linux/arch/mips/kernel/traps.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13 * Copyright (C) 2014, Imagination Technologies Ltd.
  14 */
  15#include <linux/bitops.h>
  16#include <linux/bug.h>
  17#include <linux/compiler.h>
  18#include <linux/context_tracking.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/kexec.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/extable.h>
  25#include <linux/mm.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/debug.h>
  28#include <linux/smp.h>
  29#include <linux/spinlock.h>
  30#include <linux/kallsyms.h>
  31#include <linux/memblock.h>
  32#include <linux/interrupt.h>
  33#include <linux/ptrace.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdebug.h>
  36#include <linux/kprobes.h>
  37#include <linux/notifier.h>
  38#include <linux/kdb.h>
  39#include <linux/irq.h>
  40#include <linux/perf_event.h>
  41
  42#include <asm/addrspace.h>
  43#include <asm/bootinfo.h>
  44#include <asm/branch.h>
  45#include <asm/break.h>
  46#include <asm/cop2.h>
  47#include <asm/cpu.h>
  48#include <asm/cpu-type.h>
  49#include <asm/dsp.h>
  50#include <asm/fpu.h>
  51#include <asm/fpu_emulator.h>
  52#include <asm/idle.h>
  53#include <asm/isa-rev.h>
  54#include <asm/mips-cps.h>
  55#include <asm/mips-r2-to-r6-emul.h>
  56#include <asm/mipsregs.h>
  57#include <asm/mipsmtregs.h>
  58#include <asm/module.h>
  59#include <asm/msa.h>
  60#include <asm/ptrace.h>
  61#include <asm/sections.h>
  62#include <asm/siginfo.h>
  63#include <asm/tlbdebug.h>
  64#include <asm/traps.h>
  65#include <linux/uaccess.h>
  66#include <asm/watch.h>
  67#include <asm/mmu_context.h>
  68#include <asm/types.h>
  69#include <asm/stacktrace.h>
  70#include <asm/tlbex.h>
  71#include <asm/uasm.h>
  72
  73#include <asm/mach-loongson64/cpucfg-emul.h>
  74
  75extern void check_wait(void);
  76extern asmlinkage void rollback_handle_int(void);
  77extern asmlinkage void handle_int(void);
  78extern asmlinkage void handle_adel(void);
  79extern asmlinkage void handle_ades(void);
  80extern asmlinkage void handle_ibe(void);
  81extern asmlinkage void handle_dbe(void);
  82extern asmlinkage void handle_sys(void);
  83extern asmlinkage void handle_bp(void);
  84extern asmlinkage void handle_ri(void);
  85extern asmlinkage void handle_ri_rdhwr_tlbp(void);
  86extern asmlinkage void handle_ri_rdhwr(void);
  87extern asmlinkage void handle_cpu(void);
  88extern asmlinkage void handle_ov(void);
  89extern asmlinkage void handle_tr(void);
  90extern asmlinkage void handle_msa_fpe(void);
  91extern asmlinkage void handle_fpe(void);
  92extern asmlinkage void handle_ftlb(void);
  93extern asmlinkage void handle_gsexc(void);
  94extern asmlinkage void handle_msa(void);
  95extern asmlinkage void handle_mdmx(void);
  96extern asmlinkage void handle_watch(void);
  97extern asmlinkage void handle_mt(void);
  98extern asmlinkage void handle_dsp(void);
  99extern asmlinkage void handle_mcheck(void);
 100extern asmlinkage void handle_reserved(void);
 101extern void tlb_do_page_fault_0(void);
 102
 103void (*board_be_init)(void);
 104int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
 105void (*board_nmi_handler_setup)(void);
 106void (*board_ejtag_handler_setup)(void);
 107void (*board_bind_eic_interrupt)(int irq, int regset);
 108void (*board_ebase_setup)(void);
 109void(*board_cache_error_setup)(void);
 110
 111static void show_raw_backtrace(unsigned long reg29, const char *loglvl)
 112{
 113        unsigned long *sp = (unsigned long *)(reg29 & ~3);
 114        unsigned long addr;
 115
 116        printk("%sCall Trace:", loglvl);
 117#ifdef CONFIG_KALLSYMS
 118        printk("%s\n", loglvl);
 119#endif
 120        while (!kstack_end(sp)) {
 121                unsigned long __user *p =
 122                        (unsigned long __user *)(unsigned long)sp++;
 123                if (__get_user(addr, p)) {
 124                        printk("%s (Bad stack address)", loglvl);
 125                        break;
 126                }
 127                if (__kernel_text_address(addr))
 128                        print_ip_sym(loglvl, addr);
 129        }
 130        printk("%s\n", loglvl);
 131}
 132
 133#ifdef CONFIG_KALLSYMS
 134int raw_show_trace;
 135static int __init set_raw_show_trace(char *str)
 136{
 137        raw_show_trace = 1;
 138        return 1;
 139}
 140__setup("raw_show_trace", set_raw_show_trace);
 141#endif
 142
 143static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
 144                           const char *loglvl)
 145{
 146        unsigned long sp = regs->regs[29];
 147        unsigned long ra = regs->regs[31];
 148        unsigned long pc = regs->cp0_epc;
 149
 150        if (!task)
 151                task = current;
 152
 153        if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
 154                show_raw_backtrace(sp, loglvl);
 155                return;
 156        }
 157        printk("%sCall Trace:\n", loglvl);
 158        do {
 159                print_ip_sym(loglvl, pc);
 160                pc = unwind_stack(task, &sp, pc, &ra);
 161        } while (pc);
 162        pr_cont("\n");
 163}
 164
 165/*
 166 * This routine abuses get_user()/put_user() to reference pointers
 167 * with at least a bit of error checking ...
 168 */
 169static void show_stacktrace(struct task_struct *task,
 170        const struct pt_regs *regs, const char *loglvl)
 171{
 172        const int field = 2 * sizeof(unsigned long);
 173        long stackdata;
 174        int i;
 175        unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 176
 177        printk("%sStack :", loglvl);
 178        i = 0;
 179        while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 180                if (i && ((i % (64 / field)) == 0)) {
 181                        pr_cont("\n");
 182                        printk("%s       ", loglvl);
 183                }
 184                if (i > 39) {
 185                        pr_cont(" ...");
 186                        break;
 187                }
 188
 189                if (__get_user(stackdata, sp++)) {
 190                        pr_cont(" (Bad stack address)");
 191                        break;
 192                }
 193
 194                pr_cont(" %0*lx", field, stackdata);
 195                i++;
 196        }
 197        pr_cont("\n");
 198        show_backtrace(task, regs, loglvl);
 199}
 200
 201void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
 202{
 203        struct pt_regs regs;
 204        mm_segment_t old_fs = get_fs();
 205
 206        regs.cp0_status = KSU_KERNEL;
 207        if (sp) {
 208                regs.regs[29] = (unsigned long)sp;
 209                regs.regs[31] = 0;
 210                regs.cp0_epc = 0;
 211        } else {
 212                if (task && task != current) {
 213                        regs.regs[29] = task->thread.reg29;
 214                        regs.regs[31] = 0;
 215                        regs.cp0_epc = task->thread.reg31;
 216                } else {
 217                        prepare_frametrace(&regs);
 218                }
 219        }
 220        /*
 221         * show_stack() deals exclusively with kernel mode, so be sure to access
 222         * the stack in the kernel (not user) address space.
