linux/arch/ia64/mm/discontig.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
   4 * Copyright (c) 2001 Intel Corp.
   5 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
   6 * Copyright (c) 2002 NEC Corp.
   7 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
   8 * Copyright (c) 2004 Silicon Graphics, Inc
   9 *      Russ Anderson <rja@sgi.com>
  10 *      Jesse Barnes <jbarnes@sgi.com>
  11 *      Jack Steiner <steiner@sgi.com>
  12 */
  13
  14/*
  15 * Platform initialization for Discontig Memory
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/nmi.h>
  21#include <linux/swap.h>
  22#include <linux/memblock.h>
  23#include <linux/acpi.h>
  24#include <linux/efi.h>
  25#include <linux/nodemask.h>
  26#include <linux/slab.h>
  27#include <asm/tlb.h>
  28#include <asm/meminit.h>
  29#include <asm/numa.h>
  30#include <asm/sections.h>
  31
  32/*
  33 * Track per-node information needed to setup the boot memory allocator, the
  34 * per-node areas, and the real VM.
  35 */
  36struct early_node_data {
  37        struct ia64_node_data *node_data;
  38        unsigned long pernode_addr;
  39        unsigned long pernode_size;
  40        unsigned long min_pfn;
  41        unsigned long max_pfn;
  42};
  43
  44static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
  45static nodemask_t memory_less_mask __initdata;
  46
  47pg_data_t *pgdat_list[MAX_NUMNODES];
  48
  49/*
  50 * To prevent cache aliasing effects, align per-node structures so that they
  51 * start at addresses that are strided by node number.
  52 */
  53#define MAX_NODE_ALIGN_OFFSET   (32 * 1024 * 1024)
  54#define NODEDATA_ALIGN(addr, node)                                              \
  55        ((((addr) + 1024*1024-1) & ~(1024*1024-1)) +                            \
  56             (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
  57
  58/**
  59 * build_node_maps - callback to setup mem_data structs for each node
  60 * @start: physical start of range
  61 * @len: length of range
  62 * @node: node where this range resides
  63 *
  64 * Detect extents of each piece of memory that we wish to
  65 * treat as a virtually contiguous block (i.e. each node). Each such block
  66 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
  67 * if necessary.  Any non-existent pages will simply be part of the virtual
  68 * memmap.
  69 */
  70static int __init build_node_maps(unsigned long start, unsigned long len,
  71                                  int node)
  72{
  73        unsigned long spfn, epfn, end = start + len;
  74
  75        epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
  76        spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
  77
  78        if (!mem_data[node].min_pfn) {
  79                mem_data[node].min_pfn = spfn;
  80                mem_data[node].max_pfn = epfn;
  81        } else {
  82                mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
  83                mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
  84        }
  85
  86        return 0;
  87}
  88
  89/**
  90 * early_nr_cpus_node - return number of cpus on a given node
  91 * @node: node to check
  92 *
  93 * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
  94 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
  95 * called yet.  Note that node 0 will also count all non-existent cpus.
  96 */
  97static int __meminit early_nr_cpus_node(int node)
  98{
  99        int cpu, n = 0;
 100
 101        for_each_possible_early_cpu(cpu)
 102                if (node == node_cpuid[cpu].nid)
 103                        n++;
 104
 105        return n;
 106}
 107
 108/**
 109 * compute_pernodesize - compute size of pernode data
 110 * @node: the node id.
 111 */
 112static unsigned long __meminit compute_pernodesize(int node)
 113{
 114        unsigned long pernodesize = 0, cpus;
 115
 116        cpus = early_nr_cpus_node(node);
 117        pernodesize += PERCPU_PAGE_SIZE * cpus;
 118        pernodesize += node * L1_CACHE_BYTES;
 119        pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
 120        pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
 121        pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
 122        pernodesize = PAGE_ALIGN(pernodesize);
 123        return pernodesize;
 124}
 125
 126/**
 127 * per_cpu_node_setup - setup per-cpu areas on each node
 128 * @cpu_data: per-cpu area on this node
 129 * @node: node to setup
 130 *
 131 * Copy the static per-cpu data into the region we just set aside and then
 132 * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
 133 * the end of the area.
