linux/arch/arm/mm/mmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/mmu.c
   4 *
   5 *  Copyright (C) 1995-2005 Russell King
   6 */
   7#include <linux/module.h>
   8#include <linux/kernel.h>
   9#include <linux/errno.h>
  10#include <linux/init.h>
  11#include <linux/mman.h>
  12#include <linux/nodemask.h>
  13#include <linux/memblock.h>
  14#include <linux/fs.h>
  15#include <linux/vmalloc.h>
  16#include <linux/sizes.h>
  17
  18#include <asm/cp15.h>
  19#include <asm/cputype.h>
  20#include <asm/cachetype.h>
  21#include <asm/fixmap.h>
  22#include <asm/sections.h>
  23#include <asm/setup.h>
  24#include <asm/smp_plat.h>
  25#include <asm/tlb.h>
  26#include <asm/highmem.h>
  27#include <asm/system_info.h>
  28#include <asm/traps.h>
  29#include <asm/procinfo.h>
  30#include <asm/memory.h>
  31#include <asm/pgalloc.h>
  32
  33#include <asm/mach/arch.h>
  34#include <asm/mach/map.h>
  35#include <asm/mach/pci.h>
  36#include <asm/fixmap.h>
  37
  38#include "fault.h"
  39#include "mm.h"
  40#include "tcm.h"
  41
  42/*
  43 * empty_zero_page is a special page that is used for
  44 * zero-initialized data and COW.
  45 */
  46struct page *empty_zero_page;
  47EXPORT_SYMBOL(empty_zero_page);
  48
  49/*
  50 * The pmd table for the upper-most set of pages.
  51 */
  52pmd_t *top_pmd;
  53
  54pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  55
  56#define CPOLICY_UNCACHED        0
  57#define CPOLICY_BUFFERED        1
  58#define CPOLICY_WRITETHROUGH    2
  59#define CPOLICY_WRITEBACK       3
  60#define CPOLICY_WRITEALLOC      4
  61
  62static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  63static unsigned int ecc_mask __initdata = 0;
  64pgprot_t pgprot_user;
  65pgprot_t pgprot_kernel;
  66
  67EXPORT_SYMBOL(pgprot_user);
  68EXPORT_SYMBOL(pgprot_kernel);
  69
  70struct cachepolicy {
  71        const char      policy[16];
  72        unsigned int    cr_mask;
  73        pmdval_t        pmd;
  74        pteval_t        pte;
  75};
  76
  77static struct cachepolicy cache_policies[] __initdata = {
  78        {
  79                .policy         = "uncached",
  80                .cr_mask        = CR_W|CR_C,
  81                .pmd            = PMD_SECT_UNCACHED,
  82                .pte            = L_PTE_MT_UNCACHED,
  83        }, {
  84                .policy         = "buffered",
  85                .cr_mask        = CR_C,
  86                .pmd            = PMD_SECT_BUFFERED,
  87                .pte            = L_PTE_MT_BUFFERABLE,
  88        }, {
  89                .policy         = "writethrough",
  90                .cr_mask        = 0,
  91                .pmd            = PMD_SECT_WT,
  92                .pte            = L_PTE_MT_WRITETHROUGH,
  93        }, {
  94                .policy         = "writeback",
  95                .cr_mask        = 0,
  96                .pmd            = PMD_SECT_WB,
  97                .pte            = L_PTE_MT_WRITEBACK,
  98        }, {
  99                .policy         = "writealloc",
 100                .cr_mask        = 0,
 101                .pmd            = PMD_SECT_WBWA,
 102                .pte            = L_PTE_MT_WRITEALLOC,
 103        }
 104};
 105
 106#ifdef CONFIG_CPU_CP15
 107static unsigned long initial_pmd_value __initdata = 0;
 108
 109/*
 110 * Initialise the cache_policy variable with the initial state specified
 111 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 112 * the C code sets the page tables up with the same policy as the head
 113 * assembly code, which avoids an illegal state where the TLBs can get
 114 * confused.  See comments in early_cachepolicy() for more information.
 115 */
 116void __init init_default_cache_policy(unsigned long pmd)
 117{
 118        int i;
 119
 120        initial_pmd_value = pmd;
 121
 122        pmd &= PMD_SECT_CACHE_MASK;
 123
 124        for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 125                if (cache_policies[i].pmd == pmd) {
 126                        cachepolicy = i;
 127                        break;
 128                }
 129
 130        if (i == ARRAY_SIZE(cache_policies))
 131                pr_err("ERROR: could not find cache policy\n");
 132}
 133
 134/*
 135 * These are useful for identifying cache coherency problems by allowing
 136 * the cache or the cache and writebuffer to be turned off.  (Note: the
 137 * write buffer should not be on and the cache off).
 138 */
 139static int __init early_cachepolicy(char *p)
 140{
 141        int i, selected = -1;
 142
 143        for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 144                int len = strlen(cache_policies[i].policy);
 145
 146                if (memcmp(p, cache_policies[i].policy, len) == 0) {
 147                        selected = i;
 148                        break;
 149                }
 150        }
 151
 152        if (selected == -1)
 153                pr_err("ERROR: unknown or unsupported cache policy\n");
 154
 155        /*
 156         * This restriction is partly to do with the way we boot; it is
 157         * unpredictable to have memory mapped using two different sets of
 158         * memory attributes (shared, type, and cache attribs).  We can not
 159         * change these attributes once the initial assembly has setup the
 160         * page tables.