 223         */
 224        set_fs(KERNEL_DS);
 225        show_stacktrace(task, &regs, loglvl);
 226        set_fs(old_fs);
 227}
 228
 229static void show_code(unsigned int __user *pc)
 230{
 231        long i;
 232        unsigned short __user *pc16 = NULL;
 233
 234        printk("Code:");
 235
 236        if ((unsigned long)pc & 1)
 237                pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 238        for(i = -3 ; i < 6 ; i++) {
 239                unsigned int insn;
 240                if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 241                        pr_cont(" (Bad address in epc)\n");
 242                        break;
 243                }
 244                pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 245        }
 246        pr_cont("\n");
 247}
 248
 249static void __show_regs(const struct pt_regs *regs)
 250{
 251        const int field = 2 * sizeof(unsigned long);
 252        unsigned int cause = regs->cp0_cause;
 253        unsigned int exccode;
 254        int i;
 255
 256        show_regs_print_info(KERN_DEFAULT);
 257
 258        /*
 259         * Saved main processor registers
 260         */
 261        for (i = 0; i < 32; ) {
 262                if ((i % 4) == 0)
 263                        printk("$%2d   :", i);
 264                if (i == 0)
 265                        pr_cont(" %0*lx", field, 0UL);
 266                else if (i == 26 || i == 27)
 267                        pr_cont(" %*s", field, "");
 268                else
 269                        pr_cont(" %0*lx", field, regs->regs[i]);
 270
 271                i++;
 272                if ((i % 4) == 0)
 273                        pr_cont("\n");
 274        }
 275
 276#ifdef CONFIG_CPU_HAS_SMARTMIPS
 277        printk("Acx    : %0*lx\n", field, regs->acx);
 278#endif
 279        if (MIPS_ISA_REV < 6) {
 280                printk("Hi    : %0*lx\n", field, regs->hi);
 281                printk("Lo    : %0*lx\n", field, regs->lo);
 282        }
 283
 284        /*
 285         * Saved cp0 registers
 286         */
 287        printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 288               (void *) regs->cp0_epc);
 289        printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 290               (void *) regs->regs[31]);
 291
 292        printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 293
 294        if (cpu_has_3kex) {
 295                if (regs->cp0_status & ST0_KUO)
 296                        pr_cont("KUo ");
 297                if (regs->cp0_status & ST0_IEO)
 298                        pr_cont("IEo ");
 299                if (regs->cp0_status & ST0_KUP)
 300                        pr_cont("KUp ");
 301                if (regs->cp0_status & ST0_IEP)
 302                        pr_cont("IEp ");
 303                if (regs->cp0_status & ST0_KUC)
 304                        pr_cont("KUc ");
 305                if (regs->cp0_status & ST0_IEC)
 306                        pr_cont("IEc ");
 307        } else if (cpu_has_4kex) {
 308                if (regs->cp0_status & ST0_KX)
 309                        pr_cont("KX ");
 310                if (regs->cp0_status & ST0_SX)
 311                        pr_cont("SX ");
 312                if (regs->cp0_status & ST0_UX)
 313                        pr_cont("UX ");
 314                switch (regs->cp0_status & ST0_KSU) {
 315                case KSU_USER:
 316                        pr_cont("USER ");
 317                        break;
 318                case KSU_SUPERVISOR:
 319                        pr_cont("SUPERVISOR ");
 320                        break;
 321                case KSU_KERNEL:
 322                        pr_cont("KERNEL ");
 323                        break;
 324                default:
 325                        pr_cont("BAD_MODE ");
 326                        break;
 327                }
 328                if (regs->cp0_status & ST0_ERL)
 329                        pr_cont("ERL ");
 330                if (regs->cp0_status & ST0_EXL)
 331                        pr_cont("EXL ");
 332                if (regs->cp0_status & ST0_IE)
 333                        pr_cont("IE ");
 334        }
 335        pr_cont("\n");
 336
 337        exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 338        printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
 339
 340        if (1 <= exccode && exccode <= 5)
 341                printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 342
 343        printk("PrId  : %08x (%s)\n", read_c0_prid(),
 344               cpu_name_string());
 345}
 346
 347/*
 348 * FIXME: really the generic show_regs should take a const pointer argument.
 349 */
 350void show_regs(struct pt_regs *regs)
 351{
 352        __show_regs(regs);
 353        dump_stack();
 354}
 355
 356void show_registers(struct pt_regs *regs)
 357{
 358        const int field = 2 * sizeof(unsigned long);
 359        mm_segment_t old_fs = get_fs();
 360
 361        __show_regs(regs);
 362        print_modules();
 363        printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 364               current->comm, current->pid, current_thread_info(), current,
 365              field, current_thread_info()->tp_value);
 366        if (cpu_has_userlocal) {
 367                unsigned long tls;
 368
 369                tls = read_c0_userlocal();
 370                if (tls != current_thread_info()->tp_value)
 371                        printk("*HwTLS: %0*lx\n", field, tls);
 372        }
 373
 374        if (!user_mode(regs))
 375                /* Necessary for getting the correct stack content */
 376                set_fs(KERNEL_DS);
 377        show_stacktrace(current, regs, KERN_DEFAULT);
 378        show_code((unsigned int __user *) regs->cp0_epc);
 379        printk("\n");
 380        set_fs(old_fs);
 381}
 382
 383static DEFINE_RAW_SPINLOCK(die_lock);
 384
 385void __noreturn die(const char *str, struct pt_regs *regs)
 386{
 387        static int die_counter;
 388        int sig = SIGSEGV;
 389
 390        oops_enter();
 391
 392        if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
 393                       SIGSEGV) == NOTIFY_STOP)
 394                sig = 0;
 395
 396        console_verbose();
 397        raw_spin_lock_irq(&die_lock);
 398        bust_spinlocks(1);
 399
 400        printk("%s[#%d]:\n", str, ++die_counter);
 401        show_registers(regs);
 402        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 403        raw_spin_unlock_irq(&die_lock);
 404
 405        oops_exit();
 406
 407        if (in_interrupt())
 408                panic("Fatal exception in interrupt");
 409
 410        if (panic_on_oops)
 411                panic("Fatal exception");
 412
 413        if (regs && kexec_should_crash(current))
 414                crash_kexec(regs);
 415
 416        do_exit(sig);
 417}
 418
 419extern struct exception_table_entry __start___dbe_table[];
 420extern struct exception_table_entry __stop___dbe_table[];
 421
 422__asm__(
 423"       .section        __dbe_table, \"a\"\n"
 424"       .previous                       \n");
 425
 426/* Given an address, look for it in the exception tables. */
 427static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 428{
 429        const struct exception_table_entry *e;
 430
 431        e = search_extable(__start___dbe_table,
 432                           __stop___dbe_table - __start___dbe_table, addr);
 433        if (!e)
 434                e = search_module_dbetables(addr);
 435        return e;
 436}
 437
 438asmlinkage void do_be(struct pt_regs *regs)
 439{
 440        const int field = 2 * sizeof(unsigned long);
 441        const struct exception_table_entry *fixup = NULL;
 442        int data = regs->cp0_cause & 4;
 443        int action = MIPS_BE_FATAL;
 444        enum ctx_state prev_state;
 445
 446        prev_state = exception_enter();
 447        /* XXX For now.  Fixme, this searches the wrong table ...  */
 448        if (data && !user_mode(regs))
 449                fixup = search_dbe_tables(exception_epc(regs));
 450
 451        if (fixup)
 452                action = MIPS_BE_FIXUP;
 453
 454        if (board_be_handler)
 455                action = board_be_handler(regs, fixup != NULL);
 456        else
 457                mips_cm_error_report();
 458
 459        switch (action) {
 460        case MIPS_BE_DISCARD:
 461                goto out;
 462        case MIPS_BE_FIXUP:
 463                if (fixup) {
 464                        regs->cp0_epc = fixup->nextinsn;
 465                        goto out;
 466                }
 467                break;
 468        default:
 469                break;
 470        }
 471
 472        /*
 473         * Assume it would be too dangerous to continue ...
 474         */
 475        printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 476               data ? "Data" : "Instruction",
 477               field, regs->cp0_epc, field, regs->regs[31]);
 478        if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
 479                       SIGBUS) == NOTIFY_STOP)
 480                goto out;
 481
 482        die_if_kernel("Oops", regs);
 483        force_sig(SIGBUS);
 484
 485out:
 486        exception_exit(prev_state);
 487}
 488
 489/*
 490 * ll/sc, rdhwr, sync emulation
 491 */
 492
 493#define OPCODE 0xfc000000
 494#define BASE   0x03e00000
 495#define RT     0x001f0000
 496#define OFFSET 0x0000ffff
 497#define LL     0xc0000000
 498#define SC     0xe0000000
 499#define SPEC0  0x00000000
 500#define SPEC3  0x7c000000
 501#define RD     0x0000f800
 502#define FUNC   0x0000003f
 503#define SYNC   0x0000000f
 504#define RDHWR  0x0000003b
 505
 506/*  microMIPS definitions   */
 507#define MM_POOL32A_FUNC 0xfc00ffff
 508#define MM_RDHWR        0x00006b3c
 509#define MM_RS           0x001f0000
 510#define MM_RT           0x03e00000
 511
 512/*
 513 * The ll_bit is cleared by r*_switch.S
 514 */
 515
 516unsigned int ll_bit;
 517struct task_struct *ll_task;
 518
 519static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 520{
 521        unsigned long value, __user *vaddr;
 522        long offset;
 523
 524        /*
 525         * analyse the ll instruction that just caused a ri exception
 526         * and put the referenced address to addr.
 527         */
 528
 529        /* sign extend offset */
 530        offset = opcode & OFFSET;
 531        offset <<= 16;
 532        offset >>= 16;
 533
 534        vaddr = (unsigned long __user *)
 535                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 536
 537        if ((unsigned long)vaddr & 3)
 538                return SIGBUS;
 539        if (get_user(value, vaddr))
 540                return SIGSEGV;
 541
 542        preempt_disable();
 543
 544        if (ll_task == NULL || ll_task == current) {
 545                ll_bit = 1;
 546        } else {
 547                ll_bit = 0;
 548        }
 549        ll_task = current;
 550
 551        preempt_enable();
 552
 553        regs->regs[(opcode & RT) >> 16] = value;
 554
 555        return 0;
 556}
 557
 558static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 559{
 560        unsigned long __user *vaddr;
 561        unsigned long reg;
 562        long offset;
 563
 564        /*
 565         * analyse the sc instruction that just caused a ri exception
 566         * and put the referenced address to addr.
