linux/arch/arm64/kernel/cpufeature.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Contains CPU feature definitions
   4 *
   5 * Copyright (C) 2015 ARM Ltd.
   6 *
   7 * A note for the weary kernel hacker: the code here is confusing and hard to
   8 * follow! That's partly because it's solving a nasty problem, but also because
   9 * there's a little bit of over-abstraction that tends to obscure what's going
  10 * on behind a maze of helper functions and macros.
  11 *
  12 * The basic problem is that hardware folks have started gluing together CPUs
  13 * with distinct architectural features; in some cases even creating SoCs where
  14 * user-visible instructions are available only on a subset of the available
  15 * cores. We try to address this by snapshotting the feature registers of the
  16 * boot CPU and comparing these with the feature registers of each secondary
  17 * CPU when bringing them up. If there is a mismatch, then we update the
  18 * snapshot state to indicate the lowest-common denominator of the feature,
  19 * known as the "safe" value. This snapshot state can be queried to view the
  20 * "sanitised" value of a feature register.
  21 *
  22 * The sanitised register values are used to decide which capabilities we
  23 * have in the system. These may be in the form of traditional "hwcaps"
  24 * advertised to userspace or internal "cpucaps" which are used to configure
  25 * things like alternative patching and static keys. While a feature mismatch
  26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
  27 * may prevent a CPU from being onlined at all.
  28 *
  29 * Some implementation details worth remembering:
  30 *
  31 * - Mismatched features are *always* sanitised to a "safe" value, which
  32 *   usually indicates that the feature is not supported.
  33 *
  34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
  35 *   warning when onlining an offending CPU and the kernel will be tainted
  36 *   with TAINT_CPU_OUT_OF_SPEC.
  37 *
  38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
  39 *   userspace. FTR_VISIBLE features in registers that are only visible
  40 *   to EL0 by trapping *must* have a corresponding HWCAP so that late
  41 *   onlining of CPUs cannot lead to features disappearing at runtime.
  42 *
  43 * - A "feature" is typically a 4-bit register field. A "capability" is the
  44 *   high-level description derived from the sanitised field value.
  45 *
  46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
  47 *   scheme for fields in ID registers") to understand when feature fields
  48 *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
  49 *
  50 * - KVM exposes its own view of the feature registers to guest operating
  51 *   systems regardless of FTR_VISIBLE. This is typically driven from the
  52 *   sanitised register values to allow virtual CPUs to be migrated between
  53 *   arbitrary physical CPUs, but some features not present on the host are
  54 *   also advertised and emulated. Look at sys_reg_descs[] for the gory
  55 *   details.
  56 *
  57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
  58 *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
  59 *   This is stronger than FTR_HIDDEN and can be used to hide features from
  60 *   KVM guests.
  61 */
  62
  63#define pr_fmt(fmt) "CPU features: " fmt
  64
  65#include <linux/bsearch.h>
  66#include <linux/cpumask.h>
  67#include <linux/crash_dump.h>
  68#include <linux/sort.h>
  69#include <linux/stop_machine.h>
  70#include <linux/types.h>
  71#include <linux/mm.h>
  72#include <linux/cpu.h>
  73#include <asm/cpu.h>
  74#include <asm/cpufeature.h>
  75#include <asm/cpu_ops.h>
  76#include <asm/fpsimd.h>
  77#include <asm/mmu_context.h>
  78#include <asm/mte.h>
  79#include <asm/processor.h>
  80#include <asm/sysreg.h>
  81#include <asm/traps.h>
  82#include <asm/virt.h>
  83
  84/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
  85static unsigned long elf_hwcap __read_mostly;
  86
  87#ifdef CONFIG_COMPAT
  88#define COMPAT_ELF_HWCAP_DEFAULT        \
  89                                (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
  90                                 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
  91                                 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
  92                                 COMPAT_HWCAP_LPAE)
  93unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
  94unsigned int compat_elf_hwcap2 __read_mostly;
  95#endif
  96
  97DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
  98EXPORT_SYMBOL(cpu_hwcaps);
  99static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
 100
 101/* Need also bit for ARM64_CB_PATCH */
 102DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
 103
 104bool arm64_use_ng_mappings = false;
 105EXPORT_SYMBOL(arm64_use_ng_mappings);
 106
 107/*
 108 * Flag to indicate if we have computed the system wide
 109 * capabilities based on the boot time active CPUs. This
 110 * will be used to determine if a new booting CPU should
 111 * go through the verification process to make sure that it
 112 * supports the system capabilities, without using a hotplug
 113 * notifier. This is also used to decide if we could use
 114 * the fast path for checking constant CPU caps.
 115 */
 116DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
 117EXPORT_SYMBOL(arm64_const_caps_ready);
 118static inline void finalize_system_capabilities(void)
 119{
 120        static_branch_enable(&arm64_const_caps_ready);
 121}
 122
 123void dump_cpu_features(void)
 124{
 125        /* file-wide pr_fmt adds "CPU features: " prefix */
 126        pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
 127}
 128
 129DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
 130EXPORT_SYMBOL(cpu_hwcap_keys);
 131
 132#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
 133        {                                               \
 134                .sign = SIGNED,                         \
 135                .visible = VISIBLE,                     \
 136                .strict = STRICT,                       \
 137                .type = TYPE,                           \
 138                .shift = SHIFT,                         \
 139                .width = WIDTH,                         \
 140                .safe_val = SAFE_VAL,                   \
 141        }
 142
 143/* Define a feature with unsigned values */
 144#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
 145        __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
 146
 147/* Define a feature with a signed value */
 148#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
 149        __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
 150
 151#define ARM64_FTR_END                                   \
 152        {                                               \
 153                .width = 0,                             \
 154        }
 155
 156/* meta feature for alternatives */
 157static bool __maybe_unused
 158cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
 159
 160static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
 161
 162static bool __system_matches_cap(unsigned int n);
 163
 164/*
 165 * NOTE: Any changes to the visibility of features should be kept in
 166 * sync with the documentation of the CPU feature register ABI.
 167 */
 168static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
 169        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
 170        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
 171        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
 172        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
 173        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
 174        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
 175        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
 176        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
 177        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
 178        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
 179        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
 180        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
 181        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
 182        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
 183        ARM64_FTR_END,
 184};
 185
 186static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
 187        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
 188        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
 189        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
 190        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
 191        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
 192        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
 193        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 194                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
 195        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 196                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
 197        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
 198        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
 199        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
 200        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 201                       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
 202        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 203                       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
 204        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
 205        ARM64_FTR_END,
 206};
 207
 208static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
 209        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
 210        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
 211        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
 212        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
 213        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
 214        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
 215        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 216                                   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
 217        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
 218        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
 219        S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
 220        S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
 221        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
 222        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
 223        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
 224        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
 225        ARM64_FTR_END,
 226};
 227
 228static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
 229        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
 230        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
 231        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
 232                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
 233        ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
 234        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
 235                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
 236        ARM64_FTR_END,
 237};
 238
 239static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
 240        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 241                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
 242        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 243                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
 244        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 245                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
 246        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 247                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
 248        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 249                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
 250        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 251                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
 252        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 253                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
 254        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 255                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
 256        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 257                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
 258        ARM64_FTR_END,
 259};
 260
 261static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
 262        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
 263        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
 264        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
 265        /*
 266         * Page size not being supported at Stage-2 is not fatal. You
 267         * just give up KVM if PAGE_SIZE isn't supported there. Go fix
 268         * your favourite nesting hypervisor.
 269         *
 270         * There is a small corner case where the hypervisor explicitly
 271         * advertises a given granule size at Stage-2 (value 2) on some
 272         * vCPUs, and uses the fallback to Stage-1 (value 0) for other
 273         * vCPUs. Although this is not forbidden by the architecture, it
 274         * indicates that the hypervisor is being silly (or buggy).
 275         *
 276         * We make no effort to cope with this and pretend that if these
 277         * fields are inconsistent across vCPUs, then it isn't worth
 278         * trying to bring KVM up.
 279         */
 280        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
 281        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
 282        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
 283        /*
 284         * We already refuse to boot CPUs that don't support our configured
 285         * page size, so we can only detect mismatches for a page size other
 286         * than the one we're currently using. Unfortunately, SoCs like this
 287         * exist in the wild so, even though we don't like it, we'll have to go
 288         * along with it and treat them as non-strict.
 289         */
 290        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
 291        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
 292        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
 293
 294        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
 295        /* Linux shouldn't care about secure memory */
 296        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
 297        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
 298        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
 299        /*
 300         * Differing PARange is fine as long as all peripherals and memory are mapped
 301         * within the minimum PARange of all CPUs
 302         */
 303        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
 304        ARM64_FTR_END,
 305};
 306
 307static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
 308        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
 309        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
 310        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
 311        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
 312        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
 313        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
 314        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
 315        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
 316        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
 317        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
 318        ARM64_FTR_END,
 319};
 320
 321static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
 322        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
 323        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
 324        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
 325        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
 326        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
 327        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
 328        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
 329        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
 330        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
 331        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
 332        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
 333        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
 334        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
 335        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
 336        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
 337        ARM64_FTR_END,
 338};
 339
 340static const struct arm64_ftr_bits ftr_ctr[] = {
 341        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
 342        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
 343        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
 344        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
 345        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
 346        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
 347        /*
 348         * Linux can handle differing I-cache policies. Userspace JITs will
 349         * make use of *minLine.
 350         * If we have differing I-cache policies, report it as the weakest - VIPT.
 351         */
 352        ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),   /* L1Ip */
 353        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
 354        ARM64_FTR_END,
 355};
 356
 357struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
 358        .name           = "SYS_CTR_EL0",
 359        .ftr_bits       = ftr_ctr
 360};
 361
 362static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
 363        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
 364        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
 365        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
 366        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
 367        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
 368        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
 369        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
 370        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
 371        ARM64_FTR_END,
 372};
 373
 374static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
 375        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
 376        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
 377        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
 378        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
 379        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
 380        /*
 381         * We can instantiate multiple PMU instances with different levels
 382         * of support.
