linux/arch/arm64/kvm/vgic/vgic-mmio-v3.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VGICv3 MMIO handling functions
   4 */
   5
   6#include <linux/bitfield.h>
   7#include <linux/irqchip/arm-gic-v3.h>
   8#include <linux/kvm.h>
   9#include <linux/kvm_host.h>
  10#include <linux/interrupt.h>
  11#include <kvm/iodev.h>
  12#include <kvm/arm_vgic.h>
  13
  14#include <asm/kvm_emulate.h>
  15#include <asm/kvm_arm.h>
  16#include <asm/kvm_mmu.h>
  17
  18#include "vgic.h"
  19#include "vgic-mmio.h"
  20
  21/* extract @num bytes at @offset bytes offset in data */
  22unsigned long extract_bytes(u64 data, unsigned int offset,
  23                            unsigned int num)
  24{
  25        return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
  26}
  27
  28/* allows updates of any half of a 64-bit register (or the whole thing) */
  29u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
  30                     unsigned long val)
  31{
  32        int lower = (offset & 4) * 8;
  33        int upper = lower + 8 * len - 1;
  34
  35        reg &= ~GENMASK_ULL(upper, lower);
  36        val &= GENMASK_ULL(len * 8 - 1, 0);
  37
  38        return reg | ((u64)val << lower);
  39}
  40
  41bool vgic_has_its(struct kvm *kvm)
  42{
  43        struct vgic_dist *dist = &kvm->arch.vgic;
  44
  45        if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
  46                return false;
  47
  48        return dist->has_its;
  49}
  50
  51bool vgic_supports_direct_msis(struct kvm *kvm)
  52{
  53        return (kvm_vgic_global_state.has_gicv4_1 ||
  54                (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
  55}
  56
  57/*
  58 * The Revision field in the IIDR have the following meanings:
  59 *
  60 * Revision 2: Interrupt groups are guest-configurable and signaled using
  61 *             their configured groups.
  62 */
  63
  64static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
  65                                            gpa_t addr, unsigned int len)
  66{
  67        struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
  68        u32 value = 0;
  69
  70        switch (addr & 0x0c) {
  71        case GICD_CTLR:
  72                if (vgic->enabled)
  73                        value |= GICD_CTLR_ENABLE_SS_G1;
  74                value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
  75                if (vgic->nassgireq)
  76                        value |= GICD_CTLR_nASSGIreq;
  77                break;
  78        case GICD_TYPER:
  79                value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
  80                value = (value >> 5) - 1;
  81                if (vgic_has_its(vcpu->kvm)) {
  82                        value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
  83                        value |= GICD_TYPER_LPIS;
  84                } else {
  85                        value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
  86                }
  87                break;
  88        case GICD_TYPER2:
  89                if (kvm_vgic_global_state.has_gicv4_1)
  90                        value = GICD_TYPER2_nASSGIcap;
  91                break;
  92        case GICD_IIDR:
  93                value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
  94                        (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
  95                        (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
  96                break;
  97        default:
  98                return 0;
  99        }
 100
 101        return value;
 102}
 103
 104static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
 105                                    gpa_t addr, unsigned int len,
 106                                    unsigned long val)
 107{
 108        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 109
 110        switch (addr & 0x0c) {
 111        case GICD_CTLR: {
 112                bool was_enabled, is_hwsgi;
 113
 114                mutex_lock(&vcpu->kvm->lock);
 115
 116                was_enabled = dist->enabled;
 117                is_hwsgi = dist->nassgireq;
 118
 119                dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
 120
 121                /* Not a GICv4.1? No HW SGIs */
 122                if (!kvm_vgic_global_state.has_gicv4_1)
 123                        val &= ~GICD_CTLR_nASSGIreq;
 124
 125                /* Dist stays enabled? nASSGIreq is RO */
 126                if (was_enabled && dist->enabled) {