 567         */
 568
 569        /* sign extend offset */
 570        offset = opcode & OFFSET;
 571        offset <<= 16;
 572        offset >>= 16;
 573
 574        vaddr = (unsigned long __user *)
 575                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 576        reg = (opcode & RT) >> 16;
 577
 578        if ((unsigned long)vaddr & 3)
 579                return SIGBUS;
 580
 581        preempt_disable();
 582
 583        if (ll_bit == 0 || ll_task != current) {
 584                regs->regs[reg] = 0;
 585                preempt_enable();
 586                return 0;
 587        }
 588
 589        preempt_enable();
 590
 591        if (put_user(regs->regs[reg], vaddr))
 592                return SIGSEGV;
 593
 594        regs->regs[reg] = 1;
 595
 596        return 0;
 597}
 598
 599/*
 600 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 601 * opcodes are supposed to result in coprocessor unusable exceptions if
 602 * executed on ll/sc-less processors.  That's the theory.  In practice a
 603 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 604 * instead, so we're doing the emulation thing in both exception handlers.
 605 */
 606static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 607{
 608        if ((opcode & OPCODE) == LL) {
 609                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 610                                1, regs, 0);
 611                return simulate_ll(regs, opcode);
 612        }
 613        if ((opcode & OPCODE) == SC) {
 614                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 615                                1, regs, 0);
 616                return simulate_sc(regs, opcode);
 617        }
 618
 619        return -1;                      /* Must be something else ... */
 620}
 621
 622/*
 623 * Simulate trapping 'rdhwr' instructions to provide user accessible
 624 * registers not implemented in hardware.
 625 */
 626static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 627{
 628        struct thread_info *ti = task_thread_info(current);
 629
 630        perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 631                        1, regs, 0);
 632        switch (rd) {
 633        case MIPS_HWR_CPUNUM:           /* CPU number */
 634                regs->regs[rt] = smp_processor_id();
 635                return 0;
 636        case MIPS_HWR_SYNCISTEP:        /* SYNCI length */
 637                regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 638                                     current_cpu_data.icache.linesz);
 639                return 0;
 640        case MIPS_HWR_CC:               /* Read count register */
 641                regs->regs[rt] = read_c0_count();
 642                return 0;
 643        case MIPS_HWR_CCRES:            /* Count register resolution */
 644                switch (current_cpu_type()) {
 645                case CPU_20KC:
 646                case CPU_25KF:
 647                        regs->regs[rt] = 1;
 648                        break;
 649                default:
 650                        regs->regs[rt] = 2;
 651                }
 652                return 0;
 653        case MIPS_HWR_ULR:              /* Read UserLocal register */
 654                regs->regs[rt] = ti->tp_value;
 655                return 0;
 656        default:
 657                return -1;
 658        }
 659}
 660
 661static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 662{
 663        if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 664                int rd = (opcode & RD) >> 11;
 665                int rt = (opcode & RT) >> 16;
 666
 667                simulate_rdhwr(regs, rd, rt);
 668                return 0;
 669        }
 670
 671        /* Not ours.  */
 672        return -1;
 673}
 674
 675static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
 676{
 677        if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 678                int rd = (opcode & MM_RS) >> 16;
 679                int rt = (opcode & MM_RT) >> 21;
 680                simulate_rdhwr(regs, rd, rt);
 681                return 0;
 682        }
 683
 684        /* Not ours.  */
 685        return -1;
 686}
 687
 688static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 689{
 690        if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 691                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 692                                1, regs, 0);
 693                return 0;
 694        }
 695
 696        return -1;                      /* Must be something else ... */
 697}
 698
 699/*
 700 * Loongson-3 CSR instructions emulation
 701 */
 702
 703#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
 704
 705#define LWC2             0xc8000000
 706#define RS               BASE
 707#define CSR_OPCODE2      0x00000118
 708#define CSR_OPCODE2_MASK 0x000007ff
 709#define CSR_FUNC_MASK    RT
 710#define CSR_FUNC_CPUCFG  0x8
 711
 712static int simulate_loongson3_cpucfg(struct pt_regs *regs,
 713                                     unsigned int opcode)
 714{
 715        int op = opcode & OPCODE;
 716        int op2 = opcode & CSR_OPCODE2_MASK;
 717        int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
 718
 719        if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
 720                int rd = (opcode & RD) >> 11;
 721                int rs = (opcode & RS) >> 21;
 722                __u64 sel = regs->regs[rs];
 723
 724                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
 725
 726                /* Do not emulate on unsupported core models. */
 727                preempt_disable();
 728                if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
 729                        preempt_enable();
 730                        return -1;
 731                }
 732                regs->regs[rd] = loongson3_cpucfg_read_synthesized(
 733                        &current_cpu_data, sel);
 734                preempt_enable();
 735                return 0;
 736        }
 737
 738        /* Not ours.  */
 739        return -1;
 740}
 741#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
 742
 743asmlinkage void do_ov(struct pt_regs *regs)
 744{
 745        enum ctx_state prev_state;
 746
 747        prev_state = exception_enter();
 748        die_if_kernel("Integer overflow", regs);
 749
 750        force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
 751        exception_exit(prev_state);
 752}
 753
 754#ifdef CONFIG_MIPS_FP_SUPPORT
 755
 756/*
 757 * Send SIGFPE according to FCSR Cause bits, which must have already
 758 * been masked against Enable bits.  This is impotant as Inexact can
 759 * happen together with Overflow or Underflow, and `ptrace' can set
 760 * any bits.
 761 */
 762void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
 763                     struct task_struct *tsk)
 764{
 765        int si_code = FPE_FLTUNK;
 766
 767        if (fcr31 & FPU_CSR_INV_X)
 768                si_code = FPE_FLTINV;
 769        else if (fcr31 & FPU_CSR_DIV_X)
 770                si_code = FPE_FLTDIV;
 771        else if (fcr31 & FPU_CSR_OVF_X)
 772                si_code = FPE_FLTOVF;
 773        else if (fcr31 & FPU_CSR_UDF_X)
 774                si_code = FPE_FLTUND;
 775        else if (fcr31 & FPU_CSR_INE_X)
 776                si_code = FPE_FLTRES;
 777
 778        force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
 779}
 780
 781int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
 782{
 783        int si_code;
 784        struct vm_area_struct *vma;
 785
 786        switch (sig) {
 787        case 0:
 788                return 0;
 789
 790        case SIGFPE:
 791                force_fcr31_sig(fcr31, fault_addr, current);
 792                return 1;
 793
 794        case SIGBUS:
 795                force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
 796                return 1;
 797
 798        case SIGSEGV:
 799                mmap_read_lock(current->mm);
 800                vma = find_vma(current->mm, (unsigned long)fault_addr);
 801                if (vma && (vma->vm_start <= (unsigned long)fault_addr))
 802                        si_code = SEGV_ACCERR;
 803                else
 804                        si_code = SEGV_MAPERR;
 805                mmap_read_unlock(current->mm);
 806                force_sig_fault(SIGSEGV, si_code, fault_addr);
 807                return 1;
 808
 809        default:
 810                force_sig(sig);
 811                return 1;
 812        }
 813}
 814
 815static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 816                       unsigned long old_epc, unsigned long old_ra)
 817{
 818        union mips_instruction inst = { .word = opcode };
 819        void __user *fault_addr;
 820        unsigned long fcr31;
 821        int sig;
 822
 823        /* If it's obviously not an FP instruction, skip it */
 824        switch (inst.i_format.opcode) {
 825        case cop1_op:
 826        case cop1x_op:
 827        case lwc1_op:
 828        case ldc1_op:
 829        case swc1_op:
 830        case sdc1_op:
 831                break;
 832
 833        default:
 834                return -1;
 835        }
 836
 837        /*
 838         * do_ri skipped over the instruction via compute_return_epc, undo
 839         * that for the FPU emulator.
 840         */
 841        regs->cp0_epc = old_epc;
 842        regs->regs[31] = old_ra;
 843
 844        /* Run the emulator */
 845        sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 846                                       &fault_addr);
 847
 848        /*
 849         * We can't allow the emulated instruction to leave any
 850         * enabled Cause bits set in $fcr31.
 851         */
 852        fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 853        current->thread.fpu.fcr31 &= ~fcr31;
 854
 855        /* Restore the hardware register state */
 856        own_fpu(1);
 857
 858        /* Send a signal if required.  */
 859        process_fpemu_return(sig, fault_addr, fcr31);
 860
 861        return 0;
 862}
 863
 864/*
 865 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 866 */
 867asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 868{
 869        enum ctx_state prev_state;
 870        void __user *fault_addr;
 871        int sig;
 872
 873        prev_state = exception_enter();
 874        if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
 875                       SIGFPE) == NOTIFY_STOP)
 876                goto out;
 877
 878        /* Clear FCSR.Cause before enabling interrupts */
 879        write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
 880        local_irq_enable();
 881
 882        die_if_kernel("FP exception in kernel code", regs);
 883
 884        if (fcr31 & FPU_CSR_UNI_X) {
 885                /*
 886                 * Unimplemented operation exception.  If we've got the full
 887                 * software emulator on-board, let's use it...