 383         */
 384        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
 385        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
 386        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
 387        ARM64_FTR_END,
 388};
 389
 390static const struct arm64_ftr_bits ftr_mvfr2[] = {
 391        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
 392        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
 393        ARM64_FTR_END,
 394};
 395
 396static const struct arm64_ftr_bits ftr_dczid[] = {
 397        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
 398        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
 399        ARM64_FTR_END,
 400};
 401
 402static const struct arm64_ftr_bits ftr_id_isar0[] = {
 403        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
 404        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
 405        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
 406        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
 407        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
 408        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
 409        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
 410        ARM64_FTR_END,
 411};
 412
 413static const struct arm64_ftr_bits ftr_id_isar5[] = {
 414        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
 415        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
 416        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
 417        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
 418        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
 419        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
 420        ARM64_FTR_END,
 421};
 422
 423static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
 424        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
 425        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
 426        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
 427        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
 428        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
 429        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
 430        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
 431
 432        /*
 433         * SpecSEI = 1 indicates that the PE might generate an SError on an
 434         * external abort on speculative read. It is safe to assume that an
 435         * SError might be generated than it will not be. Hence it has been
 436         * classified as FTR_HIGHER_SAFE.
 437         */
 438        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
 439        ARM64_FTR_END,
 440};
 441
 442static const struct arm64_ftr_bits ftr_id_isar4[] = {
 443        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
 444        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
 445        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
 446        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
 447        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
 448        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
 449        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
 450        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
 451        ARM64_FTR_END,
 452};
 453
 454static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
 455        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
 456        ARM64_FTR_END,
 457};
 458
 459static const struct arm64_ftr_bits ftr_id_isar6[] = {
 460        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
 461        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
 462        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
 463        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
 464        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
 465        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
 466        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
 467        ARM64_FTR_END,
 468};
 469
 470static const struct arm64_ftr_bits ftr_id_pfr0[] = {
 471        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
 472        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
 473        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
 474        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
 475        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
 476        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
 477        ARM64_FTR_END,
 478};
 479
 480static const struct arm64_ftr_bits ftr_id_pfr1[] = {
 481        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
 482        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
 483        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
 484        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
 485        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
 486        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
 487        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
 488        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
 489        ARM64_FTR_END,
 490};
 491
 492static const struct arm64_ftr_bits ftr_id_pfr2[] = {
 493        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
 494        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
 495        ARM64_FTR_END,
 496};
 497
 498static const struct arm64_ftr_bits ftr_id_dfr0[] = {
 499        /* [31:28] TraceFilt */
 500        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
 501        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
 502        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
 503        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
 504        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
 505        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
 506        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
 507        ARM64_FTR_END,
 508};
 509
 510static const struct arm64_ftr_bits ftr_id_dfr1[] = {
 511        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
 512        ARM64_FTR_END,
 513};
 514
 515static const struct arm64_ftr_bits ftr_zcr[] = {
 516        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
 517                ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
 518        ARM64_FTR_END,
 519};
 520
 521/*
 522 * Common ftr bits for a 32bit register with all hidden, strict
 523 * attributes, with 4bit feature fields and a default safe value of
 524 * 0. Covers the following 32bit registers:
 525 * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 526 */
 527static const struct arm64_ftr_bits ftr_generic_32bits[] = {
 528        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
 529        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
 530        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
 531        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
 532        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
 533        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
 534        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
 535        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
 536        ARM64_FTR_END,
 537};
 538
 539/* Table for a single 32bit feature value */
 540static const struct arm64_ftr_bits ftr_single32[] = {
 541        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
 542        ARM64_FTR_END,
 543};
 544
 545static const struct arm64_ftr_bits ftr_raz[] = {
 546        ARM64_FTR_END,
 547};
 548
 549#define ARM64_FTR_REG(id, table) {              \
 550        .sys_id = id,                           \
 551        .reg =  &(struct arm64_ftr_reg){        \
 552                .name = #id,                    \
 553                .ftr_bits = &((table)[0]),      \
 554        }}
 555
 556static const struct __ftr_reg_entry {
 557        u32                     sys_id;
 558        struct arm64_ftr_reg    *reg;
 559} arm64_ftr_regs[] = {
 560
 561        /* Op1 = 0, CRn = 0, CRm = 1 */
 562        ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
 563        ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
 564        ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
 565        ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
 566        ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
 567        ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
 568        ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
 569
 570        /* Op1 = 0, CRn = 0, CRm = 2 */
 571        ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
 572        ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
 573        ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
 574        ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
 575        ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
 576        ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
 577        ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
 578        ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
 579
 580        /* Op1 = 0, CRn = 0, CRm = 3 */
 581        ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
 582        ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
 583        ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
 584        ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
 585        ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
 586        ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
 587
 588        /* Op1 = 0, CRn = 0, CRm = 4 */
 589        ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
 590        ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
 591        ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
 592
 593        /* Op1 = 0, CRn = 0, CRm = 5 */
 594        ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
 595        ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
 596
 597        /* Op1 = 0, CRn = 0, CRm = 6 */
 598        ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
 599        ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
 600
 601        /* Op1 = 0, CRn = 0, CRm = 7 */
 602        ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
 603        ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
 604        ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
 605
 606        /* Op1 = 0, CRn = 1, CRm = 2 */
 607        ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
 608
 609        /* Op1 = 3, CRn = 0, CRm = 0 */
 610        { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
 611        ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
 612
 613        /* Op1 = 3, CRn = 14, CRm = 0 */
 614        ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
 615};
 616
 617static int search_cmp_ftr_reg(const void *id, const void *regp)
 618{
 619        return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
 620}
 621
 622/*
 623 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
 624 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 625 * ascending order of sys_id, we use binary search to find a matching
 626 * entry.
 627 *
 628 * returns - Upon success,  matching ftr_reg entry for id.
 629 *         - NULL on failure. It is upto the caller to decide
 630 *           the impact of a failure.
 631 */
 632static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
 633{
 634        const struct __ftr_reg_entry *ret;
 635
 636        ret = bsearch((const void *)(unsigned long)sys_id,
 637                        arm64_ftr_regs,
 638                        ARRAY_SIZE(arm64_ftr_regs),
 639                        sizeof(arm64_ftr_regs[0]),
 640                        search_cmp_ftr_reg);
 641        if (ret)
 642                return ret->reg;
 643        return NULL;
 644}
 645
 646/*
 647 * get_arm64_ftr_reg - Looks up a feature register entry using
 648 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
 649 *
 650 * returns - Upon success,  matching ftr_reg entry for id.
 651 *         - NULL on failure but with an WARN_ON().
 652 */
 653static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
 654{
 655        struct arm64_ftr_reg *reg;
 656
 657        reg = get_arm64_ftr_reg_nowarn(sys_id);
 658
 659        /*
 660         * Requesting a non-existent register search is an error. Warn
 661         * and let the caller handle it.
 662         */
 663        WARN_ON(!reg);
 664        return reg;
 665}
 666
 667static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
 668                               s64 ftr_val)
 669{
 670        u64 mask = arm64_ftr_mask(ftrp);
 671
 672        reg &= ~mask;
 673        reg |= (ftr_val << ftrp->shift) & mask;
 674        return reg;
 675}
 676
 677static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
 678                                s64 cur)
 679{
 680        s64 ret = 0;
 681
 682        switch (ftrp->type) {
 683        case FTR_EXACT:
 684                ret = ftrp->safe_val;
 685                break;
 686        case FTR_LOWER_SAFE:
 687                ret = new < cur ? new : cur;
 688                break;
 689        case FTR_HIGHER_OR_ZERO_SAFE:
 690                if (!cur || !new)
 691                        break;
 692                fallthrough;
 693        case FTR_HIGHER_SAFE:
 694                ret = new > cur ? new : cur;
 695                break;
 696        default:
 697                BUG();
 698        }
 699
 700        return ret;
 701}
 702
 703static void __init sort_ftr_regs(void)
 704{
 705        unsigned int i;
 706
 707        for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
 708                const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
 709                const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
 710                unsigned int j = 0;
 711
 712                /*
 713                 * Features here must be sorted in descending order with respect
 714                 * to their shift values and should not overlap with each other.
 715                 */
 716                for (; ftr_bits->width != 0; ftr_bits++, j++) {
 717                        unsigned int width = ftr_reg->ftr_bits[j].width;
 718                        unsigned int shift = ftr_reg->ftr_bits[j].shift;
 719                        unsigned int prev_shift;
 720
 721                        WARN((shift  + width) > 64,
 722                                "%s has invalid feature at shift %d\n",
 723                                ftr_reg->name, shift);
 724
 725                        /*
 726                         * Skip the first feature. There is nothing to
 727                         * compare against for now.
 728                         */
 729                        if (j == 0)
 730                                continue;
 731
 732                        prev_shift = ftr_reg->ftr_bits[j - 1].shift;
 733                        WARN((shift + width) > prev_shift,
 734                                "%s has feature overlap at shift %d\n",
 735                                ftr_reg->name, shift);
 736                }
 737
 738                /*
 739                 * Skip the first register. There is nothing to
 740                 * compare against for now.
 741                 */
 742                if (i == 0)
 743                        continue;
 744                /*
 745                 * Registers here must be sorted in ascending order with respect
 746                 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
 747                 * to work correctly.
 748                 */
 749                BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
 750        }
 751}
 752
 753/*
 754 * Initialise the CPU feature register from Boot CPU values.
 755 * Also initiliases the strict_mask for the register.
 756 * Any bits that are not covered by an arm64_ftr_bits entry are considered
 757 * RES0 for the system-wide value, and must strictly match.