 161         */
 162        if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 163                pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 164                        cache_policies[cachepolicy].policy);
 165                return 0;
 166        }
 167
 168        if (selected != cachepolicy) {
 169                unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 170                cachepolicy = selected;
 171                flush_cache_all();
 172                set_cr(cr);
 173        }
 174        return 0;
 175}
 176early_param("cachepolicy", early_cachepolicy);
 177
 178static int __init early_nocache(char *__unused)
 179{
 180        char *p = "buffered";
 181        pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 182        early_cachepolicy(p);
 183        return 0;
 184}
 185early_param("nocache", early_nocache);
 186
 187static int __init early_nowrite(char *__unused)
 188{
 189        char *p = "uncached";
 190        pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 191        early_cachepolicy(p);
 192        return 0;
 193}
 194early_param("nowb", early_nowrite);
 195
 196#ifndef CONFIG_ARM_LPAE
 197static int __init early_ecc(char *p)
 198{
 199        if (memcmp(p, "on", 2) == 0)
 200                ecc_mask = PMD_PROTECTION;
 201        else if (memcmp(p, "off", 3) == 0)
 202                ecc_mask = 0;
 203        return 0;
 204}
 205early_param("ecc", early_ecc);
 206#endif
 207
 208#else /* ifdef CONFIG_CPU_CP15 */
 209
 210static int __init early_cachepolicy(char *p)
 211{
 212        pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 213}
 214early_param("cachepolicy", early_cachepolicy);
 215
 216static int __init noalign_setup(char *__unused)
 217{
 218        pr_warn("noalign kernel parameter not supported without cp15\n");
 219}
 220__setup("noalign", noalign_setup);
 221
 222#endif /* ifdef CONFIG_CPU_CP15 / else */
 223
 224#define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 225#define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
 226#define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 227
 228static struct mem_type mem_types[] __ro_after_init = {
 229        [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
 230                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 231                                  L_PTE_SHARED,
 232                .prot_l1        = PMD_TYPE_TABLE,
 233                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
 234                .domain         = DOMAIN_IO,
 235        },
 236        [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 237                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 238                .prot_l1        = PMD_TYPE_TABLE,
 239                .prot_sect      = PROT_SECT_DEVICE,
 240                .domain         = DOMAIN_IO,
 241        },
 242        [MT_DEVICE_CACHED] = {    /* ioremap_cache */
 243                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 244                .prot_l1        = PMD_TYPE_TABLE,
 245                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
 246                .domain         = DOMAIN_IO,
 247        },
 248        [MT_DEVICE_WC] = {      /* ioremap_wc */
 249                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 250                .prot_l1        = PMD_TYPE_TABLE,
 251                .prot_sect      = PROT_SECT_DEVICE,
 252                .domain         = DOMAIN_IO,
 253        },
 254        [MT_UNCACHED] = {
 255                .prot_pte       = PROT_PTE_DEVICE,
 256                .prot_l1        = PMD_TYPE_TABLE,
 257                .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
 258                .domain         = DOMAIN_IO,
 259        },
 260        [MT_CACHECLEAN] = {
 261                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 262                .domain    = DOMAIN_KERNEL,
 263        },
 264#ifndef CONFIG_ARM_LPAE
 265        [MT_MINICLEAN] = {
 266                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 267                .domain    = DOMAIN_KERNEL,
 268        },
 269#endif
 270        [MT_LOW_VECTORS] = {
 271                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 272                                L_PTE_RDONLY,
 273                .prot_l1   = PMD_TYPE_TABLE,
 274                .domain    = DOMAIN_VECTORS,
 275        },
 276        [MT_HIGH_VECTORS] = {
 277                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 278                                L_PTE_USER | L_PTE_RDONLY,
 279                .prot_l1   = PMD_TYPE_TABLE,
 280                .domain    = DOMAIN_VECTORS,
 281        },
 282        [MT_MEMORY_RWX] = {
 283                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 284                .prot_l1   = PMD_TYPE_TABLE,
 285                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 286                .domain    = DOMAIN_KERNEL,
 287        },
 288        [MT_MEMORY_RW] = {
 289                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 290                             L_PTE_XN,
 291                .prot_l1   = PMD_TYPE_TABLE,
 292                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 293                .domain    = DOMAIN_KERNEL,
 294        },
 295        [MT_ROM] = {
 296                .prot_sect = PMD_TYPE_SECT,
 297                .domain    = DOMAIN_KERNEL,
 298        },
 299        [MT_MEMORY_RWX_NONCACHED] = {
 300                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 301                                L_PTE_MT_BUFFERABLE,
 302                .prot_l1   = PMD_TYPE_TABLE,
 303                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 304                .domain    = DOMAIN_KERNEL,
 305        },
 306        [MT_MEMORY_RW_DTCM] = {
 307                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 308                                L_PTE_XN,
 309                .prot_l1   = PMD_TYPE_TABLE,
 310                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 311                .domain    = DOMAIN_KERNEL,
 312        },
 313        [MT_MEMORY_RWX_ITCM] = {
 314                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 315                .prot_l1   = PMD_TYPE_TABLE,
 316                .domain    = DOMAIN_KERNEL,
 317        },
 318        [MT_MEMORY_RW_SO] = {
 319                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 320                                L_PTE_MT_UNCACHED | L_PTE_XN,
 321                .prot_l1   = PMD_TYPE_TABLE,
 322                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 323                                PMD_SECT_UNCACHED | PMD_SECT_XN,
 324                .domain    = DOMAIN_KERNEL,
 325        },
 326        [MT_MEMORY_DMA_READY] = {
 327                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 328                                L_PTE_XN,
 329                .prot_l1   = PMD_TYPE_TABLE,
 330                .domain    = DOMAIN_KERNEL,
 331        },
 332};
 333
 334const struct mem_type *get_mem_type(unsigned int type)
 335{
 336        return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 337}
 338EXPORT_SYMBOL(get_mem_type);
 339
 340static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 341
 342static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 343        __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 344
 345static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 346{
 347        return &bm_pte[pte_index(addr)];
 348}
 349
 350static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 351{
 352        return pte_offset_kernel(dir, addr);
 353}
 354
 355static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 356{
 357        return pmd_off_k(addr);
 358}
 359
 360void __init early_fixmap_init(void)
 361{
 362        pmd_t *pmd;
 363
 364        /*
 365         * The early fixmap range spans multiple pmds, for which
 366         * we are not prepared:
 367         */
 368        BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 369                     != FIXADDR_TOP >> PMD_SHIFT);
 370
 371        pmd = fixmap_pmd(FIXADDR_TOP);
 372        pmd_populate_kernel(&init_mm, pmd, bm_pte);
 373
 374        pte_offset_fixmap = pte_offset_early_fixmap;
 375}
 376
 377/*
 378 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 379 * As a result, this can only be called with preemption disabled, as under
 380 * stop_machine().
 381 */
 382void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 383{
 384        unsigned long vaddr = __fix_to_virt(idx);
 385        pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 386
 387        /* Make sure fixmap region does not exceed available allocation. */
 388        BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
 389                     FIXADDR_END);
 390        BUG_ON(idx >= __end_of_fixed_addresses);
 391
 392        /* we only support device mappings until pgprot_kernel has been set */
 393        if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
 394                    pgprot_val(pgprot_kernel) == 0))
 395                return;
 396
 397        if (pgprot_val(prot))
 398                set_pte_at(NULL, vaddr, pte,
 399                        pfn_pte(phys >> PAGE_SHIFT, prot));
 400        else
 401                pte_clear(NULL, vaddr, pte);
 402        local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 403}
 404
 405/*
 406 * Adjust the PMD section entries according to the CPU in use.
