linux/security/selinux/ss/services.c
<<
>>
Prefs
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   5 *           James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *      Support for enhanced MLS infrastructure.
  10 *      Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *      Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *      This program is free software; you can redistribute it and/or modify
  39 *      it under the terms of the GNU General Public License as published by
  40 *      the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/vmalloc.h>
  53#include <net/netlabel.h>
  54
  55#include "flask.h"
  56#include "avc.h"
  57#include "avc_ss.h"
  58#include "security.h"
  59#include "context.h"
  60#include "policydb.h"
  61#include "sidtab.h"
  62#include "services.h"
  63#include "conditional.h"
  64#include "mls.h"
  65#include "objsec.h"
  66#include "netlabel.h"
  67#include "xfrm.h"
  68#include "ebitmap.h"
  69#include "audit.h"
  70
  71/* Policy capability names */
  72const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  73        "network_peer_controls",
  74        "open_perms",
  75        "extended_socket_class",
  76        "always_check_network",
  77        "cgroup_seclabel",
  78        "nnp_nosuid_transition"
  79};
  80
  81static struct selinux_ss selinux_ss;
  82
  83void selinux_ss_init(struct selinux_ss **ss)
  84{
  85        rwlock_init(&selinux_ss.policy_rwlock);
  86        mutex_init(&selinux_ss.status_lock);
  87        *ss = &selinux_ss;
  88}
  89
  90/* Forward declaration. */
  91static int context_struct_to_string(struct policydb *policydb,
  92                                    struct context *context,
  93                                    char **scontext,
  94                                    u32 *scontext_len);
  95
  96static void context_struct_compute_av(struct policydb *policydb,
  97                                      struct context *scontext,
  98                                      struct context *tcontext,
  99                                      u16 tclass,
 100                                      struct av_decision *avd,
 101                                      struct extended_perms *xperms);
 102
 103static int selinux_set_mapping(struct policydb *pol,
 104                               struct security_class_mapping *map,
 105                               struct selinux_map *out_map)
 106{
 107        u16 i, j;
 108        unsigned k;
 109        bool print_unknown_handle = false;
 110
 111        /* Find number of classes in the input mapping */
 112        if (!map)
 113                return -EINVAL;
 114        i = 0;
 115        while (map[i].name)
 116                i++;
 117
 118        /* Allocate space for the class records, plus one for class zero */
 119        out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 120        if (!out_map->mapping)
 121                return -ENOMEM;
 122
 123        /* Store the raw class and permission values */
 124        j = 0;
 125        while (map[j].name) {
 126                struct security_class_mapping *p_in = map + (j++);
 127                struct selinux_mapping *p_out = out_map->mapping + j;
 128
 129                /* An empty class string skips ahead */
 130                if (!strcmp(p_in->name, "")) {
 131                        p_out->num_perms = 0;
 132                        continue;
 133                }
 134
 135                p_out->value = string_to_security_class(pol, p_in->name);
 136                if (!p_out->value) {
 137                        pr_info("SELinux:  Class %s not defined in policy.\n",
 138                               p_in->name);
 139                        if (pol->reject_unknown)
 140                                goto err;
 141                        p_out->num_perms = 0;
 142                        print_unknown_handle = true;
 143                        continue;
 144                }
 145
 146                k = 0;
 147                while (p_in->perms[k]) {
 148                        /* An empty permission string skips ahead */
 149                        if (!*p_in->perms[k]) {
 150                                k++;
 151                                continue;
 152                        }
 153                        p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 154                                                            p_in->perms[k]);
 155                        if (!p_out->perms[k]) {
 156                                pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 157                                       p_in->perms[k], p_in->name);
 158                                if (pol->reject_unknown)
 159                                        goto err;
 160                                print_unknown_handle = true;
 161                        }
 162
 163                        k++;
 164                }
 165                p_out->num_perms = k;
 166        }
 167
 168        if (print_unknown_handle)
 169                pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 170                       pol->allow_unknown ? "allowed" : "denied");
 171
 172        out_map->size = i;
 173        return 0;
 174err:
 175        kfree(out_map->mapping);
 176        out_map->mapping = NULL;
 177        return -EINVAL;
 178}
 179
 180/*
 181 * Get real, policy values from mapped values
 182 */
 183
 184static u16 unmap_class(struct selinux_map *map, u16 tclass)
 185{
 186        if (tclass < map->size)
 187                return map->mapping[tclass].value;
 188
 189        return tclass;
 190}
 191
 192/*
 193 * Get kernel value for class from its policy value
 194 */
 195static u16 map_class(struct selinux_map *map, u16 pol_value)
 196{
 197        u16 i;
 198
 199        for (i = 1; i < map->size; i++) {
 200                if (map->mapping[i].value == pol_value)
 201                        return i;
 202        }
 203
 204        return SECCLASS_NULL;
 205}
 206
 207static void map_decision(struct selinux_map *map,
 208                         u16 tclass, struct av_decision *avd,
 209                         int allow_unknown)
 210{
 211        if (tclass < map->size) {
 212                struct selinux_mapping *mapping = &map->mapping[tclass];
 213                unsigned int i, n = mapping->num_perms;
 214                u32 result;
 215
 216                for (i = 0, result = 0; i < n; i++) {
 217                        if (avd->allowed & mapping->perms[i])
 218                                result |= 1<<i;
 219                        if (allow_unknown && !mapping->perms[i])
 220                                result |= 1<<i;
 221                }
 222                avd->allowed = result;
 223
 224                for (i = 0, result = 0; i < n; i++)
 225                        if (avd->auditallow & mapping->perms[i])
 226                                result |= 1<<i;
 227                avd->auditallow = result;
 228
 229                for (i = 0, result = 0; i < n; i++) {
 230                        if (avd->auditdeny & mapping->perms[i])
 231                                result |= 1<<i;
 232                        if (!allow_unknown && !mapping->perms[i])
 233                                result |= 1<<i;
 234                }
 235                /*
 236                 * In case the kernel has a bug and requests a permission
 237                 * between num_perms and the maximum permission number, we
 238                 * should audit that denial
 239                 */
 240                for (; i < (sizeof(u32)*8); i++)
 241                        result |= 1<<i;
 242                avd->auditdeny = result;
 243        }
 244}
 245
 246int security_mls_enabled(struct selinux_state *state)
 247{
 248        struct policydb *p = &state->ss->policydb;
 249
 250        return p->mls_enabled;
 251}
 252
 253/*
 254 * Return the boolean value of a constraint expression
 255 * when it is applied to the specified source and target
 256 * security contexts.
 257 *
 258 * xcontext is a special beast...  It is used by the validatetrans rules
 259 * only.  For these rules, scontext is the context before the transition,
 260 * tcontext is the context after the transition, and xcontext is the context
 261 * of the process performing the transition.  All other callers of
 262 * constraint_expr_eval should pass in NULL for xcontext.
 263 */
 264static int constraint_expr_eval(struct policydb *policydb,
 265                                struct context *scontext,
 266                                struct context *tcontext,
 267                                struct context *xcontext,
 268                                struct constraint_expr *cexpr)
 269{
 270        u32 val1, val2;
 271        struct context *c;
 272        struct role_datum *r1, *r2;
 273        struct mls_level *l1, *l2;
 274        struct constraint_expr *e;
 275        int s[CEXPR_MAXDEPTH];
 276        int sp = -1;
 277
 278        for (e = cexpr; e; e = e->next) {
 279                switch (e->expr_type) {
 280                case CEXPR_NOT:
 281                        BUG_ON(sp < 0);
 282                        s[sp] = !s[sp];
 283                        break;
 284                case CEXPR_AND:
 285                        BUG_ON(sp < 1);
 286                        sp--;
 287                        s[sp] &= s[sp + 1];
 288                        break;
 289                case CEXPR_OR:
 290                        BUG_ON(sp < 1);
 291                        sp--;
 292                        s[sp] |= s[sp + 1];
 293                        break;
 294                case CEXPR_ATTR:
 295                        if (sp == (CEXPR_MAXDEPTH - 1))
 296                                return 0;
 297                        switch (e->attr) {
 298                        case CEXPR_USER:
 299                                val1 = scontext->user;
 300                                val2 = tcontext->user;
 301                                break;
 302                        case CEXPR_TYPE:
 303                                val1 = scontext->type;
 304                                val2 = tcontext->type;
 305                                break;
 306                        case CEXPR_ROLE:
 307                                val1 = scontext->role;
 308                                val2 = tcontext->role;
 309                                r1 = policydb->role_val_to_struct[val1 - 1];
 310                                r2 = policydb->role_val_to_struct[val2 - 1];
 311                                switch (e->op) {
 312                                case CEXPR_DOM:
 313                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
 314                                                                  val2 - 1);
 315                                        continue;
 316                                case CEXPR_DOMBY:
 317                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
 318                                                                  val1 - 1);
 319                                        continue;
 320                                case CEXPR_INCOMP:
 321                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 322                                                                    val2 - 1) &&
 323                                                   !ebitmap_get_bit(&r2->dominates,
 324                                                                    val1 - 1));
 325                                        continue;
 326                                default:
 327                                        break;
 328                                }
 329                                break;
 330                        case CEXPR_L1L2:
 331                                l1 = &(scontext->range.level[0]);
 332                                l2 = &(tcontext->range.level[0]);
 333                                goto mls_ops;
 334                        case CEXPR_L1H2:
 335                                l1 = &(scontext->range.level[0]);
 336                                l2 = &(tcontext->range.level[1]);
 337                                goto mls_ops;
 338                        case CEXPR_H1L2:
 339                                l1 = &(scontext->range.level[1]);
 340                                l2 = &(tcontext->range.level[0]);
 341                                goto mls_ops;
 342                        case CEXPR_H1H2:
 343                                l1 = &(scontext->range.level[1]);
 344                                l2 = &(tcontext->range.level[1]);
 345                                goto mls_ops;
 346                        case CEXPR_L1H1:
 347                                l1 = &(scontext->range.level[0]);
 348                                l2 = &(scontext->range.level[1]);
 349                                goto mls_ops;
 350                        case CEXPR_L2H2:
 351                                l1 = &(tcontext->range.level[0]);
 352                                l2 = &(tcontext->range.level[1]);
 353                                goto mls_ops;
 354mls_ops:
 355                        switch (e->op) {
 356                        case CEXPR_EQ:
 357                                s[++sp] = mls_level_eq(l1, l2);
 358                                continue;
 359                        case CEXPR_NEQ:
 360                                s[++sp] = !mls_level_eq(l1, l2);
 361                                continue;
 362                        case CEXPR_DOM:
 363                                s[++sp] = mls_level_dom(l1, l2);
 364                                continue;
 365                        case CEXPR_DOMBY:
 366                                s[++sp] = mls_level_dom(l2, l1);
 367                                continue;
 368                        case CEXPR_INCOMP:
 369                                s[++sp] = mls_level_incomp(l2, l1);
 370                                continue;
 371                        default:
 372                                BUG();
 373                                return 0;
 374                        }
 375                        break;
 376                        default:
 377                                BUG();
 378                                return 0;
 379                        }
 380
 381                        switch (e->op) {
 382                        case CEXPR_EQ:
 383                                s[++sp] = (val1 == val2);
 384                                break;
 385                        case CEXPR_NEQ:
 386                                s[++sp] = (val1 != val2);
 387                                break;
 388                        default:
 389                                BUG();
 390                                return 0;
 391                        }
 392                        break;
 393                case CEXPR_NAMES:
 394                        if (sp == (CEXPR_MAXDEPTH-1))
 395                                return 0;
 396                        c = scontext;
 397                        if (e->attr & CEXPR_TARGET)
 398                                c = tcontext;
 399                        else if (e->attr & CEXPR_XTARGET) {
 400                                c = xcontext;
 401                                if (!c) {
 402                                        BUG();
 403                                        return 0;
 404                                }
 405                        }
 406                        if (e->attr & CEXPR_USER)
 407                                val1 = c->user;
 408                        else if (e->attr & CEXPR_ROLE)
 409                                val1 = c->role;
 410                        else if (e->attr & CEXPR_TYPE)
 411                                val1 = c->type;
 412                        else {
 413                                BUG();
 414                                return 0;
 415                        }
 416
 417                        switch (e->op) {
 418                        case CEXPR_EQ:
 419                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 420                                break;
 421                        case CEXPR_NEQ:
 422                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 423                                break;
 424                        default:
 425                                BUG();
 426                                return 0;
 427                        }
 428                        break;
 429                default:
 430                        BUG();
 431                        return 0;
 432                }
 433        }
 434
 435        BUG_ON(sp != 0);
 436        return s[0];
 437}
 438
 439/*
 440 * security_dump_masked_av - dumps masked permissions during
 441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 442 */
 443static int dump_masked_av_helper(void *k, void *d, void *args)
 444{
 445        struct perm_datum *pdatum = d;
 446        char **permission_names = args;
 447
 448        BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 449
 450        permission_names[pdatum->value - 1] = (char *)k;
 451
 452        return 0;
 453}
 454
 455static void security_dump_masked_av(struct policydb *policydb,
 456                                    struct context *scontext,
 457                                    struct context *tcontext,
 458                                    u16 tclass,
 459                                    u32 permissions,
 460                                    const char *reason)
 461{
 462        struct common_datum *common_dat;
 463        struct class_datum *tclass_dat;
 464        struct audit_buffer *ab;
 465        char *tclass_name;
 466        char *scontext_name = NULL;
 467        char *tcontext_name = NULL;
 468        char *permission_names[32];
 469        int index;
 470        u32 length;
 471        bool need_comma = false;
 472
 473        if (!permissions)
 474                return;
 475
 476        tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 477        tclass_dat = policydb->class_val_to_struct[tclass - 1];
 478        common_dat = tclass_dat->comdatum;
 479
 480        /* init permission_names */
 481        if (common_dat &&
 482            hashtab_map(common_dat->permissions.table,
 483                        dump_masked_av_helper, permission_names) < 0)
 484                goto out;
 485
 486        if (hashtab_map(tclass_dat->permissions.table,
 487                        dump_masked_av_helper, permission_names) < 0)
 488                goto out;
 489
 490        /* get scontext/tcontext in text form */
 491        if (context_struct_to_string(policydb, scontext,
 492                                     &scontext_name, &length) < 0)
 493                goto out;
 494
 495        if (context_struct_to_string(policydb, tcontext,
 496                                     &tcontext_name, &length) < 0)
 497                goto out;
 498
 499        /* audit a message */
 500        ab = audit_log_start(audit_context(),
 501                             GFP_ATOMIC, AUDIT_SELINUX_ERR);
 502        if (!ab)
 503                goto out;
 504
 505        audit_log_format(ab, "op=security_compute_av reason=%s "
 506                         "scontext=%s tcontext=%s tclass=%s perms=",
 507                         reason, scontext_name, tcontext_name, tclass_name);
 508
 509        for (index = 0; index < 32; index++) {
 510                u32 mask = (1 << index);
 511
 512                if ((mask & permissions) == 0)
 513                        continue;
 514
 515                audit_log_format(ab, "%s%s",
 516                                 need_comma ? "," : "",
 517                                 permission_names[index]
 518                                 ? permission_names[index] : "????");
 519                need_comma = true;
 520        }
 521        audit_log_end(ab);
 522out:
 523        /* release scontext/tcontext */
 524        kfree(tcontext_name);
 525        kfree(scontext_name);
 526
 527        return;
 528}
 529
 530/*
 531 * security_boundary_permission - drops violated permissions
 532 * on boundary constraint.