 888                 *
 889                 * Force FPU to dump state into task/thread context.  We're
 890                 * moving a lot of data here for what is probably a single
 891                 * instruction, but the alternative is to pre-decode the FP
 892                 * register operands before invoking the emulator, which seems
 893                 * a bit extreme for what should be an infrequent event.
 894                 */
 895
 896                /* Run the emulator */
 897                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 898                                               &fault_addr);
 899
 900                /*
 901                 * We can't allow the emulated instruction to leave any
 902                 * enabled Cause bits set in $fcr31.
 903                 */
 904                fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 905                current->thread.fpu.fcr31 &= ~fcr31;
 906
 907                /* Restore the hardware register state */
 908                own_fpu(1);     /* Using the FPU again.  */
 909        } else {
 910                sig = SIGFPE;
 911                fault_addr = (void __user *) regs->cp0_epc;
 912        }
 913
 914        /* Send a signal if required.  */
 915        process_fpemu_return(sig, fault_addr, fcr31);
 916
 917out:
 918        exception_exit(prev_state);
 919}
 920
 921/*
 922 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 923 * emulated more than some threshold number of instructions, force migration to
 924 * a "CPU" that has FP support.
 925 */
 926static void mt_ase_fp_affinity(void)
 927{
 928#ifdef CONFIG_MIPS_MT_FPAFF
 929        if (mt_fpemul_threshold > 0 &&
 930             ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 931                /*
 932                 * If there's no FPU present, or if the application has already
 933                 * restricted the allowed set to exclude any CPUs with FPUs,
 934                 * we'll skip the procedure.
 935                 */
 936                if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
 937                        cpumask_t tmask;
 938
 939                        current->thread.user_cpus_allowed
 940                                = current->cpus_mask;
 941                        cpumask_and(&tmask, &current->cpus_mask,
 942                                    &mt_fpu_cpumask);
 943                        set_cpus_allowed_ptr(current, &tmask);
 944                        set_thread_flag(TIF_FPUBOUND);
 945                }
 946        }
 947#endif /* CONFIG_MIPS_MT_FPAFF */
 948}
 949
 950#else /* !CONFIG_MIPS_FP_SUPPORT */
 951
 952static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 953                       unsigned long old_epc, unsigned long old_ra)
 954{
 955        return -1;
 956}
 957
 958#endif /* !CONFIG_MIPS_FP_SUPPORT */
 959
 960void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
 961        const char *str)
 962{
 963        char b[40];
 964
 965#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 966        if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 967                         SIGTRAP) == NOTIFY_STOP)
 968                return;
 969#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 970
 971        if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 972                       SIGTRAP) == NOTIFY_STOP)
 973                return;
 974
 975        /*
 976         * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 977         * insns, even for trap and break codes that indicate arithmetic
 978         * failures.  Weird ...
 979         * But should we continue the brokenness???  --macro
 980         */
 981        switch (code) {
 982        case BRK_OVERFLOW:
 983        case BRK_DIVZERO:
 984                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 985                die_if_kernel(b, regs);
 986                force_sig_fault(SIGFPE,
 987                                code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
 988                                (void __user *) regs->cp0_epc);
 989                break;
 990        case BRK_BUG:
 991                die_if_kernel("Kernel bug detected", regs);
 992                force_sig(SIGTRAP);
 993                break;
 994        case BRK_MEMU:
 995                /*
 996                 * This breakpoint code is used by the FPU emulator to retake
 997                 * control of the CPU after executing the instruction from the
 998                 * delay slot of an emulated branch.
 999                 *
1000                 * Terminate if exception was recognized as a delay slot return
1001                 * otherwise handle as normal.
1002                 */
1003                if (do_dsemulret(regs))
1004                        return;
1005
1006                die_if_kernel("Math emu break/trap", regs);
1007                force_sig(SIGTRAP);
1008                break;
1009        default:
1010                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1011                die_if_kernel(b, regs);
1012                if (si_code) {
1013                        force_sig_fault(SIGTRAP, si_code, NULL);
1014                } else {
1015                        force_sig(SIGTRAP);
1016                }
1017        }
1018}
1019
1020asmlinkage void do_bp(struct pt_regs *regs)
1021{
1022        unsigned long epc = msk_isa16_mode(exception_epc(regs));
1023        unsigned int opcode, bcode;
1024        enum ctx_state prev_state;
1025        mm_segment_t seg;
1026
1027        seg = get_fs();
1028        if (!user_mode(regs))
1029                set_fs(KERNEL_DS);
1030
1031        prev_state = exception_enter();
1032        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1033        if (get_isa16_mode(regs->cp0_epc)) {
1034                u16 instr[2];
1035
1036                if (__get_user(instr[0], (u16 __user *)epc))
1037                        goto out_sigsegv;
1038
1039                if (!cpu_has_mmips) {
1040                        /* MIPS16e mode */
1041                        bcode = (instr[0] >> 5) & 0x3f;
1042                } else if (mm_insn_16bit(instr[0])) {
1043                        /* 16-bit microMIPS BREAK */
1044                        bcode = instr[0] & 0xf;
1045                } else {
1046                        /* 32-bit microMIPS BREAK */
1047                        if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1048                                goto out_sigsegv;
1049                        opcode = (instr[0] << 16) | instr[1];
1050                        bcode = (opcode >> 6) & ((1 << 20) - 1);
1051                }
1052        } else {
1053                if (__get_user(opcode, (unsigned int __user *)epc))
1054                        goto out_sigsegv;
1055                bcode = (opcode >> 6) & ((1 << 20) - 1);
1056        }
1057
1058        /*
1059         * There is the ancient bug in the MIPS assemblers that the break
1060         * code starts left to bit 16 instead to bit 6 in the opcode.
1061         * Gas is bug-compatible, but not always, grrr...
1062         * We handle both cases with a simple heuristics.  --macro
1063         */
1064        if (bcode >= (1 << 10))
1065                bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1066
1067        /*
1068         * notify the kprobe handlers, if instruction is likely to
1069         * pertain to them.
1070         */
1071        switch (bcode) {
1072        case BRK_UPROBE:
1073                if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1074                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1075                        goto out;
1076                else
1077                        break;
1078        case BRK_UPROBE_XOL:
1079                if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1080                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1081                        goto out;
1082                else
1083                        break;
1084        case BRK_KPROBE_BP:
1085                if (notify_die(DIE_BREAK, "debug", regs, bcode,
1086                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1087                        goto out;
1088                else
1089                        break;
1090        case BRK_KPROBE_SSTEPBP:
1091                if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1092                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1093                        goto out;
1094                else
1095                        break;
1096        default:
1097                break;
1098        }
1099
1100        do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1101
1102out:
1103        set_fs(seg);
1104        exception_exit(prev_state);
1105        return;
1106
1107out_sigsegv:
1108        force_sig(SIGSEGV);
1109        goto out;
1110}
1111
1112asmlinkage void do_tr(struct pt_regs *regs)
1113{
1114        u32 opcode, tcode = 0;
1115        enum ctx_state prev_state;
1116        u16 instr[2];
1117        mm_segment_t seg;
1118        unsigned long epc = msk_isa16_mode(exception_epc(regs));
1119
1120        seg = get_fs();
1121        if (!user_mode(regs))
1122                set_fs(KERNEL_DS);
1123
1124        prev_state = exception_enter();
1125        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1126        if (get_isa16_mode(regs->cp0_epc)) {
1127                if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1128                    __get_user(instr[1], (u16 __user *)(epc + 2)))
1129                        goto out_sigsegv;
1130                opcode = (instr[0] << 16) | instr[1];
1131                /* Immediate versions don't provide a code.  */
1132                if (!(opcode & OPCODE))
1133                        tcode = (opcode >> 12) & ((1 << 4) - 1);
1134        } else {
1135                if (__get_user(opcode, (u32 __user *)epc))
1136                        goto out_sigsegv;
1137                /* Immediate versions don't provide a code.  */
1138                if (!(opcode & OPCODE))
1139                        tcode = (opcode >> 6) & ((1 << 10) - 1);
1140        }
1141
1142        do_trap_or_bp(regs, tcode, 0, "Trap");
1143
1144out:
1145        set_fs(seg);
1146        exception_exit(prev_state);
1147        return;
1148
1149out_sigsegv:
1150        force_sig(SIGSEGV);
1151        goto out;
1152}
1153
1154asmlinkage void do_ri(struct pt_regs *regs)
1155{
1156        unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1157        unsigned long old_epc = regs->cp0_epc;
1158        unsigned long old31 = regs->regs[31];
1159        enum ctx_state prev_state;
1160        unsigned int opcode = 0;
1161        int status = -1;
1162
1163        /*
1164         * Avoid any kernel code. Just emulate the R2 instruction
1165         * as quickly as possible.
