linux/security/keys/key.c
<<
>>
Prefs
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/export.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root          key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root  key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 1000000;  /* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;           /* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;        /* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44        printk("__key_check: key %p {%08x} should be {%08x}\n",
  45               key, key->magic, KEY_DEBUG_MAGIC);
  46        BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56        struct key_user *candidate = NULL, *user;
  57        struct rb_node *parent, **p;
  58
  59try_again:
  60        parent = NULL;
  61        p = &key_user_tree.rb_node;
  62        spin_lock(&key_user_lock);
  63
  64        /* search the tree for a user record with a matching UID */
  65        while (*p) {
  66                parent = *p;
  67                user = rb_entry(parent, struct key_user, node);
  68
  69                if (uid_lt(uid, user->uid))
  70                        p = &(*p)->rb_left;
  71                else if (uid_gt(uid, user->uid))
  72                        p = &(*p)->rb_right;
  73                else
  74                        goto found;
  75        }
  76
  77        /* if we get here, we failed to find a match in the tree */
  78        if (!candidate) {
  79                /* allocate a candidate user record if we don't already have
  80                 * one */
  81                spin_unlock(&key_user_lock);
  82
  83                user = NULL;
  84                candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85                if (unlikely(!candidate))
  86                        goto out;
  87
  88                /* the allocation may have scheduled, so we need to repeat the
  89                 * search lest someone else added the record whilst we were
  90                 * asleep */
  91                goto try_again;
  92        }
  93
  94        /* if we get here, then the user record still hadn't appeared on the
  95         * second pass - so we use the candidate record */
  96        refcount_set(&candidate->usage, 1);
  97        atomic_set(&candidate->nkeys, 0);
  98        atomic_set(&candidate->nikeys, 0);
  99        candidate->uid = uid;
 100        candidate->qnkeys = 0;
 101        candidate->qnbytes = 0;
 102        spin_lock_init(&candidate->lock);
 103        mutex_init(&candidate->cons_lock);
 104
 105        rb_link_node(&candidate->node, parent, p);
 106        rb_insert_color(&candidate->node, &key_user_tree);
 107        spin_unlock(&key_user_lock);
 108        user = candidate;
 109        goto out;
 110
 111        /* okay - we found a user record for this UID */
 112found:
 113        refcount_inc(&user->usage);
 114        spin_unlock(&key_user_lock);
 115        kfree(candidate);
 116out:
 117        return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125        if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 126                rb_erase(&user->node, &key_user_tree);
 127                spin_unlock(&key_user_lock);
 128
 129                kfree(user);
 130        }
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139        struct rb_node *parent, **p;
 140        struct key *xkey;
 141
 142        /* propose a random serial number and look for a hole for it in the
 143         * serial number tree */
 144        do {
 145                get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147                key->serial >>= 1; /* negative numbers are not permitted */
 148        } while (key->serial < 3);
 149
 150        spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153        parent = NULL;
 154        p = &key_serial_tree.rb_node;
 155
 156        while (*p) {
 157                parent = *p;
 158                xkey = rb_entry(parent, struct key, serial_node);
 159
 160                if (key->serial < xkey->serial)
 161                        p = &(*p)->rb_left;
 162                else if (key->serial > xkey->serial)
 163                        p = &(*p)->rb_right;
 164                else
 165                        goto serial_exists;
 166        }
 167
 168        /* we've found a suitable hole - arrange for this key to occupy it */
 169        rb_link_node(&key->serial_node, parent, p);
 170        rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172        spin_unlock(&key_serial_lock);
 173        return;
 174
 175        /* we found a key with the proposed serial number - walk the tree from
 176         * that point looking for the next unused serial number */
 177serial_exists:
 178        for (;;) {
 179                key->serial++;
 180                if (key->serial < 3) {
 181                        key->serial = 3;
 182                        goto attempt_insertion;
 183                }
 184
 185                parent = rb_next(parent);
 186                if (!parent)
 187                        goto attempt_insertion;
 188
 189                xkey = rb_entry(parent, struct key, serial_node);
 190                if (key->serial < xkey->serial)
 191                        goto attempt_insertion;
 192        }
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 204 * @restrict_link: Optional link restriction for new keyrings.
 205 *
 206 * Allocate a key of the specified type with the attributes given.  The key is
 207 * returned in an uninstantiated state and the caller needs to instantiate the
 208 * key before returning.
 209 *
 210 * The restrict_link structure (if not NULL) will be freed when the
 211 * keyring is destroyed, so it must be dynamically allocated.