 758 */
 759static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
 760{
 761        u64 val = 0;
 762        u64 strict_mask = ~0x0ULL;
 763        u64 user_mask = 0;
 764        u64 valid_mask = 0;
 765
 766        const struct arm64_ftr_bits *ftrp;
 767        struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
 768
 769        if (!reg)
 770                return;
 771
 772        for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
 773                u64 ftr_mask = arm64_ftr_mask(ftrp);
 774                s64 ftr_new = arm64_ftr_value(ftrp, new);
 775
 776                val = arm64_ftr_set_value(ftrp, val, ftr_new);
 777
 778                valid_mask |= ftr_mask;
 779                if (!ftrp->strict)
 780                        strict_mask &= ~ftr_mask;
 781                if (ftrp->visible)
 782                        user_mask |= ftr_mask;
 783                else
 784                        reg->user_val = arm64_ftr_set_value(ftrp,
 785                                                            reg->user_val,
 786                                                            ftrp->safe_val);
 787        }
 788
 789        val &= valid_mask;
 790
 791        reg->sys_val = val;
 792        reg->strict_mask = strict_mask;
 793        reg->user_mask = user_mask;
 794}
 795
 796extern const struct arm64_cpu_capabilities arm64_errata[];
 797static const struct arm64_cpu_capabilities arm64_features[];
 798
 799static void __init
 800init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
 801{
 802        for (; caps->matches; caps++) {
 803                if (WARN(caps->capability >= ARM64_NCAPS,
 804                        "Invalid capability %d\n", caps->capability))
 805                        continue;
 806                if (WARN(cpu_hwcaps_ptrs[caps->capability],
 807                        "Duplicate entry for capability %d\n",
 808                        caps->capability))
 809                        continue;
 810                cpu_hwcaps_ptrs[caps->capability] = caps;
 811        }
 812}
 813
 814static void __init init_cpu_hwcaps_indirect_list(void)
 815{
 816        init_cpu_hwcaps_indirect_list_from_array(arm64_features);
 817        init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
 818}
 819
 820static void __init setup_boot_cpu_capabilities(void);
 821
 822void __init init_cpu_features(struct cpuinfo_arm64 *info)
 823{
 824        /* Before we start using the tables, make sure it is sorted */
 825        sort_ftr_regs();
 826
 827        init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
 828        init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
 829        init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
 830        init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
 831        init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
 832        init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
 833        init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
 834        init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
 835        init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
 836        init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
 837        init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
 838        init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
 839        init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
 840
 841        if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
 842                init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
 843                init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
 844                init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
 845                init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
 846                init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
 847                init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
 848                init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
 849                init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
 850                init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
 851                init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
 852                init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
 853                init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
 854                init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
 855                init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
 856                init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
 857                init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
 858                init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
 859                init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
 860                init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
 861                init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
 862                init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
 863        }
 864
 865        if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
 866                init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
 867                sve_init_vq_map();
 868        }
 869
 870        /*
 871         * Initialize the indirect array of CPU hwcaps capabilities pointers
 872         * before we handle the boot CPU below.
 873         */
 874        init_cpu_hwcaps_indirect_list();
 875
 876        /*
 877         * Detect and enable early CPU capabilities based on the boot CPU,
 878         * after we have initialised the CPU feature infrastructure.
 879         */
 880        setup_boot_cpu_capabilities();
 881}
 882
 883static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
 884{
 885        const struct arm64_ftr_bits *ftrp;
 886
 887        for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
 888                s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
 889                s64 ftr_new = arm64_ftr_value(ftrp, new);
 890
 891                if (ftr_cur == ftr_new)
 892                        continue;
 893                /* Find a safe value */
 894                ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
 895                reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
 896        }
 897
 898}
 899
 900static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
 901{
 902        struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
 903
 904        if (!regp)
 905                return 0;
 906
 907        update_cpu_ftr_reg(regp, val);
 908        if ((boot & regp->strict_mask) == (val & regp->strict_mask))
 909                return 0;
 910        pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
 911                        regp->name, boot, cpu, val);
 912        return 1;
 913}
 914
 915static void relax_cpu_ftr_reg(u32 sys_id, int field)
 916{
 917        const struct arm64_ftr_bits *ftrp;
 918        struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
 919
 920        if (!regp)
 921                return;
 922
 923        for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
 924                if (ftrp->shift == field) {
 925                        regp->strict_mask &= ~arm64_ftr_mask(ftrp);
 926                        break;
 927                }
 928        }
 929
 930        /* Bogus field? */
 931        WARN_ON(!ftrp->width);
 932}
 933
 934static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info,
 935                                     struct cpuinfo_arm64 *boot)
 936{
 937        int taint = 0;
 938        u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
 939
 940        /*
 941         * If we don't have AArch32 at all then skip the checks entirely
 942         * as the register values may be UNKNOWN and we're not going to be
 943         * using them for anything.
 944         */
 945        if (!id_aa64pfr0_32bit_el0(pfr0))
 946                return taint;
 947
 948        /*
 949         * If we don't have AArch32 at EL1, then relax the strictness of
 950         * EL1-dependent register fields to avoid spurious sanity check fails.
 951         */
 952        if (!id_aa64pfr0_32bit_el1(pfr0)) {
 953                relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
 954                relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
 955                relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
 956                relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
 957                relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
 958                relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
 959        }
 960
 961        taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
 962                                      info->reg_id_dfr0, boot->reg_id_dfr0);
 963        taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
 964                                      info->reg_id_dfr1, boot->reg_id_dfr1);
 965        taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
 966                                      info->reg_id_isar0, boot->reg_id_isar0);
 967        taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
 968                                      info->reg_id_isar1, boot->reg_id_isar1);
 969        taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
 970                                      info->reg_id_isar2, boot->reg_id_isar2);
 971        taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
 972                                      info->reg_id_isar3, boot->reg_id_isar3);
 973        taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
 974                                      info->reg_id_isar4, boot->reg_id_isar4);
 975        taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
 976                                      info->reg_id_isar5, boot->reg_id_isar5);
 977        taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
 978                                      info->reg_id_isar6, boot->reg_id_isar6);
 979
 980        /*
 981         * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
 982         * ACTLR formats could differ across CPUs and therefore would have to
 983         * be trapped for virtualization anyway.
 984         */
 985        taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
 986                                      info->reg_id_mmfr0, boot->reg_id_mmfr0);
 987        taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
 988                                      info->reg_id_mmfr1, boot->reg_id_mmfr1);
 989        taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
 990                                      info->reg_id_mmfr2, boot->reg_id_mmfr2);
 991        taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
 992                                      info->reg_id_mmfr3, boot->reg_id_mmfr3);
 993        taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
 994                                      info->reg_id_mmfr4, boot->reg_id_mmfr4);
 995        taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
 996                                      info->reg_id_mmfr5, boot->reg_id_mmfr5);
 997        taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
 998                                      info->reg_id_pfr0, boot->reg_id_pfr0);
 999        taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1000                                      info->reg_id_pfr1, boot->reg_id_pfr1);
1001        taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1002                                      info->reg_id_pfr2, boot->reg_id_pfr2);
1003        taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1004                                      info->reg_mvfr0, boot->reg_mvfr0);
1005        taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1006                                      info->reg_mvfr1, boot->reg_mvfr1);
1007        taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1008                                      info->reg_mvfr2, boot->reg_mvfr2);
1009
1010        return taint;
1011}
1012
1013/*
1014 * Update system wide CPU feature registers with the values from a
1015 * non-boot CPU. Also performs SANITY checks to make sure that there
1016 * aren't any insane variations from that of the boot CPU.
1017 */
1018void update_cpu_features(int cpu,
1019                         struct cpuinfo_arm64 *info,
1020                         struct cpuinfo_arm64 *boot)
1021{
1022        int taint = 0;
1023
1024        /*
1025         * The kernel can handle differing I-cache policies, but otherwise
1026         * caches should look identical. Userspace JITs will make use of
1027         * *minLine.
1028         */
1029        taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1030                                      info->reg_ctr, boot->reg_ctr);
1031
1032        /*
1033         * Userspace may perform DC ZVA instructions. Mismatched block sizes
1034         * could result in too much or too little memory being zeroed if a
1035         * process is preempted and migrated between CPUs.
1036         */
1037        taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1038                                      info->reg_dczid, boot->reg_dczid);
1039
1040        /* If different, timekeeping will be broken (especially with KVM) */
1041        taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1042                                      info->reg_cntfrq, boot->reg_cntfrq);
1043
1044        /*
1045         * The kernel uses self-hosted debug features and expects CPUs to
1046         * support identical debug features. We presently need CTX_CMPs, WRPs,
1047         * and BRPs to be identical.
1048         * ID_AA64DFR1 is currently RES0.
1049         */
1050        taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1051                                      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1052        taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1053                                      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1054        /*
1055         * Even in big.LITTLE, processors should be identical instruction-set
1056         * wise.
1057         */
1058        taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1059                                      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1060        taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1061                                      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1062
1063        /*
1064         * Differing PARange support is fine as long as all peripherals and
1065         * memory are mapped within the minimum PARange of all CPUs.
1066         * Linux should not care about secure memory.
1067         */
1068        taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1069                                      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1070        taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1071                                      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1072        taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1073                                      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1074
1075        taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1076                                      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1077        taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1078                                      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1079
1080        taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1081                                      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1082
1083        if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1084                taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1085                                        info->reg_zcr, boot->reg_zcr);
1086
1087                /* Probe vector lengths, unless we already gave up on SVE */
1088                if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1089                    !system_capabilities_finalized())
1090                        sve_update_vq_map();
1091        }
1092
1093        /*
1094         * This relies on a sanitised view of the AArch64 ID registers
1095         * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1096         */
1097        taint |= update_32bit_cpu_features(cpu, info, boot);
1098
1099        /*
1100         * Mismatched CPU features are a recipe for disaster. Don't even
1101         * pretend to support them.