 127                        val &= ~GICD_CTLR_nASSGIreq;
 128                        val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
 129                }
 130
 131                /* Switching HW SGIs? */
 132                dist->nassgireq = val & GICD_CTLR_nASSGIreq;
 133                if (is_hwsgi != dist->nassgireq)
 134                        vgic_v4_configure_vsgis(vcpu->kvm);
 135
 136                if (kvm_vgic_global_state.has_gicv4_1 &&
 137                    was_enabled != dist->enabled)
 138                        kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
 139                else if (!was_enabled && dist->enabled)
 140                        vgic_kick_vcpus(vcpu->kvm);
 141
 142                mutex_unlock(&vcpu->kvm->lock);
 143                break;
 144        }
 145        case GICD_TYPER:
 146        case GICD_TYPER2:
 147        case GICD_IIDR:
 148                /* This is at best for documentation purposes... */
 149                return;
 150        }
 151}
 152
 153static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
 154                                           gpa_t addr, unsigned int len,
 155                                           unsigned long val)
 156{
 157        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 158
 159        switch (addr & 0x0c) {
 160        case GICD_TYPER2:
 161        case GICD_IIDR:
 162                if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
 163                        return -EINVAL;
 164                return 0;
 165        case GICD_CTLR:
 166                /* Not a GICv4.1? No HW SGIs */
 167                if (!kvm_vgic_global_state.has_gicv4_1)
 168                        val &= ~GICD_CTLR_nASSGIreq;
 169
 170                dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
 171                dist->nassgireq = val & GICD_CTLR_nASSGIreq;
 172                return 0;
 173        }
 174
 175        vgic_mmio_write_v3_misc(vcpu, addr, len, val);
 176        return 0;
 177}
 178
 179static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
 180                                            gpa_t addr, unsigned int len)
 181{
 182        int intid = VGIC_ADDR_TO_INTID(addr, 64);
 183        struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
 184        unsigned long ret = 0;
 185
 186        if (!irq)
 187                return 0;
 188
 189        /* The upper word is RAZ for us. */
 190        if (!(addr & 4))
 191                ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
 192
 193        vgic_put_irq(vcpu->kvm, irq);
 194        return ret;
 195}
 196
 197static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
 198                                    gpa_t addr, unsigned int len,
 199                                    unsigned long val)
 200{
 201        int intid = VGIC_ADDR_TO_INTID(addr, 64);
 202        struct vgic_irq *irq;
 203        unsigned long flags;
 204
 205        /* The upper word is WI for us since we don't implement Aff3. */
 206        if (addr & 4)
 207                return;
 208
 209        irq = vgic_get_irq(vcpu->kvm, NULL, intid);
 210
 211        if (!irq)
 212                return;
 213
 214        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 215
 216        /* We only care about and preserve Aff0, Aff1 and Aff2. */
 217        irq->mpidr = val & GENMASK(23, 0);
 218        irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
 219
 220        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 221        vgic_put_irq(vcpu->kvm, irq);
 222}
 223
 224static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
 225                                             gpa_t addr, unsigned int len)
 226{
 227        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 228
 229        return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
 230}
 231
 232
 233static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
 234                                     gpa_t addr, unsigned int len,
 235                                     unsigned long val)
 236{
 237        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 238        bool was_enabled = vgic_cpu->lpis_enabled;
 239
 240        if (!vgic_has_its(vcpu->kvm))
 241                return;
 242
 243        vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
 244
 245        if (was_enabled && !vgic_cpu->lpis_enabled) {
 246                vgic_flush_pending_lpis(vcpu);
 247                vgic_its_invalidate_cache(vcpu->kvm);
 248        }