 407 */
 408static void __init build_mem_type_table(void)
 409{
 410        struct cachepolicy *cp;
 411        unsigned int cr = get_cr();
 412        pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 413        int cpu_arch = cpu_architecture();
 414        int i;
 415
 416        if (cpu_arch < CPU_ARCH_ARMv6) {
 417#if defined(CONFIG_CPU_DCACHE_DISABLE)
 418                if (cachepolicy > CPOLICY_BUFFERED)
 419                        cachepolicy = CPOLICY_BUFFERED;
 420#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 421                if (cachepolicy > CPOLICY_WRITETHROUGH)
 422                        cachepolicy = CPOLICY_WRITETHROUGH;
 423#endif
 424        }
 425        if (cpu_arch < CPU_ARCH_ARMv5) {
 426                if (cachepolicy >= CPOLICY_WRITEALLOC)
 427                        cachepolicy = CPOLICY_WRITEBACK;
 428                ecc_mask = 0;
 429        }
 430
 431        if (is_smp()) {
 432                if (cachepolicy != CPOLICY_WRITEALLOC) {
 433                        pr_warn("Forcing write-allocate cache policy for SMP\n");
 434                        cachepolicy = CPOLICY_WRITEALLOC;
 435                }
 436                if (!(initial_pmd_value & PMD_SECT_S)) {
 437                        pr_warn("Forcing shared mappings for SMP\n");
 438                        initial_pmd_value |= PMD_SECT_S;
 439                }
 440        }
 441
 442        /*
 443         * Strip out features not present on earlier architectures.
 444         * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 445         * without extended page tables don't have the 'Shared' bit.
 446         */
 447        if (cpu_arch < CPU_ARCH_ARMv5)
 448                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 449                        mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 450        if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 451                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 452                        mem_types[i].prot_sect &= ~PMD_SECT_S;
 453
 454        /*
 455         * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 456         * "update-able on write" bit on ARM610).  However, Xscale and
 457         * Xscale3 require this bit to be cleared.
 458         */
 459        if (cpu_is_xscale_family()) {
 460                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 461                        mem_types[i].prot_sect &= ~PMD_BIT4;
 462                        mem_types[i].prot_l1 &= ~PMD_BIT4;
 463                }
 464        } else if (cpu_arch < CPU_ARCH_ARMv6) {
 465                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 466                        if (mem_types[i].prot_l1)
 467                                mem_types[i].prot_l1 |= PMD_BIT4;
 468                        if (mem_types[i].prot_sect)
 469                                mem_types[i].prot_sect |= PMD_BIT4;
 470                }
 471        }
 472
 473        /*
 474         * Mark the device areas according to the CPU/architecture.
 475         */
 476        if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 477                if (!cpu_is_xsc3()) {
 478                        /*
 479                         * Mark device regions on ARMv6+ as execute-never
 480                         * to prevent speculative instruction fetches.
 481                         */
 482                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 483                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 484                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 485                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 486
 487                        /* Also setup NX memory mapping */
 488                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 489                }
 490                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 491                        /*
 492                         * For ARMv7 with TEX remapping,
 493                         * - shared device is SXCB=1100
 494                         * - nonshared device is SXCB=0100
 495                         * - write combine device mem is SXCB=0001
 496                         * (Uncached Normal memory)
 497                         */
 498                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 499                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 500                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 501                } else if (cpu_is_xsc3()) {
 502                        /*
 503                         * For Xscale3,
 504                         * - shared device is TEXCB=00101
 505                         * - nonshared device is TEXCB=01000
 506                         * - write combine device mem is TEXCB=00100
 507                         * (Inner/Outer Uncacheable in xsc3 parlance)
 508                         */
 509                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 510                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 511                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 512                } else {
 513                        /*
 514                         * For ARMv6 and ARMv7 without TEX remapping,
 515                         * - shared device is TEXCB=00001
 516                         * - nonshared device is TEXCB=01000
 517                         * - write combine device mem is TEXCB=00100
 518                         * (Uncached Normal in ARMv6 parlance).
 519                         */
 520                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 521                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 522                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 523                }
 524        } else {
 525                /*
 526                 * On others, write combining is "Uncached/Buffered"
 527                 */
 528                mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 529        }
 530
 531        /*
 532         * Now deal with the memory-type mappings
 533         */
 534        cp = &cache_policies[cachepolicy];
 535        vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 536
 537#ifndef CONFIG_ARM_LPAE
 538        /*
 539         * We don't use domains on ARMv6 (since this causes problems with
 540         * v6/v7 kernels), so we must use a separate memory type for user
 541         * r/o, kernel r/w to map the vectors page.
 542         */
 543        if (cpu_arch == CPU_ARCH_ARMv6)
 544                vecs_pgprot |= L_PTE_MT_VECTORS;
 545
 546        /*
 547         * Check is it with support for the PXN bit
 548         * in the Short-descriptor translation table format descriptors.
 549         */
 550        if (cpu_arch == CPU_ARCH_ARMv7 &&
 551                (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 552                user_pmd_table |= PMD_PXNTABLE;
 553        }
 554#endif
 555
 556        /*
 557         * ARMv6 and above have extended page tables.
 558         */
 559        if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 560#ifndef CONFIG_ARM_LPAE
 561                /*
 562                 * Mark cache clean areas and XIP ROM read only
 563                 * from SVC mode and no access from userspace.
 564                 */
 565                mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 566                mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 567                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 568#endif
 569
 570                /*
 571                 * If the initial page tables were created with the S bit
 572                 * set, then we need to do the same here for the same
 573                 * reasons given in early_cachepolicy().
 574                 */
 575                if (initial_pmd_value & PMD_SECT_S) {
 576                        user_pgprot |= L_PTE_SHARED;
 577                        kern_pgprot |= L_PTE_SHARED;
 578                        vecs_pgprot |= L_PTE_SHARED;
 579                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 580                        mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 581                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 582                        mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 583                        mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 584                        mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 585                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 586                        mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 587                        mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 588                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 589                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 590                }
 591        }
 592
 593        /*
 594         * Non-cacheable Normal - intended for memory areas that must
 595         * not cause dirty cache line writebacks when used
 596         */
 597        if (cpu_arch >= CPU_ARCH_ARMv6) {
 598                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 599                        /* Non-cacheable Normal is XCB = 001 */
 600                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 601                                PMD_SECT_BUFFERED;
 602                } else {
 603                        /* For both ARMv6 and non-TEX-remapping ARMv7 */
 604                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 605                                PMD_SECT_TEX(1);
 606                }
 607        } else {
 608                mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 609        }
 610
 611#ifdef CONFIG_ARM_LPAE
 612        /*
 613         * Do not generate access flag faults for the kernel mappings.