1102         */
1103        if (taint) {
1104                pr_warn_once("Unsupported CPU feature variation detected.\n");
1105                add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1106        }
1107}
1108
1109u64 read_sanitised_ftr_reg(u32 id)
1110{
1111        struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1112
1113        if (!regp)
1114                return 0;
1115        return regp->sys_val;
1116}
1117EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1118
1119#define read_sysreg_case(r)     \
1120        case r:         return read_sysreg_s(r)
1121
1122/*
1123 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1124 * Read the system register on the current CPU
1125 */
1126static u64 __read_sysreg_by_encoding(u32 sys_id)
1127{
1128        switch (sys_id) {
1129        read_sysreg_case(SYS_ID_PFR0_EL1);
1130        read_sysreg_case(SYS_ID_PFR1_EL1);
1131        read_sysreg_case(SYS_ID_PFR2_EL1);
1132        read_sysreg_case(SYS_ID_DFR0_EL1);
1133        read_sysreg_case(SYS_ID_DFR1_EL1);
1134        read_sysreg_case(SYS_ID_MMFR0_EL1);
1135        read_sysreg_case(SYS_ID_MMFR1_EL1);
1136        read_sysreg_case(SYS_ID_MMFR2_EL1);
1137        read_sysreg_case(SYS_ID_MMFR3_EL1);
1138        read_sysreg_case(SYS_ID_MMFR4_EL1);
1139        read_sysreg_case(SYS_ID_MMFR5_EL1);
1140        read_sysreg_case(SYS_ID_ISAR0_EL1);
1141        read_sysreg_case(SYS_ID_ISAR1_EL1);
1142        read_sysreg_case(SYS_ID_ISAR2_EL1);
1143        read_sysreg_case(SYS_ID_ISAR3_EL1);
1144        read_sysreg_case(SYS_ID_ISAR4_EL1);
1145        read_sysreg_case(SYS_ID_ISAR5_EL1);
1146        read_sysreg_case(SYS_ID_ISAR6_EL1);
1147        read_sysreg_case(SYS_MVFR0_EL1);
1148        read_sysreg_case(SYS_MVFR1_EL1);
1149        read_sysreg_case(SYS_MVFR2_EL1);
1150
1151        read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1152        read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1153        read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1154        read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1155        read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1156        read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1157        read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1158        read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1159        read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1160        read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1161
1162        read_sysreg_case(SYS_CNTFRQ_EL0);
1163        read_sysreg_case(SYS_CTR_EL0);
1164        read_sysreg_case(SYS_DCZID_EL0);
1165
1166        default:
1167                BUG();
1168                return 0;
1169        }
1170}
1171
1172#include <linux/irqchip/arm-gic-v3.h>
1173
1174static bool
1175feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1176{
1177        int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1178
1179        return val >= entry->min_field_value;
1180}
1181
1182static bool
1183has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1184{
1185        u64 val;
1186
1187        WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1188        if (scope == SCOPE_SYSTEM)
1189                val = read_sanitised_ftr_reg(entry->sys_reg);
1190        else
1191                val = __read_sysreg_by_encoding(entry->sys_reg);
1192
1193        return feature_matches(val, entry);
1194}
1195
1196static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1197{
1198        bool has_sre;
1199
1200        if (!has_cpuid_feature(entry, scope))
1201                return false;
1202
1203        has_sre = gic_enable_sre();
1204        if (!has_sre)
1205                pr_warn_once("%s present but disabled by higher exception level\n",
1206                             entry->desc);
1207
1208        return has_sre;
1209}
1210
1211static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1212{
1213        u32 midr = read_cpuid_id();
1214
1215        /* Cavium ThunderX pass 1.x and 2.x */
1216        return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1217                MIDR_CPU_VAR_REV(0, 0),
1218                MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1219}
1220
1221static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1222{
1223        u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1224
1225        return cpuid_feature_extract_signed_field(pfr0,
1226                                        ID_AA64PFR0_FP_SHIFT) < 0;
1227}
1228
1229static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1230                          int scope)
1231{
1232        u64 ctr;
1233
1234        if (scope == SCOPE_SYSTEM)
1235                ctr = arm64_ftr_reg_ctrel0.sys_val;
1236        else
1237                ctr = read_cpuid_effective_cachetype();
1238
1239        return ctr & BIT(CTR_IDC_SHIFT);
1240}
1241
1242static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1243{
1244        /*
1245         * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1246         * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1247         * to the CTR_EL0 on this CPU and emulate it with the real/safe
1248         * value.
1249         */
1250        if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1251                sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1252}
1253
1254static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1255                          int scope)
1256{
1257        u64 ctr;
1258
1259        if (scope == SCOPE_SYSTEM)
1260                ctr = arm64_ftr_reg_ctrel0.sys_val;
1261        else
1262                ctr = read_cpuid_cachetype();
1263
1264        return ctr & BIT(CTR_DIC_SHIFT);
1265}
1266
1267static bool __maybe_unused
1268has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1269{
1270        /*
1271         * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1272         * may share TLB entries with a CPU stuck in the crashed
1273         * kernel.
1274         */
1275         if (is_kdump_kernel())
1276                return false;
1277
1278        return has_cpuid_feature(entry, scope);
1279}
1280
1281/*
1282 * This check is triggered during the early boot before the cpufeature
1283 * is initialised. Checking the status on the local CPU allows the boot
1284 * CPU to detect the need for non-global mappings and thus avoiding a
1285 * pagetable re-write after all the CPUs are booted. This check will be
1286 * anyway run on individual CPUs, allowing us to get the consistent
1287 * state once the SMP CPUs are up and thus make the switch to non-global
1288 * mappings if required.
1289 */
1290bool kaslr_requires_kpti(void)
1291{
1292        if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1293                return false;
1294
1295        /*
1296         * E0PD does a similar job to KPTI so can be used instead
1297         * where available.
1298         */
1299        if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1300                u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1301                if (cpuid_feature_extract_unsigned_field(mmfr2,
1302                                                ID_AA64MMFR2_E0PD_SHIFT))
1303                        return false;
1304        }
1305
1306        /*
1307         * Systems affected by Cavium erratum 24756 are incompatible
1308         * with KPTI.
1309         */
1310        if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1311                extern const struct midr_range cavium_erratum_27456_cpus[];
1312
1313                if (is_midr_in_range_list(read_cpuid_id(),
1314                                          cavium_erratum_27456_cpus))
1315                        return false;
1316        }
1317
1318        return kaslr_offset() > 0;
1319}
1320
1321static bool __meltdown_safe = true;
1322static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1323
1324static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1325                                int scope)
1326{
1327        /* List of CPUs that are not vulnerable and don't need KPTI */
1328        static const struct midr_range kpti_safe_list[] = {
1329                MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1330                MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1331                MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1332                MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1333                MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1334                MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1335                MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1336                MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1337                MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1338                MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1339                MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1340                MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1341                MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1342                MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1343                MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1344                { /* sentinel */ }
1345        };
1346        char const *str = "kpti command line option";
1347        bool meltdown_safe;
1348
1349        meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1350
1351        /* Defer to CPU feature registers */
1352        if (has_cpuid_feature(entry, scope))
1353                meltdown_safe = true;
1354
1355        if (!meltdown_safe)
1356                __meltdown_safe = false;
1357
1358        /*
1359         * For reasons that aren't entirely clear, enabling KPTI on Cavium
1360         * ThunderX leads to apparent I-cache corruption of kernel text, which
1361         * ends as well as you might imagine. Don't even try.
1362         */
1363        if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1364                str = "ARM64_WORKAROUND_CAVIUM_27456";
1365                __kpti_forced = -1;
1366        }
1367
1368        /* Useful for KASLR robustness */
1369        if (kaslr_requires_kpti()) {
1370                if (!__kpti_forced) {
1371                        str = "KASLR";
1372                        __kpti_forced = 1;
1373                }
1374        }
1375
1376        if (cpu_mitigations_off() && !__kpti_forced) {
1377                str = "mitigations=off";
1378                __kpti_forced = -1;
1379        }
1380
1381        if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1382                pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1383                return false;
1384        }
1385
1386        /* Forced? */
1387        if (__kpti_forced) {
1388                pr_info_once("kernel page table isolation forced %s by %s\n",
1389                             __kpti_forced > 0 ? "ON" : "OFF", str);
1390                return __kpti_forced > 0;
1391        }
1392
1393        return !meltdown_safe;
1394}
1395
1396#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1397static void
1398kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1399{
1400        typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1401        extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1402        kpti_remap_fn *remap_fn;
1403
1404        int cpu = smp_processor_id();
1405
1406        /*
1407         * We don't need to rewrite the page-tables if either we've done
1408         * it already or we have KASLR enabled and therefore have not
1409         * created any global mappings at all.
1410         */
1411        if (arm64_use_ng_mappings)
1412                return;
1413
1414        remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1415
1416        cpu_install_idmap();
1417        remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1418        cpu_uninstall_idmap();
1419
1420        if (!cpu)
1421                arm64_use_ng_mappings = true;
1422
1423        return;
1424}
1425#else
1426static void
1427kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1428{
1429}
1430#endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1431
1432static int __init parse_kpti(char *str)
1433{
1434        bool enabled;
1435        int ret = strtobool(str, &enabled);
1436
1437        if (ret)
1438                return ret;
1439
1440        __kpti_forced = enabled ? 1 : -1;
1441        return 0;
1442}
1443early_param("kpti", parse_kpti);
1444
1445#ifdef CONFIG_ARM64_HW_AFDBM
1446static inline void __cpu_enable_hw_dbm(void)
1447{
1448        u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1449
1450        write_sysreg(tcr, tcr_el1);
1451        isb();
1452        local_flush_tlb_all();
1453}
1454
1455static bool cpu_has_broken_dbm(void)
1456{
1457        /* List of CPUs which have broken DBM support. */
1458        static const struct midr_range cpus[] = {
1459#ifdef CONFIG_ARM64_ERRATUM_1024718
1460                MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1461                /* Kryo4xx Silver (rdpe => r1p0) */
1462                MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1463#endif
1464                {},
1465        };
1466
1467        return is_midr_in_range_list(read_cpuid_id(), cpus);
1468}
1469
1470static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1471{
1472        return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1473               !cpu_has_broken_dbm();
1474}
1475
1476static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1477{
1478        if (cpu_can_use_dbm(cap))
1479                __cpu_enable_hw_dbm();
1480}
1481
1482static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1483                       int __unused)
1484{
1485        static bool detected = false;
1486        /*
1487         * DBM is a non-conflicting feature. i.e, the kernel can safely
1488         * run a mix of CPUs with and without the feature. So, we
1489         * unconditionally enable the capability to allow any late CPU
1490         * to use the feature. We only enable the control bits on the
1491         * CPU, if it actually supports.
1492         *
1493         * We have to make sure we print the "feature" detection only
1494         * when at least one CPU actually uses it. So check if this CPU
1495         * can actually use it and print the message exactly once.
1496         *
1497         * This is safe as all CPUs (including secondary CPUs - due to the
1498         * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1499         * goes through the "matches" check exactly once. Also if a CPU
1500         * matches the criteria, it is guaranteed that the CPU will turn
1501         * the DBM on, as the capability is unconditionally enabled.
1502         */
1503        if (!detected && cpu_can_use_dbm(cap)) {
1504                detected = true;
1505                pr_info("detected: Hardware dirty bit management\n");
1506        }
1507
1508        return true;
1509}
1510
1511#endif
1512
1513#ifdef CONFIG_ARM64_AMU_EXTN
1514
1515/*
1516 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1517 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1518 * information regarding all the events that it supports. When a CPU bit is
1519 * set in the cpumask, the user of this feature can only rely on the presence
1520 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1521 * counters are enabled or access to these counters is enabled by code
1522 * executed at higher exception levels (firmware).