 249
 250        if (!was_enabled && vgic_cpu->lpis_enabled)
 251                vgic_enable_lpis(vcpu);
 252}
 253
 254static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
 255                                              gpa_t addr, unsigned int len)
 256{
 257        unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
 258        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 259        struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
 260        int target_vcpu_id = vcpu->vcpu_id;
 261        gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
 262                        (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
 263        u64 value;
 264
 265        value = (u64)(mpidr & GENMASK(23, 0)) << 32;
 266        value |= ((target_vcpu_id & 0xffff) << 8);
 267
 268        if (addr == last_rdist_typer)
 269                value |= GICR_TYPER_LAST;
 270        if (vgic_has_its(vcpu->kvm))
 271                value |= GICR_TYPER_PLPIS;
 272
 273        return extract_bytes(value, addr & 7, len);
 274}
 275
 276static unsigned long vgic_uaccess_read_v3r_typer(struct kvm_vcpu *vcpu,
 277                                                 gpa_t addr, unsigned int len)
 278{
 279        unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
 280        int target_vcpu_id = vcpu->vcpu_id;
 281        u64 value;
 282
 283        value = (u64)(mpidr & GENMASK(23, 0)) << 32;
 284        value |= ((target_vcpu_id & 0xffff) << 8);
 285
 286        if (vgic_has_its(vcpu->kvm))
 287                value |= GICR_TYPER_PLPIS;
 288
 289        /* reporting of the Last bit is not supported for userspace */
 290        return extract_bytes(value, addr & 7, len);
 291}
 292
 293static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
 294                                             gpa_t addr, unsigned int len)
 295{
 296        return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
 297}
 298
 299static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
 300                                              gpa_t addr, unsigned int len)
 301{
 302        switch (addr & 0xffff) {
 303        case GICD_PIDR2:
 304                /* report a GICv3 compliant implementation */
 305                return 0x3b;
 306        }
 307
 308        return 0;
 309}
 310
 311static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
 312                                                  gpa_t addr, unsigned int len)
 313{
 314        u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 315        u32 value = 0;
 316        int i;
 317
 318        /*
 319         * pending state of interrupt is latched in pending_latch variable.
 320         * Userspace will save and restore pending state and line_level
 321         * separately.
 322         * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
 323         * for handling of ISPENDR and ICPENDR.
 324         */
 325        for (i = 0; i < len * 8; i++) {
 326                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 327                bool state = irq->pending_latch;
 328
 329                if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
 330                        int err;
 331
 332                        err = irq_get_irqchip_state(irq->host_irq,
 333                                                    IRQCHIP_STATE_PENDING,
 334                                                    &state);
 335                        WARN_ON(err);
 336                }
 337
 338                if (state)
 339                        value |= (1U << i);
 340
 341                vgic_put_irq(vcpu->kvm, irq);
 342        }
 343
 344        return value;
 345}
 346
 347static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
 348                                         gpa_t addr, unsigned int len,
 349                                         unsigned long val)
 350{
 351        u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 352        int i;
 353        unsigned long flags;
 354
 355        for (i = 0; i < len * 8; i++) {
 356                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 357
 358                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 359                if (test_bit(i, &val)) {
 360                        /*
 361                         * pending_latch is set irrespective of irq type
 362                         * (level or edge) to avoid dependency that VM should
 363                         * restore irq config before pending info.
