg(q);
1367                return;
1368        }
1369
1370        agg->F = agg->S;
1371        qfq_slot_remove(q, grp, agg);
1372
1373        if (!grp->full_slots) {
1374                __clear_bit(grp->index, &q->bitmaps[IR]);
1375                __clear_bit(grp->index, &q->bitmaps[EB]);
1376                __clear_bit(grp->index, &q->bitmaps[IB]);
1377
1378                if (test_bit(grp->index, &q->bitmaps[ER]) &&
1379                    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1380                        mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1381                        if (mask)
1382                                mask = ~((1UL << __fls(mask)) - 1);
1383                        else
1384                                mask = ~0UL;
1385                        qfq_move_groups(q, mask, EB, ER);
1386                        qfq_move_groups(q, mask, IB, IR);
1387                }
1388                __clear_bit(grp->index, &q->bitmaps[ER]);
1389        } else if (hlist_empty(&grp->slots[grp->front])) {
1390                agg = qfq_slot_scan(grp);
1391                roundedS = qfq_round_down(agg->S, grp->slot_shift);
1392                if (grp->S != roundedS) {
1393                        __clear_bit(grp->index, &q->bitmaps[ER]);
1394                        __clear_bit(grp->index, &q->bitmaps[IR]);
1395                        __clear_bit(grp->index, &q->bitmaps[EB]);
1396                        __clear_bit(grp->index, &q->bitmaps[IB]);
1397                        grp->S = roundedS;
1398                        grp->F = roundedS + (2ULL << grp->slot_shift);
1399                        s = qfq_calc_state(q, grp);
1400                        __set_bit(grp->index, &q->bitmaps[s]);
1401                }
1402        }
1403}
1404
1405static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1406{
1407        struct qfq_sched *q = qdisc_priv(sch);
1408        struct qfq_class *cl = (struct qfq_class *)arg;
1409
1410        qfq_deactivate_class(q, cl);
1411}
1412
1413static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1414                          struct netlink_ext_ack *extack)
1415{
1416        struct qfq_sched *q = qdisc_priv(sch);
1417        struct qfq_group *grp;
1418        int i, j, err;
1419        u32 max_cl_shift, maxbudg_shift, max_classes;
1420
1421        err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1422        if (err)
1423                return err;
1424
1425        err = qdisc_class_hash_init(&q->clhash);
1426        if (err < 0)
1427                return err;
1428
1429        if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1430                max_classes = QFQ_MAX_AGG_CLASSES;
1431        else
1432                max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1433        /* max_cl_shift = floor(log_2(max_classes)) */
1434        max_cl_shift = __fls(max_classes);
1435        q->max_agg_classes = 1<<max_cl_shift;
1436
1437        /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1438        maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1439        q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1440
1441        for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1442                grp = &q->groups[i];
1443                grp->index = i;
1444                grp->slot_shift = q->min_slot_shift + i;
1445                for (j = 0; j < QFQ_MAX_SLOTS; j++)
1446                        INIT_HLIST_HEAD(&grp->slots[j]);
1447        }
1448
1449        INIT_HLIST_HEAD(&q->nonfull_aggs);
1450
1451        return 0;
1452}
1453
1454static void qfq_reset_qdisc(struct Qdisc *sch)
1455{
1456        struct qfq_sched *q = qdisc_priv(sch);
1457        struct qfq_class *cl;
1458        unsigned int i;
1459
1460        for (i = 0; i < q->clhash.hashsize; i++) {
1461                hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1462                        if (cl->qdisc->q.qlen > 0)
1463                                qfq_deactivate_class(q, cl);
1464
1465                        qdisc_reset(cl->qdisc);
1466                }
1467        }
1468        sch->qstats.backlog = 0;
1469        sch->q.qlen = 0;
1470}
1471
1472static void qfq_destroy_qdisc(struct Qdisc *sch)
1473{
1474        struct qfq_sched *q = qdisc_priv(sch);
1475        struct qfq_class *cl;
1476        struct hlist_node *next;
1477        unsigned int i;
1478
1479        tcf_block_put(q->block);
1480
1481        for (i = 0; i < q->clhash.hashsize; i++) {
1482                hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1483                                          common.hnode) {
1484                        qfq_destroy_class(sch, cl);
1485                }
1486        }
1487        qdisc_class_hash_destroy(&q->clhash);
1488}
1489
1490static const struct Qdisc_class_ops qfq_class_ops = {
1491        .change         = qfq_change_class,
1492        .delete         = qfq_delete_class,
1493        .find           = qfq_search_class,
1494        .tcf_block      = qfq_tcf_block,
1495        .bind_tcf       = qfq_bind_tcf,
1496        .unbind_tcf     = qfq_unbind_tcf,
1497        .graft          = qfq_graft_class,
1498        .leaf           = qfq_class_leaf,
1499        .qlen_notify    = qfq_qlen_notify,
1500        .dump           = qfq_dump_class,
1501        .dump_stats     = qfq_dump_class_stats,
1502        .walk           = qfq_walk,
1503};
1504
1505static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1506        .cl_ops         = &qfq_class_ops,
1507        .id             = "qfq",
1508        .priv_size      = sizeof(struct qfq_sched),
1509        .enqueue        = qfq_enqueue,
1510        .dequeue        = qfq_dequeue,
1511        .peek           = qdisc_peek_dequeued,
1512        .init           = qfq_init_qdisc,
1513        .reset          = qfq_reset_qdisc,
1514        .destroy        = qfq_destroy_qdisc,
1515        .owner          = THIS_MODULE,
1516};
1517
1518static int __init qfq_init(void)
1519{
1520        return register_qdisc(&qfq_qdisc_ops);
1521}
1522
1523static void __exit qfq_exit(void)
1524{
1525        unregister_qdisc(&qfq_qdisc_ops);
1526}
1527
1528module_init(qfq_init);
1529module_exit(qfq_exit);
1530MODULE_LICENSE("GPL");
1531