 212 *
 213 * The user's key count quota is updated to reflect the creation of the key and
 214 * the user's key data quota has the default for the key type reserved.  The
 215 * instantiation function should amend this as necessary.  If insufficient
 216 * quota is available, -EDQUOT will be returned.
 217 *
 218 * The LSM security modules can prevent a key being created, in which case
 219 * -EACCES will be returned.
 220 *
 221 * Returns a pointer to the new key if successful and an error code otherwise.
 222 *
 223 * Note that the caller needs to ensure the key type isn't uninstantiated.
 224 * Internally this can be done by locking key_types_sem.  Externally, this can
 225 * be done by either never unregistering the key type, or making sure
 226 * key_alloc() calls don't race with module unloading.
 227 */
 228struct key *key_alloc(struct key_type *type, const char *desc,
 229                      kuid_t uid, kgid_t gid, const struct cred *cred,
 230                      key_perm_t perm, unsigned long flags,
 231                      struct key_restriction *restrict_link)
 232{
 233        struct key_user *user = NULL;
 234        struct key *key;
 235        size_t desclen, quotalen;
 236        int ret;
 237
 238        key = ERR_PTR(-EINVAL);
 239        if (!desc || !*desc)
 240                goto error;
 241
 242        if (type->vet_description) {
 243                ret = type->vet_description(desc);
 244                if (ret < 0) {
 245                        key = ERR_PTR(ret);
 246                        goto error;
 247                }
 248        }
 249
 250        desclen = strlen(desc);
 251        quotalen = desclen + 1 + type->def_datalen;
 252
 253        /* get hold of the key tracking for this user */
 254        user = key_user_lookup(uid);
 255        if (!user)
 256                goto no_memory_1;
 257
 258        /* check that the user's quota permits allocation of another key and
 259         * its description */
 260        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 261                unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 262                        key_quota_root_maxkeys : key_quota_maxkeys;
 263                unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 264                        key_quota_root_maxbytes : key_quota_maxbytes;
 265
 266                spin_lock(&user->lock);
 267                if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 268                        if (user->qnkeys + 1 > maxkeys ||
 269                            user->qnbytes + quotalen > maxbytes ||
 270                            user->qnbytes + quotalen < user->qnbytes)
 271                                goto no_quota;
 272                }
 273
 274                user->qnkeys++;
 275                user->qnbytes += quotalen;
 276                spin_unlock(&user->lock);
 277        }
 278
 279        /* allocate and initialise the key and its description */
 280        key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 281        if (!key)
 282                goto no_memory_2;
 283
 284        key->index_key.desc_len = desclen;
 285        key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 286        if (!key->index_key.description)
 287                goto no_memory_3;
 288
 289        refcount_set(&key->usage, 1);
 290        init_rwsem(&key->sem);
 291        lockdep_set_class(&key->sem, &type->lock_class);
 292        key->index_key.type = type;
 293        key->user = user;
 294        key->quotalen = quotalen;
 295        key->datalen = type->def_datalen;
 296        key->uid = uid;
 297        key->gid = gid;
 298        key->perm = perm;
 299        key->restrict_link = restrict_link;
 300        key->last_used_at = ktime_get_real_seconds();
 301
 302        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 303                key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 304        if (flags & KEY_ALLOC_BUILT_IN)
 305                key->flags |= 1 << KEY_FLAG_BUILTIN;
 306        if (flags & KEY_ALLOC_UID_KEYRING)
 307                key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 308
 309#ifdef KEY_DEBUGGING
 310        key->magic = KEY_DEBUG_MAGIC;
 311#endif
 312
 313        /* let the security module know about the key */
 314        ret = security_key_alloc(key, cred, flags);
 315        if (ret < 0)
 316                goto security_error;
 317
 318        /* publish the key by giving it a serial number */
 319        atomic_inc(&user->nkeys);
 320        key_alloc_serial(key);
 321
 322error:
 323        return key;
 324
 325security_error:
 326        kfree(key->description);
 327        kmem_cache_free(key_jar, key);
 328        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 329                spin_lock(&user->lock);
 330                user->qnkeys--;
 331                user->qnbytes -= quotalen;
 332                spin_unlock(&user->lock);
 333        }
 334        key_user_put(user);
 335        key = ERR_PTR(ret);
 336        goto error;
 337
 338no_memory_3:
 339        kmem_cache_free(key_jar, key);
 340no_memory_2:
 341        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 342                spin_lock(&user->lock);
 343                user->qnkeys--;
 344                user->qnbytes -= quotalen;
 345                spin_unlock(&user->lock);
 346        }
 347        key_user_put(user);
 348no_memory_1:
 349        key = ERR_PTR(-ENOMEM);
 350        goto error;
 351
 352no_quota:
 353        spin_unlock(&user->lock);
 354        key_user_put(user);
 355        key = ERR_PTR(-EDQUOT);
 356        goto error;
 357}
 358EXPORT_SYMBOL(key_alloc);
 359
 360/**
 361 * key_payload_reserve - Adjust data quota reservation for the key's payload
 362 * @key: The key to make the reservation for.