 134 */
 135static void *per_cpu_node_setup(void *cpu_data, int node)
 136{
 137#ifdef CONFIG_SMP
 138        int cpu;
 139
 140        for_each_possible_early_cpu(cpu) {
 141                void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
 142
 143                if (node != node_cpuid[cpu].nid)
 144                        continue;
 145
 146                memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
 147                __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
 148                        __per_cpu_start;
 149
 150                /*
 151                 * percpu area for cpu0 is moved from the __init area
 152                 * which is setup by head.S and used till this point.
 153                 * Update ar.k3.  This move is ensures that percpu
 154                 * area for cpu0 is on the correct node and its
 155                 * virtual address isn't insanely far from other
 156                 * percpu areas which is important for congruent
 157                 * percpu allocator.
 158                 */
 159                if (cpu == 0)
 160                        ia64_set_kr(IA64_KR_PER_CPU_DATA,
 161                                    (unsigned long)cpu_data -
 162                                    (unsigned long)__per_cpu_start);
 163
 164                cpu_data += PERCPU_PAGE_SIZE;
 165        }
 166#endif
 167        return cpu_data;
 168}
 169
 170#ifdef CONFIG_SMP
 171/**
 172 * setup_per_cpu_areas - setup percpu areas
 173 *
 174 * Arch code has already allocated and initialized percpu areas.  All
 175 * this function has to do is to teach the determined layout to the
 176 * dynamic percpu allocator, which happens to be more complex than
 177 * creating whole new ones using helpers.
 178 */
 179void __init setup_per_cpu_areas(void)
 180{
 181        struct pcpu_alloc_info *ai;
 182        struct pcpu_group_info *gi;
 183        unsigned int *cpu_map;
 184        void *base;
 185        unsigned long base_offset;
 186        unsigned int cpu;
 187        ssize_t static_size, reserved_size, dyn_size;
 188        int node, prev_node, unit, nr_units;
 189
 190        ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
 191        if (!ai)
 192                panic("failed to allocate pcpu_alloc_info");
 193        cpu_map = ai->groups[0].cpu_map;
 194
 195        /* determine base */
 196        base = (void *)ULONG_MAX;
 197        for_each_possible_cpu(cpu)
 198                base = min(base,
 199                           (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
 200        base_offset = (void *)__per_cpu_start - base;
 201
 202        /* build cpu_map, units are grouped by node */
 203        unit = 0;
 204        for_each_node(node)
 205                for_each_possible_cpu(cpu)
 206                        if (node == node_cpuid[cpu].nid)
 207                                cpu_map[unit++] = cpu;
 208        nr_units = unit;
 209
 210        /* set basic parameters */
 211        static_size = __per_cpu_end - __per_cpu_start;
 212        reserved_size = PERCPU_MODULE_RESERVE;
 213        dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
 214        if (dyn_size < 0)
 215                panic("percpu area overflow static=%zd reserved=%zd\n",
 216                      static_size, reserved_size);
 217
 218        ai->static_size         = static_size;
 219        ai->reserved_size       = reserved_size;
 220        ai->dyn_size            = dyn_size;
 221        ai->unit_size           = PERCPU_PAGE_SIZE;
 222        ai->atom_size           = PAGE_SIZE;
 223        ai->alloc_size          = PERCPU_PAGE_SIZE;
 224
 225        /*
 226         * CPUs are put into groups according to node.  Walk cpu_map
 227         * and create new groups at node boundaries.
 228         */
 229        prev_node = NUMA_NO_NODE;
 230        ai->nr_groups = 0;
 231        for (unit = 0; unit < nr_units; unit++) {
 232                cpu = cpu_map[unit];
 233                node = node_cpuid[cpu].nid;
 234
 235                if (node == prev_node) {
 236                        gi->nr_units++;
 237                        continue;
 238                }
 239                prev_node = node;
 240
 241                gi = &ai->groups[ai->nr_groups++];
 242                gi->nr_units            = 1;
 243                gi->base_offset         = __per_cpu_offset[cpu] + base_offset;
 244                gi->cpu_map             = &cpu_map[unit];
 245        }
 246
 247        pcpu_setup_first_chunk(ai, base);
 248        pcpu_free_alloc_info(ai);
 249}
 250#endif
 251
 252/**
 253 * fill_pernode - initialize pernode data.
 254 * @node: the node id.