 533 */
 534static void type_attribute_bounds_av(struct policydb *policydb,
 535                                     struct context *scontext,
 536                                     struct context *tcontext,
 537                                     u16 tclass,
 538                                     struct av_decision *avd)
 539{
 540        struct context lo_scontext;
 541        struct context lo_tcontext, *tcontextp = tcontext;
 542        struct av_decision lo_avd;
 543        struct type_datum *source;
 544        struct type_datum *target;
 545        u32 masked = 0;
 546
 547        source = policydb->type_val_to_struct_array[scontext->type - 1];
 548        BUG_ON(!source);
 549
 550        if (!source->bounds)
 551                return;
 552
 553        target = policydb->type_val_to_struct_array[tcontext->type - 1];
 554        BUG_ON(!target);
 555
 556        memset(&lo_avd, 0, sizeof(lo_avd));
 557
 558        memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 559        lo_scontext.type = source->bounds;
 560
 561        if (target->bounds) {
 562                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 563                lo_tcontext.type = target->bounds;
 564                tcontextp = &lo_tcontext;
 565        }
 566
 567        context_struct_compute_av(policydb, &lo_scontext,
 568                                  tcontextp,
 569                                  tclass,
 570                                  &lo_avd,
 571                                  NULL);
 572
 573        masked = ~lo_avd.allowed & avd->allowed;
 574
 575        if (likely(!masked))
 576                return;         /* no masked permission */
 577
 578        /* mask violated permissions */
 579        avd->allowed &= ~masked;
 580
 581        /* audit masked permissions */
 582        security_dump_masked_av(policydb, scontext, tcontext,
 583                                tclass, masked, "bounds");
 584}
 585
 586/*
 587 * flag which drivers have permissions
 588 * only looking for ioctl based extended permssions
 589 */
 590void services_compute_xperms_drivers(
 591                struct extended_perms *xperms,
 592                struct avtab_node *node)
 593{
 594        unsigned int i;
 595
 596        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 597                /* if one or more driver has all permissions allowed */
 598                for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 599                        xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 600        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 601                /* if allowing permissions within a driver */
 602                security_xperm_set(xperms->drivers.p,
 603                                        node->datum.u.xperms->driver);
 604        }
 605
 606        /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 607        if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 608                xperms->len = 1;
 609}
 610
 611/*
 612 * Compute access vectors and extended permissions based on a context
 613 * structure pair for the permissions in a particular class.
 614 */
 615static void context_struct_compute_av(struct policydb *policydb,
 616                                      struct context *scontext,
 617                                      struct context *tcontext,
 618                                      u16 tclass,
 619                                      struct av_decision *avd,
 620                                      struct extended_perms *xperms)
 621{
 622        struct constraint_node *constraint;
 623        struct role_allow *ra;
 624        struct avtab_key avkey;
 625        struct avtab_node *node;
 626        struct class_datum *tclass_datum;
 627        struct ebitmap *sattr, *tattr;
 628        struct ebitmap_node *snode, *tnode;
 629        unsigned int i, j;
 630
 631        avd->allowed = 0;
 632        avd->auditallow = 0;
 633        avd->auditdeny = 0xffffffff;
 634        if (xperms) {
 635                memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 636                xperms->len = 0;
 637        }
 638
 639        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 640                if (printk_ratelimit())
 641                        pr_warn("SELinux:  Invalid class %hu\n", tclass);
 642                return;
 643        }
 644
 645        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 646
 647        /*
 648         * If a specific type enforcement rule was defined for
 649         * this permission check, then use it.
 650         */
 651        avkey.target_class = tclass;
 652        avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 653        sattr = &policydb->type_attr_map_array[scontext->type - 1];
 654        BUG_ON(!sattr);
 655        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 656        BUG_ON(!tattr);
 657        ebitmap_for_each_positive_bit(sattr, snode, i) {
 658                ebitmap_for_each_positive_bit(tattr, tnode, j) {
 659                        avkey.source_type = i + 1;
 660                        avkey.target_type = j + 1;
 661                        for (node = avtab_search_node(&policydb->te_avtab,
 662                                                      &avkey);
 663                             node;
 664                             node = avtab_search_node_next(node, avkey.specified)) {
 665                                if (node->key.specified == AVTAB_ALLOWED)
 666                                        avd->allowed |= node->datum.u.data;
 667                                else if (node->key.specified == AVTAB_AUDITALLOW)
 668                                        avd->auditallow |= node->datum.u.data;
 669                                else if (node->key.specified == AVTAB_AUDITDENY)
 670                                        avd->auditdeny &= node->datum.u.data;
 671                                else if (xperms && (node->key.specified & AVTAB_XPERMS))
 672                                        services_compute_xperms_drivers(xperms, node);
 673                        }
 674
 675                        /* Check conditional av table for additional permissions */
 676                        cond_compute_av(&policydb->te_cond_avtab, &avkey,
 677                                        avd, xperms);
 678
 679                }
 680        }
 681
 682        /*
 683         * Remove any permissions prohibited by a constraint (this includes
 684         * the MLS policy).
 685         */
 686        constraint = tclass_datum->constraints;
 687        while (constraint) {
 688                if ((constraint->permissions & (avd->allowed)) &&
 689                    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 690                                          constraint->expr)) {
 691                        avd->allowed &= ~(constraint->permissions);
 692                }
 693                constraint = constraint->next;
 694        }
 695
 696        /*
 697         * If checking process transition permission and the
 698         * role is changing, then check the (current_role, new_role)
 699         * pair.
 700         */
 701        if (tclass == policydb->process_class &&
 702            (avd->allowed & policydb->process_trans_perms) &&
 703            scontext->role != tcontext->role) {
 704                for (ra = policydb->role_allow; ra; ra = ra->next) {
 705                        if (scontext->role == ra->role &&
 706                            tcontext->role == ra->new_role)
 707                                break;
 708                }
 709                if (!ra)
 710                        avd->allowed &= ~policydb->process_trans_perms;
 711        }
 712
 713        /*
 714         * If the given source and target types have boundary
 715         * constraint, lazy checks have to mask any violated
 716         * permission and notice it to userspace via audit.
 717         */
 718        type_attribute_bounds_av(policydb, scontext, tcontext,
 719                                 tclass, avd);
 720}
 721
 722static int security_validtrans_handle_fail(struct selinux_state *state,
 723                                           struct context *ocontext,
 724                                           struct context *ncontext,
 725                                           struct context *tcontext,
 726                                           u16 tclass)
 727{
 728        struct policydb *p = &state->ss->policydb;
 729        char *o = NULL, *n = NULL, *t = NULL;
 730        u32 olen, nlen, tlen;
 731
 732        if (context_struct_to_string(p, ocontext, &o, &olen))
 733                goto out;
 734        if (context_struct_to_string(p, ncontext, &n, &nlen))
 735                goto out;
 736        if (context_struct_to_string(p, tcontext, &t, &tlen))
 737                goto out;
 738        audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 739                  "op=security_validate_transition seresult=denied"
 740                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 741                  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 742out:
 743        kfree(o);
 744        kfree(n);
 745        kfree(t);
 746
 747        if (!enforcing_enabled(state))
 748                return 0;
 749        return -EPERM;
 750}
 751
 752static int security_compute_validatetrans(struct selinux_state *state,
 753                                          u32 oldsid, u32 newsid, u32 tasksid,
 754                                          u16 orig_tclass, bool user)
 755{
 756        struct policydb *policydb;
 757        struct sidtab *sidtab;
 758        struct context *ocontext;
 759        struct context *ncontext;
 760        struct context *tcontext;
 761        struct class_datum *tclass_datum;
 762        struct constraint_node *constraint;
 763        u16 tclass;
 764        int rc = 0;
 765
 766
 767        if (!state->initialized)
 768                return 0;
 769
 770        read_lock(&state->ss->policy_rwlock);
 771
 772        policydb = &state->ss->policydb;
 773        sidtab = state->ss->sidtab;
 774
 775        if (!user)
 776                tclass = unmap_class(&state->ss->map, orig_tclass);
 777        else
 778                tclass = orig_tclass;
 779
 780        if (!tclass || tclass > policydb->p_classes.nprim) {
 781                rc = -EINVAL;
 782                goto out;
 783        }
 784        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 785
 786        ocontext = sidtab_search(sidtab, oldsid);
 787        if (!ocontext) {
 788                pr_err("SELinux: %s:  unrecognized SID %d\n",
 789                        __func__, oldsid);
 790                rc = -EINVAL;
 791                goto out;
 792        }
 793
 794        ncontext = sidtab_search(sidtab, newsid);
 795        if (!ncontext) {
 796                pr_err("SELinux: %s:  unrecognized SID %d\n",
 797                        __func__, newsid);
 798                rc = -EINVAL;
 799                goto out;
 800        }
 801
 802        tcontext = sidtab_search(sidtab, tasksid);
 803        if (!tcontext) {
 804                pr_err("SELinux: %s:  unrecognized SID %d\n",
 805                        __func__, tasksid);
 806                rc = -EINVAL;
 807                goto out;
 808        }
 809
 810        constraint = tclass_datum->validatetrans;
 811        while (constraint) {
 812                if (!constraint_expr_eval(policydb, ocontext, ncontext,
 813                                          tcontext, constraint->expr)) {
 814                        if (user)
 815                                rc = -EPERM;
 816                        else
 817                                rc = security_validtrans_handle_fail(state,
 818                                                                     ocontext,
 819                                                                     ncontext,
 820                                                                     tcontext,
 821                                                                     tclass);
 822                        goto out;
 823                }
 824                constraint = constraint->next;
 825        }
 826
 827out:
 828        read_unlock(&state->ss->policy_rwlock);
 829        return rc;
 830}
 831
 832int security_validate_transition_user(struct selinux_state *state,
 833                                      u32 oldsid, u32 newsid, u32 tasksid,
 834                                      u16 tclass)
 835{
 836        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 837                                              tclass, true);
 838}
 839
 840int security_validate_transition(struct selinux_state *state,
 841                                 u32 oldsid, u32 newsid, u32 tasksid,
 842                                 u16 orig_tclass)
 843{
 844        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845                                              orig_tclass, false);
 846}
 847
 848/*
 849 * security_bounded_transition - check whether the given
 850 * transition is directed to bounded, or not.
 851 * It returns 0, if @newsid is bounded by @oldsid.
 852 * Otherwise, it returns error code.