 364                         */
 365                        irq->pending_latch = true;
 366                        vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 367                } else {
 368                        irq->pending_latch = false;
 369                        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 370                }
 371
 372                vgic_put_irq(vcpu->kvm, irq);
 373        }
 374
 375        return 0;
 376}
 377
 378/* We want to avoid outer shareable. */
 379u64 vgic_sanitise_shareability(u64 field)
 380{
 381        switch (field) {
 382        case GIC_BASER_OuterShareable:
 383                return GIC_BASER_InnerShareable;
 384        default:
 385                return field;
 386        }
 387}
 388
 389/* Avoid any inner non-cacheable mapping. */
 390u64 vgic_sanitise_inner_cacheability(u64 field)
 391{
 392        switch (field) {
 393        case GIC_BASER_CACHE_nCnB:
 394        case GIC_BASER_CACHE_nC:
 395                return GIC_BASER_CACHE_RaWb;
 396        default:
 397                return field;
 398        }
 399}
 400
 401/* Non-cacheable or same-as-inner are OK. */
 402u64 vgic_sanitise_outer_cacheability(u64 field)
 403{
 404        switch (field) {
 405        case GIC_BASER_CACHE_SameAsInner:
 406        case GIC_BASER_CACHE_nC:
 407                return field;
 408        default:
 409                return GIC_BASER_CACHE_SameAsInner;
 410        }
 411}
 412
 413u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
 414                        u64 (*sanitise_fn)(u64))
 415{
 416        u64 field = (reg & field_mask) >> field_shift;
 417
 418        field = sanitise_fn(field) << field_shift;
 419        return (reg & ~field_mask) | field;
 420}
 421
 422#define PROPBASER_RES0_MASK                                             \
 423        (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
 424#define PENDBASER_RES0_MASK                                             \
 425        (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
 426         GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
 427
 428static u64 vgic_sanitise_pendbaser(u64 reg)
 429{
 430        reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
 431                                  GICR_PENDBASER_SHAREABILITY_SHIFT,
 432                                  vgic_sanitise_shareability);
 433        reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
 434                                  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
 435                                  vgic_sanitise_inner_cacheability);
 436        reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
 437                                  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
 438                                  vgic_sanitise_outer_cacheability);
 439
 440        reg &= ~PENDBASER_RES0_MASK;
 441
 442        return reg;
 443}
 444
 445static u64 vgic_sanitise_propbaser(u64 reg)
 446{
 447        reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
 448                                  GICR_PROPBASER_SHAREABILITY_SHIFT,
 449                                  vgic_sanitise_shareability);
 450        reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
 451                                  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
 452                                  vgic_sanitise_inner_cacheability);
 453        reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
 454                                  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
 455                                  vgic_sanitise_outer_cacheability);
 456
 457        reg &= ~PROPBASER_RES0_MASK;
 458        return reg;
 459}
 460
 461static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
 462                                             gpa_t addr, unsigned int len)
 463{
 464        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 465
 466        return extract_bytes(dist->propbaser, addr & 7, len);
 467}
 468
 469static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
 470                                     gpa_t addr, unsigned int len,
 471                                     unsigned long val)
 472{
 473        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 474        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 475        u64 old_propbaser, propbaser;
 476
 477        /* Storing a value with LPIs already enabled is undefined */
 478        if (vgic_cpu->lpis_enabled)
 479                return;
 480
 481        do {
 482                old_propbaser = READ_ONCE(dist->propbaser);
 483                propbaser = old_propbaser;
 484                propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
 485                propbaser = vgic_sanitise_propbaser(propbaser);
 486        } while (cmpxchg64(&dist->propbaser, old_propbaser,
 487                           propbaser) != old_propbaser);
 488}
 489
 490static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
 491                                             gpa_t addr, unsigned int len)
 492{
 493        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 494        u64 value = vgic_cpu->pendbaser;
 495
 496        value &= ~GICR_PENDBASER_PTZ;
 497
 498        return extract_bytes(value, addr & 7, len);
 499}
 500
 501static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
 502                                     gpa_t addr, unsigned int len,
 503                                     unsigned long val)
 504{
 505        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 506        u64 old_pendbaser, pendbaser;
 507
 508        /* Storing a value with LPIs already enabled is undefined */
 509        if (vgic_cpu->lpis_enabled)
 510                return;
 511
 512        do {
 513                old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
 514                pendbaser = old_pendbaser;
 515                pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
 516                pendbaser = vgic_sanitise_pendbaser(pendbaser);
 517        } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
 518                           pendbaser) != old_pendbaser);
 519}
 520
 521/*
 522 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
 523 * redistributors, while SPIs are covered by registers in the distributor
 524 * block. Trying to set private IRQs in this block gets ignored.
 525 * We take some special care here to fix the calculation of the register
 526 * offset.