1166         */
1167        if (mipsr2_emulation && cpu_has_mips_r6 &&
1168            likely(user_mode(regs)) &&
1169            likely(get_user(opcode, epc) >= 0)) {
1170                unsigned long fcr31 = 0;
1171
1172                status = mipsr2_decoder(regs, opcode, &fcr31);
1173                switch (status) {
1174                case 0:
1175                case SIGEMT:
1176                        return;
1177                case SIGILL:
1178                        goto no_r2_instr;
1179                default:
1180                        process_fpemu_return(status,
1181                                             &current->thread.cp0_baduaddr,
1182                                             fcr31);
1183                        return;
1184                }
1185        }
1186
1187no_r2_instr:
1188
1189        prev_state = exception_enter();
1190        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1191
1192        if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1193                       SIGILL) == NOTIFY_STOP)
1194                goto out;
1195
1196        die_if_kernel("Reserved instruction in kernel code", regs);
1197
1198        if (unlikely(compute_return_epc(regs) < 0))
1199                goto out;
1200
1201        if (!get_isa16_mode(regs->cp0_epc)) {
1202                if (unlikely(get_user(opcode, epc) < 0))
1203                        status = SIGSEGV;
1204
1205                if (!cpu_has_llsc && status < 0)
1206                        status = simulate_llsc(regs, opcode);
1207
1208                if (status < 0)
1209                        status = simulate_rdhwr_normal(regs, opcode);
1210
1211                if (status < 0)
1212                        status = simulate_sync(regs, opcode);
1213
1214                if (status < 0)
1215                        status = simulate_fp(regs, opcode, old_epc, old31);
1216
1217#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1218                if (status < 0)
1219                        status = simulate_loongson3_cpucfg(regs, opcode);
1220#endif
1221        } else if (cpu_has_mmips) {
1222                unsigned short mmop[2] = { 0 };
1223
1224                if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1225                        status = SIGSEGV;
1226                if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1227                        status = SIGSEGV;
1228                opcode = mmop[0];
1229                opcode = (opcode << 16) | mmop[1];
1230
1231                if (status < 0)
1232                        status = simulate_rdhwr_mm(regs, opcode);
1233        }
1234
1235        if (status < 0)
1236                status = SIGILL;
1237
1238        if (unlikely(status > 0)) {
1239                regs->cp0_epc = old_epc;                /* Undo skip-over.  */
1240                regs->regs[31] = old31;
1241                force_sig(status);
1242        }
1243
1244out:
1245        exception_exit(prev_state);
1246}
1247
1248/*
1249 * No lock; only written during early bootup by CPU 0.
1250 */
1251static RAW_NOTIFIER_HEAD(cu2_chain);
1252
1253int __ref register_cu2_notifier(struct notifier_block *nb)
1254{
1255        return raw_notifier_chain_register(&cu2_chain, nb);
1256}
1257
1258int cu2_notifier_call_chain(unsigned long val, void *v)
1259{
1260        return raw_notifier_call_chain(&cu2_chain, val, v);
1261}
1262
1263static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1264        void *data)
1265{
1266        struct pt_regs *regs = data;
1267
1268        die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1269                              "instruction", regs);
1270        force_sig(SIGILL);
1271
1272        return NOTIFY_OK;
1273}
1274
1275#ifdef CONFIG_MIPS_FP_SUPPORT
1276
1277static int enable_restore_fp_context(int msa)
1278{
1279        int err, was_fpu_owner, prior_msa;
1280        bool first_fp;
1281
1282        /* Initialize context if it hasn't been used already */
1283        first_fp = init_fp_ctx(current);
1284
1285        if (first_fp) {
1286                preempt_disable();
1287                err = own_fpu_inatomic(1);
1288                if (msa && !err) {
1289                        enable_msa();
1290                        /*
1291                         * with MSA enabled, userspace can see MSACSR
1292                         * and MSA regs, but the values in them are from
1293                         * other task before current task, restore them
1294                         * from saved fp/msa context
1295                         */
1296                        write_msa_csr(current->thread.fpu.msacsr);
1297                        /*
1298                         * own_fpu_inatomic(1) just restore low 64bit,
1299                         * fix the high 64bit
1300                         */
1301                        init_msa_upper();
1302                        set_thread_flag(TIF_USEDMSA);
1303                        set_thread_flag(TIF_MSA_CTX_LIVE);
1304                }
1305                preempt_enable();
1306                return err;
1307        }
1308
1309        /*
1310         * This task has formerly used the FP context.
1311         *
1312         * If this thread has no live MSA vector context then we can simply
1313         * restore the scalar FP context. If it has live MSA vector context
1314         * (that is, it has or may have used MSA since last performing a
1315         * function call) then we'll need to restore the vector context. This
1316         * applies even if we're currently only executing a scalar FP
1317         * instruction. This is because if we were to later execute an MSA
1318         * instruction then we'd either have to:
1319         *
1320         *  - Restore the vector context & clobber any registers modified by
1321         *    scalar FP instructions between now & then.
1322         *
1323         * or
1324         *
1325         *  - Not restore the vector context & lose the most significant bits
1326         *    of all vector registers.
1327         *
1328         * Neither of those options is acceptable. We cannot restore the least
1329         * significant bits of the registers now & only restore the most
1330         * significant bits later because the most significant bits of any
1331         * vector registers whose aliased FP register is modified now will have
1332         * been zeroed. We'd have no way to know that when restoring the vector
1333         * context & thus may load an outdated value for the most significant
1334         * bits of a vector register.
1335         */
1336        if (!msa && !thread_msa_context_live())
1337                return own_fpu(1);
1338
1339        /*
1340         * This task is using or has previously used MSA. Thus we require
1341         * that Status.FR == 1.
1342         */
1343        preempt_disable();
1344        was_fpu_owner = is_fpu_owner();
1345        err = own_fpu_inatomic(0);
1346        if (err)
1347                goto out;
1348
1349        enable_msa();
1350        write_msa_csr(current->thread.fpu.msacsr);
1351        set_thread_flag(TIF_USEDMSA);
1352
1353        /*
1354         * If this is the first time that the task is using MSA and it has
1355         * previously used scalar FP in this time slice then we already nave
1356         * FP context which we shouldn't clobber. We do however need to clear
1357         * the upper 64b of each vector register so that this task has no
1358         * opportunity to see data left behind by another.
1359         */
1360        prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1361        if (!prior_msa && was_fpu_owner) {
1362                init_msa_upper();
1363
1364                goto out;
1365        }
1366
1367        if (!prior_msa) {
1368                /*
1369                 * Restore the least significant 64b of each vector register
1370                 * from the existing scalar FP context.
1371                 */
1372                _restore_fp(current);
1373
1374                /*
1375                 * The task has not formerly used MSA, so clear the upper 64b
1376                 * of each vector register such that it cannot see data left
1377                 * behind by another task.
1378                 */
1379                init_msa_upper();
1380        } else {
1381                /* We need to restore the vector context. */
1382                restore_msa(current);
1383
1384                /* Restore the scalar FP control & status register */
1385                if (!was_fpu_owner)
1386                        write_32bit_cp1_register(CP1_STATUS,
1387                                                 current->thread.fpu.fcr31);
1388        }
1389
1390out:
1391        preempt_enable();
1392
1393        return 0;
1394}
1395
1396#else /* !CONFIG_MIPS_FP_SUPPORT */
1397
1398static int enable_restore_fp_context(int msa)
1399{
1400        return SIGILL;
1401}
1402
1403#endif /* CONFIG_MIPS_FP_SUPPORT */
1404
1405asmlinkage void do_cpu(struct pt_regs *regs)
1406{
1407        enum ctx_state prev_state;
1408        unsigned int __user *epc;
1409        unsigned long old_epc, old31;
1410        unsigned int opcode;
1411        unsigned int cpid;
1412        int status;
1413
1414        prev_state = exception_enter();
1415        cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1416
1417        if (cpid != 2)
1418                die_if_kernel("do_cpu invoked from kernel context!", regs);
1419
1420        switch (cpid) {
1421        case 0:
1422                epc = (unsigned int __user *)exception_epc(regs);
1423                old_epc = regs->cp0_epc;
1424                old31 = regs->regs[31];
1425                opcode = 0;
1426                status = -1;
1427
1428                if (unlikely(compute_return_epc(regs) < 0))
1429                        break;
1430
1431                if (!get_isa16_mode(regs->cp0_epc)) {
1432                        if (unlikely(get_user(opcode, epc) < 0))
1433                                status = SIGSEGV;
1434
1435                        if (!cpu_has_llsc && status < 0)
1436                                status = simulate_llsc(regs, opcode);
1437                }
1438
1439                if (status < 0)
1440                        status = SIGILL;
1441
1442                if (unlikely(status > 0)) {
1443                        regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1444                        regs->regs[31] = old31;
1445                        force_sig(status);
1446                }
1447
1448                break;
1449
1450#ifdef CONFIG_MIPS_FP_SUPPORT
1451        case 3:
1452                /*
1453                 * The COP3 opcode space and consequently the CP0.Status.CU3
1454                 * bit and the CP0.Cause.CE=3 encoding have been removed as
1455                 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1456                 * up the space has been reused for COP1X instructions, that
1457                 * are enabled by the CP0.Status.CU1 bit and consequently
1458                 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1459                 * exceptions.  Some FPU-less processors that implement one
1460                 * of these ISAs however use this code erroneously for COP1X
1461                 * instructions.  Therefore we redirect this trap to the FP
1462                 * emulator too.