1523 */
1524static struct cpumask amu_cpus __read_mostly;
1525
1526bool cpu_has_amu_feat(int cpu)
1527{
1528        return cpumask_test_cpu(cpu, &amu_cpus);
1529}
1530
1531/* Initialize the use of AMU counters for frequency invariance */
1532extern void init_cpu_freq_invariance_counters(void);
1533
1534static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1535{
1536        if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1537                pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1538                        smp_processor_id());
1539                cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1540                init_cpu_freq_invariance_counters();
1541        }
1542}
1543
1544static bool has_amu(const struct arm64_cpu_capabilities *cap,
1545                    int __unused)
1546{
1547        /*
1548         * The AMU extension is a non-conflicting feature: the kernel can
1549         * safely run a mix of CPUs with and without support for the
1550         * activity monitors extension. Therefore, unconditionally enable
1551         * the capability to allow any late CPU to use the feature.
1552         *
1553         * With this feature unconditionally enabled, the cpu_enable
1554         * function will be called for all CPUs that match the criteria,
1555         * including secondary and hotplugged, marking this feature as
1556         * present on that respective CPU. The enable function will also
1557         * print a detection message.
1558         */
1559
1560        return true;
1561}
1562#endif
1563
1564#ifdef CONFIG_ARM64_VHE
1565static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1566{
1567        return is_kernel_in_hyp_mode();
1568}
1569
1570static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1571{
1572        /*
1573         * Copy register values that aren't redirected by hardware.
1574         *
1575         * Before code patching, we only set tpidr_el1, all CPUs need to copy
1576         * this value to tpidr_el2 before we patch the code. Once we've done
1577         * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1578         * do anything here.
1579         */
1580        if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1581                write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1582}
1583#endif
1584
1585static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1586{
1587        u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1588
1589        /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1590        WARN_ON(val & (7 << 27 | 7 << 21));
1591}
1592
1593#ifdef CONFIG_ARM64_PAN
1594static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1595{
1596        /*
1597         * We modify PSTATE. This won't work from irq context as the PSTATE
1598         * is discarded once we return from the exception.
1599         */
1600        WARN_ON_ONCE(in_interrupt());
1601
1602        sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1603        asm(SET_PSTATE_PAN(1));
1604}
1605#endif /* CONFIG_ARM64_PAN */
1606
1607#ifdef CONFIG_ARM64_RAS_EXTN
1608static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1609{
1610        /* Firmware may have left a deferred SError in this register. */
1611        write_sysreg_s(0, SYS_DISR_EL1);
1612}
1613#endif /* CONFIG_ARM64_RAS_EXTN */
1614
1615#ifdef CONFIG_ARM64_PTR_AUTH
1616static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1617{
1618        int boot_val, sec_val;
1619
1620        /* We don't expect to be called with SCOPE_SYSTEM */
1621        WARN_ON(scope == SCOPE_SYSTEM);
1622        /*
1623         * The ptr-auth feature levels are not intercompatible with lower
1624         * levels. Hence we must match ptr-auth feature level of the secondary
1625         * CPUs with that of the boot CPU. The level of boot cpu is fetched
1626         * from the sanitised register whereas direct register read is done for
1627         * the secondary CPUs.
1628         * The sanitised feature state is guaranteed to match that of the
1629         * boot CPU as a mismatched secondary CPU is parked before it gets
1630         * a chance to update the state, with the capability.
1631         */
1632        boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1633                                               entry->field_pos, entry->sign);
1634        if (scope & SCOPE_BOOT_CPU)
1635                return boot_val >= entry->min_field_value;
1636        /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1637        sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1638                                              entry->field_pos, entry->sign);
1639        return sec_val == boot_val;
1640}
1641
1642static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1643                                     int scope)
1644{
1645        return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
1646               has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1647}
1648
1649static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1650                             int __unused)
1651{
1652        return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1653               __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1654}
1655#endif /* CONFIG_ARM64_PTR_AUTH */
1656
1657#ifdef CONFIG_ARM64_E0PD
1658static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1659{
1660        if (this_cpu_has_cap(ARM64_HAS_E0PD))
1661                sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1662}
1663#endif /* CONFIG_ARM64_E0PD */
1664
1665#ifdef CONFIG_ARM64_PSEUDO_NMI
1666static bool enable_pseudo_nmi;
1667
1668static int __init early_enable_pseudo_nmi(char *p)
1669{
1670        return strtobool(p, &enable_pseudo_nmi);
1671}
1672early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1673
1674static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1675                                   int scope)
1676{
1677        return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1678}
1679#endif
1680
1681#ifdef CONFIG_ARM64_BTI
1682static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1683{
1684        /*
1685         * Use of X16/X17 for tail-calls and trampolines that jump to
1686         * function entry points using BR is a requirement for
1687         * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1688         * So, be strict and forbid other BRs using other registers to
1689         * jump onto a PACIxSP instruction:
1690         */
1691        sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1692        isb();
1693}
1694#endif /* CONFIG_ARM64_BTI */
1695
1696#ifdef CONFIG_ARM64_MTE
1697static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1698{
1699        static bool cleared_zero_page = false;
1700
1701        /*
1702         * Clear the tags in the zero page. This needs to be done via the
1703         * linear map which has the Tagged attribute.
1704         */
1705        if (!cleared_zero_page) {
1706                cleared_zero_page = true;
1707                mte_clear_page_tags(lm_alias(empty_zero_page));
1708        }
1709}
1710#endif /* CONFIG_ARM64_MTE */
1711
1712/* Internal helper functions to match cpu capability type */
1713static bool
1714cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1715{
1716        return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1717}
1718
1719static bool
1720cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1721{
1722        return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1723}
1724
1725static bool
1726cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1727{
1728        return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1729}
1730
1731static const struct arm64_cpu_capabilities arm64_features[] = {
1732        {
1733                .desc = "GIC system register CPU interface",
1734                .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1735                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1736                .matches = has_useable_gicv3_cpuif,
1737                .sys_reg = SYS_ID_AA64PFR0_EL1,
1738                .field_pos = ID_AA64PFR0_GIC_SHIFT,
1739                .sign = FTR_UNSIGNED,
1740                .min_field_value = 1,
1741        },
1742#ifdef CONFIG_ARM64_PAN
1743        {
1744                .desc = "Privileged Access Never",
1745                .capability = ARM64_HAS_PAN,
1746                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1747                .matches = has_cpuid_feature,
1748                .sys_reg = SYS_ID_AA64MMFR1_EL1,
1749                .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1750                .sign = FTR_UNSIGNED,
1751                .min_field_value = 1,
1752                .cpu_enable = cpu_enable_pan,
1753        },
1754#endif /* CONFIG_ARM64_PAN */
1755#ifdef CONFIG_ARM64_LSE_ATOMICS
1756        {
1757                .desc = "LSE atomic instructions",
1758                .capability = ARM64_HAS_LSE_ATOMICS,
1759                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1760                .matches = has_cpuid_feature,
1761                .sys_reg = SYS_ID_AA64ISAR0_EL1,
1762                .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1763                .sign = FTR_UNSIGNED,
1764                .min_field_value = 2,
1765        },
1766#endif /* CONFIG_ARM64_LSE_ATOMICS */
1767        {
1768                .desc = "Software prefetching using PRFM",
1769                .capability = ARM64_HAS_NO_HW_PREFETCH,
1770                .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1771                .matches = has_no_hw_prefetch,
1772        },
1773#ifdef CONFIG_ARM64_UAO
1774        {
1775                .desc = "User Access Override",
1776                .capability = ARM64_HAS_UAO,
1777                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1778                .matches = has_cpuid_feature,
1779                .sys_reg = SYS_ID_AA64MMFR2_EL1,
1780                .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1781                .min_field_value = 1,
1782                /*
1783                 * We rely on stop_machine() calling uao_thread_switch() to set
1784                 * UAO immediately after patching.
1785                 */
1786        },
1787#endif /* CONFIG_ARM64_UAO */
1788#ifdef CONFIG_ARM64_PAN
1789        {
1790                .capability = ARM64_ALT_PAN_NOT_UAO,
1791                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1792                .matches = cpufeature_pan_not_uao,
1793        },
1794#endif /* CONFIG_ARM64_PAN */
1795#ifdef CONFIG_ARM64_VHE
1796        {
1797                .desc = "Virtualization Host Extensions",
1798                .capability = ARM64_HAS_VIRT_HOST_EXTN,
1799                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1800                .matches = runs_at_el2,
1801                .cpu_enable = cpu_copy_el2regs,
1802        },
1803#endif  /* CONFIG_ARM64_VHE */
1804        {
1805                .desc = "32-bit EL0 Support",
1806                .capability = ARM64_HAS_32BIT_EL0,
1807                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1808                .matches = has_cpuid_feature,
1809                .sys_reg = SYS_ID_AA64PFR0_EL1,
1810                .sign = FTR_UNSIGNED,
1811                .field_pos = ID_AA64PFR0_EL0_SHIFT,
1812                .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1813        },
1814#ifdef CONFIG_KVM
1815        {
1816                .desc = "32-bit EL1 Support",
1817                .capability = ARM64_HAS_32BIT_EL1,
1818                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1819                .matches = has_cpuid_feature,
1820                .sys_reg = SYS_ID_AA64PFR0_EL1,
1821                .sign = FTR_UNSIGNED,
1822                .field_pos = ID_AA64PFR0_EL1_SHIFT,
1823                .min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
1824        },
1825#endif
1826        {
1827                .desc = "Kernel page table isolation (KPTI)",
1828                .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1829                .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1830                /*
1831                 * The ID feature fields below are used to indicate that
1832                 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1833                 * more details.