 363 * @datalen: The amount of data payload the caller now wants.
 364 *
 365 * Adjust the amount of the owning user's key data quota that a key reserves.
 366 * If the amount is increased, then -EDQUOT may be returned if there isn't
 367 * enough free quota available.
 368 *
 369 * If successful, 0 is returned.
 370 */
 371int key_payload_reserve(struct key *key, size_t datalen)
 372{
 373        int delta = (int)datalen - key->datalen;
 374        int ret = 0;
 375
 376        key_check(key);
 377
 378        /* contemplate the quota adjustment */
 379        if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 380                unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 381                        key_quota_root_maxbytes : key_quota_maxbytes;
 382
 383                spin_lock(&key->user->lock);
 384
 385                if (delta > 0 &&
 386                    (key->user->qnbytes + delta >= maxbytes ||
 387                     key->user->qnbytes + delta < key->user->qnbytes)) {
 388                        ret = -EDQUOT;
 389                }
 390                else {
 391                        key->user->qnbytes += delta;
 392                        key->quotalen += delta;
 393                }
 394                spin_unlock(&key->user->lock);
 395        }
 396
 397        /* change the recorded data length if that didn't generate an error */
 398        if (ret == 0)
 399                key->datalen = datalen;
 400
 401        return ret;
 402}
 403EXPORT_SYMBOL(key_payload_reserve);
 404
 405/*
 406 * Change the key state to being instantiated.
 407 */
 408static void mark_key_instantiated(struct key *key, int reject_error)
 409{
 410        /* Commit the payload before setting the state; barrier versus
 411         * key_read_state().
 412         */
 413        smp_store_release(&key->state,
 414                          (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 415}
 416
 417/*
 418 * Instantiate a key and link it into the target keyring atomically.  Must be
 419 * called with the target keyring's semaphore writelocked.  The target key's
 420 * semaphore need not be locked as instantiation is serialised by
 421 * key_construction_mutex.
 422 */
 423static int __key_instantiate_and_link(struct key *key,
 424                                      struct key_preparsed_payload *prep,
 425                                      struct key *keyring,
 426                                      struct key *authkey,
 427                                      struct assoc_array_edit **_edit)
 428{
 429        int ret, awaken;
 430
 431        key_check(key);
 432        key_check(keyring);
 433
 434        awaken = 0;
 435        ret = -EBUSY;
 436
 437        mutex_lock(&key_construction_mutex);
 438
 439        /* can't instantiate twice */
 440        if (key->state == KEY_IS_UNINSTANTIATED) {
 441                /* instantiate the key */
 442                ret = key->type->instantiate(key, prep);
 443
 444                if (ret == 0) {
 445                        /* mark the key as being instantiated */
 446                        atomic_inc(&key->user->nikeys);
 447                        mark_key_instantiated(key, 0);
 448
 449                        if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 450                                awaken = 1;
 451
 452                        /* and link it into the destination keyring */
 453                        if (keyring) {
 454                                if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 455                                        set_bit(KEY_FLAG_KEEP, &key->flags);
 456
 457                                __key_link(key, _edit);
 458                        }
 459
 460                        /* disable the authorisation key */
 461                        if (authkey)
 462                                key_revoke(authkey);
 463
 464                        if (prep->expiry != TIME64_MAX) {
 465                                key->expiry = prep->expiry;
 466                                key_schedule_gc(prep->expiry + key_gc_delay);
 467                        }
 468                }
 469        }
 470
 471        mutex_unlock(&key_construction_mutex);
 472
 473        /* wake up anyone waiting for a key to be constructed */
 474        if (awaken)
 475                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 476
 477        return ret;
 478}
 479
 480/**
 481 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 482 * @key: The key to instantiate.
 483 * @data: The data to use to instantiate the keyring.
 484 * @datalen: The length of @data.
 485 * @keyring: Keyring to create a link in on success (or NULL).
 486 * @authkey: The authorisation token permitting instantiation.