 527 */
 528#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
 529        {                                                               \
 530                .reg_offset = off,                                      \
 531                .bits_per_irq = bpi,                                    \
 532                .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
 533                .access_flags = acc,                                    \
 534                .read = vgic_mmio_read_raz,                             \
 535                .write = vgic_mmio_write_wi,                            \
 536        }, {                                                            \
 537                .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
 538                .bits_per_irq = bpi,                                    \
 539                .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
 540                .access_flags = acc,                                    \
 541                .read = rd,                                             \
 542                .write = wr,                                            \
 543                .uaccess_read = ur,                                     \
 544                .uaccess_write = uw,                                    \
 545        }
 546
 547static const struct vgic_register_region vgic_v3_dist_registers[] = {
 548        REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
 549                vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
 550                NULL, vgic_mmio_uaccess_write_v3_misc,
 551                16, VGIC_ACCESS_32bit),
 552        REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
 553                vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
 554                VGIC_ACCESS_32bit),
 555        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
 556                vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
 557                VGIC_ACCESS_32bit),
 558        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
 559                vgic_mmio_read_enable, vgic_mmio_write_senable,
 560                NULL, vgic_uaccess_write_senable, 1,
 561                VGIC_ACCESS_32bit),
 562        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
 563                vgic_mmio_read_enable, vgic_mmio_write_cenable,
 564               NULL, vgic_uaccess_write_cenable, 1,
 565                VGIC_ACCESS_32bit),
 566        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
 567                vgic_mmio_read_pending, vgic_mmio_write_spending,
 568                vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
 569                VGIC_ACCESS_32bit),
 570        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
 571                vgic_mmio_read_pending, vgic_mmio_write_cpending,
 572                vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
 573                VGIC_ACCESS_32bit),
 574        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
 575                vgic_mmio_read_active, vgic_mmio_write_sactive,
 576                vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
 577                VGIC_ACCESS_32bit),
 578        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
 579                vgic_mmio_read_active, vgic_mmio_write_cactive,
 580                vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
 581                1, VGIC_ACCESS_32bit),
 582        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
 583                vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
 584                8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 585        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
 586                vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
 587                VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 588        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
 589                vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
 590                VGIC_ACCESS_32bit),
 591        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
 592                vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
 593                VGIC_ACCESS_32bit),
 594        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
 595                vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
 596                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 597        REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
 598                vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
 599                VGIC_ACCESS_32bit),
 600};
 601
 602static const struct vgic_register_region vgic_v3_rd_registers[] = {
 603        /* RD_base registers */
 604        REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
 605                vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
 606                VGIC_ACCESS_32bit),
 607        REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
 608                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 609                VGIC_ACCESS_32bit),
 610        REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
 611                vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
 612                VGIC_ACCESS_32bit),
 613        REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
 614                vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
 615                vgic_uaccess_read_v3r_typer, vgic_mmio_uaccess_write_wi, 8,
 616                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 617        REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
 618                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 619                VGIC_ACCESS_32bit),
 620        REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
 621                vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
 622                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 623        REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
 624                vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
 625                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 626        REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
 627                vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
 628                VGIC_ACCESS_32bit),
 629        /* SGI_base registers */
 630        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
 631                vgic_mmio_read_group, vgic_mmio_write_group, 4,
 632                VGIC_ACCESS_32bit),
 633        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
 634                vgic_mmio_read_enable, vgic_mmio_write_senable,
 635                NULL, vgic_uaccess_write_senable, 4,
 636                VGIC_ACCESS_32bit),
 637        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
 638                vgic_mmio_read_enable, vgic_mmio_write_cenable,
 639                NULL, vgic_uaccess_write_cenable, 4,
 640                VGIC_ACCESS_32bit),
 641        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
 642                vgic_mmio_read_pending, vgic_mmio_write_spending,
 643                vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
 644                VGIC_ACCESS_32bit),
 645        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
 646                vgic_mmio_read_pending, vgic_mmio_write_cpending,
 647                vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
 648                VGIC_ACCESS_32bit),
 649        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
 650                vgic_mmio_read_active, vgic_mmio_write_sactive,
 651                vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
 652                VGIC_ACCESS_32bit),
 653        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
 654                vgic_mmio_read_active, vgic_mmio_write_cactive,
 655                vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
 656                VGIC_ACCESS_32bit),
 657        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
 658                vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
 659                VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 660        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
 661                vgic_mmio_read_config, vgic_mmio_write_config, 8,
 662                VGIC_ACCESS_32bit),
 663        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
 664                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 665                VGIC_ACCESS_32bit),
 666        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
 667                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 668                VGIC_ACCESS_32bit),
 669};
 670
 671unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
 672{
 673        dev->regions = vgic_v3_dist_registers;
 674        dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
 675
 676        kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
 677
 678        return SZ_64K;
 679}
 680
 681/**
 682 * vgic_register_redist_iodev - register a single redist iodev
 683 * @vcpu:    The VCPU to which the redistributor belongs
 684 *
 685 * Register a KVM iodev for this VCPU's redistributor using the address
 686 * provided.