1463                 */
1464                if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1465                        force_sig(SIGILL);
1466                        break;
1467                }
1468                fallthrough;
1469        case 1: {
1470                void __user *fault_addr;
1471                unsigned long fcr31;
1472                int err, sig;
1473
1474                err = enable_restore_fp_context(0);
1475
1476                if (raw_cpu_has_fpu && !err)
1477                        break;
1478
1479                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1480                                               &fault_addr);
1481
1482                /*
1483                 * We can't allow the emulated instruction to leave
1484                 * any enabled Cause bits set in $fcr31.
1485                 */
1486                fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1487                current->thread.fpu.fcr31 &= ~fcr31;
1488
1489                /* Send a signal if required.  */
1490                if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1491                        mt_ase_fp_affinity();
1492
1493                break;
1494        }
1495#else /* CONFIG_MIPS_FP_SUPPORT */
1496        case 1:
1497        case 3:
1498                force_sig(SIGILL);
1499                break;
1500#endif /* CONFIG_MIPS_FP_SUPPORT */
1501
1502        case 2:
1503                raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1504                break;
1505        }
1506
1507        exception_exit(prev_state);
1508}
1509
1510asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1511{
1512        enum ctx_state prev_state;
1513
1514        prev_state = exception_enter();
1515        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1516        if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1517                       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1518                goto out;
1519
1520        /* Clear MSACSR.Cause before enabling interrupts */
1521        write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1522        local_irq_enable();
1523
1524        die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1525        force_sig(SIGFPE);
1526out:
1527        exception_exit(prev_state);
1528}
1529
1530asmlinkage void do_msa(struct pt_regs *regs)
1531{
1532        enum ctx_state prev_state;
1533        int err;
1534
1535        prev_state = exception_enter();
1536
1537        if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1538                force_sig(SIGILL);
1539                goto out;
1540        }
1541
1542        die_if_kernel("do_msa invoked from kernel context!", regs);
1543
1544        err = enable_restore_fp_context(1);
1545        if (err)
1546                force_sig(SIGILL);
1547out:
1548        exception_exit(prev_state);
1549}
1550
1551asmlinkage void do_mdmx(struct pt_regs *regs)
1552{
1553        enum ctx_state prev_state;
1554
1555        prev_state = exception_enter();
1556        force_sig(SIGILL);
1557        exception_exit(prev_state);
1558}
1559
1560/*
1561 * Called with interrupts disabled.
1562 */
1563asmlinkage void do_watch(struct pt_regs *regs)
1564{
1565        enum ctx_state prev_state;
1566
1567        prev_state = exception_enter();
1568        /*
1569         * Clear WP (bit 22) bit of cause register so we don't loop
1570         * forever.
1571         */
1572        clear_c0_cause(CAUSEF_WP);
1573
1574        /*
1575         * If the current thread has the watch registers loaded, save
1576         * their values and send SIGTRAP.  Otherwise another thread
1577         * left the registers set, clear them and continue.
1578         */
1579        if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1580                mips_read_watch_registers();
1581                local_irq_enable();
1582                force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1583        } else {
1584                mips_clear_watch_registers();
1585                local_irq_enable();
1586        }
1587        exception_exit(prev_state);
1588}
1589
1590asmlinkage void do_mcheck(struct pt_regs *regs)
1591{
1592        int multi_match = regs->cp0_status & ST0_TS;
1593        enum ctx_state prev_state;
1594        mm_segment_t old_fs = get_fs();
1595
1596        prev_state = exception_enter();
1597        show_regs(regs);
1598
1599        if (multi_match) {
1600                dump_tlb_regs();
1601                pr_info("\n");
1602                dump_tlb_all();
1603        }
1604
1605        if (!user_mode(regs))
1606                set_fs(KERNEL_DS);
1607
1608        show_code((unsigned int __user *) regs->cp0_epc);
1609
1610        set_fs(old_fs);
1611
1612        /*
1613         * Some chips may have other causes of machine check (e.g. SB1
1614         * graduation timer)
1615         */
1616        panic("Caught Machine Check exception - %scaused by multiple "
1617              "matching entries in the TLB.",
1618              (multi_match) ? "" : "not ");
1619}
1620
1621asmlinkage void do_mt(struct pt_regs *regs)
1622{
1623        int subcode;
1624
1625        subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1626                        >> VPECONTROL_EXCPT_SHIFT;
1627        switch (subcode) {
1628        case 0:
1629                printk(KERN_DEBUG "Thread Underflow\n");
1630                break;
1631        case 1:
1632                printk(KERN_DEBUG "Thread Overflow\n");
1633                break;
1634        case 2:
1635                printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1636                break;
1637        case 3:
1638                printk(KERN_DEBUG "Gating Storage Exception\n");
1639                break;
1640        case 4:
1641                printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1642                break;
1643        case 5:
1644                printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1645                break;
1646        default:
1647                printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1648                        subcode);
1649                break;
1650        }
1651        die_if_kernel("MIPS MT Thread exception in kernel", regs);
1652
1653        force_sig(SIGILL);
1654}
1655
1656
1657asmlinkage void do_dsp(struct pt_regs *regs)
1658{
1659        if (cpu_has_dsp)
1660                panic("Unexpected DSP exception");
1661
1662        force_sig(SIGILL);
1663}
1664
1665asmlinkage void do_reserved(struct pt_regs *regs)
1666{
1667        /*
1668         * Game over - no way to handle this if it ever occurs.  Most probably
1669         * caused by a new unknown cpu type or after another deadly
1670         * hard/software error.
1671         */
1672        show_regs(regs);
1673        panic("Caught reserved exception %ld - should not happen.",
1674              (regs->cp0_cause & 0x7f) >> 2);
1675}
1676
1677static int __initdata l1parity = 1;
1678static int __init nol1parity(char *s)
1679{
1680        l1parity = 0;
1681        return 1;
1682}
1683__setup("nol1par", nol1parity);
1684static int __initdata l2parity = 1;
1685static int __init nol2parity(char *s)
1686{
1687        l2parity = 0;
1688        return 1;
1689}
1690__setup("nol2par", nol2parity);
1691
1692/*
1693 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1694 * it different ways.
1695 */
1696static inline __init void parity_protection_init(void)
1697{
1698#define ERRCTL_PE       0x80000000
1699#define ERRCTL_L2P      0x00800000
1700
1701        if (mips_cm_revision() >= CM_REV_CM3) {
1702                ulong gcr_ectl, cp0_ectl;
1703
1704                /*
1705                 * With CM3 systems we need to ensure that the L1 & L2
1706                 * parity enables are set to the same value, since this
1707                 * is presumed by the hardware engineers.
1708                 *
1709                 * If the user disabled either of L1 or L2 ECC checking,
1710                 * disable both.
1711                 */
1712                l1parity &= l2parity;
1713                l2parity &= l1parity;
1714
1715                /* Probe L1 ECC support */
1716                cp0_ectl = read_c0_ecc();
1717                write_c0_ecc(cp0_ectl | ERRCTL_PE);
1718                back_to_back_c0_hazard();
1719                cp0_ectl = read_c0_ecc();
1720
1721                /* Probe L2 ECC support */
1722                gcr_ectl = read_gcr_err_control();
1723
1724                if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1725                    !(cp0_ectl & ERRCTL_PE)) {
1726                        /*
1727                         * One of L1 or L2 ECC checking isn't supported,
1728                         * so we cannot enable either.