 614         */
 615        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 616                mem_types[i].prot_pte |= PTE_EXT_AF;
 617                if (mem_types[i].prot_sect)
 618                        mem_types[i].prot_sect |= PMD_SECT_AF;
 619        }
 620        kern_pgprot |= PTE_EXT_AF;
 621        vecs_pgprot |= PTE_EXT_AF;
 622
 623        /*
 624         * Set PXN for user mappings
 625         */
 626        user_pgprot |= PTE_EXT_PXN;
 627#endif
 628
 629        for (i = 0; i < 16; i++) {
 630                pteval_t v = pgprot_val(protection_map[i]);
 631                protection_map[i] = __pgprot(v | user_pgprot);
 632        }
 633
 634        mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 635        mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 636
 637        pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 638        pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 639                                 L_PTE_DIRTY | kern_pgprot);
 640
 641        mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 642        mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 643        mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 644        mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 645        mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 646        mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 647        mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 648        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 649        mem_types[MT_ROM].prot_sect |= cp->pmd;
 650
 651        switch (cp->pmd) {
 652        case PMD_SECT_WT:
 653                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 654                break;
 655        case PMD_SECT_WB:
 656        case PMD_SECT_WBWA:
 657                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 658                break;
 659        }
 660        pr_info("Memory policy: %sData cache %s\n",
 661                ecc_mask ? "ECC enabled, " : "", cp->policy);
 662
 663        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 664                struct mem_type *t = &mem_types[i];
 665                if (t->prot_l1)
 666                        t->prot_l1 |= PMD_DOMAIN(t->domain);
 667                if (t->prot_sect)
 668                        t->prot_sect |= PMD_DOMAIN(t->domain);
 669        }
 670}
 671
 672#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 673pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 674                              unsigned long size, pgprot_t vma_prot)
 675{
 676        if (!pfn_valid(pfn))
 677                return pgprot_noncached(vma_prot);
 678        else if (file->f_flags & O_SYNC)
 679                return pgprot_writecombine(vma_prot);
 680        return vma_prot;
 681}
 682EXPORT_SYMBOL(phys_mem_access_prot);
 683#endif
 684
 685#define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
 686
 687static void __init *early_alloc(unsigned long sz)
 688{
 689        void *ptr = memblock_alloc(sz, sz);
 690
 691        if (!ptr)
 692                panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 693                      __func__, sz, sz);
 694
 695        return ptr;
 696}
 697
 698static void *__init late_alloc(unsigned long sz)
 699{
 700        void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
 701
 702        if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
 703                BUG();
 704        return ptr;
 705}
 706
 707static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 708                                unsigned long prot,
 709                                void *(*alloc)(unsigned long sz))
 710{
 711        if (pmd_none(*pmd)) {
 712                pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 713                __pmd_populate(pmd, __pa(pte), prot);
 714        }
 715        BUG_ON(pmd_bad(*pmd));
 716        return pte_offset_kernel(pmd, addr);
 717}
 718
 719static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 720                                      unsigned long prot)
 721{
 722        return arm_pte_alloc(pmd, addr, prot, early_alloc);
 723}
 724
 725static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 726                                  unsigned long end, unsigned long pfn,
 727                                  const struct mem_type *type,
 728                                  void *(*alloc)(unsigned long sz),
 729                                  bool ng)
 730{
 731        pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 732        do {
 733                set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 734                            ng ? PTE_EXT_NG : 0);
 735                pfn++;
 736        } while (pte++, addr += PAGE_SIZE, addr != end);
 737}
 738
 739static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 740                        unsigned long end, phys_addr_t phys,
 741                        const struct mem_type *type, bool ng)
 742{
 743        pmd_t *p = pmd;
 744
 745#ifndef CONFIG_ARM_LPAE
 746        /*
 747         * In classic MMU format, puds and pmds are folded in to
 748         * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 749         * group of L1 entries making up one logical pointer to
 750         * an L2 table (2MB), where as PMDs refer to the individual
 751         * L1 entries (1MB). Hence increment to get the correct
 752         * offset for odd 1MB sections.
 753         * (See arch/arm/include/asm/pgtable-2level.h)
 754         */
 755        if (addr & SECTION_SIZE)
 756                pmd++;
 757#endif
 758        do {
 759                *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 760                phys += SECTION_SIZE;
 761        } while (pmd++, addr += SECTION_SIZE, addr != end);
 762
 763        flush_pmd_entry(p);
 764}
 765
 766static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 767                                      unsigned long end, phys_addr_t phys,
 768                                      const struct mem_type *type,
 769                                      void *(*alloc)(unsigned long sz), bool ng)
 770{
 771        pmd_t *pmd = pmd_offset(pud, addr);
 772        unsigned long next;
 773
 774        do {
 775                /*
 776                 * With LPAE, we must loop over to map
 777                 * all the pmds for the given range.
 778                 */
 779                next = pmd_addr_end(addr, end);
 780
 781                /*
 782                 * Try a section mapping - addr, next and phys must all be
 783                 * aligned to a section boundary.
 784                 */
 785                if (type->prot_sect &&
 786                                ((addr | next | phys) & ~SECTION_MASK) == 0) {
 787                        __map_init_section(pmd, addr, next, phys, type, ng);
 788                } else {
 789                        alloc_init_pte(pmd, addr, next,
 790                                       __phys_to_pfn(phys), type, alloc, ng);
 791                }
 792
 793                phys += next - addr;
 794
 795        } while (pmd++, addr = next, addr != end);
 796}
 797
 798static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
 799                                  unsigned long end, phys_addr_t phys,
 800                                  const struct mem_type *type,
 801                                  void *(*alloc)(unsigned long sz), bool ng)
 802{
 803        pud_t *pud = pud_offset(p4d, addr);
 804        unsigned long next;
 805
 806        do {
 807                next = pud_addr_end(addr, end);
 808                alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 809                phys += next - addr;
 810        } while (pud++, addr = next, addr != end);
 811}
 812
 813static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
 814                                  unsigned long end, phys_addr_t phys,
 815                                  const struct mem_type *type,
 816                                  void *(*alloc)(unsigned long sz), bool ng)
 817{
 818        p4d_t *p4d = p4d_offset(pgd, addr);
 819        unsigned long next;
 820
 821        do {
 822                next = p4d_addr_end(addr, end);
 823                alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
 824                phys += next - addr;
 825        } while (p4d++, addr = next, addr != end);
 826}
 827
 828#ifndef CONFIG_ARM_LPAE
 829static void __init create_36bit_mapping(struct mm_struct *mm,
 830                                        struct map_desc *md,
 831                                        const struct mem_type *type,
 832                                        bool ng)
 833{
 834        unsigned long addr, length, end;
 835        phys_addr_t phys;
 836        pgd_t *pgd;
 837
 838        addr = md->virtual;
 839        phys = __pfn_to_phys(md->pfn);
 840        length = PAGE_ALIGN(md->length);
 841
 842        if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 843                pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 844                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 845                return;
 846        }
 847
 848        /* N.B. ARMv6 supersections are only defined to work with domain 0.