 487 *
 488 * Instantiate a key that's in the uninstantiated state using the provided data
 489 * and, if successful, link it in to the destination keyring if one is
 490 * supplied.
 491 *
 492 * If successful, 0 is returned, the authorisation token is revoked and anyone
 493 * waiting for the key is woken up.  If the key was already instantiated,
 494 * -EBUSY will be returned.
 495 */
 496int key_instantiate_and_link(struct key *key,
 497                             const void *data,
 498                             size_t datalen,
 499                             struct key *keyring,
 500                             struct key *authkey)
 501{
 502        struct key_preparsed_payload prep;
 503        struct assoc_array_edit *edit;
 504        int ret;
 505
 506        memset(&prep, 0, sizeof(prep));
 507        prep.data = data;
 508        prep.datalen = datalen;
 509        prep.quotalen = key->type->def_datalen;
 510        prep.expiry = TIME64_MAX;
 511        if (key->type->preparse) {
 512                ret = key->type->preparse(&prep);
 513                if (ret < 0)
 514                        goto error;
 515        }
 516
 517        if (keyring) {
 518                ret = __key_link_begin(keyring, &key->index_key, &edit);
 519                if (ret < 0)
 520                        goto error;
 521
 522                if (keyring->restrict_link && keyring->restrict_link->check) {
 523                        struct key_restriction *keyres = keyring->restrict_link;
 524
 525                        ret = keyres->check(keyring, key->type, &prep.payload,
 526                                            keyres->key);
 527                        if (ret < 0)
 528                                goto error_link_end;
 529                }
 530        }
 531
 532        ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 533
 534error_link_end:
 535        if (keyring)
 536                __key_link_end(keyring, &key->index_key, edit);
 537
 538error:
 539        if (key->type->preparse)
 540                key->type->free_preparse(&prep);
 541        return ret;
 542}
 543
 544EXPORT_SYMBOL(key_instantiate_and_link);
 545
 546/**
 547 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 548 * @key: The key to instantiate.
 549 * @timeout: The timeout on the negative key.
 550 * @error: The error to return when the key is hit.
 551 * @keyring: Keyring to create a link in on success (or NULL).
 552 * @authkey: The authorisation token permitting instantiation.
 553 *
 554 * Negatively instantiate a key that's in the uninstantiated state and, if
 555 * successful, set its timeout and stored error and link it in to the
 556 * destination keyring if one is supplied.  The key and any links to the key
 557 * will be automatically garbage collected after the timeout expires.
 558 *
 559 * Negative keys are used to rate limit repeated request_key() calls by causing
 560 * them to return the stored error code (typically ENOKEY) until the negative
 561 * key expires.
 562 *
 563 * If successful, 0 is returned, the authorisation token is revoked and anyone
 564 * waiting for the key is woken up.  If the key was already instantiated,
 565 * -EBUSY will be returned.
 566 */
 567int key_reject_and_link(struct key *key,
 568                        unsigned timeout,
 569                        unsigned error,
 570                        struct key *keyring,
 571                        struct key *authkey)
 572{
 573        struct assoc_array_edit *edit;
 574        int ret, awaken, link_ret = 0;
 575
 576        key_check(key);
 577        key_check(keyring);
 578
 579        awaken = 0;
 580        ret = -EBUSY;
 581
 582        if (keyring) {
 583                if (keyring->restrict_link)
 584                        return -EPERM;
 585
 586                link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 587        }
 588
 589        mutex_lock(&key_construction_mutex);
 590
 591        /* can't instantiate twice */
 592        if (key->state == KEY_IS_UNINSTANTIATED) {
 593                /* mark the key as being negatively instantiated */
 594                atomic_inc(&key->user->nikeys);
 595                mark_key_instantiated(key, -error);
 596                key->expiry = ktime_get_real_seconds() + timeout;
 597                key_schedule_gc(key->expiry + key_gc_delay);
 598
 599                if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 600                        awaken = 1;
 601
 602                ret = 0;
 603
 604                /* and link it into the destination keyring */
 605                if (keyring && link_ret == 0)
 606                        __key_link(key, &edit);
 607
 608                /* disable the authorisation key */
 609                if (authkey)
 610                        key_revoke(authkey);
 611        }
 612
 613        mutex_unlock(&key_construction_mutex);
 614
 615        if (keyring && link_ret == 0)
 616                __key_link_end(keyring, &key->index_key, edit);
 617
 618        /* wake up anyone waiting for a key to be constructed */
 619        if (awaken)
 620                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 621
 622        return ret == 0 ? link_ret : ret;
 623}
 624EXPORT_SYMBOL(key_reject_and_link);
 625
 626/**
 627 * key_put - Discard a reference to a key.