1834                 */
1835                .sys_reg = SYS_ID_AA64PFR0_EL1,
1836                .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1837                .min_field_value = 1,
1838                .matches = unmap_kernel_at_el0,
1839                .cpu_enable = kpti_install_ng_mappings,
1840        },
1841        {
1842                /* FP/SIMD is not implemented */
1843                .capability = ARM64_HAS_NO_FPSIMD,
1844                .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1845                .min_field_value = 0,
1846                .matches = has_no_fpsimd,
1847        },
1848#ifdef CONFIG_ARM64_PMEM
1849        {
1850                .desc = "Data cache clean to Point of Persistence",
1851                .capability = ARM64_HAS_DCPOP,
1852                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1853                .matches = has_cpuid_feature,
1854                .sys_reg = SYS_ID_AA64ISAR1_EL1,
1855                .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1856                .min_field_value = 1,
1857        },
1858        {
1859                .desc = "Data cache clean to Point of Deep Persistence",
1860                .capability = ARM64_HAS_DCPODP,
1861                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1862                .matches = has_cpuid_feature,
1863                .sys_reg = SYS_ID_AA64ISAR1_EL1,
1864                .sign = FTR_UNSIGNED,
1865                .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1866                .min_field_value = 2,
1867        },
1868#endif
1869#ifdef CONFIG_ARM64_SVE
1870        {
1871                .desc = "Scalable Vector Extension",
1872                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1873                .capability = ARM64_SVE,
1874                .sys_reg = SYS_ID_AA64PFR0_EL1,
1875                .sign = FTR_UNSIGNED,
1876                .field_pos = ID_AA64PFR0_SVE_SHIFT,
1877                .min_field_value = ID_AA64PFR0_SVE,
1878                .matches = has_cpuid_feature,
1879                .cpu_enable = sve_kernel_enable,
1880        },
1881#endif /* CONFIG_ARM64_SVE */
1882#ifdef CONFIG_ARM64_RAS_EXTN
1883        {
1884                .desc = "RAS Extension Support",
1885                .capability = ARM64_HAS_RAS_EXTN,
1886                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1887                .matches = has_cpuid_feature,
1888                .sys_reg = SYS_ID_AA64PFR0_EL1,
1889                .sign = FTR_UNSIGNED,
1890                .field_pos = ID_AA64PFR0_RAS_SHIFT,
1891                .min_field_value = ID_AA64PFR0_RAS_V1,
1892                .cpu_enable = cpu_clear_disr,
1893        },
1894#endif /* CONFIG_ARM64_RAS_EXTN */
1895#ifdef CONFIG_ARM64_AMU_EXTN
1896        {
1897                /*
1898                 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1899                 * Therefore, don't provide .desc as we don't want the detection
1900                 * message to be shown until at least one CPU is detected to
1901                 * support the feature.
1902                 */
1903                .capability = ARM64_HAS_AMU_EXTN,
1904                .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1905                .matches = has_amu,
1906                .sys_reg = SYS_ID_AA64PFR0_EL1,
1907                .sign = FTR_UNSIGNED,
1908                .field_pos = ID_AA64PFR0_AMU_SHIFT,
1909                .min_field_value = ID_AA64PFR0_AMU,
1910                .cpu_enable = cpu_amu_enable,
1911        },
1912#endif /* CONFIG_ARM64_AMU_EXTN */
1913        {
1914                .desc = "Data cache clean to the PoU not required for I/D coherence",
1915                .capability = ARM64_HAS_CACHE_IDC,
1916                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1917                .matches = has_cache_idc,
1918                .cpu_enable = cpu_emulate_effective_ctr,
1919        },
1920        {
1921                .desc = "Instruction cache invalidation not required for I/D coherence",
1922                .capability = ARM64_HAS_CACHE_DIC,
1923                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1924                .matches = has_cache_dic,
1925        },
1926        {
1927                .desc = "Stage-2 Force Write-Back",
1928                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1929                .capability = ARM64_HAS_STAGE2_FWB,
1930                .sys_reg = SYS_ID_AA64MMFR2_EL1,
1931                .sign = FTR_UNSIGNED,
1932                .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1933                .min_field_value = 1,
1934                .matches = has_cpuid_feature,
1935                .cpu_enable = cpu_has_fwb,
1936        },
1937        {
1938                .desc = "ARMv8.4 Translation Table Level",
1939                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1940                .capability = ARM64_HAS_ARMv8_4_TTL,
1941                .sys_reg = SYS_ID_AA64MMFR2_EL1,
1942                .sign = FTR_UNSIGNED,
1943                .field_pos = ID_AA64MMFR2_TTL_SHIFT,
1944                .min_field_value = 1,
1945                .matches = has_cpuid_feature,
1946        },
1947        {
1948                .desc = "TLB range maintenance instructions",
1949                .capability = ARM64_HAS_TLB_RANGE,
1950                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1951                .matches = has_cpuid_feature,
1952                .sys_reg = SYS_ID_AA64ISAR0_EL1,
1953                .field_pos = ID_AA64ISAR0_TLB_SHIFT,
1954                .sign = FTR_UNSIGNED,
1955                .min_field_value = ID_AA64ISAR0_TLB_RANGE,
1956        },
1957#ifdef CONFIG_ARM64_HW_AFDBM
1958        {
1959                /*
1960                 * Since we turn this on always, we don't want the user to
1961                 * think that the feature is available when it may not be.
1962                 * So hide the description.
1963                 *
1964                 * .desc = "Hardware pagetable Dirty Bit Management",
1965                 *
1966                 */
1967                .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1968                .capability = ARM64_HW_DBM,
1969                .sys_reg = SYS_ID_AA64MMFR1_EL1,
1970                .sign = FTR_UNSIGNED,
1971                .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1972                .min_field_value = 2,
1973                .matches = has_hw_dbm,
1974                .cpu_enable = cpu_enable_hw_dbm,
1975        },
1976#endif
1977        {
1978                .desc = "CRC32 instructions",
1979                .capability = ARM64_HAS_CRC32,
1980                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1981                .matches = has_cpuid_feature,
1982                .sys_reg = SYS_ID_AA64ISAR0_EL1,
1983                .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1984                .min_field_value = 1,
1985        },
1986        {
1987                .desc = "Speculative Store Bypassing Safe (SSBS)",
1988                .capability = ARM64_SSBS,
1989                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1990                .matches = has_cpuid_feature,
1991                .sys_reg = SYS_ID_AA64PFR1_EL1,
1992                .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1993                .sign = FTR_UNSIGNED,
1994                .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1995        },
1996#ifdef CONFIG_ARM64_CNP
1997        {
1998                .desc = "Common not Private translations",
1999                .capability = ARM64_HAS_CNP,
2000                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2001                .matches = has_useable_cnp,
2002                .sys_reg = SYS_ID_AA64MMFR2_EL1,
2003                .sign = FTR_UNSIGNED,
2004                .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2005                .min_field_value = 1,
2006                .cpu_enable = cpu_enable_cnp,
2007        },
2008#endif
2009        {
2010                .desc = "Speculation barrier (SB)",
2011                .capability = ARM64_HAS_SB,
2012                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2013                .matches = has_cpuid_feature,
2014                .sys_reg = SYS_ID_AA64ISAR1_EL1,
2015                .field_pos = ID_AA64ISAR1_SB_SHIFT,
2016                .sign = FTR_UNSIGNED,
2017                .min_field_value = 1,
2018        },
2019#ifdef CONFIG_ARM64_PTR_AUTH
2020        {
2021                .desc = "Address authentication (architected algorithm)",
2022                .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
2023                .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2024                .sys_reg = SYS_ID_AA64ISAR1_EL1,
2025                .sign = FTR_UNSIGNED,
2026                .field_pos = ID_AA64ISAR1_APA_SHIFT,
2027                .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2028                .matches = has_address_auth_cpucap,
2029        },
2030        {
2031                .desc = "Address authentication (IMP DEF algorithm)",
2032                .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2033                .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2034                .sys_reg = SYS_ID_AA64ISAR1_EL1,
2035                .sign = FTR_UNSIGNED,
2036                .field_pos = ID_AA64ISAR1_API_SHIFT,
2037                .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2038                .matches = has_address_auth_cpucap,
2039        },
2040        {
2041                .capability = ARM64_HAS_ADDRESS_AUTH,
2042                .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2043                .matches = has_address_auth_metacap,
2044        },
2045        {
2046                .desc = "Generic authentication (architected algorithm)",
2047                .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2048                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2049                .sys_reg = SYS_ID_AA64ISAR1_EL1,
2050                .sign = FTR_UNSIGNED,
2051                .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2052                .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2053                .matches = has_cpuid_feature,
2054        },
2055        {
2056                .desc = "Generic authentication (IMP DEF algorithm)",
2057                .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2058                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2059                .sys_reg = SYS_ID_AA64ISAR1_EL1,
2060                .sign = FTR_UNSIGNED,
2061                .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2062                .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2063                .matches = has_cpuid_feature,
2064        },
2065        {
2066                .capability = ARM64_HAS_GENERIC_AUTH,
2067                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2068                .matches = has_generic_auth,
2069        },
2070#endif /* CONFIG_ARM64_PTR_AUTH */
2071#ifdef CONFIG_ARM64_PSEUDO_NMI
2072        {
2073                /*
2074                 * Depends on having GICv3
2075                 */
2076                .desc = "IRQ priority masking",
2077                .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2078                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2079                .matches = can_use_gic_priorities,
2080                .sys_reg = SYS_ID_AA64PFR0_EL1,
2081                .field_pos = ID_AA64PFR0_GIC_SHIFT,
2082                .sign = FTR_UNSIGNED,
2083                .min_field_value = 1,
2084        },
2085#endif
2086#ifdef CONFIG_ARM64_E0PD
2087        {
2088                .desc = "E0PD",
2089                .capability = ARM64_HAS_E0PD,
2090                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2091                .sys_reg = SYS_ID_AA64MMFR2_EL1,
2092                .sign = FTR_UNSIGNED,
2093                .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2094                .matches = has_cpuid_feature,
2095                .min_field_value = 1,
2096                .cpu_enable = cpu_enable_e0pd,
2097        },
2098#endif
2099#ifdef CONFIG_ARCH_RANDOM
2100        {
2101                .desc = "Random Number Generator",
2102                .capability = ARM64_HAS_RNG,
2103                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2104                .matches = has_cpuid_feature,
2105                .sys_reg = SYS_ID_AA64ISAR0_EL1,
2106                .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2107                .sign = FTR_UNSIGNED,
2108                .min_field_value = 1,
2109        },
2110#endif
2111#ifdef CONFIG_ARM64_BTI
2112        {
2113                .desc = "Branch Target Identification",
2114                .capability = ARM64_BTI,
2115#ifdef CONFIG_ARM64_BTI_KERNEL
2116                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2117#else
2118                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2119#endif
2120                .matches = has_cpuid_feature,
2121                .cpu_enable = bti_enable,
2122                .sys_reg = SYS_ID_AA64PFR1_EL1,
2123                .field_pos = ID_AA64PFR1_BT_SHIFT,
2124                .min_field_value = ID_AA64PFR1_BT_BTI,
2125                .sign = FTR_UNSIGNED,
2126        },
2127#endif
2128#ifdef CONFIG_ARM64_MTE
2129        {
2130                .desc = "Memory Tagging Extension",
2131                .capability = ARM64_MTE,
2132                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2133                .matches = has_cpuid_feature,
2134                .sys_reg = SYS_ID_AA64PFR1_EL1,
2135                .field_pos = ID_AA64PFR1_MTE_SHIFT,
2136                .min_field_value = ID_AA64PFR1_MTE,
2137                .sign = FTR_UNSIGNED,
2138                .cpu_enable = cpu_enable_mte,
2139        },
2140#endif /* CONFIG_ARM64_MTE */
2141        {},
2142};
2143
2144#define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
2145                .matches = has_cpuid_feature,                                   \
2146                .sys_reg = reg,                                                 \
2147                .field_pos = field,                                             \
2148                .sign = s,                                                      \
2149                .min_field_value = min_value,
2150
2151#define __HWCAP_CAP(name, cap_type, cap)                                        \
2152                .desc = name,                                                   \
2153                .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2154                .hwcap_type = cap_type,                                         \
2155                .hwcap = cap,                                                   \
2156
2157#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
2158        {                                                                       \