 849         *      Since domain assignments can in fact be arbitrary, the
 850         *      'domain == 0' check below is required to insure that ARMv6
 851         *      supersections are only allocated for domain 0 regardless
 852         *      of the actual domain assignments in use.
 853         */
 854        if (type->domain) {
 855                pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 856                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 857                return;
 858        }
 859
 860        if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 861                pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 862                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 863                return;
 864        }
 865
 866        /*
 867         * Shift bits [35:32] of address into bits [23:20] of PMD
 868         * (See ARMv6 spec).
 869         */
 870        phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 871
 872        pgd = pgd_offset(mm, addr);
 873        end = addr + length;
 874        do {
 875                p4d_t *p4d = p4d_offset(pgd, addr);
 876                pud_t *pud = pud_offset(p4d, addr);
 877                pmd_t *pmd = pmd_offset(pud, addr);
 878                int i;
 879
 880                for (i = 0; i < 16; i++)
 881                        *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 882                                       (ng ? PMD_SECT_nG : 0));
 883
 884                addr += SUPERSECTION_SIZE;
 885                phys += SUPERSECTION_SIZE;
 886                pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 887        } while (addr != end);
 888}
 889#endif  /* !CONFIG_ARM_LPAE */
 890
 891static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 892                                    void *(*alloc)(unsigned long sz),
 893                                    bool ng)
 894{
 895        unsigned long addr, length, end;
 896        phys_addr_t phys;
 897        const struct mem_type *type;
 898        pgd_t *pgd;
 899
 900        type = &mem_types[md->type];
 901
 902#ifndef CONFIG_ARM_LPAE
 903        /*
 904         * Catch 36-bit addresses
 905         */
 906        if (md->pfn >= 0x100000) {
 907                create_36bit_mapping(mm, md, type, ng);
 908                return;
 909        }
 910#endif
 911
 912        addr = md->virtual & PAGE_MASK;
 913        phys = __pfn_to_phys(md->pfn);
 914        length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 915
 916        if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 917                pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 918                        (long long)__pfn_to_phys(md->pfn), addr);
 919                return;
 920        }
 921
 922        pgd = pgd_offset(mm, addr);
 923        end = addr + length;
 924        do {
 925                unsigned long next = pgd_addr_end(addr, end);
 926
 927                alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
 928
 929                phys += next - addr;
 930                addr = next;
 931        } while (pgd++, addr != end);
 932}
 933
 934/*
 935 * Create the page directory entries and any necessary
 936 * page tables for the mapping specified by `md'.  We
 937 * are able to cope here with varying sizes and address
 938 * offsets, and we take full advantage of sections and
 939 * supersections.
 940 */
 941static void __init create_mapping(struct map_desc *md)
 942{
 943        if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 944                pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 945                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 946                return;
 947        }
 948
 949        if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 950            md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 951            (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 952                pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 953                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 954        }
 955
 956        __create_mapping(&init_mm, md, early_alloc, false);
 957}
 958
 959void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
 960                                bool ng)
 961{
 962#ifdef CONFIG_ARM_LPAE
 963        p4d_t *p4d;
 964        pud_t *pud;
 965
 966        p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
 967        if (WARN_ON(!p4d))
 968                return;
 969        pud = pud_alloc(mm, p4d, md->virtual);
 970        if (WARN_ON(!pud))
 971                return;
 972        pmd_alloc(mm, pud, 0);
 973#endif
 974        __create_mapping(mm, md, late_alloc, ng);
 975}
 976
 977/*
 978 * Create the architecture specific mappings
 979 */
 980void __init iotable_init(struct map_desc *io_desc, int nr)
 981{
 982        struct map_desc *md;
 983        struct vm_struct *vm;
 984        struct static_vm *svm;
 985
 986        if (!nr)
 987                return;
 988
 989        svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
 990        if (!svm)
 991                panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
 992                      __func__, sizeof(*svm) * nr, __alignof__(*svm));
 993
 994        for (md = io_desc; nr; md++, nr--) {
 995                create_mapping(md);
 996
 997                vm = &svm->vm;
 998                vm->addr = (void *)(md->virtual & PAGE_MASK);
 999                vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1000                vm->phys_addr = __pfn_to_phys(md->pfn);
1001                vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1002                vm->flags |= VM_ARM_MTYPE(md->type);
1003                vm->caller = iotable_init;
1004                add_static_vm_early(svm++);
1005        }
1006}
1007
1008void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1009                                  void *caller)
1010{
1011        struct vm_struct *vm;
1012        struct static_vm *svm;
1013
1014        svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1015        if (!svm)
1016                panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1017                      __func__, sizeof(*svm), __alignof__(*svm));
1018
1019        vm = &svm->vm;
1020        vm->addr = (void *)addr;
1021        vm->size = size;
1022        vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1023        vm->caller = caller;
1024        add_static_vm_early(svm);
1025}
1026
1027#ifndef CONFIG_ARM_LPAE
1028
1029/*
1030 * The Linux PMD is made of two consecutive section entries covering 2MB
1031 * (see definition in include/asm/pgtable-2level.h).  However a call to
1032 * create_mapping() may optimize static mappings by using individual
1033 * 1MB section mappings.  This leaves the actual PMD potentially half
1034 * initialized if the top or bottom section entry isn't used, leaving it
1035 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1036 * the virtual space left free by that unused section entry.
1037 *
1038 * Let's avoid the issue by inserting dummy vm entries covering the unused
1039 * PMD halves once the static mappings are in place.
1040 */
1041
1042static void __init pmd_empty_section_gap(unsigned long addr)
1043{
1044        vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1045}
1046
1047static void __init fill_pmd_gaps(void)
1048{
1049        struct static_vm *svm;
1050        struct vm_struct *vm;
1051        unsigned long addr, next = 0;
1052        pmd_t *pmd;
1053
1054        list_for_each_entry(svm, &static_vmlist, list) {
1055                vm = &svm->vm;
1056                addr = (unsigned long)vm->addr;
1057                if (addr < next)
1058                        continue;
1059
1060                /*
1061                 * Check if this vm starts on an odd section boundary.