 628 * @key: The key to discard a reference from.
 629 *
 630 * Discard a reference to a key, and when all the references are gone, we
 631 * schedule the cleanup task to come and pull it out of the tree in process
 632 * context at some later time.
 633 */
 634void key_put(struct key *key)
 635{
 636        if (key) {
 637                key_check(key);
 638
 639                if (refcount_dec_and_test(&key->usage))
 640                        schedule_work(&key_gc_work);
 641        }
 642}
 643EXPORT_SYMBOL(key_put);
 644
 645/*
 646 * Find a key by its serial number.
 647 */
 648struct key *key_lookup(key_serial_t id)
 649{
 650        struct rb_node *n;
 651        struct key *key;
 652
 653        spin_lock(&key_serial_lock);
 654
 655        /* search the tree for the specified key */
 656        n = key_serial_tree.rb_node;
 657        while (n) {
 658                key = rb_entry(n, struct key, serial_node);
 659
 660                if (id < key->serial)
 661                        n = n->rb_left;
 662                else if (id > key->serial)
 663                        n = n->rb_right;
 664                else
 665                        goto found;
 666        }
 667
 668not_found:
 669        key = ERR_PTR(-ENOKEY);
 670        goto error;
 671
 672found:
 673        /* A key is allowed to be looked up only if someone still owns a
 674         * reference to it - otherwise it's awaiting the gc.
 675         */
 676        if (!refcount_inc_not_zero(&key->usage))
 677                goto not_found;
 678
 679error:
 680        spin_unlock(&key_serial_lock);
 681        return key;
 682}
 683
 684/*
 685 * Find and lock the specified key type against removal.
 686 *
 687 * We return with the sem read-locked if successful.  If the type wasn't
 688 * available -ENOKEY is returned instead.
 689 */
 690struct key_type *key_type_lookup(const char *type)
 691{
 692        struct key_type *ktype;
 693
 694        down_read(&key_types_sem);
 695
 696        /* look up the key type to see if it's one of the registered kernel
 697         * types */
 698        list_for_each_entry(ktype, &key_types_list, link) {
 699                if (strcmp(ktype->name, type) == 0)
 700                        goto found_kernel_type;
 701        }
 702
 703        up_read(&key_types_sem);
 704        ktype = ERR_PTR(-ENOKEY);
 705
 706found_kernel_type:
 707        return ktype;
 708}
 709
 710void key_set_timeout(struct key *key, unsigned timeout)
 711{
 712        time64_t expiry = 0;
 713
 714        /* make the changes with the locks held to prevent races */
 715        down_write(&key->sem);
 716
 717        if (timeout > 0)
 718                expiry = ktime_get_real_seconds() + timeout;
 719
 720        key->expiry = expiry;
 721        key_schedule_gc(key->expiry + key_gc_delay);
 722
 723        up_write(&key->sem);
 724}
 725EXPORT_SYMBOL_GPL(key_set_timeout);
 726
 727/*
 728 * Unlock a key type locked by key_type_lookup().
 729 */
 730void key_type_put(struct key_type *ktype)
 731{
 732        up_read(&key_types_sem);
 733}
 734
 735/*
 736 * Attempt to update an existing key.
 737 *
 738 * The key is given to us with an incremented refcount that we need to discard
 739 * if we get an error.
 740 */
 741static inline key_ref_t __key_update(key_ref_t key_ref,
 742                                     struct key_preparsed_payload *prep)
 743{
 744        struct key *key = key_ref_to_ptr(key_ref);
 745        int ret;
 746
 747        /* need write permission on the key to update it */
 748        ret = key_permission(key_ref, KEY_NEED_WRITE);
 749        if (ret < 0)
 750                goto error;
 751
 752        ret = -EEXIST;
 753        if (!key->type->update)
 754                goto error;
 755
 756        down_write(&key->sem);
 757
 758        ret = key->type->update(key, prep);
 759        if (ret == 0)
 760                /* Updating a negative key positively instantiates it */
 761                mark_key_instantiated(key, 0);
 762
 763        up_write(&key->sem);
 764
 765        if (ret < 0)
 766                goto error;
 767out:
 768        return key_ref;
 769
 770error:
 771        key_put(key);
 772        key_ref = ERR_PTR(ret);
 773        goto out;
 774}
 775
 776/**
 777 * key_create_or_update - Update or create and instantiate a key.