 853 *
 854 * @oldsid : current security identifier
 855 * @newsid : destinated security identifier
 856 */
 857int security_bounded_transition(struct selinux_state *state,
 858                                u32 old_sid, u32 new_sid)
 859{
 860        struct policydb *policydb;
 861        struct sidtab *sidtab;
 862        struct context *old_context, *new_context;
 863        struct type_datum *type;
 864        int index;
 865        int rc;
 866
 867        if (!state->initialized)
 868                return 0;
 869
 870        read_lock(&state->ss->policy_rwlock);
 871
 872        policydb = &state->ss->policydb;
 873        sidtab = state->ss->sidtab;
 874
 875        rc = -EINVAL;
 876        old_context = sidtab_search(sidtab, old_sid);
 877        if (!old_context) {
 878                pr_err("SELinux: %s: unrecognized SID %u\n",
 879                       __func__, old_sid);
 880                goto out;
 881        }
 882
 883        rc = -EINVAL;
 884        new_context = sidtab_search(sidtab, new_sid);
 885        if (!new_context) {
 886                pr_err("SELinux: %s: unrecognized SID %u\n",
 887                       __func__, new_sid);
 888                goto out;
 889        }
 890
 891        rc = 0;
 892        /* type/domain unchanged */
 893        if (old_context->type == new_context->type)
 894                goto out;
 895
 896        index = new_context->type;
 897        while (true) {
 898                type = policydb->type_val_to_struct_array[index - 1];
 899                BUG_ON(!type);
 900
 901                /* not bounded anymore */
 902                rc = -EPERM;
 903                if (!type->bounds)
 904                        break;
 905
 906                /* @newsid is bounded by @oldsid */
 907                rc = 0;
 908                if (type->bounds == old_context->type)
 909                        break;
 910
 911                index = type->bounds;
 912        }
 913
 914        if (rc) {
 915                char *old_name = NULL;
 916                char *new_name = NULL;
 917                u32 length;
 918
 919                if (!context_struct_to_string(policydb, old_context,
 920                                              &old_name, &length) &&
 921                    !context_struct_to_string(policydb, new_context,
 922                                              &new_name, &length)) {
 923                        audit_log(audit_context(),
 924                                  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 925                                  "op=security_bounded_transition "
 926                                  "seresult=denied "
 927                                  "oldcontext=%s newcontext=%s",
 928                                  old_name, new_name);
 929                }
 930                kfree(new_name);
 931                kfree(old_name);
 932        }
 933out:
 934        read_unlock(&state->ss->policy_rwlock);
 935
 936        return rc;
 937}
 938
 939static void avd_init(struct selinux_state *state, struct av_decision *avd)
 940{
 941        avd->allowed = 0;
 942        avd->auditallow = 0;
 943        avd->auditdeny = 0xffffffff;
 944        avd->seqno = state->ss->latest_granting;
 945        avd->flags = 0;
 946}
 947
 948void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 949                                        struct avtab_node *node)
 950{
 951        unsigned int i;
 952
 953        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 954                if (xpermd->driver != node->datum.u.xperms->driver)
 955                        return;
 956        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 957                if (!security_xperm_test(node->datum.u.xperms->perms.p,
 958                                        xpermd->driver))
 959                        return;
 960        } else {
 961                BUG();
 962        }
 963
 964        if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 965                xpermd->used |= XPERMS_ALLOWED;
 966                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 967                        memset(xpermd->allowed->p, 0xff,
 968                                        sizeof(xpermd->allowed->p));
 969                }
 970                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 971                        for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 972                                xpermd->allowed->p[i] |=
 973                                        node->datum.u.xperms->perms.p[i];
 974                }
 975        } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 976                xpermd->used |= XPERMS_AUDITALLOW;
 977                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 978                        memset(xpermd->auditallow->p, 0xff,
 979                                        sizeof(xpermd->auditallow->p));
 980                }
 981                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 982                        for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 983                                xpermd->auditallow->p[i] |=
 984                                        node->datum.u.xperms->perms.p[i];
 985                }
 986        } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 987                xpermd->used |= XPERMS_DONTAUDIT;
 988                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 989                        memset(xpermd->dontaudit->p, 0xff,
 990                                        sizeof(xpermd->dontaudit->p));
 991                }
 992                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 993                        for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 994                                xpermd->dontaudit->p[i] |=
 995                                        node->datum.u.xperms->perms.p[i];
 996                }
 997        } else {
 998                BUG();
 999        }
1000}
1001
1002void security_compute_xperms_decision(struct selinux_state *state,
1003                                      u32 ssid,
1004                                      u32 tsid,
1005                                      u16 orig_tclass,
1006                                      u8 driver,
1007                                      struct extended_perms_decision *xpermd)
1008{
1009        struct policydb *policydb;
1010        struct sidtab *sidtab;
1011        u16 tclass;
1012        struct context *scontext, *tcontext;
1013        struct avtab_key avkey;
1014        struct avtab_node *node;
1015        struct ebitmap *sattr, *tattr;
1016        struct ebitmap_node *snode, *tnode;
1017        unsigned int i, j;
1018
1019        xpermd->driver = driver;
1020        xpermd->used = 0;
1021        memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1022        memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1023        memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1024
1025        read_lock(&state->ss->policy_rwlock);
1026        if (!state->initialized)
1027                goto allow;
1028
1029        policydb = &state->ss->policydb;
1030        sidtab = state->ss->sidtab;
1031
1032        scontext = sidtab_search(sidtab, ssid);
1033        if (!scontext) {
1034                pr_err("SELinux: %s:  unrecognized SID %d\n",
1035                       __func__, ssid);
1036                goto out;
1037        }
1038
1039        tcontext = sidtab_search(sidtab, tsid);
1040        if (!tcontext) {
1041                pr_err("SELinux: %s:  unrecognized SID %d\n",
1042                       __func__, tsid);
1043                goto out;
1044        }
1045
1046        tclass = unmap_class(&state->ss->map, orig_tclass);
1047        if (unlikely(orig_tclass && !tclass)) {
1048                if (policydb->allow_unknown)
1049                        goto allow;
1050                goto out;
1051        }
1052
1053
1054        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1055                pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1056                goto out;
1057        }
1058
1059        avkey.target_class = tclass;
1060        avkey.specified = AVTAB_XPERMS;
1061        sattr = &policydb->type_attr_map_array[scontext->type - 1];
1062        BUG_ON(!sattr);
1063        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1064        BUG_ON(!tattr);
1065        ebitmap_for_each_positive_bit(sattr, snode, i) {
1066                ebitmap_for_each_positive_bit(tattr, tnode, j) {
1067                        avkey.source_type = i + 1;
1068                        avkey.target_type = j + 1;
1069                        for (node = avtab_search_node(&policydb->te_avtab,
1070                                                      &avkey);
1071                             node;
1072                             node = avtab_search_node_next(node, avkey.specified))
1073                                services_compute_xperms_decision(xpermd, node);
1074
1075                        cond_compute_xperms(&policydb->te_cond_avtab,
1076                                                &avkey, xpermd);
1077                }
1078        }
1079out:
1080        read_unlock(&state->ss->policy_rwlock);
1081        return;
1082allow:
1083        memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1084        goto out;
1085}
1086
1087/**
1088 * security_compute_av - Compute access vector decisions.
1089 * @ssid: source security identifier
1090 * @tsid: target security identifier
1091 * @tclass: target security class
1092 * @avd: access vector decisions
1093 * @xperms: extended permissions
1094 *
1095 * Compute a set of access vector decisions based on the
1096 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1097 */
1098void security_compute_av(struct selinux_state *state,
1099                         u32 ssid,
1100                         u32 tsid,
1101                         u16 orig_tclass,
1102                         struct av_decision *avd,
1103                         struct extended_perms *xperms)
1104{
1105        struct policydb *policydb;
1106        struct sidtab *sidtab;
1107        u16 tclass;
1108        struct context *scontext = NULL, *tcontext = NULL;
1109
1110        read_lock(&state->ss->policy_rwlock);
1111        avd_init(state, avd);
1112        xperms->len = 0;
1113        if (!state->initialized)
1114                goto allow;
1115
1116        policydb = &state->ss->policydb;
1117        sidtab = state->ss->sidtab;
1118
1119        scontext = sidtab_search(sidtab, ssid);
1120        if (!scontext) {
1121                pr_err("SELinux: %s:  unrecognized SID %d\n",
1122                       __func__, ssid);
1123                goto out;
1124        }
1125
1126        /* permissive domain? */
1127        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1128                avd->flags |= AVD_FLAGS_PERMISSIVE;
1129
1130        tcontext = sidtab_search(sidtab, tsid);
1131        if (!tcontext) {
1132                pr_err("SELinux: %s:  unrecognized SID %d\n",
1133                       __func__, tsid);
1134                goto out;
1135        }
1136
1137        tclass = unmap_class(&state->ss->map, orig_tclass);
1138        if (unlikely(orig_tclass && !tclass)) {
1139                if (policydb->allow_unknown)
1140                        goto allow;
1141                goto out;
1142        }
1143        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1144                                  xperms);
1145        map_decision(&state->ss->map, orig_tclass, avd,
1146                     policydb->allow_unknown);
1147out:
1148        read_unlock(&state->ss->policy_rwlock);
1149        return;
1150allow:
1151        avd->allowed = 0xffffffff;
1152        goto out;
1153}
1154
1155void security_compute_av_user(struct selinux_state *state,
1156                              u32 ssid,
1157                              u32 tsid,
1158                              u16 tclass,
1159                              struct av_decision *avd)
1160{
1161        struct policydb *policydb;
1162        struct sidtab *sidtab;
1163        struct context *scontext = NULL, *tcontext = NULL;
1164
1165        read_lock(&state->ss->policy_rwlock);
1166        avd_init(state, avd);
1167        if (!state->initialized)
1168                goto allow;
1169
1170        policydb = &state->ss->policydb;
1171        sidtab = state->ss->sidtab;
1172
1173        scontext = sidtab_search(sidtab, ssid);
1174        if (!scontext) {
1175                pr_err("SELinux: %s:  unrecognized SID %d\n",
1176                       __func__, ssid);
1177                goto out;
1178        }
1179
1180        /* permissive domain? */
1181        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1182                avd->flags |= AVD_FLAGS_PERMISSIVE;
1183
1184        tcontext = sidtab_search(sidtab, tsid);
1185        if (!tcontext) {
1186                pr_err("SELinux: %s:  unrecognized SID %d\n",
1187                       __func__, tsid);
1188                goto out;
1189        }
1190
1191        if (unlikely(!tclass)) {
1192                if (policydb->allow_unknown)
1193                        goto allow;
1194                goto out;
1195        }
1196
1197        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1198                                  NULL);
1199 out:
1200        read_unlock(&state->ss->policy_rwlock);
1201        return;
1202allow:
1203        avd->allowed = 0xffffffff;
1204        goto out;
1205}
1206
1207/*
1208 * Write the security context string representation of
1209 * the context structure `context' into a dynamically
1210 * allocated string of the correct size.  Set `*scontext'
1211 * to point to this string and set `*scontext_len' to
1212 * the length of the string.
1213 */
1214static int context_struct_to_string(struct policydb *p,
1215                                    struct context *context,
1216                                    char **scontext, u32 *scontext_len)
1217{
1218        char *scontextp;
1219
1220        if (scontext)
1221                *scontext = NULL;
1222        *scontext_len = 0;
1223
1224        if (context->len) {
1225                *scontext_len = context->len;
1226                if (scontext) {
1227                        *scontext = kstrdup(context->str, GFP_ATOMIC);
1228                        if (!(*scontext))
1229                                return -ENOMEM;
1230                }
1231                return 0;
1232        }
1233
1234        /* Compute the size of the context. */
1235        *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1236        *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1237        *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1238        *scontext_len += mls_compute_context_len(p, context);
1239
1240        if (!scontext)
1241                return 0;
1242
1243        /* Allocate space for the context; caller must free this space. */
1244        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1245        if (!scontextp)
1246                return -ENOMEM;
1247        *scontext = scontextp;
1248
1249        /*
1250         * Copy the user name, role name and type name into the context.
1251         */
1252        scontextp += sprintf(scontextp, "%s:%s:%s",
1253                sym_name(p, SYM_USERS, context->user - 1),
1254                sym_name(p, SYM_ROLES, context->role - 1),
1255                sym_name(p, SYM_TYPES, context->type - 1));
1256
1257        mls_sid_to_context(p, context, &scontextp);
1258
1259        *scontextp = 0;
1260
1261        return 0;
1262}
1263
1264#include "initial_sid_to_string.h"
1265
1266const char *security_get_initial_sid_context(u32 sid)
1267{
1268        if (unlikely(sid > SECINITSID_NUM))
1269                return NULL;
1270        return initial_sid_to_string[sid];
1271}
1272
1273static int security_sid_to_context_core(struct selinux_state *state,
1274                                        u32 sid, char **scontext,
1275                                        u32 *scontext_len, int force,
1276                                        int only_invalid)
1277{
1278        struct policydb *policydb;
1279        struct sidtab *sidtab;
1280        struct context *context;
1281        int rc = 0;
1282
1283        if (scontext)
1284                *scontext = NULL;
1285        *scontext_len  = 0;
1286
1287        if (!state->initialized) {
1288                if (sid <= SECINITSID_NUM) {
1289                        char *scontextp;
1290
1291                        *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1292                        if (!scontext)
1293                                goto out;
1294                        scontextp = kmemdup(initial_sid_to_string[sid],
1295                                            *scontext_len, GFP_ATOMIC);
1296                        if (!scontextp) {
1297                                rc = -ENOMEM;
1298                                goto out;
1299                        }
1300                        *scontext = scontextp;
1301                        goto out;
1302                }
1303                pr_err("SELinux: %s:  called before initial "
1304                       "load_policy on unknown SID %d\n", __func__, sid);
1305                rc = -EINVAL;
1306                goto out;
1307        }
1308        read_lock(&state->ss->policy_rwlock);
1309        policydb = &state->ss->policydb;
1310        sidtab = state->ss->sidtab;
1311        if (force)
1312                context = sidtab_search_force(sidtab, sid);
1313        else
1314                context = sidtab_search(sidtab, sid);
1315        if (!context) {
1316                pr_err("SELinux: %s:  unrecognized SID %d\n",
1317                        __func__, sid);
1318                rc = -EINVAL;
1319                goto out_unlock;
1320        }
1321        if (only_invalid && !context->len) {
1322                scontext = NULL;
1323                scontext_len = 0;
1324                rc = 0;
1325        } else {
1326                rc = context_struct_to_string(policydb, context, scontext,
1327                                              scontext_len);
1328        }
1329out_unlock:
1330        read_unlock(&state->ss->policy_rwlock);
1331out:
1332        return rc;
1333
1334}
1335
1336/**
1337 * security_sid_to_context - Obtain a context for a given SID.
1338 * @sid: security identifier, SID
1339 * @scontext: security context
1340 * @scontext_len: length in bytes
1341 *
1342 * Write the string representation of the context associated with @sid
1343 * into a dynamically allocated string of the correct size.  Set @scontext
1344 * to point to this string and set @scontext_len to the length of the string.
1345 */
1346int security_sid_to_context(struct selinux_state *state,
1347                            u32 sid, char **scontext, u32 *scontext_len)
1348{
1349        return security_sid_to_context_core(state, sid, scontext,
1350                                            scontext_len, 0, 0);
1351}
1352
1353int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1354                                  char **scontext, u32 *scontext_len)
1355{
1356        return security_sid_to_context_core(state, sid, scontext,
1357                                            scontext_len, 1, 0);
1358}
1359
1360/**
1361 * security_sid_to_context_inval - Obtain a context for a given SID if it
1362 *                                 is invalid.
1363 * @sid: security identifier, SID
1364 * @scontext: security context
1365 * @scontext_len: length in bytes
1366 *
1367 * Write the string representation of the context associated with @sid
1368 * into a dynamically allocated string of the correct size, but only if the
1369 * context is invalid in the current policy.  Set @scontext to point to
1370 * this string (or NULL if the context is valid) and set @scontext_len to
1371 * the length of the string (or 0 if the context is valid).
1372 */
1373int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1374                                  char **scontext, u32 *scontext_len)
1375{
1376        return security_sid_to_context_core(state, sid, scontext,
1377                                            scontext_len, 1, 1);
1378}
1379
1380/*
1381 * Caveat:  Mutates scontext.