1062                 * If so and the first section entry for this PMD is free
1063                 * then we block the corresponding virtual address.
1064                 */
1065                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1066                        pmd = pmd_off_k(addr);
1067                        if (pmd_none(*pmd))
1068                                pmd_empty_section_gap(addr & PMD_MASK);
1069                }
1070
1071                /*
1072                 * Then check if this vm ends on an odd section boundary.
1073                 * If so and the second section entry for this PMD is empty
1074                 * then we block the corresponding virtual address.
1075                 */
1076                addr += vm->size;
1077                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1078                        pmd = pmd_off_k(addr) + 1;
1079                        if (pmd_none(*pmd))
1080                                pmd_empty_section_gap(addr);
1081                }
1082
1083                /* no need to look at any vm entry until we hit the next PMD */
1084                next = (addr + PMD_SIZE - 1) & PMD_MASK;
1085        }
1086}
1087
1088#else
1089#define fill_pmd_gaps() do { } while (0)
1090#endif
1091
1092#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1093static void __init pci_reserve_io(void)
1094{
1095        struct static_vm *svm;
1096
1097        svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1098        if (svm)
1099                return;
1100
1101        vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1102}
1103#else
1104#define pci_reserve_io() do { } while (0)
1105#endif
1106
1107#ifdef CONFIG_DEBUG_LL
1108void __init debug_ll_io_init(void)
1109{
1110        struct map_desc map;
1111
1112        debug_ll_addr(&map.pfn, &map.virtual);
1113        if (!map.pfn || !map.virtual)
1114                return;
1115        map.pfn = __phys_to_pfn(map.pfn);
1116        map.virtual &= PAGE_MASK;
1117        map.length = PAGE_SIZE;
1118        map.type = MT_DEVICE;
1119        iotable_init(&map, 1);
1120}
1121#endif
1122
1123static void * __initdata vmalloc_min =
1124        (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1125
1126/*
1127 * vmalloc=size forces the vmalloc area to be exactly 'size'
1128 * bytes. This can be used to increase (or decrease) the vmalloc
1129 * area - the default is 240m.
1130 */
1131static int __init early_vmalloc(char *arg)
1132{
1133        unsigned long vmalloc_reserve = memparse(arg, NULL);
1134
1135        if (vmalloc_reserve < SZ_16M) {
1136                vmalloc_reserve = SZ_16M;
1137                pr_warn("vmalloc area too small, limiting to %luMB\n",
1138                        vmalloc_reserve >> 20);
1139        }
1140
1141        if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1142                vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1143                pr_warn("vmalloc area is too big, limiting to %luMB\n",
1144                        vmalloc_reserve >> 20);
1145        }
1146
1147        vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1148        return 0;
1149}
1150early_param("vmalloc", early_vmalloc);
1151
1152phys_addr_t arm_lowmem_limit __initdata = 0;
1153
1154void __init adjust_lowmem_bounds(void)
1155{
1156        phys_addr_t block_start, block_end, memblock_limit = 0;
1157        u64 vmalloc_limit, i;
1158        phys_addr_t lowmem_limit = 0;
1159
1160        /*
1161         * Let's use our own (unoptimized) equivalent of __pa() that is
1162         * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1163         * The result is used as the upper bound on physical memory address
1164         * and may itself be outside the valid range for which phys_addr_t
1165         * and therefore __pa() is defined.
1166         */
1167        vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1168
1169        /*
1170         * The first usable region must be PMD aligned. Mark its start
1171         * as MEMBLOCK_NOMAP if it isn't
1172         */
1173        for_each_mem_range(i, &block_start, &block_end) {
1174                if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1175                        phys_addr_t len;
1176
1177                        len = round_up(block_start, PMD_SIZE) - block_start;
1178                        memblock_mark_nomap(block_start, len);
1179                }
1180                break;
1181        }
1182
1183        for_each_mem_range(i, &block_start, &block_end) {
1184                if (block_start < vmalloc_limit) {
1185                        if (block_end > lowmem_limit)
1186                                /*
1187                                 * Compare as u64 to ensure vmalloc_limit does
1188                                 * not get truncated. block_end should always
1189                                 * fit in phys_addr_t so there should be no
1190                                 * issue with assignment.
1191                                 */
1192                                lowmem_limit = min_t(u64,
1193                                                         vmalloc_limit,
1194                                                         block_end);
1195
1196                        /*
1197                         * Find the first non-pmd-aligned page, and point
1198                         * memblock_limit at it. This relies on rounding the
1199                         * limit down to be pmd-aligned, which happens at the
1200                         * end of this function.
1201                         *
1202                         * With this algorithm, the start or end of almost any
1203                         * bank can be non-pmd-aligned. The only exception is
1204                         * that the start of the bank 0 must be section-
1205                         * aligned, since otherwise memory would need to be
1206                         * allocated when mapping the start of bank 0, which
1207                         * occurs before any free memory is mapped.
1208                         */
1209                        if (!memblock_limit) {
1210                                if (!IS_ALIGNED(block_start, PMD_SIZE))
1211                                        memblock_limit = block_start;
1212                                else if (!IS_ALIGNED(block_end, PMD_SIZE))
1213                                        memblock_limit = lowmem_limit;
1214                        }
1215
1216                }
1217        }
1218
1219        arm_lowmem_limit = lowmem_limit;
1220
1221        high_memory = __va(arm_lowmem_limit - 1) + 1;
1222
1223        if (!memblock_limit)
1224                memblock_limit = arm_lowmem_limit;
1225
1226        /*
1227         * Round the memblock limit down to a pmd size.  This
1228         * helps to ensure that we will allocate memory from the
1229         * last full pmd, which should be mapped.
1230         */
1231        memblock_limit = round_down(memblock_limit, PMD_SIZE);
1232
1233        if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1234                if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1235                        phys_addr_t end = memblock_end_of_DRAM();
1236
1237                        pr_notice("Ignoring RAM at %pa-%pa\n",
1238                                  &memblock_limit, &end);
1239                        pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1240
1241                        memblock_remove(memblock_limit, end - memblock_limit);
1242                }
1243        }
1244
1245        memblock_set_current_limit(memblock_limit);
1246}
1247
1248static inline void prepare_page_table(void)
1249{
1250        unsigned long addr;
1251        phys_addr_t end;
1252
1253        /*
1254         * Clear out all the mappings below the kernel image.