 255 * @pernode: physical address of pernode data
 256 * @pernodesize: size of the pernode data
 257 */
 258static void __init fill_pernode(int node, unsigned long pernode,
 259        unsigned long pernodesize)
 260{
 261        void *cpu_data;
 262        int cpus = early_nr_cpus_node(node);
 263
 264        mem_data[node].pernode_addr = pernode;
 265        mem_data[node].pernode_size = pernodesize;
 266        memset(__va(pernode), 0, pernodesize);
 267
 268        cpu_data = (void *)pernode;
 269        pernode += PERCPU_PAGE_SIZE * cpus;
 270        pernode += node * L1_CACHE_BYTES;
 271
 272        pgdat_list[node] = __va(pernode);
 273        pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
 274
 275        mem_data[node].node_data = __va(pernode);
 276        pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
 277        pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
 278
 279        cpu_data = per_cpu_node_setup(cpu_data, node);
 280
 281        return;
 282}
 283
 284/**
 285 * find_pernode_space - allocate memory for memory map and per-node structures
 286 * @start: physical start of range
 287 * @len: length of range
 288 * @node: node where this range resides
 289 *
 290 * This routine reserves space for the per-cpu data struct, the list of
 291 * pg_data_ts and the per-node data struct.  Each node will have something like
 292 * the following in the first chunk of addr. space large enough to hold it.
 293 *
 294 *    ________________________
 295 *   |                        |
 296 *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
 297 *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
 298 *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
 299 *   |------------------------|
 300 *   |   local pg_data_t *    |
 301 *   |------------------------|
 302 *   |  local ia64_node_data  |
 303 *   |------------------------|
 304 *   |          ???           |
 305 *   |________________________|
 306 *
 307 * Once this space has been set aside, the bootmem maps are initialized.  We
 308 * could probably move the allocation of the per-cpu and ia64_node_data space
 309 * outside of this function and use alloc_bootmem_node(), but doing it here
 310 * is straightforward and we get the alignments we want so...
 311 */
 312static int __init find_pernode_space(unsigned long start, unsigned long len,
 313                                     int node)
 314{
 315        unsigned long spfn, epfn;
 316        unsigned long pernodesize = 0, pernode;
 317
 318        spfn = start >> PAGE_SHIFT;
 319        epfn = (start + len) >> PAGE_SHIFT;
 320
 321        /*
 322         * Make sure this memory falls within this node's usable memory
 323         * since we may have thrown some away in build_maps().
 324         */
 325        if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
 326                return 0;
 327
 328        /* Don't setup this node's local space twice... */
 329        if (mem_data[node].pernode_addr)
 330                return 0;
 331
 332        /*
 333         * Calculate total size needed, incl. what's necessary
 334         * for good alignment and alias prevention.
 335         */
 336        pernodesize = compute_pernodesize(node);
 337        pernode = NODEDATA_ALIGN(start, node);
 338
 339        /* Is this range big enough for what we want to store here? */
 340        if (start + len > (pernode + pernodesize))
 341                fill_pernode(node, pernode, pernodesize);
 342
 343        return 0;
 344}
 345
 346/**
 347 * reserve_pernode_space - reserve memory for per-node space
 348 *
 349 * Reserve the space used by the bootmem maps & per-node space in the boot
 350 * allocator so that when we actually create the real mem maps we don't
 351 * use their memory.
 352 */
 353static void __init reserve_pernode_space(void)
 354{
 355        unsigned long base, size;
 356        int node;
 357
 358        for_each_online_node(node) {
 359                if (node_isset(node, memory_less_mask))
 360                        continue;
 361
 362                /* Now the per-node space */
 363                size = mem_data[node].pernode_size;
 364                base = __pa(mem_data[node].pernode_addr);
 365                memblock_reserve(base, size);
 366        }
 367}
 368
 369static void __meminit scatter_node_data(void)
 370{
 371        pg_data_t **dst;
 372        int node;
 373
 374        /*
 375         * for_each_online_node() can't be used at here.
 376         * node_online_map is not set for hot-added nodes at this time,
 377         * because we are halfway through initialization of the new node's
 378         * structures.  If for_each_online_node() is used, a new node's
 379         * pg_data_ptrs will be not initialized. Instead of using it,
 380         * pgdat_list[] is checked.
 381         */
 382        for_each_node(node) {
 383                if (pgdat_list[node]) {
 384                        dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
 385                        memcpy(dst, pgdat_list, sizeof(pgdat_list));
 386                }
 387        }
 388}
 389
 390/**
 391 * initialize_pernode_data - fixup per-cpu & per-node pointers
 392 *
 393 * Each node's per-node area has a copy of the global pg_data_t list, so
 394 * we copy that to each node here, as well as setting the per-cpu pointer
 395 * to the local node data structure.