1382 */
1383static int string_to_context_struct(struct policydb *pol,
1384                                    struct sidtab *sidtabp,
1385                                    char *scontext,
1386                                    struct context *ctx,
1387                                    u32 def_sid)
1388{
1389        struct role_datum *role;
1390        struct type_datum *typdatum;
1391        struct user_datum *usrdatum;
1392        char *scontextp, *p, oldc;
1393        int rc = 0;
1394
1395        context_init(ctx);
1396
1397        /* Parse the security context. */
1398
1399        rc = -EINVAL;
1400        scontextp = (char *) scontext;
1401
1402        /* Extract the user. */
1403        p = scontextp;
1404        while (*p && *p != ':')
1405                p++;
1406
1407        if (*p == 0)
1408                goto out;
1409
1410        *p++ = 0;
1411
1412        usrdatum = hashtab_search(pol->p_users.table, scontextp);
1413        if (!usrdatum)
1414                goto out;
1415
1416        ctx->user = usrdatum->value;
1417
1418        /* Extract role. */
1419        scontextp = p;
1420        while (*p && *p != ':')
1421                p++;
1422
1423        if (*p == 0)
1424                goto out;
1425
1426        *p++ = 0;
1427
1428        role = hashtab_search(pol->p_roles.table, scontextp);
1429        if (!role)
1430                goto out;
1431        ctx->role = role->value;
1432
1433        /* Extract type. */
1434        scontextp = p;
1435        while (*p && *p != ':')
1436                p++;
1437        oldc = *p;
1438        *p++ = 0;
1439
1440        typdatum = hashtab_search(pol->p_types.table, scontextp);
1441        if (!typdatum || typdatum->attribute)
1442                goto out;
1443
1444        ctx->type = typdatum->value;
1445
1446        rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1447        if (rc)
1448                goto out;
1449
1450        /* Check the validity of the new context. */
1451        rc = -EINVAL;
1452        if (!policydb_context_isvalid(pol, ctx))
1453                goto out;
1454        rc = 0;
1455out:
1456        if (rc)
1457                context_destroy(ctx);
1458        return rc;
1459}
1460
1461static int security_context_to_sid_core(struct selinux_state *state,
1462                                        const char *scontext, u32 scontext_len,
1463                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
1464                                        int force)
1465{
1466        struct policydb *policydb;
1467        struct sidtab *sidtab;
1468        char *scontext2, *str = NULL;
1469        struct context context;
1470        int rc = 0;
1471
1472        /* An empty security context is never valid. */
1473        if (!scontext_len)
1474                return -EINVAL;
1475
1476        /* Copy the string to allow changes and ensure a NUL terminator */
1477        scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1478        if (!scontext2)
1479                return -ENOMEM;
1480
1481        if (!state->initialized) {
1482                int i;
1483
1484                for (i = 1; i < SECINITSID_NUM; i++) {
1485                        if (!strcmp(initial_sid_to_string[i], scontext2)) {
1486                                *sid = i;
1487                                goto out;
1488                        }
1489                }
1490                *sid = SECINITSID_KERNEL;
1491                goto out;
1492        }
1493        *sid = SECSID_NULL;
1494
1495        if (force) {
1496                /* Save another copy for storing in uninterpreted form */
1497                rc = -ENOMEM;
1498                str = kstrdup(scontext2, gfp_flags);
1499                if (!str)
1500                        goto out;
1501        }
1502        read_lock(&state->ss->policy_rwlock);
1503        policydb = &state->ss->policydb;
1504        sidtab = state->ss->sidtab;
1505        rc = string_to_context_struct(policydb, sidtab, scontext2,
1506                                      &context, def_sid);
1507        if (rc == -EINVAL && force) {
1508                context.str = str;
1509                context.len = strlen(str) + 1;
1510                str = NULL;
1511        } else if (rc)
1512                goto out_unlock;
1513        rc = sidtab_context_to_sid(sidtab, &context, sid);
1514        context_destroy(&context);
1515out_unlock:
1516        read_unlock(&state->ss->policy_rwlock);
1517out:
1518        kfree(scontext2);
1519        kfree(str);
1520        return rc;
1521}
1522
1523/**
1524 * security_context_to_sid - Obtain a SID for a given security context.
1525 * @scontext: security context
1526 * @scontext_len: length in bytes
1527 * @sid: security identifier, SID
1528 * @gfp: context for the allocation
1529 *
1530 * Obtains a SID associated with the security context that
1531 * has the string representation specified by @scontext.
1532 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1533 * memory is available, or 0 on success.
1534 */
1535int security_context_to_sid(struct selinux_state *state,
1536                            const char *scontext, u32 scontext_len, u32 *sid,
1537                            gfp_t gfp)
1538{
1539        return security_context_to_sid_core(state, scontext, scontext_len,
1540                                            sid, SECSID_NULL, gfp, 0);
1541}
1542
1543int security_context_str_to_sid(struct selinux_state *state,
1544                                const char *scontext, u32 *sid, gfp_t gfp)
1545{
1546        return security_context_to_sid(state, scontext, strlen(scontext),
1547                                       sid, gfp);
1548}
1549
1550/**
1551 * security_context_to_sid_default - Obtain a SID for a given security context,
1552 * falling back to specified default if needed.
1553 *
1554 * @scontext: security context
1555 * @scontext_len: length in bytes
1556 * @sid: security identifier, SID
1557 * @def_sid: default SID to assign on error
1558 *
1559 * Obtains a SID associated with the security context that
1560 * has the string representation specified by @scontext.
1561 * The default SID is passed to the MLS layer to be used to allow
1562 * kernel labeling of the MLS field if the MLS field is not present
1563 * (for upgrading to MLS without full relabel).
1564 * Implicitly forces adding of the context even if it cannot be mapped yet.
1565 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1566 * memory is available, or 0 on success.
1567 */
1568int security_context_to_sid_default(struct selinux_state *state,
1569                                    const char *scontext, u32 scontext_len,
1570                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1571{
1572        return security_context_to_sid_core(state, scontext, scontext_len,
1573                                            sid, def_sid, gfp_flags, 1);
1574}
1575
1576int security_context_to_sid_force(struct selinux_state *state,
1577                                  const char *scontext, u32 scontext_len,
1578                                  u32 *sid)
1579{
1580        return security_context_to_sid_core(state, scontext, scontext_len,
1581                                            sid, SECSID_NULL, GFP_KERNEL, 1);
1582}
1583
1584static int compute_sid_handle_invalid_context(
1585        struct selinux_state *state,
1586        struct context *scontext,
1587        struct context *tcontext,
1588        u16 tclass,
1589        struct context *newcontext)
1590{
1591        struct policydb *policydb = &state->ss->policydb;
1592        char *s = NULL, *t = NULL, *n = NULL;
1593        u32 slen, tlen, nlen;
1594
1595        if (context_struct_to_string(policydb, scontext, &s, &slen))
1596                goto out;
1597        if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1598                goto out;
1599        if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1600                goto out;
1601        audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
1602                  "op=security_compute_sid invalid_context=%s"
1603                  " scontext=%s"
1604                  " tcontext=%s"
1605                  " tclass=%s",
1606                  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1607out:
1608        kfree(s);
1609        kfree(t);
1610        kfree(n);
1611        if (!enforcing_enabled(state))
1612                return 0;
1613        return -EACCES;
1614}
1615
1616static void filename_compute_type(struct policydb *policydb,
1617                                  struct context *newcontext,
1618                                  u32 stype, u32 ttype, u16 tclass,
1619                                  const char *objname)
1620{
1621        struct filename_trans ft;
1622        struct filename_trans_datum *otype;
1623
1624        /*
1625         * Most filename trans rules are going to live in specific directories
1626         * like /dev or /var/run.  This bitmap will quickly skip rule searches
1627         * if the ttype does not contain any rules.
1628         */
1629        if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1630                return;
1631
1632        ft.stype = stype;
1633        ft.ttype = ttype;
1634        ft.tclass = tclass;
1635        ft.name = objname;
1636
1637        otype = hashtab_search(policydb->filename_trans, &ft);
1638        if (otype)
1639                newcontext->type = otype->otype;
1640}
1641
1642static int security_compute_sid(struct selinux_state *state,
1643                                u32 ssid,
1644                                u32 tsid,
1645                                u16 orig_tclass,
1646                                u32 specified,
1647                                const char *objname,
1648                                u32 *out_sid,
1649                                bool kern)
1650{
1651        struct policydb *policydb;
1652        struct sidtab *sidtab;
1653        struct class_datum *cladatum = NULL;
1654        struct context *scontext = NULL, *tcontext = NULL, newcontext;
1655        struct role_trans *roletr = NULL;
1656        struct avtab_key avkey;
1657        struct avtab_datum *avdatum;
1658        struct avtab_node *node;
1659        u16 tclass;
1660        int rc = 0;
1661        bool sock;
1662
1663        if (!state->initialized) {
1664                switch (orig_tclass) {
1665                case SECCLASS_PROCESS: /* kernel value */
1666                        *out_sid = ssid;
1667                        break;
1668                default:
1669                        *out_sid = tsid;
1670                        break;
1671                }
1672                goto out;
1673        }
1674
1675        context_init(&newcontext);
1676
1677        read_lock(&state->ss->policy_rwlock);
1678
1679        if (kern) {
1680                tclass = unmap_class(&state->ss->map, orig_tclass);
1681                sock = security_is_socket_class(orig_tclass);
1682        } else {
1683                tclass = orig_tclass;
1684                sock = security_is_socket_class(map_class(&state->ss->map,
1685                                                          tclass));
1686        }
1687
1688        policydb = &state->ss->policydb;
1689        sidtab = state->ss->sidtab;
1690
1691        scontext = sidtab_search(sidtab, ssid);
1692        if (!scontext) {
1693                pr_err("SELinux: %s:  unrecognized SID %d\n",
1694                       __func__, ssid);
1695                rc = -EINVAL;
1696                goto out_unlock;
1697        }
1698        tcontext = sidtab_search(sidtab, tsid);
1699        if (!tcontext) {
1700                pr_err("SELinux: %s:  unrecognized SID %d\n",
1701                       __func__, tsid);
1702                rc = -EINVAL;
1703                goto out_unlock;
1704        }
1705
1706        if (tclass && tclass <= policydb->p_classes.nprim)
1707                cladatum = policydb->class_val_to_struct[tclass - 1];
1708
1709        /* Set the user identity. */
1710        switch (specified) {
1711        case AVTAB_TRANSITION:
1712        case AVTAB_CHANGE:
1713                if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1714                        newcontext.user = tcontext->user;
1715                } else {
1716                        /* notice this gets both DEFAULT_SOURCE and unset */
1717                        /* Use the process user identity. */
1718                        newcontext.user = scontext->user;
1719                }
1720                break;
1721        case AVTAB_MEMBER:
1722                /* Use the related object owner. */
1723                newcontext.user = tcontext->user;
1724                break;
1725        }
1726
1727        /* Set the role to default values. */
1728        if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1729                newcontext.role = scontext->role;
1730        } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1731                newcontext.role = tcontext->role;
1732        } else {
1733                if ((tclass == policydb->process_class) || (sock == true))
1734                        newcontext.role = scontext->role;
1735                else
1736                        newcontext.role = OBJECT_R_VAL;
1737        }
1738
1739        /* Set the type to default values. */
1740        if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1741                newcontext.type = scontext->type;
1742        } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1743                newcontext.type = tcontext->type;
1744        } else {
1745                if ((tclass == policydb->process_class) || (sock == true)) {
1746                        /* Use the type of process. */
1747                        newcontext.type = scontext->type;
1748                } else {
1749                        /* Use the type of the related object. */
1750                        newcontext.type = tcontext->type;
1751                }
1752        }
1753
1754        /* Look for a type transition/member/change rule. */
1755        avkey.source_type = scontext->type;
1756        avkey.target_type = tcontext->type;
1757        avkey.target_class = tclass;
1758        avkey.specified = specified;
1759        avdatum = avtab_search(&policydb->te_avtab, &avkey);
1760
1761        /* If no permanent rule, also check for enabled conditional rules */
1762        if (!avdatum) {
1763                node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1764                for (; node; node = avtab_search_node_next(node, specified)) {
1765                        if (node->key.specified & AVTAB_ENABLED) {
1766                                avdatum = &node->datum;
1767                                break;
1768                        }
1769                }
1770        }
1771
1772        if (avdatum) {
1773                /* Use the type from the type transition/member/change rule. */
1774                newcontext.type = avdatum->u.data;
1775        }
1776
1777        /* if we have a objname this is a file trans check so check those rules */
1778        if (objname)
1779                filename_compute_type(policydb, &newcontext, scontext->type,
1780                                      tcontext->type, tclass, objname);
1781
1782        /* Check for class-specific changes. */
1783        if (specified & AVTAB_TRANSITION) {
1784                /* Look for a role transition rule. */
1785                for (roletr = policydb->role_tr; roletr;
1786                     roletr = roletr->next) {
1787                        if ((roletr->role == scontext->role) &&
1788                            (roletr->type == tcontext->type) &&
1789                            (roletr->tclass == tclass)) {
1790                                /* Use the role transition rule. */
1791                                newcontext.role = roletr->new_role;
1792                                break;
1793                        }
1794                }
1795        }
1796
1797        /* Set the MLS attributes.
1798           This is done last because it may allocate memory. */
1799        rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1800                             &newcontext, sock);
1801        if (rc)
1802                goto out_unlock;
1803
1804        /* Check the validity of the context. */
1805        if (!policydb_context_isvalid(policydb, &newcontext)) {
1806                rc = compute_sid_handle_invalid_context(state, scontext,
1807                                                        tcontext,
1808                                                        tclass,
1809                                                        &newcontext);
1810                if (rc)
1811                        goto out_unlock;
1812        }
1813        /* Obtain the sid for the context. */
1814        rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1815out_unlock:
1816        read_unlock(&state->ss->policy_rwlock);
1817        context_destroy(&newcontext);
1818out:
1819        return rc;
1820}
1821
1822/**
1823 * security_transition_sid - Compute the SID for a new subject/object.
1824 * @ssid: source security identifier
1825 * @tsid: target security identifier
1826 * @tclass: target security class
1827 * @out_sid: security identifier for new subject/object
1828 *
1829 * Compute a SID to use for labeling a new subject or object in the
1830 * class @tclass based on a SID pair (@ssid, @tsid).
1831 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1832 * if insufficient memory is available, or %0 if the new SID was
1833 * computed successfully.