1255         */
1256        for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1257                pmd_clear(pmd_off_k(addr));
1258
1259#ifdef CONFIG_XIP_KERNEL
1260        /* The XIP kernel is mapped in the module area -- skip over it */
1261        addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1262#endif
1263        for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1264                pmd_clear(pmd_off_k(addr));
1265
1266        /*
1267         * Find the end of the first block of lowmem.
1268         */
1269        end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1270        if (end >= arm_lowmem_limit)
1271                end = arm_lowmem_limit;
1272
1273        /*
1274         * Clear out all the kernel space mappings, except for the first
1275         * memory bank, up to the vmalloc region.
1276         */
1277        for (addr = __phys_to_virt(end);
1278             addr < VMALLOC_START; addr += PMD_SIZE)
1279                pmd_clear(pmd_off_k(addr));
1280}
1281
1282#ifdef CONFIG_ARM_LPAE
1283/* the first page is reserved for pgd */
1284#define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1285                                 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1286#else
1287#define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1288#endif
1289
1290/*
1291 * Reserve the special regions of memory
1292 */
1293void __init arm_mm_memblock_reserve(void)
1294{
1295        /*
1296         * Reserve the page tables.  These are already in use,
1297         * and can only be in node 0.
1298         */
1299        memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1300
1301#ifdef CONFIG_SA1111
1302        /*
1303         * Because of the SA1111 DMA bug, we want to preserve our
1304         * precious DMA-able memory...
1305         */
1306        memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1307#endif
1308}
1309
1310/*
1311 * Set up the device mappings.  Since we clear out the page tables for all
1312 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1313 * device mappings.  This means earlycon can be used to debug this function
1314 * Any other function or debugging method which may touch any device _will_
1315 * crash the kernel.
1316 */
1317static void __init devicemaps_init(const struct machine_desc *mdesc)
1318{
1319        struct map_desc map;
1320        unsigned long addr;
1321        void *vectors;
1322
1323        /*
1324         * Allocate the vector page early.
1325         */
1326        vectors = early_alloc(PAGE_SIZE * 2);
1327
1328        early_trap_init(vectors);
1329
1330        /*
1331         * Clear page table except top pmd used by early fixmaps
1332         */
1333        for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1334                pmd_clear(pmd_off_k(addr));
1335
1336        /*
1337         * Map the kernel if it is XIP.
1338         * It is always first in the modulearea.
1339         */
1340#ifdef CONFIG_XIP_KERNEL
1341        map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1342        map.virtual = MODULES_VADDR;
1343        map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1344        map.type = MT_ROM;
1345        create_mapping(&map);
1346#endif
1347
1348        /*
1349         * Map the cache flushing regions.
1350         */
1351#ifdef FLUSH_BASE
1352        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1353        map.virtual = FLUSH_BASE;
1354        map.length = SZ_1M;
1355        map.type = MT_CACHECLEAN;
1356        create_mapping(&map);
1357#endif
1358#ifdef FLUSH_BASE_MINICACHE
1359        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1360        map.virtual = FLUSH_BASE_MINICACHE;
1361        map.length = SZ_1M;
1362        map.type = MT_MINICLEAN;
1363        create_mapping(&map);
1364#endif
1365
1366        /*
1367         * Create a mapping for the machine vectors at the high-vectors
1368         * location (0xffff0000).  If we aren't using high-vectors, also
1369         * create a mapping at the low-vectors virtual address.
1370         */
1371        map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1372        map.virtual = 0xffff0000;
1373        map.length = PAGE_SIZE;
1374#ifdef CONFIG_KUSER_HELPERS
1375        map.type = MT_HIGH_VECTORS;
1376#else
1377        map.type = MT_LOW_VECTORS;
1378#endif
1379        create_mapping(&map);
1380
1381        if (!vectors_high()) {
1382                map.virtual = 0;
1383                map.length = PAGE_SIZE * 2;
1384                map.type = MT_LOW_VECTORS;
1385                create_mapping(&map);
1386        }
1387
1388        /* Now create a kernel read-only mapping */
1389        map.pfn += 1;
1390        map.virtual = 0xffff0000 + PAGE_SIZE;
1391        map.length = PAGE_SIZE;
1392        map.type = MT_LOW_VECTORS;
1393        create_mapping(&map);
1394
1395        /*
1396         * Ask the machine support to map in the statically mapped devices.
1397         */
1398        if (mdesc->map_io)
1399                mdesc->map_io();
1400        else
1401                debug_ll_io_init();
1402        fill_pmd_gaps();
1403
1404        /* Reserve fixed i/o space in VMALLOC region */
1405        pci_reserve_io();
1406
1407        /*
1408         * Finally flush the caches and tlb to ensure that we're in a
1409         * consistent state wrt the writebuffer.  This also ensures that
1410         * any write-allocated cache lines in the vector page are written
1411         * back.  After this point, we can start to touch devices again.