 396 */
 397static void __init initialize_pernode_data(void)
 398{
 399        int cpu, node;
 400
 401        scatter_node_data();
 402
 403#ifdef CONFIG_SMP
 404        /* Set the node_data pointer for each per-cpu struct */
 405        for_each_possible_early_cpu(cpu) {
 406                node = node_cpuid[cpu].nid;
 407                per_cpu(ia64_cpu_info, cpu).node_data =
 408                        mem_data[node].node_data;
 409        }
 410#else
 411        {
 412                struct cpuinfo_ia64 *cpu0_cpu_info;
 413                cpu = 0;
 414                node = node_cpuid[cpu].nid;
 415                cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
 416                        ((char *)&ia64_cpu_info - __per_cpu_start));
 417                cpu0_cpu_info->node_data = mem_data[node].node_data;
 418        }
 419#endif /* CONFIG_SMP */
 420}
 421
 422/**
 423 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
 424 *      node but fall back to any other node when __alloc_bootmem_node fails
 425 *      for best.
 426 * @nid: node id
 427 * @pernodesize: size of this node's pernode data
 428 */
 429static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
 430{
 431        void *ptr = NULL;
 432        u8 best = 0xff;
 433        int bestnode = NUMA_NO_NODE, node, anynode = 0;
 434
 435        for_each_online_node(node) {
 436                if (node_isset(node, memory_less_mask))
 437                        continue;
 438                else if (node_distance(nid, node) < best) {
 439                        best = node_distance(nid, node);
 440                        bestnode = node;
 441                }
 442                anynode = node;
 443        }
 444
 445        if (bestnode == NUMA_NO_NODE)
 446                bestnode = anynode;
 447
 448        ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE,
 449                                     __pa(MAX_DMA_ADDRESS),
 450                                     MEMBLOCK_ALLOC_ACCESSIBLE,
 451                                     bestnode);
 452        if (!ptr)
 453                panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%lx\n",
 454                      __func__, pernodesize, PERCPU_PAGE_SIZE, bestnode,
 455                      __pa(MAX_DMA_ADDRESS));
 456
 457        return ptr;
 458}
 459
 460/**
 461 * memory_less_nodes - allocate and initialize CPU only nodes pernode
 462 *      information.
 463 */
 464static void __init memory_less_nodes(void)
 465{
 466        unsigned long pernodesize;
 467        void *pernode;
 468        int node;
 469
 470        for_each_node_mask(node, memory_less_mask) {
 471                pernodesize = compute_pernodesize(node);
 472                pernode = memory_less_node_alloc(node, pernodesize);
 473                fill_pernode(node, __pa(pernode), pernodesize);
 474        }
 475
 476        return;
 477}
 478
 479/**
 480 * find_memory - walk the EFI memory map and setup the bootmem allocator
 481 *
 482 * Called early in boot to setup the bootmem allocator, and to
 483 * allocate the per-cpu and per-node structures.
 484 */
 485void __init find_memory(void)
 486{
 487        int node;
 488
 489        reserve_memory();
 490        efi_memmap_walk(filter_memory, register_active_ranges);
 491
 492        if (num_online_nodes() == 0) {
 493                printk(KERN_ERR "node info missing!\n");
 494                node_set_online(0);
 495        }
 496
 497        nodes_or(memory_less_mask, memory_less_mask, node_online_map);
 498        min_low_pfn = -1;
 499        max_low_pfn = 0;
 500
 501        /* These actually end up getting called by call_pernode_memory() */
 502        efi_memmap_walk(filter_rsvd_memory, build_node_maps);
 503        efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
 504        efi_memmap_walk(find_max_min_low_pfn, NULL);
 505
 506        for_each_online_node(node)
 507                if (mem_data[node].min_pfn)
 508                        node_clear(node, memory_less_mask);
 509
 510        reserve_pernode_space();
 511        memory_less_nodes();
 512        initialize_pernode_data();
 513
 514        max_pfn = max_low_pfn;
 515
 516        find_initrd();
 517}
 518
 519#ifdef CONFIG_SMP
 520/**
 521 * per_cpu_init - setup per-cpu variables
 522 *
 523 * find_pernode_space() does most of this already, we just need to set
 524 * local_per_cpu_offset
 525 */
 526void *per_cpu_init(void)
 527{
 528        int cpu;
 529        static int first_time = 1;
 530
 531        if (first_time) {
 532                first_time = 0;
 533                for_each_possible_early_cpu(cpu)
 534                        per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
 535        }
 536
 537        return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
 538}
 539#endif /* CONFIG_SMP */
 540
 541/**
 542 * call_pernode_memory - use SRAT to call callback functions with node info
 543 * @start: physical start of range
 544 * @len: length of range
 545 * @arg: function to call for each range
 546 *
 547 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
 548 * out to which node a block of memory belongs.  Ignore memory that we cannot
 549 * identify, and split blocks that run across multiple nodes.