 687 *
 688 * Return 0 on success, -ERRNO otherwise.
 689 */
 690int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
 691{
 692        struct kvm *kvm = vcpu->kvm;
 693        struct vgic_dist *vgic = &kvm->arch.vgic;
 694        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 695        struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
 696        struct vgic_redist_region *rdreg;
 697        gpa_t rd_base;
 698        int ret;
 699
 700        if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
 701                return 0;
 702
 703        /*
 704         * We may be creating VCPUs before having set the base address for the
 705         * redistributor region, in which case we will come back to this
 706         * function for all VCPUs when the base address is set.  Just return
 707         * without doing any work for now.
 708         */
 709        rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
 710        if (!rdreg)
 711                return 0;
 712
 713        if (!vgic_v3_check_base(kvm))
 714                return -EINVAL;
 715
 716        vgic_cpu->rdreg = rdreg;
 717
 718        rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
 719
 720        kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
 721        rd_dev->base_addr = rd_base;
 722        rd_dev->iodev_type = IODEV_REDIST;
 723        rd_dev->regions = vgic_v3_rd_registers;
 724        rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
 725        rd_dev->redist_vcpu = vcpu;
 726
 727        mutex_lock(&kvm->slots_lock);
 728        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
 729                                      2 * SZ_64K, &rd_dev->dev);
 730        mutex_unlock(&kvm->slots_lock);
 731
 732        if (ret)
 733                return ret;
 734
 735        rdreg->free_index++;
 736        return 0;
 737}
 738
 739static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
 740{
 741        struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
 742
 743        kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
 744}
 745
 746static int vgic_register_all_redist_iodevs(struct kvm *kvm)
 747{
 748        struct kvm_vcpu *vcpu;
 749        int c, ret = 0;
 750
 751        kvm_for_each_vcpu(c, vcpu, kvm) {
 752                ret = vgic_register_redist_iodev(vcpu);
 753                if (ret)
 754                        break;
 755        }
 756
 757        if (ret) {
 758                /* The current c failed, so we start with the previous one. */
 759                mutex_lock(&kvm->slots_lock);
 760                for (c--; c >= 0; c--) {
 761                        vcpu = kvm_get_vcpu(kvm, c);
 762                        vgic_unregister_redist_iodev(vcpu);
 763                }
 764                mutex_unlock(&kvm->slots_lock);
 765        }
 766
 767        return ret;
 768}
 769
 770/**
 771 * vgic_v3_insert_redist_region - Insert a new redistributor region
 772 *
 773 * Performs various checks before inserting the rdist region in the list.
 774 * Those tests depend on whether the size of the rdist region is known
 775 * (ie. count != 0). The list is sorted by rdist region index.