 778 * @keyring_ref: A pointer to the destination keyring with possession flag.
 779 * @type: The type of key.
 780 * @description: The searchable description for the key.
 781 * @payload: The data to use to instantiate or update the key.
 782 * @plen: The length of @payload.
 783 * @perm: The permissions mask for a new key.
 784 * @flags: The quota flags for a new key.
 785 *
 786 * Search the destination keyring for a key of the same description and if one
 787 * is found, update it, otherwise create and instantiate a new one and create a
 788 * link to it from that keyring.
 789 *
 790 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 791 * concocted.
 792 *
 793 * Returns a pointer to the new key if successful, -ENODEV if the key type
 794 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 795 * caller isn't permitted to modify the keyring or the LSM did not permit
 796 * creation of the key.
 797 *
 798 * On success, the possession flag from the keyring ref will be tacked on to
 799 * the key ref before it is returned.
 800 */
 801key_ref_t key_create_or_update(key_ref_t keyring_ref,
 802                               const char *type,
 803                               const char *description,
 804                               const void *payload,
 805                               size_t plen,
 806                               key_perm_t perm,
 807                               unsigned long flags)
 808{
 809        struct keyring_index_key index_key = {
 810                .description    = description,
 811        };
 812        struct key_preparsed_payload prep;
 813        struct assoc_array_edit *edit;
 814        const struct cred *cred = current_cred();
 815        struct key *keyring, *key = NULL;
 816        key_ref_t key_ref;
 817        int ret;
 818        struct key_restriction *restrict_link = NULL;
 819
 820        /* look up the key type to see if it's one of the registered kernel
 821         * types */
 822        index_key.type = key_type_lookup(type);
 823        if (IS_ERR(index_key.type)) {
 824                key_ref = ERR_PTR(-ENODEV);
 825                goto error;
 826        }
 827
 828        key_ref = ERR_PTR(-EINVAL);
 829        if (!index_key.type->instantiate ||
 830            (!index_key.description && !index_key.type->preparse))
 831                goto error_put_type;
 832
 833        keyring = key_ref_to_ptr(keyring_ref);
 834
 835        key_check(keyring);
 836
 837        if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 838                restrict_link = keyring->restrict_link;
 839
 840        key_ref = ERR_PTR(-ENOTDIR);
 841        if (keyring->type != &key_type_keyring)
 842                goto error_put_type;
 843
 844        memset(&prep, 0, sizeof(prep));
 845        prep.data = payload;
 846        prep.datalen = plen;
 847        prep.quotalen = index_key.type->def_datalen;
 848        prep.expiry = TIME64_MAX;
 849        if (index_key.type->preparse) {
 850                ret = index_key.type->preparse(&prep);
 851                if (ret < 0) {
 852                        key_ref = ERR_PTR(ret);
 853                        goto error_free_prep;
 854                }
 855                if (!index_key.description)
 856                        index_key.description = prep.description;
 857                key_ref = ERR_PTR(-EINVAL);
 858                if (!index_key.description)
 859                        goto error_free_prep;
 860        }
 861        index_key.desc_len = strlen(index_key.description);
 862
 863        ret = __key_link_begin(keyring, &index_key, &edit);
 864        if (ret < 0) {
 865                key_ref = ERR_PTR(ret);
 866                goto error_free_prep;
 867        }
 868
 869        if (restrict_link && restrict_link->check) {
 870                ret = restrict_link->check(keyring, index_key.type,
 871                                           &prep.payload, restrict_link->key);
 872                if (ret < 0) {
 873                        key_ref = ERR_PTR(ret);
 874                        goto error_link_end;
 875                }
 876        }
 877
 878        /* if we're going to allocate a new key, we're going to have
 879         * to modify the keyring */
 880        ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 881        if (ret < 0) {
 882                key_ref = ERR_PTR(ret);
 883                goto error_link_end;
 884        }
 885
 886        /* if it's possible to update this type of key, search for an existing
 887         * key of the same type and description in the destination keyring and
 888         * update that instead if possible
 889         */
 890        if (index_key.type->update) {
 891                key_ref = find_key_to_update(keyring_ref, &index_key);
 892                if (key_ref)
 893                        goto found_matching_key;
 894        }
 895
 896        /* if the client doesn't provide, decide on the permissions we want */
 897        if (perm == KEY_PERM_UNDEF) {
 898                perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 899                perm |= KEY_USR_VIEW;
 900
 901                if (index_key.type->read)
 902                        perm |= KEY_POS_READ;
 903