1729                         */
1730                        l1parity = l2parity = 0;
1731                }
1732
1733                /* Configure L1 ECC checking */
1734                if (l1parity)
1735                        cp0_ectl |= ERRCTL_PE;
1736                else
1737                        cp0_ectl &= ~ERRCTL_PE;
1738                write_c0_ecc(cp0_ectl);
1739                back_to_back_c0_hazard();
1740                WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1741
1742                /* Configure L2 ECC checking */
1743                if (l2parity)
1744                        gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1745                else
1746                        gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1747                write_gcr_err_control(gcr_ectl);
1748                gcr_ectl = read_gcr_err_control();
1749                gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1750                WARN_ON(!!gcr_ectl != l2parity);
1751
1752                pr_info("Cache parity protection %sabled\n",
1753                        l1parity ? "en" : "dis");
1754                return;
1755        }
1756
1757        switch (current_cpu_type()) {
1758        case CPU_24K:
1759        case CPU_34K:
1760        case CPU_74K:
1761        case CPU_1004K:
1762        case CPU_1074K:
1763        case CPU_INTERAPTIV:
1764        case CPU_PROAPTIV:
1765        case CPU_P5600:
1766        case CPU_QEMU_GENERIC:
1767        case CPU_P6600:
1768                {
1769                        unsigned long errctl;
1770                        unsigned int l1parity_present, l2parity_present;
1771
1772                        errctl = read_c0_ecc();
1773                        errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1774
1775                        /* probe L1 parity support */
1776                        write_c0_ecc(errctl | ERRCTL_PE);
1777                        back_to_back_c0_hazard();
1778                        l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1779
1780                        /* probe L2 parity support */
1781                        write_c0_ecc(errctl|ERRCTL_L2P);
1782                        back_to_back_c0_hazard();
1783                        l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1784
1785                        if (l1parity_present && l2parity_present) {
1786                                if (l1parity)
1787                                        errctl |= ERRCTL_PE;
1788                                if (l1parity ^ l2parity)
1789                                        errctl |= ERRCTL_L2P;
1790                        } else if (l1parity_present) {
1791                                if (l1parity)
1792                                        errctl |= ERRCTL_PE;
1793                        } else if (l2parity_present) {
1794                                if (l2parity)
1795                                        errctl |= ERRCTL_L2P;
1796                        } else {
1797                                /* No parity available */
1798                        }
1799
1800                        printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1801
1802                        write_c0_ecc(errctl);
1803                        back_to_back_c0_hazard();
1804                        errctl = read_c0_ecc();
1805                        printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1806
1807                        if (l1parity_present)
1808                                printk(KERN_INFO "Cache parity protection %sabled\n",
1809                                       (errctl & ERRCTL_PE) ? "en" : "dis");
1810
1811                        if (l2parity_present) {
1812                                if (l1parity_present && l1parity)
1813                                        errctl ^= ERRCTL_L2P;
1814                                printk(KERN_INFO "L2 cache parity protection %sabled\n",
1815                                       (errctl & ERRCTL_L2P) ? "en" : "dis");
1816                        }
1817                }
1818                break;
1819
1820        case CPU_5KC:
1821        case CPU_5KE:
1822        case CPU_LOONGSON32:
1823                write_c0_ecc(0x80000000);
1824                back_to_back_c0_hazard();
1825                /* Set the PE bit (bit 31) in the c0_errctl register. */
1826                printk(KERN_INFO "Cache parity protection %sabled\n",
1827                       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1828                break;
1829        case CPU_20KC:
1830        case CPU_25KF:
1831                /* Clear the DE bit (bit 16) in the c0_status register. */
1832                printk(KERN_INFO "Enable cache parity protection for "
1833                       "MIPS 20KC/25KF CPUs.\n");
1834                clear_c0_status(ST0_DE);
1835                break;
1836        default:
1837                break;
1838        }
1839}
1840
1841asmlinkage void cache_parity_error(void)
1842{
1843        const int field = 2 * sizeof(unsigned long);
1844        unsigned int reg_val;
1845
1846        /* For the moment, report the problem and hang. */
1847        printk("Cache error exception:\n");
1848        printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1849        reg_val = read_c0_cacheerr();
1850        printk("c0_cacheerr == %08x\n", reg_val);
1851
1852        printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1853               reg_val & (1<<30) ? "secondary" : "primary",
1854               reg_val & (1<<31) ? "data" : "insn");
1855        if ((cpu_has_mips_r2_r6) &&
1856            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1857                pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1858                        reg_val & (1<<29) ? "ED " : "",
1859                        reg_val & (1<<28) ? "ET " : "",
1860                        reg_val & (1<<27) ? "ES " : "",
1861                        reg_val & (1<<26) ? "EE " : "",
1862                        reg_val & (1<<25) ? "EB " : "",
1863                        reg_val & (1<<24) ? "EI " : "",
1864                        reg_val & (1<<23) ? "E1 " : "",
1865                        reg_val & (1<<22) ? "E0 " : "");
1866        } else {
1867                pr_err("Error bits: %s%s%s%s%s%s%s\n",
1868                        reg_val & (1<<29) ? "ED " : "",
1869                        reg_val & (1<<28) ? "ET " : "",
1870                        reg_val & (1<<26) ? "EE " : "",
1871                        reg_val & (1<<25) ? "EB " : "",
1872                        reg_val & (1<<24) ? "EI " : "",
1873                        reg_val & (1<<23) ? "E1 " : "",
1874                        reg_val & (1<<22) ? "E0 " : "");
1875        }
1876        printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1877
1878#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1879        if (reg_val & (1<<22))
1880                printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1881
1882        if (reg_val & (1<<23))
1883                printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1884#endif
1885
1886        panic("Can't handle the cache error!");
1887}
1888
1889asmlinkage void do_ftlb(void)
1890{
1891        const int field = 2 * sizeof(unsigned long);
1892        unsigned int reg_val;
1893
1894        /* For the moment, report the problem and hang. */
1895        if ((cpu_has_mips_r2_r6) &&
1896            (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1897            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1898                pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1899                       read_c0_ecc());
1900                pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1901                reg_val = read_c0_cacheerr();
1902                pr_err("c0_cacheerr == %08x\n", reg_val);
1903
1904                if ((reg_val & 0xc0000000) == 0xc0000000) {
1905                        pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1906                } else {
1907                        pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1908                               reg_val & (1<<30) ? "secondary" : "primary",
1909                               reg_val & (1<<31) ? "data" : "insn");
1910                }
1911        } else {
1912                pr_err("FTLB error exception\n");
1913        }
1914        /* Just print the cacheerr bits for now */
1915        cache_parity_error();
1916}
1917
1918asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1919{
1920        u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1921                        LOONGSON_DIAG1_EXCCODE_SHIFT;
1922        enum ctx_state prev_state;
1923
1924        prev_state = exception_enter();
1925
1926        switch (exccode) {
1927        case 0x08:
1928                /* Undocumented exception, will trigger on certain
1929                 * also-undocumented instructions accessible from userspace.
1930                 * Processor state is not otherwise corrupted, but currently
1931                 * we don't know how to proceed. Maybe there is some
1932                 * undocumented control flag to enable the instructions?
1933                 */
1934                force_sig(SIGILL);
1935                break;
1936
1937        default:
1938                /* None of the other exceptions, documented or not, have
1939                 * further details given; none are encountered in the wild
1940                 * either. Panic in case some of them turn out to be fatal.
1941                 */
1942                show_regs(regs);
1943                panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1944        }
1945
1946        exception_exit(prev_state);
1947}
1948
1949/*
1950 * SDBBP EJTAG debug exception handler.
1951 * We skip the instruction and return to the next instruction.
1952 */
1953void ejtag_exception_handler(struct pt_regs *regs)
1954{
1955        const int field = 2 * sizeof(unsigned long);
1956        unsigned long depc, old_epc, old_ra;
1957        unsigned int debug;
1958
1959        printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1960        depc = read_c0_depc();
1961        debug = read_c0_debug();
1962        printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1963        if (debug & 0x80000000) {
1964                /*
1965                 * In branch delay slot.
1966                 * We cheat a little bit here and use EPC to calculate the
1967                 * debug return address (DEPC). EPC is restored after the
1968                 * calculation.
1969                 */
1970                old_epc = regs->cp0_epc;
1971                old_ra = regs->regs[31];
1972                regs->cp0_epc = depc;
1973                compute_return_epc(regs);
1974                depc = regs->cp0_epc;
1975                regs->cp0_epc = old_epc;
1976                regs->regs[31] = old_ra;
1977        } else
1978                depc += 4;
1979        write_c0_depc(depc);
1980
1981#if 0
1982        printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1983        write_c0_debug(debug | 0x100);
1984#endif
1985}
1986
1987/*
1988 * NMI exception handler.
1989 * No lock; only written during early bootup by CPU 0.
1990 */
1991static RAW_NOTIFIER_HEAD(nmi_chain);
1992
1993int register_nmi_notifier(struct notifier_block *nb)
1994{
1995        return raw_notifier_chain_register(&nmi_chain, nb);
1996}
1997
1998void __noreturn nmi_exception_handler(struct pt_regs *regs)
1999{
2000        char str[100];
2001
2002        nmi_enter();
2003        raw_notifier_call_chain(&nmi_chain, 0, regs);
2004        bust_spinlocks(1);
2005        snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
2006                 smp_processor_id(), regs->cp0_epc);
2007        regs->cp0_epc = read_c0_errorepc();
2008        die(str, regs);
2009        nmi_exit();
2010}
2011
2012#define VECTORSPACING 0x100     /* for EI/VI mode */
2013
2014unsigned long ebase;
2015EXPORT_SYMBOL_GPL(ebase);
2016unsigned long exception_handlers[32];
2017unsigned long vi_handlers[64];
2018
2019void __init *set_except_vector(int n, void *addr)
2020{
2021        unsigned long handler = (unsigned long) addr;
2022        unsigned long old_handler;
2023
2024#ifdef CONFIG_CPU_MICROMIPS
2025        /*
2026         * Only the TLB handlers are cache aligned with an even
2027         * address. All other handlers are on an odd address and
2028         * require no modification. Otherwise, MIPS32 mode will
2029         * be entered when handling any TLB exceptions. That
2030         * would be bad...since we must stay in microMIPS mode.