1834 */
1835int security_transition_sid(struct selinux_state *state,
1836                            u32 ssid, u32 tsid, u16 tclass,
1837                            const struct qstr *qstr, u32 *out_sid)
1838{
1839        return security_compute_sid(state, ssid, tsid, tclass,
1840                                    AVTAB_TRANSITION,
1841                                    qstr ? qstr->name : NULL, out_sid, true);
1842}
1843
1844int security_transition_sid_user(struct selinux_state *state,
1845                                 u32 ssid, u32 tsid, u16 tclass,
1846                                 const char *objname, u32 *out_sid)
1847{
1848        return security_compute_sid(state, ssid, tsid, tclass,
1849                                    AVTAB_TRANSITION,
1850                                    objname, out_sid, false);
1851}
1852
1853/**
1854 * security_member_sid - Compute the SID for member selection.
1855 * @ssid: source security identifier
1856 * @tsid: target security identifier
1857 * @tclass: target security class
1858 * @out_sid: security identifier for selected member
1859 *
1860 * Compute a SID to use when selecting a member of a polyinstantiated
1861 * object of class @tclass based on a SID pair (@ssid, @tsid).
1862 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1863 * if insufficient memory is available, or %0 if the SID was
1864 * computed successfully.
1865 */
1866int security_member_sid(struct selinux_state *state,
1867                        u32 ssid,
1868                        u32 tsid,
1869                        u16 tclass,
1870                        u32 *out_sid)
1871{
1872        return security_compute_sid(state, ssid, tsid, tclass,
1873                                    AVTAB_MEMBER, NULL,
1874                                    out_sid, false);
1875}
1876
1877/**
1878 * security_change_sid - Compute the SID for object relabeling.
1879 * @ssid: source security identifier
1880 * @tsid: target security identifier
1881 * @tclass: target security class
1882 * @out_sid: security identifier for selected member
1883 *
1884 * Compute a SID to use for relabeling an object of class @tclass
1885 * based on a SID pair (@ssid, @tsid).
1886 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1887 * if insufficient memory is available, or %0 if the SID was
1888 * computed successfully.
1889 */
1890int security_change_sid(struct selinux_state *state,
1891                        u32 ssid,
1892                        u32 tsid,
1893                        u16 tclass,
1894                        u32 *out_sid)
1895{
1896        return security_compute_sid(state,
1897                                    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1898                                    out_sid, false);
1899}
1900
1901static inline int convert_context_handle_invalid_context(
1902        struct selinux_state *state,
1903        struct context *context)
1904{
1905        struct policydb *policydb = &state->ss->policydb;
1906        char *s;
1907        u32 len;
1908
1909        if (enforcing_enabled(state))
1910                return -EINVAL;
1911
1912        if (!context_struct_to_string(policydb, context, &s, &len)) {
1913                pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1914                        s);
1915                kfree(s);
1916        }
1917        return 0;
1918}
1919
1920struct convert_context_args {
1921        struct selinux_state *state;
1922        struct policydb *oldp;
1923        struct policydb *newp;
1924};
1925
1926/*
1927 * Convert the values in the security context
1928 * structure `oldc' from the values specified
1929 * in the policy `p->oldp' to the values specified
1930 * in the policy `p->newp', storing the new context
1931 * in `newc'.  Verify that the context is valid
1932 * under the new policy.
1933 */
1934static int convert_context(struct context *oldc, struct context *newc, void *p)
1935{
1936        struct convert_context_args *args;
1937        struct ocontext *oc;
1938        struct role_datum *role;
1939        struct type_datum *typdatum;
1940        struct user_datum *usrdatum;
1941        char *s;
1942        u32 len;
1943        int rc;
1944
1945        args = p;
1946
1947        if (oldc->str) {
1948                s = kstrdup(oldc->str, GFP_KERNEL);
1949                if (!s)
1950                        return -ENOMEM;
1951
1952                rc = string_to_context_struct(args->newp, NULL, s,
1953                                              newc, SECSID_NULL);
1954                if (rc == -EINVAL) {
1955                        /* Retain string representation for later mapping. */
1956                        context_init(newc);
1957                        newc->str = s;
1958                        newc->len = oldc->len;
1959                        return 0;
1960                }
1961                kfree(s);
1962                if (rc) {
1963                        /* Other error condition, e.g. ENOMEM. */
1964                        pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1965                               oldc->str, -rc);
1966                        return rc;
1967                }
1968                pr_info("SELinux:  Context %s became valid (mapped).\n",
1969                        oldc->str);
1970                return 0;
1971        }
1972
1973        context_init(newc);
1974
1975        /* Convert the user. */
1976        rc = -EINVAL;
1977        usrdatum = hashtab_search(args->newp->p_users.table,
1978                                  sym_name(args->oldp,
1979                                           SYM_USERS, oldc->user - 1));
1980        if (!usrdatum)
1981                goto bad;
1982        newc->user = usrdatum->value;
1983
1984        /* Convert the role. */
1985        rc = -EINVAL;
1986        role = hashtab_search(args->newp->p_roles.table,
1987                              sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1988        if (!role)
1989                goto bad;
1990        newc->role = role->value;
1991
1992        /* Convert the type. */
1993        rc = -EINVAL;
1994        typdatum = hashtab_search(args->newp->p_types.table,
1995                                  sym_name(args->oldp,
1996                                           SYM_TYPES, oldc->type - 1));
1997        if (!typdatum)
1998                goto bad;
1999        newc->type = typdatum->value;
2000
2001        /* Convert the MLS fields if dealing with MLS policies */
2002        if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2003                rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2004                if (rc)
2005                        goto bad;
2006        } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2007                /*
2008                 * Switching between non-MLS and MLS policy:
2009                 * ensure that the MLS fields of the context for all
2010                 * existing entries in the sidtab are filled in with a
2011                 * suitable default value, likely taken from one of the
2012                 * initial SIDs.
2013                 */
2014                oc = args->newp->ocontexts[OCON_ISID];
2015                while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2016                        oc = oc->next;
2017                rc = -EINVAL;
2018                if (!oc) {
2019                        pr_err("SELinux:  unable to look up"
2020                                " the initial SIDs list\n");
2021                        goto bad;
2022                }
2023                rc = mls_range_set(newc, &oc->context[0].range);
2024                if (rc)
2025                        goto bad;
2026        }
2027
2028        /* Check the validity of the new context. */
2029        if (!policydb_context_isvalid(args->newp, newc)) {
2030                rc = convert_context_handle_invalid_context(args->state, oldc);
2031                if (rc)
2032                        goto bad;
2033        }
2034
2035        return 0;
2036bad:
2037        /* Map old representation to string and save it. */
2038        rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2039        if (rc)
2040                return rc;
2041        context_destroy(newc);
2042        newc->str = s;
2043        newc->len = len;
2044        pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2045                newc->str);
2046        return 0;
2047}
2048
2049static void security_load_policycaps(struct selinux_state *state)
2050{
2051        struct policydb *p = &state->ss->policydb;
2052        unsigned int i;
2053        struct ebitmap_node *node;
2054
2055        for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2056                state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2057
2058        for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2059                pr_info("SELinux:  policy capability %s=%d\n",
2060                        selinux_policycap_names[i],
2061                        ebitmap_get_bit(&p->policycaps, i));
2062
2063        ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2064                if (i >= ARRAY_SIZE(selinux_policycap_names))
2065                        pr_info("SELinux:  unknown policy capability %u\n",
2066                                i);
2067        }
2068}
2069
2070static int security_preserve_bools(struct selinux_state *state,
2071                                   struct policydb *newpolicydb);
2072
2073/**
2074 * security_load_policy - Load a security policy configuration.
2075 * @data: binary policy data
2076 * @len: length of data in bytes
2077 *
2078 * Load a new set of security policy configuration data,
2079 * validate it and convert the SID table as necessary.
2080 * This function will flush the access vector cache after
2081 * loading the new policy.
2082 */
2083int security_load_policy(struct selinux_state *state, void *data, size_t len)
2084{
2085        struct policydb *policydb;
2086        struct sidtab *oldsidtab, *newsidtab;
2087        struct policydb *oldpolicydb, *newpolicydb;
2088        struct selinux_mapping *oldmapping;
2089        struct selinux_map newmap;
2090        struct sidtab_convert_params convert_params;
2091        struct convert_context_args args;
2092        u32 seqno;
2093        int rc = 0;
2094        struct policy_file file = { data, len }, *fp = &file;
2095
2096        oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2097        if (!oldpolicydb) {
2098                rc = -ENOMEM;
2099                goto out;
2100        }
2101        newpolicydb = oldpolicydb + 1;
2102
2103        policydb = &state->ss->policydb;
2104
2105        newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2106        if (!newsidtab) {
2107                rc = -ENOMEM;
2108                goto out;
2109        }
2110
2111        if (!state->initialized) {
2112                rc = policydb_read(policydb, fp);
2113                if (rc) {
2114                        kfree(newsidtab);
2115                        goto out;
2116                }
2117
2118                policydb->len = len;
2119                rc = selinux_set_mapping(policydb, secclass_map,
2120                                         &state->ss->map);
2121                if (rc) {
2122                        kfree(newsidtab);
2123                        policydb_destroy(policydb);
2124                        goto out;
2125                }
2126
2127                rc = policydb_load_isids(policydb, newsidtab);
2128                if (rc) {
2129                        kfree(newsidtab);
2130                        policydb_destroy(policydb);
2131                        goto out;
2132                }
2133
2134                state->ss->sidtab = newsidtab;
2135                security_load_policycaps(state);
2136                state->initialized = 1;
2137                seqno = ++state->ss->latest_granting;
2138                selinux_complete_init();
2139                avc_ss_reset(state->avc, seqno);
2140                selnl_notify_policyload(seqno);
2141                selinux_status_update_policyload(state, seqno);
2142                selinux_netlbl_cache_invalidate();
2143                selinux_xfrm_notify_policyload();
2144                goto out;
2145        }
2146
2147        rc = policydb_read(newpolicydb, fp);
2148        if (rc) {
2149                kfree(newsidtab);
2150                goto out;
2151        }
2152
2153        newpolicydb->len = len;
2154        /* If switching between different policy types, log MLS status */
2155        if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2156                pr_info("SELinux: Disabling MLS support...\n");
2157        else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2158                pr_info("SELinux: Enabling MLS support...\n");
2159
2160        rc = policydb_load_isids(newpolicydb, newsidtab);
2161        if (rc) {
2162                pr_err("SELinux:  unable to load the initial SIDs\n");
2163                policydb_destroy(newpolicydb);
2164                kfree(newsidtab);
2165                goto out;
2166        }
2167
2168        rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2169        if (rc)
2170                goto err;
2171
2172        rc = security_preserve_bools(state, newpolicydb);
2173        if (rc) {
2174                pr_err("SELinux:  unable to preserve booleans\n");
2175                goto err;
2176        }
2177
2178        oldsidtab = state->ss->sidtab;
2179
2180        /*
2181         * Convert the internal representations of contexts
2182         * in the new SID table.
2183         */
2184        args.state = state;
2185        args.oldp = policydb;
2186        args.newp = newpolicydb;
2187
2188        convert_params.func = convert_context;
2189        convert_params.args = &args;
2190        convert_params.target = newsidtab;
2191
2192        rc = sidtab_convert(oldsidtab, &convert_params);
2193        if (rc) {
2194                pr_err("SELinux:  unable to convert the internal"
2195                        " representation of contexts in the new SID"
2196                        " table\n");
2197                goto err;
2198        }
2199
2200        /* Save the old policydb and SID table to free later. */
2201        memcpy(oldpolicydb, policydb, sizeof(*policydb));
2202
2203        /* Install the new policydb and SID table. */
2204        write_lock_irq(&state->ss->policy_rwlock);
2205        memcpy(policydb, newpolicydb, sizeof(*policydb));
2206        state->ss->sidtab = newsidtab;
2207        security_load_policycaps(state);
2208        oldmapping = state->ss->map.mapping;
2209        state->ss->map.mapping = newmap.mapping;
2210        state->ss->map.size = newmap.size;
2211        seqno = ++state->ss->latest_granting;
2212        write_unlock_irq(&state->ss->policy_rwlock);
2213
2214        /* Free the old policydb and SID table. */
2215        policydb_destroy(oldpolicydb);
2216        sidtab_destroy(oldsidtab);
2217        kfree(oldsidtab);
2218        kfree(oldmapping);
2219
2220        avc_ss_reset(state->avc, seqno);
2221        selnl_notify_policyload(seqno);
2222        selinux_status_update_policyload(state, seqno);
2223        selinux_netlbl_cache_invalidate();
2224        selinux_xfrm_notify_policyload();
2225
2226        rc = 0;
2227        goto out;
2228
2229err:
2230        kfree(newmap.mapping);
2231        sidtab_destroy(newsidtab);
2232        kfree(newsidtab);
2233        policydb_destroy(newpolicydb);
2234
2235out:
2236        kfree(oldpolicydb);
2237        return rc;
2238}
2239
2240size_t security_policydb_len(struct selinux_state *state)
2241{
2242        struct policydb *p = &state->ss->policydb;
2243        size_t len;
2244
2245        read_lock(&state->ss->policy_rwlock);
2246        len = p->len;
2247        read_unlock(&state->ss->policy_rwlock);
2248
2249        return len;
2250}
2251
2252/**
2253 * security_port_sid - Obtain the SID for a port.
2254 * @protocol: protocol number
2255 * @port: port number
2256 * @out_sid: security identifier
2257 */
2258int security_port_sid(struct selinux_state *state,
2259                      u8 protocol, u16 port, u32 *out_sid)
2260{
2261        struct policydb *policydb;
2262        struct sidtab *sidtab;
2263        struct ocontext *c;
2264        int rc = 0;
2265
2266        read_lock(&state->ss->policy_rwlock);
2267
2268        policydb = &state->ss->policydb;
2269        sidtab = state->ss->sidtab;
2270
2271        c = policydb->ocontexts[OCON_PORT];
2272        while (c) {
2273                if (c->u.port.protocol == protocol &&
2274                    c->u.port.low_port <= port &&
2275                    c->u.port.high_port >= port)
2276                        break;
2277                c = c->next;
2278        }
2279
2280        if (c) {
2281                if (!c->sid[0]) {
2282                        rc = sidtab_context_to_sid(sidtab,
2283                                                   &c->context[0],
2284                                                   &c->sid[0]);
2285                        if (rc)
2286                                goto out;
2287                }
2288                *out_sid = c->sid[0];
2289        } else {
2290                *out_sid = SECINITSID_PORT;
2291        }
2292
2293out:
2294        read_unlock(&state->ss->policy_rwlock);
2295        return rc;
2296}
2297
2298/**
2299 * security_pkey_sid - Obtain the SID for a pkey.