2159                __HWCAP_CAP(#cap, cap_type, cap)                                \
2160                HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
2161        }
2162
2163#define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2164        {                                                                       \
2165                __HWCAP_CAP(#cap, cap_type, cap)                                \
2166                .matches = cpucap_multi_entry_cap_matches,                      \
2167                .match_list = list,                                             \
2168        }
2169
2170#define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2171        {                                                                       \
2172                __HWCAP_CAP(#cap, cap_type, cap)                                \
2173                .matches = match,                                               \
2174        }
2175
2176#ifdef CONFIG_ARM64_PTR_AUTH
2177static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2178        {
2179                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2180                                  FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2181        },
2182        {
2183                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2184                                  FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2185        },
2186        {},
2187};
2188
2189static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2190        {
2191                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2192                                  FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2193        },
2194        {
2195                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2196                                  FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2197        },
2198        {},
2199};
2200#endif
2201
2202static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2203        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2204        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2205        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2206        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2207        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2208        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2209        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2210        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2211        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2212        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2213        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2214        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2215        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2216        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2217        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2218        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2219        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2220        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2221        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2222        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2223        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2224        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2225        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2226        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2227        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2228        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2229        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2230        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2231        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2232        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2233        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2234        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2235        HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2236#ifdef CONFIG_ARM64_SVE
2237        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2238        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2239        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2240        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2241        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2242        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2243        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2244        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2245        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2246        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2247        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2248#endif
2249        HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2250#ifdef CONFIG_ARM64_BTI
2251        HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2252#endif
2253#ifdef CONFIG_ARM64_PTR_AUTH
2254        HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2255        HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2256#endif
2257#ifdef CONFIG_ARM64_MTE
2258        HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2259#endif /* CONFIG_ARM64_MTE */
2260        {},
2261};
2262
2263#ifdef CONFIG_COMPAT
2264static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2265{
2266        /*
2267         * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2268         * in line with that of arm32 as in vfp_init(). We make sure that the
2269         * check is future proof, by making sure value is non-zero.
2270         */
2271        u32 mvfr1;
2272
2273        WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2274        if (scope == SCOPE_SYSTEM)
2275                mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2276        else
2277                mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2278
2279        return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2280                cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2281                cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2282}
2283#endif
2284
2285static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2286#ifdef CONFIG_COMPAT
2287        HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2288        HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2289        /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2290        HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2291        HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2292        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2293        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2294        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2295        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2296        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2297#endif
2298        {},
2299};
2300
2301static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2302{
2303        switch (cap->hwcap_type) {
2304        case CAP_HWCAP:
2305                cpu_set_feature(cap->hwcap);
2306                break;
2307#ifdef CONFIG_COMPAT
2308        case CAP_COMPAT_HWCAP:
2309                compat_elf_hwcap |= (u32)cap->hwcap;
2310                break;
2311        case CAP_COMPAT_HWCAP2:
2312                compat_elf_hwcap2 |= (u32)cap->hwcap;
2313                break;
2314#endif
2315        default:
2316                WARN_ON(1);
2317                break;
2318        }
2319}
2320
2321/* Check if we have a particular HWCAP enabled */
2322static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2323{
2324        bool rc;
2325
2326        switch (cap->hwcap_type) {
2327        case CAP_HWCAP:
2328                rc = cpu_have_feature(cap->hwcap);
2329                break;
2330#ifdef CONFIG_COMPAT
2331        case CAP_COMPAT_HWCAP:
2332                rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2333                break;
2334        case CAP_COMPAT_HWCAP2:
2335                rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2336                break;
2337#endif
2338        default:
2339                WARN_ON(1);
2340                rc = false;
2341        }
2342
2343        return rc;
2344}
2345
2346static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2347{
2348        /* We support emulation of accesses to CPU ID feature registers */
2349        cpu_set_named_feature(CPUID);
2350        for (; hwcaps->matches; hwcaps++)
2351                if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2352                        cap_set_elf_hwcap(hwcaps);
2353}
2354
2355static void update_cpu_capabilities(u16 scope_mask)
2356{
2357        int i;
2358        const struct arm64_cpu_capabilities *caps;
2359
2360        scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2361        for (i = 0; i < ARM64_NCAPS; i++) {
2362                caps = cpu_hwcaps_ptrs[i];
2363                if (!caps || !(caps->type & scope_mask) ||
2364                    cpus_have_cap(caps->capability) ||
2365                    !caps->matches(caps, cpucap_default_scope(caps)))
2366                        continue;
2367
2368                if (caps->desc)
2369                        pr_info("detected: %s\n", caps->desc);
2370                cpus_set_cap(caps->capability);
2371
2372                if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2373                        set_bit(caps->capability, boot_capabilities);
2374        }
2375}
2376
2377/*
2378 * Enable all the available capabilities on this CPU. The capabilities
2379 * with BOOT_CPU scope are handled separately and hence skipped here.
2380 */
2381static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2382{
2383        int i;
2384        u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2385
2386        for_each_available_cap(i) {
2387                const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2388
2389                if (WARN_ON(!cap))
2390                        continue;
2391
2392                if (!(cap->type & non_boot_scope))
2393                        continue;
2394
2395                if (cap->cpu_enable)
2396                        cap->cpu_enable(cap);
2397        }
2398        return 0;
2399}
2400
2401/*
2402 * Run through the enabled capabilities and enable() it on all active
2403 * CPUs
2404 */
2405static void __init enable_cpu_capabilities(u16 scope_mask)
2406{
2407        int i;
2408        const struct arm64_cpu_capabilities *caps;
2409        bool boot_scope;
2410
2411        scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2412        boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2413
2414        for (i = 0; i < ARM64_NCAPS; i++) {
2415                unsigned int num;
2416
2417                caps = cpu_hwcaps_ptrs[i];
2418                if (!caps || !(caps->type & scope_mask))
2419                        continue;
2420                num = caps->capability;
2421                if (!cpus_have_cap(num))
2422                        continue;
2423
2424                /* Ensure cpus_have_const_cap(num) works */
2425                static_branch_enable(&cpu_hwcap_keys[num]);
2426
2427                if (boot_scope && caps->cpu_enable)
2428                        /*
2429                         * Capabilities with SCOPE_BOOT_CPU scope are finalised
2430                         * before any secondary CPU boots. Thus, each secondary
2431                         * will enable the capability as appropriate via
2432                         * check_local_cpu_capabilities(). The only exception is
2433                         * the boot CPU, for which the capability must be
2434                         * enabled here. This approach avoids costly
2435                         * stop_machine() calls for this case.
2436                         */
2437                        caps->cpu_enable(caps);
2438        }
2439
2440        /*
2441         * For all non-boot scope capabilities, use stop_machine()
2442         * as it schedules the work allowing us to modify PSTATE,
2443         * instead of on_each_cpu() which uses an IPI, giving us a
2444         * PSTATE that disappears when we return.
2445         */
2446        if (!boot_scope)
2447                stop_machine(cpu_enable_non_boot_scope_capabilities,
2448                             NULL, cpu_online_mask);
2449}
2450
2451/*
2452 * Run through the list of capabilities to check for conflicts.
2453 * If the system has already detected a capability, take necessary
2454 * action on this CPU.
2455 */
2456static void verify_local_cpu_caps(u16 scope_mask)
2457{
2458        int i;
2459        bool cpu_has_cap, system_has_cap;
2460        const struct arm64_cpu_capabilities *caps;
2461
2462        scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2463
2464        for (i = 0; i < ARM64_NCAPS; i++) {
2465                caps = cpu_hwcaps_ptrs[i];
2466                if (!caps || !(caps->type & scope_mask))
2467                        continue;
2468
2469                cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2470                system_has_cap = cpus_have_cap(caps->capability);
2471
2472                if (system_has_cap) {
2473                        /*
2474                         * Check if the new CPU misses an advertised feature,
2475                         * which is not safe to miss.
2476                         */
2477                        if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2478                                break;
2479                        /*
2480                         * We have to issue cpu_enable() irrespective of
2481                         * whether the CPU has it or not, as it is enabeld
2482                         * system wide. It is upto the call back to take
2483                         * appropriate action on this CPU.
2484                         */
2485                        if (caps->cpu_enable)
2486                                caps->cpu_enable(caps);
2487                } else {
2488                        /*
2489                         * Check if the CPU has this capability if it isn't
2490                         * safe to have when the system doesn't.
2491                         */
2492                        if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2493                                break;
2494                }
2495        }
2496
2497        if (i < ARM64_NCAPS) {
2498                pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2499                        smp_processor_id(), caps->capability,
2500                        caps->desc, system_has_cap, cpu_has_cap);
2501
2502                if (cpucap_panic_on_conflict(caps))
2503                        cpu_panic_kernel();
2504                else
2505                        cpu_die_early();
2506        }
2507}
2508
2509/*
2510 * Check for CPU features that are used in early boot
2511 * based on the Boot CPU value.