 776 *
 777 * @kvm: kvm handle
 778 * @index: redist region index
 779 * @base: base of the new rdist region
 780 * @count: number of redistributors the region is made of (0 in the old style
 781 * single region, whose size is induced from the number of vcpus)
 782 *
 783 * Return 0 on success, < 0 otherwise
 784 */
 785static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
 786                                        gpa_t base, uint32_t count)
 787{
 788        struct vgic_dist *d = &kvm->arch.vgic;
 789        struct vgic_redist_region *rdreg;
 790        struct list_head *rd_regions = &d->rd_regions;
 791        size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
 792        int ret;
 793
 794        /* single rdist region already set ?*/
 795        if (!count && !list_empty(rd_regions))
 796                return -EINVAL;
 797
 798        /* cross the end of memory ? */
 799        if (base + size < base)
 800                return -EINVAL;
 801
 802        if (list_empty(rd_regions)) {
 803                if (index != 0)
 804                        return -EINVAL;
 805        } else {
 806                rdreg = list_last_entry(rd_regions,
 807                                        struct vgic_redist_region, list);
 808                if (index != rdreg->index + 1)
 809                        return -EINVAL;
 810
 811                /* Cannot add an explicitly sized regions after legacy region */
 812                if (!rdreg->count)
 813                        return -EINVAL;
 814        }
 815
 816        /*
 817         * For legacy single-region redistributor regions (!count),
 818         * check that the redistributor region does not overlap with the
 819         * distributor's address space.
 820         */
 821        if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
 822                vgic_dist_overlap(kvm, base, size))
 823                return -EINVAL;
 824
 825        /* collision with any other rdist region? */
 826        if (vgic_v3_rdist_overlap(kvm, base, size))
 827                return -EINVAL;
 828
 829        rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
 830        if (!rdreg)
 831                return -ENOMEM;
 832
 833        rdreg->base = VGIC_ADDR_UNDEF;
 834
 835        ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
 836        if (ret)
 837                goto free;
 838
 839        rdreg->base = base;
 840        rdreg->count = count;
 841        rdreg->free_index = 0;
 842        rdreg->index = index;
 843
 844        list_add_tail(&rdreg->list, rd_regions);
 845        return 0;
 846free:
 847        kfree(rdreg);
 848        return ret;
 849}
 850
 851int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
 852{
 853        int ret;
 854
 855        ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
 856        if (ret)
 857                return ret;
 858
 859        /*
 860         * Register iodevs for each existing VCPU.  Adding more VCPUs
 861         * afterwards will register the iodevs when needed.
 862         */
 863        ret = vgic_register_all_redist_iodevs(kvm);
 864        if (ret)
 865                return ret;
 866
 867        return 0;
 868}
 869
 870int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
 871{
 872        const struct vgic_register_region *region;
 873        struct vgic_io_device iodev;
 874        struct vgic_reg_attr reg_attr;
 875        struct kvm_vcpu *vcpu;
 876        gpa_t addr;
 877        int ret;
 878
 879        ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
 880        if (ret)
 881                return ret;
 882
 883        vcpu = reg_attr.vcpu;
 884        addr = reg_attr.addr;
 885
 886        switch (attr->group) {
 887        case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
 888                iodev.regions = vgic_v3_dist_registers;
 889                iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
 890                iodev.base_addr = 0;
 891                break;
 892        case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
 893                iodev.regions = vgic_v3_rd_registers;
 894                iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
 895                iodev.base_addr = 0;
 896                break;
 897        }
 898        case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
 899                u64 reg, id;
 900
 901                id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
 902                return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
 903        }
 904        default:
 905                return -ENXIO;
 906        }
 907
 908        /* We only support aligned 32-bit accesses. */
 909        if (addr & 3)
 910                return -ENXIO;
 911
 912        region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
 913        if (!region)
 914                return -ENXIO;
 915
 916        return 0;
 917}
 918/*
 919 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
 920 * generation register ICC_SGI1R_EL1) with a given VCPU.
 921 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
 922 * return -1.
 923 */
 924static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
 925{
 926        unsigned long affinity;
 927        int level0;
 928
 929        /*
 930         * Split the current VCPU's MPIDR into affinity level 0 and the
 931         * rest as this is what we have to compare against.