2300 * @subnet_prefix: Subnet Prefix
2301 * @pkey_num: pkey number
2302 * @out_sid: security identifier
2303 */
2304int security_ib_pkey_sid(struct selinux_state *state,
2305                         u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2306{
2307        struct policydb *policydb;
2308        struct sidtab *sidtab;
2309        struct ocontext *c;
2310        int rc = 0;
2311
2312        read_lock(&state->ss->policy_rwlock);
2313
2314        policydb = &state->ss->policydb;
2315        sidtab = state->ss->sidtab;
2316
2317        c = policydb->ocontexts[OCON_IBPKEY];
2318        while (c) {
2319                if (c->u.ibpkey.low_pkey <= pkey_num &&
2320                    c->u.ibpkey.high_pkey >= pkey_num &&
2321                    c->u.ibpkey.subnet_prefix == subnet_prefix)
2322                        break;
2323
2324                c = c->next;
2325        }
2326
2327        if (c) {
2328                if (!c->sid[0]) {
2329                        rc = sidtab_context_to_sid(sidtab,
2330                                                   &c->context[0],
2331                                                   &c->sid[0]);
2332                        if (rc)
2333                                goto out;
2334                }
2335                *out_sid = c->sid[0];
2336        } else
2337                *out_sid = SECINITSID_UNLABELED;
2338
2339out:
2340        read_unlock(&state->ss->policy_rwlock);
2341        return rc;
2342}
2343
2344/**
2345 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2346 * @dev_name: device name
2347 * @port: port number
2348 * @out_sid: security identifier
2349 */
2350int security_ib_endport_sid(struct selinux_state *state,
2351                            const char *dev_name, u8 port_num, u32 *out_sid)
2352{
2353        struct policydb *policydb;
2354        struct sidtab *sidtab;
2355        struct ocontext *c;
2356        int rc = 0;
2357
2358        read_lock(&state->ss->policy_rwlock);
2359
2360        policydb = &state->ss->policydb;
2361        sidtab = state->ss->sidtab;
2362
2363        c = policydb->ocontexts[OCON_IBENDPORT];
2364        while (c) {
2365                if (c->u.ibendport.port == port_num &&
2366                    !strncmp(c->u.ibendport.dev_name,
2367                             dev_name,
2368                             IB_DEVICE_NAME_MAX))
2369                        break;
2370
2371                c = c->next;
2372        }
2373
2374        if (c) {
2375                if (!c->sid[0]) {
2376                        rc = sidtab_context_to_sid(sidtab,
2377                                                   &c->context[0],
2378                                                   &c->sid[0]);
2379                        if (rc)
2380                                goto out;
2381                }
2382                *out_sid = c->sid[0];
2383        } else
2384                *out_sid = SECINITSID_UNLABELED;
2385
2386out:
2387        read_unlock(&state->ss->policy_rwlock);
2388        return rc;
2389}
2390
2391/**
2392 * security_netif_sid - Obtain the SID for a network interface.
2393 * @name: interface name
2394 * @if_sid: interface SID
2395 */
2396int security_netif_sid(struct selinux_state *state,
2397                       char *name, u32 *if_sid)
2398{
2399        struct policydb *policydb;
2400        struct sidtab *sidtab;
2401        int rc = 0;
2402        struct ocontext *c;
2403
2404        read_lock(&state->ss->policy_rwlock);
2405
2406        policydb = &state->ss->policydb;
2407        sidtab = state->ss->sidtab;
2408
2409        c = policydb->ocontexts[OCON_NETIF];
2410        while (c) {
2411                if (strcmp(name, c->u.name) == 0)
2412                        break;
2413                c = c->next;
2414        }
2415
2416        if (c) {
2417                if (!c->sid[0] || !c->sid[1]) {
2418                        rc = sidtab_context_to_sid(sidtab,
2419                                                  &c->context[0],
2420                                                  &c->sid[0]);
2421                        if (rc)
2422                                goto out;
2423                        rc = sidtab_context_to_sid(sidtab,
2424                                                   &c->context[1],
2425                                                   &c->sid[1]);
2426                        if (rc)
2427                                goto out;
2428                }
2429                *if_sid = c->sid[0];
2430        } else
2431                *if_sid = SECINITSID_NETIF;
2432
2433out:
2434        read_unlock(&state->ss->policy_rwlock);
2435        return rc;
2436}
2437
2438static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2439{
2440        int i, fail = 0;
2441
2442        for (i = 0; i < 4; i++)
2443                if (addr[i] != (input[i] & mask[i])) {
2444                        fail = 1;
2445                        break;
2446                }
2447
2448        return !fail;
2449}
2450
2451/**
2452 * security_node_sid - Obtain the SID for a node (host).
2453 * @domain: communication domain aka address family
2454 * @addrp: address
2455 * @addrlen: address length in bytes
2456 * @out_sid: security identifier
2457 */
2458int security_node_sid(struct selinux_state *state,
2459                      u16 domain,
2460                      void *addrp,
2461                      u32 addrlen,
2462                      u32 *out_sid)
2463{
2464        struct policydb *policydb;
2465        struct sidtab *sidtab;
2466        int rc;
2467        struct ocontext *c;
2468
2469        read_lock(&state->ss->policy_rwlock);
2470
2471        policydb = &state->ss->policydb;
2472        sidtab = state->ss->sidtab;
2473
2474        switch (domain) {
2475        case AF_INET: {
2476                u32 addr;
2477
2478                rc = -EINVAL;
2479                if (addrlen != sizeof(u32))
2480                        goto out;
2481
2482                addr = *((u32 *)addrp);
2483
2484                c = policydb->ocontexts[OCON_NODE];
2485                while (c) {
2486                        if (c->u.node.addr == (addr & c->u.node.mask))
2487                                break;
2488                        c = c->next;
2489                }
2490                break;
2491        }
2492
2493        case AF_INET6:
2494                rc = -EINVAL;
2495                if (addrlen != sizeof(u64) * 2)
2496                        goto out;
2497                c = policydb->ocontexts[OCON_NODE6];
2498                while (c) {
2499                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2500                                                c->u.node6.mask))
2501                                break;
2502                        c = c->next;
2503                }
2504                break;
2505
2506        default:
2507                rc = 0;
2508                *out_sid = SECINITSID_NODE;
2509                goto out;
2510        }
2511
2512        if (c) {
2513                if (!c->sid[0]) {
2514                        rc = sidtab_context_to_sid(sidtab,
2515                                                   &c->context[0],
2516                                                   &c->sid[0]);
2517                        if (rc)
2518                                goto out;
2519                }
2520                *out_sid = c->sid[0];
2521        } else {
2522                *out_sid = SECINITSID_NODE;
2523        }
2524
2525        rc = 0;
2526out:
2527        read_unlock(&state->ss->policy_rwlock);
2528        return rc;
2529}
2530
2531#define SIDS_NEL 25
2532
2533/**
2534 * security_get_user_sids - Obtain reachable SIDs for a user.
2535 * @fromsid: starting SID
2536 * @username: username
2537 * @sids: array of reachable SIDs for user
2538 * @nel: number of elements in @sids
2539 *
2540 * Generate the set of SIDs for legal security contexts
2541 * for a given user that can be reached by @fromsid.
2542 * Set *@sids to point to a dynamically allocated
2543 * array containing the set of SIDs.  Set *@nel to the
2544 * number of elements in the array.
2545 */
2546
2547int security_get_user_sids(struct selinux_state *state,
2548                           u32 fromsid,
2549                           char *username,
2550                           u32 **sids,
2551                           u32 *nel)
2552{
2553        struct policydb *policydb;
2554        struct sidtab *sidtab;
2555        struct context *fromcon, usercon;
2556        u32 *mysids = NULL, *mysids2, sid;
2557        u32 mynel = 0, maxnel = SIDS_NEL;
2558        struct user_datum *user;
2559        struct role_datum *role;
2560        struct ebitmap_node *rnode, *tnode;
2561        int rc = 0, i, j;
2562
2563        *sids = NULL;
2564        *nel = 0;
2565
2566        if (!state->initialized)
2567                goto out;
2568
2569        read_lock(&state->ss->policy_rwlock);
2570
2571        policydb = &state->ss->policydb;
2572        sidtab = state->ss->sidtab;
2573
2574        context_init(&usercon);
2575
2576        rc = -EINVAL;
2577        fromcon = sidtab_search(sidtab, fromsid);
2578        if (!fromcon)
2579                goto out_unlock;
2580
2581        rc = -EINVAL;
2582        user = hashtab_search(policydb->p_users.table, username);
2583        if (!user)
2584                goto out_unlock;
2585
2586        usercon.user = user->value;
2587
2588        rc = -ENOMEM;
2589        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2590        if (!mysids)
2591                goto out_unlock;
2592
2593        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2594                role = policydb->role_val_to_struct[i];
2595                usercon.role = i + 1;
2596                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2597                        usercon.type = j + 1;
2598
2599                        if (mls_setup_user_range(policydb, fromcon, user,
2600                                                 &usercon))
2601                                continue;
2602
2603                        rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2604                        if (rc)
2605                                goto out_unlock;
2606                        if (mynel < maxnel) {
2607                                mysids[mynel++] = sid;
2608                        } else {
2609                                rc = -ENOMEM;
2610                                maxnel += SIDS_NEL;
2611                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2612                                if (!mysids2)
2613                                        goto out_unlock;
2614                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2615                                kfree(mysids);
2616                                mysids = mysids2;
2617                                mysids[mynel++] = sid;
2618                        }
2619                }
2620        }
2621        rc = 0;
2622out_unlock:
2623        read_unlock(&state->ss->policy_rwlock);
2624        if (rc || !mynel) {
2625                kfree(mysids);
2626                goto out;
2627        }
2628
2629        rc = -ENOMEM;
2630        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2631        if (!mysids2) {
2632                kfree(mysids);
2633                goto out;
2634        }
2635        for (i = 0, j = 0; i < mynel; i++) {
2636                struct av_decision dummy_avd;
2637                rc = avc_has_perm_noaudit(state,
2638                                          fromsid, mysids[i],
2639                                          SECCLASS_PROCESS, /* kernel value */
2640                                          PROCESS__TRANSITION, AVC_STRICT,
2641                                          &dummy_avd);
2642                if (!rc)
2643                        mysids2[j++] = mysids[i];
2644                cond_resched();
2645        }
2646        rc = 0;
2647        kfree(mysids);
2648        *sids = mysids2;
2649        *nel = j;
2650out:
2651        return rc;
2652}
2653
2654/**
2655 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2656 * @fstype: filesystem type
2657 * @path: path from root of mount
2658 * @sclass: file security class
2659 * @sid: SID for path
2660 *
2661 * Obtain a SID to use for a file in a filesystem that
2662 * cannot support xattr or use a fixed labeling behavior like
2663 * transition SIDs or task SIDs.
2664 *
2665 * The caller must acquire the policy_rwlock before calling this function.
2666 */
2667static inline int __security_genfs_sid(struct selinux_state *state,
2668                                       const char *fstype,
2669                                       char *path,
2670                                       u16 orig_sclass,
2671                                       u32 *sid)
2672{
2673        struct policydb *policydb = &state->ss->policydb;
2674        struct sidtab *sidtab = state->ss->sidtab;
2675        int len;
2676        u16 sclass;
2677        struct genfs *genfs;
2678        struct ocontext *c;
2679        int rc, cmp = 0;
2680
2681        while (path[0] == '/' && path[1] == '/')
2682                path++;
2683
2684        sclass = unmap_class(&state->ss->map, orig_sclass);
2685        *sid = SECINITSID_UNLABELED;
2686
2687        for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2688                cmp = strcmp(fstype, genfs->fstype);
2689                if (cmp <= 0)
2690                        break;
2691        }
2692
2693        rc = -ENOENT;
2694        if (!genfs || cmp)
2695                goto out;
2696
2697        for (c = genfs->head; c; c = c->next) {
2698                len = strlen(c->u.name);
2699                if ((!c->v.sclass || sclass == c->v.sclass) &&
2700                    (strncmp(c->u.name, path, len) == 0))
2701                        break;
2702        }
2703
2704        rc = -ENOENT;
2705        if (!c)
2706                goto out;
2707
2708        if (!c->sid[0]) {
2709                rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2710                if (rc)
2711                        goto out;
2712        }
2713
2714        *sid = c->sid[0];
2715        rc = 0;
2716out:
2717        return rc;
2718}
2719
2720/**
2721 * security_genfs_sid - Obtain a SID for a file in a filesystem
2722 * @fstype: filesystem type
2723 * @path: path from root of mount
2724 * @sclass: file security class
2725 * @sid: SID for path
2726 *
2727 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2728 * it afterward.
2729 */
2730int security_genfs_sid(struct selinux_state *state,
2731                       const char *fstype,
2732                       char *path,
2733                       u16 orig_sclass,
2734                       u32 *sid)
2735{
2736        int retval;
2737
2738        read_lock(&state->ss->policy_rwlock);
2739        retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2740        read_unlock(&state->ss->policy_rwlock);
2741        return retval;
2742}
2743
2744/**
2745 * security_fs_use - Determine how to handle labeling for a filesystem.