 904                if (index_key.type == &key_type_keyring ||
 905                    index_key.type->update)
 906                        perm |= KEY_POS_WRITE;
 907        }
 908
 909        /* allocate a new key */
 910        key = key_alloc(index_key.type, index_key.description,
 911                        cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 912        if (IS_ERR(key)) {
 913                key_ref = ERR_CAST(key);
 914                goto error_link_end;
 915        }
 916
 917        /* instantiate it and link it into the target keyring */
 918        ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 919        if (ret < 0) {
 920                key_put(key);
 921                key_ref = ERR_PTR(ret);
 922                goto error_link_end;
 923        }
 924
 925        key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 926
 927error_link_end:
 928        __key_link_end(keyring, &index_key, edit);
 929error_free_prep:
 930        if (index_key.type->preparse)
 931                index_key.type->free_preparse(&prep);
 932error_put_type:
 933        key_type_put(index_key.type);
 934error:
 935        return key_ref;
 936
 937 found_matching_key:
 938        /* we found a matching key, so we're going to try to update it
 939         * - we can drop the locks first as we have the key pinned
 940         */
 941        __key_link_end(keyring, &index_key, edit);
 942
 943        key = key_ref_to_ptr(key_ref);
 944        if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 945                ret = wait_for_key_construction(key, true);
 946                if (ret < 0) {
 947                        key_ref_put(key_ref);
 948                        key_ref = ERR_PTR(ret);
 949                        goto error_free_prep;
 950                }
 951        }
 952
 953        key_ref = __key_update(key_ref, &prep);
 954        goto error_free_prep;
 955}
 956EXPORT_SYMBOL(key_create_or_update);
 957
 958/**
 959 * key_update - Update a key's contents.
 960 * @key_ref: The pointer (plus possession flag) to the key.
 961 * @payload: The data to be used to update the key.
 962 * @plen: The length of @payload.
 963 *
 964 * Attempt to update the contents of a key with the given payload data.  The
 965 * caller must be granted Write permission on the key.  Negative keys can be
 966 * instantiated by this method.
 967 *
 968 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 969 * type does not support updating.  The key type may return other errors.
 970 */
 971int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 972{
 973        struct key_preparsed_payload prep;
 974        struct key *key = key_ref_to_ptr(key_ref);
 975        int ret;
 976
 977        key_check(key);
 978
 979        /* the key must be writable */
 980        ret = key_permission(key_ref, KEY_NEED_WRITE);
 981        if (ret < 0)
 982                return ret;
 983
 984        /* attempt to update it if supported */
 985        if (!key->type->update)
 986                return -EOPNOTSUPP;
 987
 988        memset(&prep, 0, sizeof(prep));
 989        prep.data = payload;
 990        prep.datalen = plen;
 991        prep.quotalen = key->type->def_datalen;
 992        prep.expiry = TIME64_MAX;
 993        if (key->type->preparse) {
 994                ret = key->type->preparse(&prep);
 995                if (ret < 0)
 996                        goto error;
 997        }
 998
 999        down_write(&key->sem);
1000
1001        ret = key->type->update(key, &prep);
1002        if (ret == 0)
1003                /* Updating a negative key positively instantiates it */
1004                mark_key_instantiated(key, 0);
1005
1006        up_write(&key->sem);
1007
1008error:
1009        if (key->type->preparse)
1010                key->type->free_preparse(&prep);
1011        return ret;
1012}
1013EXPORT_SYMBOL(key_update);
1014
1015/**
1016 * key_revoke - Revoke a key.
1017 * @key: The key to be revoked.
1018 *
1019 * Mark a key as being revoked and ask the type to free up its resources.  The
1020 * revocation timeout is set and the key and all its links will be
1021 * automatically garbage collected after key_gc_delay amount of time if they
1022 * are not manually dealt with first.
1023 */
1024void key_revoke(struct key *key)
1025{
1026        time64_t time;
1027
1028        key_check(key);
1029
1030        /* make sure no one's trying to change or use the key when we mark it
1031         * - we tell lockdep that we might nest because we might be revoking an
1032         *   authorisation key whilst holding the sem on a key we've just
1033         *   instantiated
1034         */
1035        down_write_nested(&key->sem, 1);
1036        if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1037            key->type->revoke)
1038                key->type->revoke(key);
1039
1040        /* set the death time to no more than the expiry time */
1041        time = ktime_get_real_seconds();
1042        if (key->revoked_at == 0 || key->revoked_at > time) {
1043                key->revoked_at = time;
1044                key_schedule_gc(key->revoked_at + key_gc_delay);
1045        }
1046
1047        up_write(&key->sem);
1048}
1049EXPORT_SYMBOL(key_revoke);
1050
1051/**
1052 * key_invalidate - Invalidate a key.