 932         */
 933        affinity = kvm_vcpu_get_mpidr_aff(vcpu);
 934        level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
 935        affinity &= ~MPIDR_LEVEL_MASK;
 936
 937        /* bail out if the upper three levels don't match */
 938        if (sgi_aff != affinity)
 939                return -1;
 940
 941        /* Is this VCPU's bit set in the mask ? */
 942        if (!(sgi_cpu_mask & BIT(level0)))
 943                return -1;
 944
 945        return level0;
 946}
 947
 948/*
 949 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
 950 * so provide a wrapper to use the existing defines to isolate a certain
 951 * affinity level.
 952 */
 953#define SGI_AFFINITY_LEVEL(reg, level) \
 954        ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
 955        >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
 956
 957/**
 958 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
 959 * @vcpu: The VCPU requesting a SGI
 960 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
 961 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
 962 *
 963 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
 964 * This will trap in sys_regs.c and call this function.
 965 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
 966 * target processors as well as a bitmask of 16 Aff0 CPUs.
 967 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
 968 * check for matching ones. If this bit is set, we signal all, but not the
 969 * calling VCPU.
 970 */
 971void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
 972{
 973        struct kvm *kvm = vcpu->kvm;
 974        struct kvm_vcpu *c_vcpu;
 975        u16 target_cpus;
 976        u64 mpidr;
 977        int sgi, c;
 978        int vcpu_id = vcpu->vcpu_id;
 979        bool broadcast;
 980        unsigned long flags;
 981
 982        sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
 983        broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
 984        target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
 985        mpidr = SGI_AFFINITY_LEVEL(reg, 3);
 986        mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
 987        mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
 988
 989        /*
 990         * We iterate over all VCPUs to find the MPIDRs matching the request.
 991         * If we have handled one CPU, we clear its bit to detect early
 992         * if we are already finished. This avoids iterating through all
 993         * VCPUs when most of the times we just signal a single VCPU.
 994         */
 995        kvm_for_each_vcpu(c, c_vcpu, kvm) {
 996                struct vgic_irq *irq;
 997
 998                /* Exit early if we have dealt with all requested CPUs */
 999                if (!broadcast && target_cpus == 0)
1000                        break;
1001
1002                /* Don't signal the calling VCPU */
1003                if (broadcast && c == vcpu_id)
1004                        continue;
1005
1006                if (!broadcast) {
1007                        int level0;
1008
1009                        level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1010                        if (level0 == -1)
1011                                continue;
1012
1013                        /* remove this matching VCPU from the mask */
1014                        target_cpus &= ~BIT(level0);
1015                }
1016
1017                irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1018
1019                raw_spin_lock_irqsave(&irq->irq_lock, flags);
1020
1021                /*
1022                 * An access targeting Group0 SGIs can only generate
1023                 * those, while an access targeting Group1 SGIs can
1024                 * generate interrupts of either group.
1025                 */
1026                if (!irq->group || allow_group1) {
1027                        if (!irq->hw) {
1028                                irq->pending_latch = true;
1029                                vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1030                        } else {
1031                                /* HW SGI? Ask the GIC to inject it */
1032                                int err;
1033                                err = irq_set_irqchip_state(irq->host_irq,
1034                                                            IRQCHIP_STATE_PENDING,
1035                                                            true);
1036                                WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1037                                raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1038                        }
1039                } else {
1040                        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1041                }
1042
1043                vgic_put_irq(vcpu->kvm, irq);
1044        }
1045}
1046
1047int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1048                         int offset, u32 *val)
1049{
1050        struct vgic_io_device dev = {
1051                .regions = vgic_v3_dist_registers,
1052                .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1053        };
1054
1055        return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1056}
1057
1058int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1059                           int offset, u32 *val)
1060{
1061        struct vgic_io_device rd_dev = {
1062                .regions = vgic_v3_rd_registers,
1063                .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1064        };
1065
1066        return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1067}
1068
1069int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1070                                    u32 intid, u64 *val)
1071{
1072        if (intid % 32)
1073                return -EINVAL;
1074
1075        if (is_write)
1076                vgic_write_irq_line_level_info(vcpu, intid, *val);
1077        else
1078                *val = vgic_read_irq_line_level_info(vcpu, intid);
1079
1080        return 0;
1081}
1082