2746 * @sb: superblock in question
2747 */
2748int security_fs_use(struct selinux_state *state, struct super_block *sb)
2749{
2750        struct policydb *policydb;
2751        struct sidtab *sidtab;
2752        int rc = 0;
2753        struct ocontext *c;
2754        struct superblock_security_struct *sbsec = sb->s_security;
2755        const char *fstype = sb->s_type->name;
2756
2757        read_lock(&state->ss->policy_rwlock);
2758
2759        policydb = &state->ss->policydb;
2760        sidtab = state->ss->sidtab;
2761
2762        c = policydb->ocontexts[OCON_FSUSE];
2763        while (c) {
2764                if (strcmp(fstype, c->u.name) == 0)
2765                        break;
2766                c = c->next;
2767        }
2768
2769        if (c) {
2770                sbsec->behavior = c->v.behavior;
2771                if (!c->sid[0]) {
2772                        rc = sidtab_context_to_sid(sidtab, &c->context[0],
2773                                                   &c->sid[0]);
2774                        if (rc)
2775                                goto out;
2776                }
2777                sbsec->sid = c->sid[0];
2778        } else {
2779                rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2780                                          &sbsec->sid);
2781                if (rc) {
2782                        sbsec->behavior = SECURITY_FS_USE_NONE;
2783                        rc = 0;
2784                } else {
2785                        sbsec->behavior = SECURITY_FS_USE_GENFS;
2786                }
2787        }
2788
2789out:
2790        read_unlock(&state->ss->policy_rwlock);
2791        return rc;
2792}
2793
2794int security_get_bools(struct selinux_state *state,
2795                       int *len, char ***names, int **values)
2796{
2797        struct policydb *policydb;
2798        int i, rc;
2799
2800        if (!state->initialized) {
2801                *len = 0;
2802                *names = NULL;
2803                *values = NULL;
2804                return 0;
2805        }
2806
2807        read_lock(&state->ss->policy_rwlock);
2808
2809        policydb = &state->ss->policydb;
2810
2811        *names = NULL;
2812        *values = NULL;
2813
2814        rc = 0;
2815        *len = policydb->p_bools.nprim;
2816        if (!*len)
2817                goto out;
2818
2819        rc = -ENOMEM;
2820        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2821        if (!*names)
2822                goto err;
2823
2824        rc = -ENOMEM;
2825        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2826        if (!*values)
2827                goto err;
2828
2829        for (i = 0; i < *len; i++) {
2830                (*values)[i] = policydb->bool_val_to_struct[i]->state;
2831
2832                rc = -ENOMEM;
2833                (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2834                                      GFP_ATOMIC);
2835                if (!(*names)[i])
2836                        goto err;
2837        }
2838        rc = 0;
2839out:
2840        read_unlock(&state->ss->policy_rwlock);
2841        return rc;
2842err:
2843        if (*names) {
2844                for (i = 0; i < *len; i++)
2845                        kfree((*names)[i]);
2846        }
2847        kfree(*values);
2848        goto out;
2849}
2850
2851
2852int security_set_bools(struct selinux_state *state, int len, int *values)
2853{
2854        struct policydb *policydb;
2855        int i, rc;
2856        int lenp, seqno = 0;
2857        struct cond_node *cur;
2858
2859        write_lock_irq(&state->ss->policy_rwlock);
2860
2861        policydb = &state->ss->policydb;
2862
2863        rc = -EFAULT;
2864        lenp = policydb->p_bools.nprim;
2865        if (len != lenp)
2866                goto out;
2867
2868        for (i = 0; i < len; i++) {
2869                if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2870                        audit_log(audit_context(), GFP_ATOMIC,
2871                                AUDIT_MAC_CONFIG_CHANGE,
2872                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
2873                                sym_name(policydb, SYM_BOOLS, i),
2874                                !!values[i],
2875                                policydb->bool_val_to_struct[i]->state,
2876                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
2877                                audit_get_sessionid(current));
2878                }
2879                if (values[i])
2880                        policydb->bool_val_to_struct[i]->state = 1;
2881                else
2882                        policydb->bool_val_to_struct[i]->state = 0;
2883        }
2884
2885        for (cur = policydb->cond_list; cur; cur = cur->next) {
2886                rc = evaluate_cond_node(policydb, cur);
2887                if (rc)
2888                        goto out;
2889        }
2890
2891        seqno = ++state->ss->latest_granting;
2892        rc = 0;
2893out:
2894        write_unlock_irq(&state->ss->policy_rwlock);
2895        if (!rc) {
2896                avc_ss_reset(state->avc, seqno);
2897                selnl_notify_policyload(seqno);
2898                selinux_status_update_policyload(state, seqno);
2899                selinux_xfrm_notify_policyload();
2900        }
2901        return rc;
2902}
2903
2904int security_get_bool_value(struct selinux_state *state,
2905                            int index)
2906{
2907        struct policydb *policydb;
2908        int rc;
2909        int len;
2910
2911        read_lock(&state->ss->policy_rwlock);
2912
2913        policydb = &state->ss->policydb;
2914
2915        rc = -EFAULT;
2916        len = policydb->p_bools.nprim;
2917        if (index >= len)
2918                goto out;
2919
2920        rc = policydb->bool_val_to_struct[index]->state;
2921out:
2922        read_unlock(&state->ss->policy_rwlock);
2923        return rc;
2924}
2925
2926static int security_preserve_bools(struct selinux_state *state,
2927                                   struct policydb *policydb)
2928{
2929        int rc, nbools = 0, *bvalues = NULL, i;
2930        char **bnames = NULL;
2931        struct cond_bool_datum *booldatum;
2932        struct cond_node *cur;
2933
2934        rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2935        if (rc)
2936                goto out;
2937        for (i = 0; i < nbools; i++) {
2938                booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2939                if (booldatum)
2940                        booldatum->state = bvalues[i];
2941        }
2942        for (cur = policydb->cond_list; cur; cur = cur->next) {
2943                rc = evaluate_cond_node(policydb, cur);
2944                if (rc)
2945                        goto out;
2946        }
2947
2948out:
2949        if (bnames) {
2950                for (i = 0; i < nbools; i++)
2951                        kfree(bnames[i]);
2952        }
2953        kfree(bnames);
2954        kfree(bvalues);
2955        return rc;
2956}
2957
2958/*
2959 * security_sid_mls_copy() - computes a new sid based on the given
2960 * sid and the mls portion of mls_sid.
2961 */
2962int security_sid_mls_copy(struct selinux_state *state,
2963                          u32 sid, u32 mls_sid, u32 *new_sid)
2964{
2965        struct policydb *policydb = &state->ss->policydb;
2966        struct sidtab *sidtab = state->ss->sidtab;
2967        struct context *context1;
2968        struct context *context2;
2969        struct context newcon;
2970        char *s;
2971        u32 len;
2972        int rc;
2973
2974        rc = 0;
2975        if (!state->initialized || !policydb->mls_enabled) {
2976                *new_sid = sid;
2977                goto out;
2978        }
2979
2980        context_init(&newcon);
2981
2982        read_lock(&state->ss->policy_rwlock);
2983
2984        rc = -EINVAL;
2985        context1 = sidtab_search(sidtab, sid);
2986        if (!context1) {
2987                pr_err("SELinux: %s:  unrecognized SID %d\n",
2988                        __func__, sid);
2989                goto out_unlock;
2990        }
2991
2992        rc = -EINVAL;
2993        context2 = sidtab_search(sidtab, mls_sid);
2994        if (!context2) {
2995                pr_err("SELinux: %s:  unrecognized SID %d\n",
2996                        __func__, mls_sid);
2997                goto out_unlock;
2998        }
2999
3000        newcon.user = context1->user;
3001        newcon.role = context1->role;
3002        newcon.type = context1->type;
3003        rc = mls_context_cpy(&newcon, context2);
3004        if (rc)
3005                goto out_unlock;
3006
3007        /* Check the validity of the new context. */
3008        if (!policydb_context_isvalid(policydb, &newcon)) {
3009                rc = convert_context_handle_invalid_context(state, &newcon);
3010                if (rc) {
3011                        if (!context_struct_to_string(policydb, &newcon, &s,
3012                                                      &len)) {
3013                                audit_log(audit_context(),
3014                                          GFP_ATOMIC, AUDIT_SELINUX_ERR,
3015                                          "op=security_sid_mls_copy "
3016                                          "invalid_context=%s", s);
3017                                kfree(s);
3018                        }
3019                        goto out_unlock;
3020                }
3021        }
3022
3023        rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3024out_unlock:
3025        read_unlock(&state->ss->policy_rwlock);
3026        context_destroy(&newcon);
3027out:
3028        return rc;
3029}
3030
3031/**
3032 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3033 * @nlbl_sid: NetLabel SID
3034 * @nlbl_type: NetLabel labeling protocol type
3035 * @xfrm_sid: XFRM SID
3036 *
3037 * Description:
3038 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3039 * resolved into a single SID it is returned via @peer_sid and the function
3040 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3041 * returns a negative value.  A table summarizing the behavior is below:
3042 *
3043 *                                 | function return |      @sid
3044 *   ------------------------------+-----------------+-----------------
3045 *   no peer labels                |        0        |    SECSID_NULL
3046 *   single peer label             |        0        |    <peer_label>
3047 *   multiple, consistent labels   |        0        |    <peer_label>
3048 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3049 *
3050 */
3051int security_net_peersid_resolve(struct selinux_state *state,
3052                                 u32 nlbl_sid, u32 nlbl_type,
3053                                 u32 xfrm_sid,
3054                                 u32 *peer_sid)
3055{
3056        struct policydb *policydb = &state->ss->policydb;
3057        struct sidtab *sidtab = state->ss->sidtab;
3058        int rc;
3059        struct context *nlbl_ctx;
3060        struct context *xfrm_ctx;
3061
3062        *peer_sid = SECSID_NULL;
3063
3064        /* handle the common (which also happens to be the set of easy) cases
3065         * right away, these two if statements catch everything involving a
3066         * single or absent peer SID/label */
3067        if (xfrm_sid == SECSID_NULL) {
3068                *peer_sid = nlbl_sid;
3069                return 0;
3070        }
3071        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3072         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3073         * is present */
3074        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3075                *peer_sid = xfrm_sid;
3076                return 0;
3077        }
3078
3079        /*
3080         * We don't need to check initialized here since the only way both
3081         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3082         * security server was initialized and state->initialized was true.
3083         */
3084        if (!policydb->mls_enabled)
3085                return 0;
3086
3087        read_lock(&state->ss->policy_rwlock);
3088
3089        rc = -EINVAL;
3090        nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3091        if (!nlbl_ctx) {
3092                pr_err("SELinux: %s:  unrecognized SID %d\n",
3093                       __func__, nlbl_sid);
3094                goto out;
3095        }
3096        rc = -EINVAL;
3097        xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3098        if (!xfrm_ctx) {
3099                pr_err("SELinux: %s:  unrecognized SID %d\n",
3100                       __func__, xfrm_sid);
3101                goto out;
3102        }
3103        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3104        if (rc)
3105                goto out;
3106
3107        /* at present NetLabel SIDs/labels really only carry MLS
3108         * information so if the MLS portion of the NetLabel SID
3109         * matches the MLS portion of the labeled XFRM SID/label
3110         * then pass along the XFRM SID as it is the most
3111         * expressive */
3112        *peer_sid = xfrm_sid;
3113out:
3114        read_unlock(&state->ss->policy_rwlock);
3115        return rc;
3116}
3117
3118static int get_classes_callback(void *k, void *d, void *args)
3119{
3120        struct class_datum *datum = d;
3121        char *name = k, **classes = args;
3122        int value = datum->value - 1;
3123
3124        classes[value] = kstrdup(name, GFP_ATOMIC);
3125        if (!classes[value])
3126                return -ENOMEM;
3127
3128        return 0;
3129}
3130
3131int security_get_classes(struct selinux_state *state,
3132                         char ***classes, int *nclasses)
3133{
3134        struct policydb *policydb = &state->ss->policydb;
3135        int rc;
3136
3137        if (!state->initialized) {
3138                *nclasses = 0;
3139                *classes = NULL;
3140                return 0;
3141        }
3142
3143        read_lock(&state->ss->policy_rwlock);
3144
3145        rc = -ENOMEM;
3146        *nclasses = policydb->p_classes.nprim;
3147        *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3148        if (!*classes)
3149                goto out;
3150
3151        rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3152                        *classes);
3153        if (rc) {
3154                int i;
3155                for (i = 0; i < *nclasses; i++)
3156                        kfree((*classes)[i]);
3157                kfree(*classes);
3158        }
3159
3160out:
3161        read_unlock(&state->ss->policy_rwlock);
3162        return rc;
3163}
3164
3165static int get_permissions_callback(void *k, void *d, void *args)
3166{
3167        struct perm_datum *datum = d;
3168        char *name = k, **perms = args;
3169        int value = datum->value - 1;
3170
3171        perms[value] = kstrdup(name, GFP_ATOMIC);
3172        if (!perms[value])
3173                return -ENOMEM;
3174
3175        return 0;
3176}
3177
3178int security_get_permissions(struct selinux_state *state,
3179                             char *class, char ***perms, int *nperms)
3180{
3181        struct policydb *policydb = &state->ss->policydb;
3182        int rc, i;
3183        struct class_datum *match;
3184
3185        read_lock(&state->ss->policy_rwlock);
3186
3187        rc = -EINVAL;
3188        match = hashtab_search(policydb->p_classes.table, class);
3189        if (!match) {
3190                pr_err("SELinux: %s:  unrecognized class %s\n",
3191                        __func__, class);
3192                goto out;
3193        }
3194
3195        rc = -ENOMEM;
3196        *nperms = match->permissions.nprim;
3197        *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3198        if (!*perms)
3199                goto out;
3200
3201        if (match->comdatum) {
3202                rc = hashtab_map(match->comdatum->permissions.table,
3203                                get_permissions_callback, *perms);
3204                if (rc)
3205                        goto err;
3206        }
3207
3208        rc = hashtab_map(match->permissions.table, get_permissions_callback,
3209                        *perms);
3210        if (rc)
3211                goto err;
3212
3213out:
3214        read_unlock(&state->ss->policy_rwlock);
3215        return rc;
3216
3217err:
3218        read_unlock(&state->ss->policy_rwlock);
3219        for (i = 0; i < *nperms; i++)
3220                kfree((*perms)[i]);
3221        kfree(*perms);
3222        return rc;
3223}
3224
3225int security_get_reject_unknown(struct selinux_state *state)
3226{
3227        return state->ss->policydb.reject_unknown;
3228}
3229
3230int security_get_allow_unknown(struct selinux_state *state)
3231{
3232        return state->ss->policydb.allow_unknown;
3233}
3234
3235/**
3236 * security_policycap_supported - Check for a specific policy capability
3237 * @req_cap: capability
3238 *
3239 * Description:
3240 * This function queries the currently loaded policy to see if it supports the
3241 * capability specified by @req_cap.  Returns true (1) if the capability is
3242 * supported, false (0) if it isn't supported.