1412         */
1413        local_flush_tlb_all();
1414        flush_cache_all();
1415
1416        /* Enable asynchronous aborts */
1417        early_abt_enable();
1418}
1419
1420static void __init kmap_init(void)
1421{
1422#ifdef CONFIG_HIGHMEM
1423        pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1424                PKMAP_BASE, _PAGE_KERNEL_TABLE);
1425#endif
1426
1427        early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1428                        _PAGE_KERNEL_TABLE);
1429}
1430
1431static void __init map_lowmem(void)
1432{
1433        phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1434        phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1435        phys_addr_t start, end;
1436        u64 i;
1437
1438        /* Map all the lowmem memory banks. */
1439        for_each_mem_range(i, &start, &end) {
1440                struct map_desc map;
1441
1442                if (end > arm_lowmem_limit)
1443                        end = arm_lowmem_limit;
1444                if (start >= end)
1445                        break;
1446
1447                if (end < kernel_x_start) {
1448                        map.pfn = __phys_to_pfn(start);
1449                        map.virtual = __phys_to_virt(start);
1450                        map.length = end - start;
1451                        map.type = MT_MEMORY_RWX;
1452
1453                        create_mapping(&map);
1454                } else if (start >= kernel_x_end) {
1455                        map.pfn = __phys_to_pfn(start);
1456                        map.virtual = __phys_to_virt(start);
1457                        map.length = end - start;
1458                        map.type = MT_MEMORY_RW;
1459
1460                        create_mapping(&map);
1461                } else {
1462                        /* This better cover the entire kernel */
1463                        if (start < kernel_x_start) {
1464                                map.pfn = __phys_to_pfn(start);
1465                                map.virtual = __phys_to_virt(start);
1466                                map.length = kernel_x_start - start;
1467                                map.type = MT_MEMORY_RW;
1468
1469                                create_mapping(&map);
1470                        }
1471
1472                        map.pfn = __phys_to_pfn(kernel_x_start);
1473                        map.virtual = __phys_to_virt(kernel_x_start);
1474                        map.length = kernel_x_end - kernel_x_start;
1475                        map.type = MT_MEMORY_RWX;
1476
1477                        create_mapping(&map);
1478
1479                        if (kernel_x_end < end) {
1480                                map.pfn = __phys_to_pfn(kernel_x_end);
1481                                map.virtual = __phys_to_virt(kernel_x_end);
1482                                map.length = end - kernel_x_end;
1483                                map.type = MT_MEMORY_RW;
1484
1485                                create_mapping(&map);
1486                        }
1487                }
1488        }
1489}
1490
1491#ifdef CONFIG_ARM_PV_FIXUP
1492extern unsigned long __atags_pointer;
1493typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1494pgtables_remap lpae_pgtables_remap_asm;
1495
1496/*
1497 * early_paging_init() recreates boot time page table setup, allowing machines
1498 * to switch over to a high (>4G) address space on LPAE systems
1499 */
1500static void __init early_paging_init(const struct machine_desc *mdesc)
1501{
1502        pgtables_remap *lpae_pgtables_remap;
1503        unsigned long pa_pgd;
1504        unsigned int cr, ttbcr;
1505        long long offset;
1506        void *boot_data;
1507
1508        if (!mdesc->pv_fixup)
1509                return;
1510
1511        offset = mdesc->pv_fixup();
1512        if (offset == 0)
1513                return;
1514
1515        /*
1516         * Get the address of the remap function in the 1:1 identity
1517         * mapping setup by the early page table assembly code.  We
1518         * must get this prior to the pv update.  The following barrier
1519         * ensures that this is complete before we fixup any P:V offsets.
1520         */
1521        lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1522        pa_pgd = __pa(swapper_pg_dir);
1523        boot_data = __va(__atags_pointer);
1524        barrier();
1525
1526        pr_info("Switching physical address space to 0x%08llx\n",
1527                (u64)PHYS_OFFSET + offset);
1528
1529        /* Re-set the phys pfn offset, and the pv offset */
1530        __pv_offset += offset;
1531        __pv_phys_pfn_offset += PFN_DOWN(offset);
1532
1533        /* Run the patch stub to update the constants */
1534        fixup_pv_table(&__pv_table_begin,
1535                (&__pv_table_end - &__pv_table_begin) << 2);
1536
1537        /*
1538         * We changing not only the virtual to physical mapping, but also
1539         * the physical addresses used to access memory.  We need to flush
1540         * all levels of cache in the system with caching disabled to
1541         * ensure that all data is written back, and nothing is prefetched
1542         * into the caches.  We also need to prevent the TLB walkers
1543         * allocating into the caches too.  Note that this is ARMv7 LPAE
1544         * specific.
1545         */
1546        cr = get_cr();
1547        set_cr(cr & ~(CR_I | CR_C));
1548        asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1549        asm volatile("mcr p15, 0, %0, c2, c0, 2"
1550                : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1551        flush_cache_all();
1552
1553        /*
1554         * Fixup the page tables - this must be in the idmap region as
1555         * we need to disable the MMU to do this safely, and hence it
1556         * needs to be assembly.  It's fairly simple, as we're using the
1557         * temporary tables setup by the initial assembly code.
1558         */
1559        lpae_pgtables_remap(offset, pa_pgd, boot_data);
1560
1561        /* Re-enable the caches and cacheable TLB walks */
1562        asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1563        set_cr(cr);
1564}
1565
1566#else
1567
1568static void __init early_paging_init(const struct machine_desc *mdesc)
1569{
1570        long long offset;
1571
1572        if (!mdesc->pv_fixup)
1573                return;
1574
1575        offset = mdesc->pv_fixup();
1576        if (offset == 0)
1577                return;
1578
1579        pr_crit("Physical address space modification is only to support Keystone2.\n");
1580        pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1581        pr_crit("feature. Your kernel may crash now, have a good day.\n");
1582        add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1583}
1584
1585#endif
1586
1587static void __init early_fixmap_shutdown(void)
1588{
1589        int i;
1590        unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1591
1592        pte_offset_fixmap = pte_offset_late_fixmap;
1593        pmd_clear(fixmap_pmd(va));
1594        local_flush_tlb_kernel_page(va);
1595
1596        for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1597                pte_t *pte;
1598                struct map_desc map;
1599
1600                map.virtual = fix_to_virt(i);
1601                pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1602
1603                /* Only i/o device mappings are supported ATM */
1604                if (pte_none(*pte) ||
1605                    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1606                        continue;
1607
1608                map.pfn = pte_pfn(*pte);
1609                map.type = MT_DEVICE;
1610                map.length = PAGE_SIZE;
1611
1612                create_mapping(&map);
1613        }
1614}
1615
1616/*
1617 * paging_init() sets up the page tables, initialises the zone memory
1618 * maps, and sets up the zero page, bad page and bad page tables.
1619 */
1620void __init paging_init(const struct machine_desc *mdesc)
1621{
1622        void *zero_page;
1623
1624        prepare_page_table();
1625        map_lowmem();
1626        memblock_set_current_limit(arm_lowmem_limit);
1627        dma_contiguous_remap();
1628        early_fixmap_shutdown();
1629        devicemaps_init(mdesc);
1630        kmap_init();
1631        tcm_init();
1632
1633        top_pmd = pmd_off_k(0xffff0000);
1634
1635        /* allocate the zero page. */
1636        zero_page = early_alloc(PAGE_SIZE);
1637
1638        bootmem_init();
1639
1640        empty_zero_page = virt_to_page(zero_page);
1641        __flush_dcache_page(NULL, empty_zero_page);
1642}
1643
1644void __init early_mm_init(const struct machine_desc *mdesc)
1645{
1646        build_mem_type_table();
1647        early_paging_init(mdesc);
1648}
1649
1650void set_pte_at(struct mm_struct *mm, unsigned long addr,
1651                              pte_t *ptep, pte_t pteval)
1652{
1653        unsigned long ext = 0;
1654
1655        if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1656                if (!pte_special(pteval))
1657                        __sync_icache_dcache(pteval);
1658                ext |= PTE_EXT_NG;
1659        }
1660
1661        set_pte_ext(ptep, pteval, ext);
1662}
1663