2512 */
2513static void check_early_cpu_features(void)
2514{
2515        verify_cpu_asid_bits();
2516
2517        verify_local_cpu_caps(SCOPE_BOOT_CPU);
2518}
2519
2520static void
2521verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2522{
2523
2524        for (; caps->matches; caps++)
2525                if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2526                        pr_crit("CPU%d: missing HWCAP: %s\n",
2527                                        smp_processor_id(), caps->desc);
2528                        cpu_die_early();
2529                }
2530}
2531
2532static void verify_sve_features(void)
2533{
2534        u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2535        u64 zcr = read_zcr_features();
2536
2537        unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2538        unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2539
2540        if (len < safe_len || sve_verify_vq_map()) {
2541                pr_crit("CPU%d: SVE: vector length support mismatch\n",
2542                        smp_processor_id());
2543                cpu_die_early();
2544        }
2545
2546        /* Add checks on other ZCR bits here if necessary */
2547}
2548
2549static void verify_hyp_capabilities(void)
2550{
2551        u64 safe_mmfr1, mmfr0, mmfr1;
2552        int parange, ipa_max;
2553        unsigned int safe_vmid_bits, vmid_bits;
2554
2555        if (!IS_ENABLED(CONFIG_KVM) || !IS_ENABLED(CONFIG_KVM_ARM_HOST))
2556                return;
2557
2558        safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2559        mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2560        mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2561
2562        /* Verify VMID bits */
2563        safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2564        vmid_bits = get_vmid_bits(mmfr1);
2565        if (vmid_bits < safe_vmid_bits) {
2566                pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2567                cpu_die_early();
2568        }
2569
2570        /* Verify IPA range */
2571        parange = cpuid_feature_extract_unsigned_field(mmfr0,
2572                                ID_AA64MMFR0_PARANGE_SHIFT);
2573        ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2574        if (ipa_max < get_kvm_ipa_limit()) {
2575                pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2576                cpu_die_early();
2577        }
2578}
2579
2580/*
2581 * Run through the enabled system capabilities and enable() it on this CPU.
2582 * The capabilities were decided based on the available CPUs at the boot time.
2583 * Any new CPU should match the system wide status of the capability. If the
2584 * new CPU doesn't have a capability which the system now has enabled, we
2585 * cannot do anything to fix it up and could cause unexpected failures. So
2586 * we park the CPU.
2587 */
2588static void verify_local_cpu_capabilities(void)
2589{
2590        /*
2591         * The capabilities with SCOPE_BOOT_CPU are checked from
2592         * check_early_cpu_features(), as they need to be verified
2593         * on all secondary CPUs.
2594         */
2595        verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2596
2597        verify_local_elf_hwcaps(arm64_elf_hwcaps);
2598
2599        if (system_supports_32bit_el0())
2600                verify_local_elf_hwcaps(compat_elf_hwcaps);
2601
2602        if (system_supports_sve())
2603                verify_sve_features();
2604
2605        if (is_hyp_mode_available())
2606                verify_hyp_capabilities();
2607}
2608
2609void check_local_cpu_capabilities(void)
2610{
2611        /*
2612         * All secondary CPUs should conform to the early CPU features
2613         * in use by the kernel based on boot CPU.
2614         */
2615        check_early_cpu_features();
2616
2617        /*
2618         * If we haven't finalised the system capabilities, this CPU gets
2619         * a chance to update the errata work arounds and local features.
2620         * Otherwise, this CPU should verify that it has all the system
2621         * advertised capabilities.
2622         */
2623        if (!system_capabilities_finalized())
2624                update_cpu_capabilities(SCOPE_LOCAL_CPU);
2625        else
2626                verify_local_cpu_capabilities();
2627}
2628
2629static void __init setup_boot_cpu_capabilities(void)
2630{
2631        /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2632        update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2633        /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2634        enable_cpu_capabilities(SCOPE_BOOT_CPU);
2635}
2636
2637bool this_cpu_has_cap(unsigned int n)
2638{
2639        if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2640                const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2641
2642                if (cap)
2643                        return cap->matches(cap, SCOPE_LOCAL_CPU);
2644        }
2645
2646        return false;
2647}
2648
2649/*
2650 * This helper function is used in a narrow window when,
2651 * - The system wide safe registers are set with all the SMP CPUs and,
2652 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2653 * In all other cases cpus_have_{const_}cap() should be used.
2654 */
2655static bool __system_matches_cap(unsigned int n)
2656{
2657        if (n < ARM64_NCAPS) {
2658                const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2659
2660                if (cap)
2661                        return cap->matches(cap, SCOPE_SYSTEM);
2662        }
2663        return false;
2664}
2665
2666void cpu_set_feature(unsigned int num)
2667{
2668        WARN_ON(num >= MAX_CPU_FEATURES);
2669        elf_hwcap |= BIT(num);
2670}
2671EXPORT_SYMBOL_GPL(cpu_set_feature);
2672
2673bool cpu_have_feature(unsigned int num)
2674{
2675        WARN_ON(num >= MAX_CPU_FEATURES);
2676        return elf_hwcap & BIT(num);
2677}
2678EXPORT_SYMBOL_GPL(cpu_have_feature);
2679
2680unsigned long cpu_get_elf_hwcap(void)
2681{
2682        /*
2683         * We currently only populate the first 32 bits of AT_HWCAP. Please
2684         * note that for userspace compatibility we guarantee that bits 62
2685         * and 63 will always be returned as 0.
2686         */
2687        return lower_32_bits(elf_hwcap);
2688}
2689
2690unsigned long cpu_get_elf_hwcap2(void)
2691{
2692        return upper_32_bits(elf_hwcap);
2693}
2694
2695static void __init setup_system_capabilities(void)
2696{
2697        /*
2698         * We have finalised the system-wide safe feature
2699         * registers, finalise the capabilities that depend
2700         * on it. Also enable all the available capabilities,
2701         * that are not enabled already.
2702         */
2703        update_cpu_capabilities(SCOPE_SYSTEM);
2704        enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2705}
2706
2707void __init setup_cpu_features(void)
2708{
2709        u32 cwg;
2710
2711        setup_system_capabilities();
2712        setup_elf_hwcaps(arm64_elf_hwcaps);
2713
2714        if (system_supports_32bit_el0())
2715                setup_elf_hwcaps(compat_elf_hwcaps);
2716
2717        if (system_uses_ttbr0_pan())
2718                pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2719
2720        sve_setup();
2721        minsigstksz_setup();
2722
2723        /* Advertise that we have computed the system capabilities */
2724        finalize_system_capabilities();
2725
2726        /*
2727         * Check for sane CTR_EL0.CWG value.
2728         */
2729        cwg = cache_type_cwg();
2730        if (!cwg)
2731                pr_warn("No Cache Writeback Granule information, assuming %d\n",
2732                        ARCH_DMA_MINALIGN);
2733}
2734
2735static bool __maybe_unused
2736cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2737{
2738        return (__system_matches_cap(ARM64_HAS_PAN) && !__system_matches_cap(ARM64_HAS_UAO));
2739}
2740
2741static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2742{
2743        cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2744}
2745
2746/*
2747 * We emulate only the following system register space.
2748 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2749 * See Table C5-6 System instruction encodings for System register accesses,
2750 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2751 */
2752static inline bool __attribute_const__ is_emulated(u32 id)
2753{
2754        return (sys_reg_Op0(id) == 0x3 &&
2755                sys_reg_CRn(id) == 0x0 &&
2756                sys_reg_Op1(id) == 0x0 &&
2757                (sys_reg_CRm(id) == 0 ||
2758                 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2759}
2760
2761/*
2762 * With CRm == 0, reg should be one of :
2763 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2764 */
2765static inline int emulate_id_reg(u32 id, u64 *valp)
2766{
2767        switch (id) {
2768        case SYS_MIDR_EL1:
2769                *valp = read_cpuid_id();
2770                break;
2771        case SYS_MPIDR_EL1:
2772                *valp = SYS_MPIDR_SAFE_VAL;
2773                break;
2774        case SYS_REVIDR_EL1:
2775                /* IMPLEMENTATION DEFINED values are emulated with 0 */
2776                *valp = 0;
2777                break;
2778        default:
2779                return -EINVAL;
2780        }
2781
2782        return 0;
2783}
2784
2785static int emulate_sys_reg(u32 id, u64 *valp)
2786{
2787        struct arm64_ftr_reg *regp;
2788
2789        if (!is_emulated(id))
2790                return -EINVAL;
2791
2792        if (sys_reg_CRm(id) == 0)
2793                return emulate_id_reg(id, valp);
2794
2795        regp = get_arm64_ftr_reg_nowarn(id);
2796        if (regp)
2797                *valp = arm64_ftr_reg_user_value(regp);
2798        else
2799                /*
2800                 * The untracked registers are either IMPLEMENTATION DEFINED
2801                 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2802                 */
2803                *valp = 0;
2804        return 0;
2805}
2806
2807int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2808{
2809        int rc;
2810        u64 val;
2811
2812        rc = emulate_sys_reg(sys_reg, &val);
2813        if (!rc) {
2814                pt_regs_write_reg(regs, rt, val);
2815                arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2816        }
2817        return rc;
2818}
2819
2820static int emulate_mrs(struct pt_regs *regs, u32 insn)
2821{
2822        u32 sys_reg, rt;
2823
2824        /*
2825         * sys_reg values are defined as used in mrs/msr instruction.
2826         * shift the imm value to get the encoding.
2827         */
2828        sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2829        rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2830        return do_emulate_mrs(regs, sys_reg, rt);
2831}
2832
2833static struct undef_hook mrs_hook = {
2834        .instr_mask = 0xfff00000,
2835        .instr_val  = 0xd5300000,
2836        .pstate_mask = PSR_AA32_MODE_MASK,
2837        .pstate_val = PSR_MODE_EL0t,
2838        .fn = emulate_mrs,
2839};
2840
2841static int __init enable_mrs_emulation(void)
2842{
2843        register_undef_hook(&mrs_hook);
2844        return 0;
2845}
2846
2847core_initcall(enable_mrs_emulation);
2848
2849ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2850                          char *buf)
2851{
2852        if (__meltdown_safe)
2853                return sprintf(buf, "Not affected\n");
2854
2855        if (arm64_kernel_unmapped_at_el0())
2856                return sprintf(buf, "Mitigation: PTI\n");
2857
2858        return sprintf(buf, "Vulnerable\n");
2859}
2860