3243 *
3244 */
3245int security_policycap_supported(struct selinux_state *state,
3246                                 unsigned int req_cap)
3247{
3248        struct policydb *policydb = &state->ss->policydb;
3249        int rc;
3250
3251        read_lock(&state->ss->policy_rwlock);
3252        rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3253        read_unlock(&state->ss->policy_rwlock);
3254
3255        return rc;
3256}
3257
3258struct selinux_audit_rule {
3259        u32 au_seqno;
3260        struct context au_ctxt;
3261};
3262
3263void selinux_audit_rule_free(void *vrule)
3264{
3265        struct selinux_audit_rule *rule = vrule;
3266
3267        if (rule) {
3268                context_destroy(&rule->au_ctxt);
3269                kfree(rule);
3270        }
3271}
3272
3273int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3274{
3275        struct selinux_state *state = &selinux_state;
3276        struct policydb *policydb = &state->ss->policydb;
3277        struct selinux_audit_rule *tmprule;
3278        struct role_datum *roledatum;
3279        struct type_datum *typedatum;
3280        struct user_datum *userdatum;
3281        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3282        int rc = 0;
3283
3284        *rule = NULL;
3285
3286        if (!state->initialized)
3287                return -EOPNOTSUPP;
3288
3289        switch (field) {
3290        case AUDIT_SUBJ_USER:
3291        case AUDIT_SUBJ_ROLE:
3292        case AUDIT_SUBJ_TYPE:
3293        case AUDIT_OBJ_USER:
3294        case AUDIT_OBJ_ROLE:
3295        case AUDIT_OBJ_TYPE:
3296                /* only 'equals' and 'not equals' fit user, role, and type */
3297                if (op != Audit_equal && op != Audit_not_equal)
3298                        return -EINVAL;
3299                break;
3300        case AUDIT_SUBJ_SEN:
3301        case AUDIT_SUBJ_CLR:
3302        case AUDIT_OBJ_LEV_LOW:
3303        case AUDIT_OBJ_LEV_HIGH:
3304                /* we do not allow a range, indicated by the presence of '-' */
3305                if (strchr(rulestr, '-'))
3306                        return -EINVAL;
3307                break;
3308        default:
3309                /* only the above fields are valid */
3310                return -EINVAL;
3311        }
3312
3313        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3314        if (!tmprule)
3315                return -ENOMEM;
3316
3317        context_init(&tmprule->au_ctxt);
3318
3319        read_lock(&state->ss->policy_rwlock);
3320
3321        tmprule->au_seqno = state->ss->latest_granting;
3322
3323        switch (field) {
3324        case AUDIT_SUBJ_USER:
3325        case AUDIT_OBJ_USER:
3326                rc = -EINVAL;
3327                userdatum = hashtab_search(policydb->p_users.table, rulestr);
3328                if (!userdatum)
3329                        goto out;
3330                tmprule->au_ctxt.user = userdatum->value;
3331                break;
3332        case AUDIT_SUBJ_ROLE:
3333        case AUDIT_OBJ_ROLE:
3334                rc = -EINVAL;
3335                roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3336                if (!roledatum)
3337                        goto out;
3338                tmprule->au_ctxt.role = roledatum->value;
3339                break;
3340        case AUDIT_SUBJ_TYPE:
3341        case AUDIT_OBJ_TYPE:
3342                rc = -EINVAL;
3343                typedatum = hashtab_search(policydb->p_types.table, rulestr);
3344                if (!typedatum)
3345                        goto out;
3346                tmprule->au_ctxt.type = typedatum->value;
3347                break;
3348        case AUDIT_SUBJ_SEN:
3349        case AUDIT_SUBJ_CLR:
3350        case AUDIT_OBJ_LEV_LOW:
3351        case AUDIT_OBJ_LEV_HIGH:
3352                rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3353                                     GFP_ATOMIC);
3354                if (rc)
3355                        goto out;
3356                break;
3357        }
3358        rc = 0;
3359out:
3360        read_unlock(&state->ss->policy_rwlock);
3361
3362        if (rc) {
3363                selinux_audit_rule_free(tmprule);
3364                tmprule = NULL;
3365        }
3366
3367        *rule = tmprule;
3368
3369        return rc;
3370}
3371
3372/* Check to see if the rule contains any selinux fields */
3373int selinux_audit_rule_known(struct audit_krule *rule)
3374{
3375        int i;
3376
3377        for (i = 0; i < rule->field_count; i++) {
3378                struct audit_field *f = &rule->fields[i];
3379                switch (f->type) {
3380                case AUDIT_SUBJ_USER:
3381                case AUDIT_SUBJ_ROLE:
3382                case AUDIT_SUBJ_TYPE:
3383                case AUDIT_SUBJ_SEN:
3384                case AUDIT_SUBJ_CLR:
3385                case AUDIT_OBJ_USER:
3386                case AUDIT_OBJ_ROLE:
3387                case AUDIT_OBJ_TYPE:
3388                case AUDIT_OBJ_LEV_LOW:
3389                case AUDIT_OBJ_LEV_HIGH:
3390                        return 1;
3391                }
3392        }
3393
3394        return 0;
3395}
3396
3397int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3398{
3399        struct selinux_state *state = &selinux_state;
3400        struct context *ctxt;
3401        struct mls_level *level;
3402        struct selinux_audit_rule *rule = vrule;
3403        int match = 0;
3404
3405        if (unlikely(!rule)) {
3406                WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3407                return -ENOENT;
3408        }
3409
3410        read_lock(&state->ss->policy_rwlock);
3411
3412        if (rule->au_seqno < state->ss->latest_granting) {
3413                match = -ESTALE;
3414                goto out;
3415        }
3416
3417        ctxt = sidtab_search(state->ss->sidtab, sid);
3418        if (unlikely(!ctxt)) {
3419                WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3420                          sid);
3421                match = -ENOENT;
3422                goto out;
3423        }
3424
3425        /* a field/op pair that is not caught here will simply fall through
3426           without a match */
3427        switch (field) {
3428        case AUDIT_SUBJ_USER:
3429        case AUDIT_OBJ_USER:
3430                switch (op) {
3431                case Audit_equal:
3432                        match = (ctxt->user == rule->au_ctxt.user);
3433                        break;
3434                case Audit_not_equal:
3435                        match = (ctxt->user != rule->au_ctxt.user);
3436                        break;
3437                }
3438                break;
3439        case AUDIT_SUBJ_ROLE:
3440        case AUDIT_OBJ_ROLE:
3441                switch (op) {
3442                case Audit_equal:
3443                        match = (ctxt->role == rule->au_ctxt.role);
3444                        break;
3445                case Audit_not_equal:
3446                        match = (ctxt->role != rule->au_ctxt.role);
3447                        break;
3448                }
3449                break;
3450        case AUDIT_SUBJ_TYPE:
3451        case AUDIT_OBJ_TYPE:
3452                switch (op) {
3453                case Audit_equal:
3454                        match = (ctxt->type == rule->au_ctxt.type);
3455                        break;
3456                case Audit_not_equal:
3457                        match = (ctxt->type != rule->au_ctxt.type);
3458                        break;
3459                }
3460                break;
3461        case AUDIT_SUBJ_SEN:
3462        case AUDIT_SUBJ_CLR:
3463        case AUDIT_OBJ_LEV_LOW:
3464        case AUDIT_OBJ_LEV_HIGH:
3465                level = ((field == AUDIT_SUBJ_SEN ||
3466                          field == AUDIT_OBJ_LEV_LOW) ?
3467                         &ctxt->range.level[0] : &ctxt->range.level[1]);
3468                switch (op) {
3469                case Audit_equal:
3470                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
3471                                             level);
3472                        break;
3473                case Audit_not_equal:
3474                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3475                                              level);
3476                        break;
3477                case Audit_lt:
3478                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3479                                               level) &&
3480                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
3481                                               level));
3482                        break;
3483                case Audit_le:
3484                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
3485                                              level);
3486                        break;
3487                case Audit_gt:
3488                        match = (mls_level_dom(level,
3489                                              &rule->au_ctxt.range.level[0]) &&
3490                                 !mls_level_eq(level,
3491                                               &rule->au_ctxt.range.level[0]));
3492                        break;
3493                case Audit_ge:
3494                        match = mls_level_dom(level,
3495                                              &rule->au_ctxt.range.level[0]);
3496                        break;
3497                }
3498        }
3499
3500out:
3501        read_unlock(&state->ss->policy_rwlock);
3502        return match;
3503}
3504
3505static int (*aurule_callback)(void) = audit_update_lsm_rules;
3506
3507static int aurule_avc_callback(u32 event)
3508{
3509        int err = 0;
3510
3511        if (event == AVC_CALLBACK_RESET && aurule_callback)
3512                err = aurule_callback();
3513        return err;
3514}
3515
3516static int __init aurule_init(void)
3517{
3518        int err;
3519
3520        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3521        if (err)
3522                panic("avc_add_callback() failed, error %d\n", err);
3523
3524        return err;
3525}
3526__initcall(aurule_init);
3527
3528#ifdef CONFIG_NETLABEL
3529/**
3530 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3531 * @secattr: the NetLabel packet security attributes
3532 * @sid: the SELinux SID
3533 *
3534 * Description:
3535 * Attempt to cache the context in @ctx, which was derived from the packet in
3536 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3537 * already been initialized.
3538 *
3539 */
3540static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3541                                      u32 sid)
3542{
3543        u32 *sid_cache;
3544
3545        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3546        if (sid_cache == NULL)
3547                return;
3548        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3549        if (secattr->cache == NULL) {
3550                kfree(sid_cache);
3551                return;
3552        }
3553
3554        *sid_cache = sid;
3555        secattr->cache->free = kfree;
3556        secattr->cache->data = sid_cache;
3557        secattr->flags |= NETLBL_SECATTR_CACHE;
3558}
3559
3560/**
3561 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3562 * @secattr: the NetLabel packet security attributes
3563 * @sid: the SELinux SID
3564 *
3565 * Description:
3566 * Convert the given NetLabel security attributes in @secattr into a
3567 * SELinux SID.  If the @secattr field does not contain a full SELinux
3568 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3569 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3570 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3571 * conversion for future lookups.  Returns zero on success, negative values on
3572 * failure.
3573 *
3574 */
3575int security_netlbl_secattr_to_sid(struct selinux_state *state,
3576                                   struct netlbl_lsm_secattr *secattr,
3577                                   u32 *sid)
3578{
3579        struct policydb *policydb = &state->ss->policydb;
3580        struct sidtab *sidtab = state->ss->sidtab;
3581        int rc;
3582        struct context *ctx;
3583        struct context ctx_new;
3584
3585        if (!state->initialized) {
3586                *sid = SECSID_NULL;
3587                return 0;
3588        }
3589
3590        read_lock(&state->ss->policy_rwlock);
3591
3592        if (secattr->flags & NETLBL_SECATTR_CACHE)
3593                *sid = *(u32 *)secattr->cache->data;
3594        else if (secattr->flags & NETLBL_SECATTR_SECID)
3595                *sid = secattr->attr.secid;
3596        else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3597                rc = -EIDRM;
3598                ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3599                if (ctx == NULL)
3600                        goto out;
3601
3602                context_init(&ctx_new);
3603                ctx_new.user = ctx->user;
3604                ctx_new.role = ctx->role;
3605                ctx_new.type = ctx->type;
3606                mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3607                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3608                        rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3609                        if (rc)
3610                                goto out;
3611                }
3612                rc = -EIDRM;
3613                if (!mls_context_isvalid(policydb, &ctx_new))
3614                        goto out_free;
3615
3616                rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3617                if (rc)
3618                        goto out_free;
3619
3620                security_netlbl_cache_add(secattr, *sid);
3621
3622                ebitmap_destroy(&ctx_new.range.level[0].cat);
3623        } else
3624                *sid = SECSID_NULL;
3625
3626        read_unlock(&state->ss->policy_rwlock);
3627        return 0;
3628out_free:
3629        ebitmap_destroy(&ctx_new.range.level[0].cat);
3630out:
3631        read_unlock(&state->ss->policy_rwlock);
3632        return rc;
3633}
3634
3635/**
3636 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3637 * @sid: the SELinux SID
3638 * @secattr: the NetLabel packet security attributes
3639 *
3640 * Description:
3641 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3642 * Returns zero on success, negative values on failure.
3643 *
3644 */
3645int security_netlbl_sid_to_secattr(struct selinux_state *state,
3646                                   u32 sid, struct netlbl_lsm_secattr *secattr)
3647{
3648        struct policydb *policydb = &state->ss->policydb;
3649        int rc;
3650        struct context *ctx;
3651
3652        if (!state->initialized)
3653                return 0;
3654
3655        read_lock(&state->ss->policy_rwlock);
3656
3657        rc = -ENOENT;
3658        ctx = sidtab_search(state->ss->sidtab, sid);
3659        if (ctx == NULL)
3660                goto out;
3661
3662        rc = -ENOMEM;
3663        secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3664                                  GFP_ATOMIC);
3665        if (secattr->domain == NULL)
3666                goto out;
3667
3668        secattr->attr.secid = sid;
3669        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3670        mls_export_netlbl_lvl(policydb, ctx, secattr);
3671        rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3672out:
3673        read_unlock(&state->ss->policy_rwlock);
3674        return rc;
3675}
3676#endif /* CONFIG_NETLABEL */
3677
3678/**
3679 * security_read_policy - read the policy.
3680 * @data: binary policy data
3681 * @len: length of data in bytes
3682 *
3683 */
3684int security_read_policy(struct selinux_state *state,
3685                         void **data, size_t *len)
3686{
3687        struct policydb *policydb = &state->ss->policydb;
3688        int rc;
3689        struct policy_file fp;
3690
3691        if (!state->initialized)
3692                return -EINVAL;
3693
3694        *len = security_policydb_len(state);
3695
3696        *data = vmalloc_user(*len);
3697        if (!*data)
3698                return -ENOMEM;
3699
3700        fp.data = *data;
3701        fp.len = *len;
3702
3703        read_lock(&state->ss->policy_rwlock);
3704        rc = policydb_write(policydb, &fp);
3705        read_unlock(&state->ss->policy_rwlock);
3706
3707        if (rc)
3708                return rc;
3709
3710        *len = (unsigned long)fp.data - (unsigned long)*data;
3711        return 0;
3712
3713}
3714