 550 *
 551 * Take this opportunity to round the start address up and the end address
 552 * down to page boundaries.
 553 */
 554void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
 555{
 556        unsigned long rs, re, end = start + len;
 557        void (*func)(unsigned long, unsigned long, int);
 558        int i;
 559
 560        start = PAGE_ALIGN(start);
 561        end &= PAGE_MASK;
 562        if (start >= end)
 563                return;
 564
 565        func = arg;
 566
 567        if (!num_node_memblks) {
 568                /* No SRAT table, so assume one node (node 0) */
 569                if (start < end)
 570                        (*func)(start, end - start, 0);
 571                return;
 572        }
 573
 574        for (i = 0; i < num_node_memblks; i++) {
 575                rs = max(start, node_memblk[i].start_paddr);
 576                re = min(end, node_memblk[i].start_paddr +
 577                         node_memblk[i].size);
 578
 579                if (rs < re)
 580                        (*func)(rs, re - rs, node_memblk[i].nid);
 581
 582                if (re == end)
 583                        break;
 584        }
 585}
 586
 587/**
 588 * paging_init - setup page tables
 589 *
 590 * paging_init() sets up the page tables for each node of the system and frees
 591 * the bootmem allocator memory for general use.
 592 */
 593void __init paging_init(void)
 594{
 595        unsigned long max_dma;
 596        unsigned long pfn_offset = 0;
 597        unsigned long max_pfn = 0;
 598        int node;
 599        unsigned long max_zone_pfns[MAX_NR_ZONES];
 600
 601        max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
 602
 603        sparse_init();
 604
 605#ifdef CONFIG_VIRTUAL_MEM_MAP
 606        VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
 607                sizeof(struct page));
 608        vmem_map = (struct page *) VMALLOC_END;
 609        efi_memmap_walk(create_mem_map_page_table, NULL);
 610        printk("Virtual mem_map starts at 0x%p\n", vmem_map);
 611#endif
 612
 613        for_each_online_node(node) {
 614                pfn_offset = mem_data[node].min_pfn;
 615
 616#ifdef CONFIG_VIRTUAL_MEM_MAP
 617                NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
 618#endif
 619                if (mem_data[node].max_pfn > max_pfn)
 620                        max_pfn = mem_data[node].max_pfn;
 621        }
 622
 623        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 624#ifdef CONFIG_ZONE_DMA32
 625        max_zone_pfns[ZONE_DMA32] = max_dma;
 626#endif
 627        max_zone_pfns[ZONE_NORMAL] = max_pfn;
 628        free_area_init(max_zone_pfns);
 629
 630        zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
 631}
 632
 633#ifdef CONFIG_MEMORY_HOTPLUG
 634pg_data_t *arch_alloc_nodedata(int nid)
 635{
 636        unsigned long size = compute_pernodesize(nid);
 637
 638        return kzalloc(size, GFP_KERNEL);
 639}
 640
 641void arch_free_nodedata(pg_data_t *pgdat)
 642{
 643        kfree(pgdat);
 644}
 645
 646void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
 647{
 648        pgdat_list[update_node] = update_pgdat;
 649        scatter_node_data();
 650}
 651#endif
 652
 653#ifdef CONFIG_SPARSEMEM_VMEMMAP
 654int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
 655                struct vmem_altmap *altmap)
 656{
 657        return vmemmap_populate_basepages(start, end, node, NULL);
 658}
 659
 660void vmemmap_free(unsigned long start, unsigned long end,
 661                struct vmem_altmap *altmap)
 662{
 663}
 664#endif
 665