1053 * @key: The key to be invalidated.
1054 *
1055 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1056 * is ignored by all searches and other operations from this point.
1057 */
1058void key_invalidate(struct key *key)
1059{
1060        kenter("%d", key_serial(key));
1061
1062        key_check(key);
1063
1064        if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1065                down_write_nested(&key->sem, 1);
1066                if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1067                        key_schedule_gc_links();
1068                up_write(&key->sem);
1069        }
1070}
1071EXPORT_SYMBOL(key_invalidate);
1072
1073/**
1074 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1075 * @key: The key to be instantiated
1076 * @prep: The preparsed data to load.
1077 *
1078 * Instantiate a key from preparsed data.  We assume we can just copy the data
1079 * in directly and clear the old pointers.
1080 *
1081 * This can be pointed to directly by the key type instantiate op pointer.
1082 */
1083int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1084{
1085        int ret;
1086
1087        pr_devel("==>%s()\n", __func__);
1088
1089        ret = key_payload_reserve(key, prep->quotalen);
1090        if (ret == 0) {
1091                rcu_assign_keypointer(key, prep->payload.data[0]);
1092                key->payload.data[1] = prep->payload.data[1];
1093                key->payload.data[2] = prep->payload.data[2];
1094                key->payload.data[3] = prep->payload.data[3];
1095                prep->payload.data[0] = NULL;
1096                prep->payload.data[1] = NULL;
1097                prep->payload.data[2] = NULL;
1098                prep->payload.data[3] = NULL;
1099        }
1100        pr_devel("<==%s() = %d\n", __func__, ret);
1101        return ret;
1102}
1103EXPORT_SYMBOL(generic_key_instantiate);
1104
1105/**
1106 * register_key_type - Register a type of key.
1107 * @ktype: The new key type.
1108 *
1109 * Register a new key type.
1110 *
1111 * Returns 0 on success or -EEXIST if a type of this name already exists.
1112 */
1113int register_key_type(struct key_type *ktype)
1114{
1115        struct key_type *p;
1116        int ret;
1117
1118        memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1119
1120        ret = -EEXIST;
1121        down_write(&key_types_sem);
1122
1123        /* disallow key types with the same name */
1124        list_for_each_entry(p, &key_types_list, link) {
1125                if (strcmp(p->name, ktype->name) == 0)
1126                        goto out;
1127        }
1128
1129        /* store the type */
1130        list_add(&ktype->link, &key_types_list);
1131
1132        pr_notice("Key type %s registered\n", ktype->name);
1133        ret = 0;
1134
1135out:
1136        up_write(&key_types_sem);
1137        return ret;
1138}
1139EXPORT_SYMBOL(register_key_type);
1140
1141/**
1142 * unregister_key_type - Unregister a type of key.
1143 * @ktype: The key type.
1144 *
1145 * Unregister a key type and mark all the extant keys of this type as dead.
1146 * Those keys of this type are then destroyed to get rid of their payloads and
1147 * they and their links will be garbage collected as soon as possible.
1148 */
1149void unregister_key_type(struct key_type *ktype)
1150{
1151        down_write(&key_types_sem);
1152        list_del_init(&ktype->link);
1153        downgrade_write(&key_types_sem);
1154        key_gc_keytype(ktype);
1155        pr_notice("Key type %s unregistered\n", ktype->name);
1156        up_read(&key_types_sem);
1157}
1158EXPORT_SYMBOL(unregister_key_type);
1159
1160/*
1161 * Initialise the key management state.
1162 */
1163void __init key_init(void)
1164{
1165        /* allocate a slab in which we can store keys */
1166        key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1167                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1168
1169        /* add the special key types */
1170        list_add_tail(&key_type_keyring.link, &key_types_list);
1171        list_add_tail(&key_type_dead.link, &key_types_list);
1172        list_add_tail(&key_type_user.link, &key_types_list);
1173        list_add_tail(&key_type_logon.link, &key_types_list);
1174
1175        /* record the root user tracking */
1176        rb_link_node(&root_key_user.node,
1177                     NULL,
1178                     &key_user_tree.rb_node);
1179
1180        rb_insert_color(&root_key_user.node,
1181                        &key_user_tree);
1182}
1183