2031         */
2032        if (!(handler & 0x1))
2033                handler |= 1;
2034#endif
2035        old_handler = xchg(&exception_handlers[n], handler);
2036
2037        if (n == 0 && cpu_has_divec) {
2038#ifdef CONFIG_CPU_MICROMIPS
2039                unsigned long jump_mask = ~((1 << 27) - 1);
2040#else
2041                unsigned long jump_mask = ~((1 << 28) - 1);
2042#endif
2043                u32 *buf = (u32 *)(ebase + 0x200);
2044                unsigned int k0 = 26;
2045                if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2046                        uasm_i_j(&buf, handler & ~jump_mask);
2047                        uasm_i_nop(&buf);
2048                } else {
2049                        UASM_i_LA(&buf, k0, handler);
2050                        uasm_i_jr(&buf, k0);
2051                        uasm_i_nop(&buf);
2052                }
2053                local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2054        }
2055        return (void *)old_handler;
2056}
2057
2058static void do_default_vi(void)
2059{
2060        show_regs(get_irq_regs());
2061        panic("Caught unexpected vectored interrupt.");
2062}
2063
2064static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2065{
2066        unsigned long handler;
2067        unsigned long old_handler = vi_handlers[n];
2068        int srssets = current_cpu_data.srsets;
2069        u16 *h;
2070        unsigned char *b;
2071
2072        BUG_ON(!cpu_has_veic && !cpu_has_vint);
2073
2074        if (addr == NULL) {
2075                handler = (unsigned long) do_default_vi;
2076                srs = 0;
2077        } else
2078                handler = (unsigned long) addr;
2079        vi_handlers[n] = handler;
2080
2081        b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2082
2083        if (srs >= srssets)
2084                panic("Shadow register set %d not supported", srs);
2085
2086        if (cpu_has_veic) {
2087                if (board_bind_eic_interrupt)
2088                        board_bind_eic_interrupt(n, srs);
2089        } else if (cpu_has_vint) {
2090                /* SRSMap is only defined if shadow sets are implemented */
2091                if (srssets > 1)
2092                        change_c0_srsmap(0xf << n*4, srs << n*4);
2093        }
2094
2095        if (srs == 0) {
2096                /*
2097                 * If no shadow set is selected then use the default handler
2098                 * that does normal register saving and standard interrupt exit
2099                 */
2100                extern char except_vec_vi, except_vec_vi_lui;
2101                extern char except_vec_vi_ori, except_vec_vi_end;
2102                extern char rollback_except_vec_vi;
2103                char *vec_start = using_rollback_handler() ?
2104                        &rollback_except_vec_vi : &except_vec_vi;
2105#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2106                const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2107                const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2108#else
2109                const int lui_offset = &except_vec_vi_lui - vec_start;
2110                const int ori_offset = &except_vec_vi_ori - vec_start;
2111#endif
2112                const int handler_len = &except_vec_vi_end - vec_start;
2113
2114                if (handler_len > VECTORSPACING) {
2115                        /*
2116                         * Sigh... panicing won't help as the console
2117                         * is probably not configured :(
2118                         */
2119                        panic("VECTORSPACING too small");
2120                }
2121
2122                set_handler(((unsigned long)b - ebase), vec_start,
2123#ifdef CONFIG_CPU_MICROMIPS
2124                                (handler_len - 1));
2125#else
2126                                handler_len);
2127#endif
2128                h = (u16 *)(b + lui_offset);
2129                *h = (handler >> 16) & 0xffff;
2130                h = (u16 *)(b + ori_offset);
2131                *h = (handler & 0xffff);
2132                local_flush_icache_range((unsigned long)b,
2133                                         (unsigned long)(b+handler_len));
2134        }
2135        else {
2136                /*
2137                 * In other cases jump directly to the interrupt handler. It
2138                 * is the handler's responsibility to save registers if required
2139                 * (eg hi/lo) and return from the exception using "eret".
2140                 */
2141                u32 insn;
2142
2143                h = (u16 *)b;
2144                /* j handler */
2145#ifdef CONFIG_CPU_MICROMIPS
2146                insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2147#else
2148                insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2149#endif
2150                h[0] = (insn >> 16) & 0xffff;
2151                h[1] = insn & 0xffff;
2152                h[2] = 0;
2153                h[3] = 0;
2154                local_flush_icache_range((unsigned long)b,
2155                                         (unsigned long)(b+8));
2156        }
2157
2158        return (void *)old_handler;
2159}
2160
2161void *set_vi_handler(int n, vi_handler_t addr)
2162{
2163        return set_vi_srs_handler(n, addr, 0);
2164}
2165
2166extern void tlb_init(void);
2167
2168/*
2169 * Timer interrupt
2170 */
2171int cp0_compare_irq;
2172EXPORT_SYMBOL_GPL(cp0_compare_irq);
2173int cp0_compare_irq_shift;
2174
2175/*
2176 * Performance counter IRQ or -1 if shared with timer
2177 */
2178int cp0_perfcount_irq;
2179EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2180
2181/*
2182 * Fast debug channel IRQ or -1 if not present
2183 */
2184int cp0_fdc_irq;
2185EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2186
2187static int noulri;
2188
2189static int __init ulri_disable(char *s)
2190{
2191        pr_info("Disabling ulri\n");
2192        noulri = 1;
2193
2194        return 1;
2195}
2196__setup("noulri", ulri_disable);
2197
2198/* configure STATUS register */
2199static void configure_status(void)
2200{
2201        /*
2202         * Disable coprocessors and select 32-bit or 64-bit addressing
2203         * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2204         * flag that some firmware may have left set and the TS bit (for
2205         * IP27).  Set XX for ISA IV code to work.
2206         */
2207        unsigned int status_set = ST0_KERNEL_CUMASK;
2208#ifdef CONFIG_64BIT
2209        status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2210#endif
2211        if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2212                status_set |= ST0_XX;
2213        if (cpu_has_dsp)
2214                status_set |= ST0_MX;
2215
2216        change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2217                         status_set);
2218        back_to_back_c0_hazard();
2219}
2220
2221unsigned int hwrena;
2222EXPORT_SYMBOL_GPL(hwrena);
2223
2224/* configure HWRENA register */
2225static void configure_hwrena(void)
2226{
2227        hwrena = cpu_hwrena_impl_bits;
2228
2229        if (cpu_has_mips_r2_r6)
2230                hwrena |= MIPS_HWRENA_CPUNUM |
2231                          MIPS_HWRENA_SYNCISTEP |
2232                          MIPS_HWRENA_CC |
2233                          MIPS_HWRENA_CCRES;
2234
2235        if (!noulri && cpu_has_userlocal)
2236                hwrena |= MIPS_HWRENA_ULR;
2237
2238        if (hwrena)
2239                write_c0_hwrena(hwrena);
2240}
2241
2242static void configure_exception_vector(void)
2243{
2244        if (cpu_has_mips_r2_r6) {
2245                unsigned long sr = set_c0_status(ST0_BEV);
2246                /* If available, use WG to set top bits of EBASE */
2247                if (cpu_has_ebase_wg) {
2248#ifdef CONFIG_64BIT
2249                        write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2250#else
2251                        write_c0_ebase(ebase | MIPS_EBASE_WG);
2252#endif
2253                }
2254                write_c0_ebase(ebase);
2255                write_c0_status(sr);
2256        }
2257        if (cpu_has_veic || cpu_has_vint) {
2258                /* Setting vector spacing enables EI/VI mode  */
2259                change_c0_intctl(0x3e0, VECTORSPACING);
2260        }
2261        if (cpu_has_divec) {
2262                if (cpu_has_mipsmt) {
2263                        unsigned int vpflags = dvpe();
2264                        set_c0_cause(CAUSEF_IV);
2265                        evpe(vpflags);
2266                } else
2267                        set_c0_cause(CAUSEF_IV);
2268        }
2269}
2270
2271void per_cpu_trap_init(bool is_boot_cpu)
2272{
2273        unsigned int cpu = smp_processor_id();
2274
2275        configure_status();
2276        configure_hwrena();
2277
2278        configure_exception_vector();
2279
2280        /*
2281         * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2282         *
2283         *  o read IntCtl.IPTI to determine the timer interrupt
2284         *  o read IntCtl.IPPCI to determine the performance counter interrupt
2285         *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2286         */
2287        if (cpu_has_mips_r2_r6) {
2288                cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2289                cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2290                cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2291                cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2292                if (!cp0_fdc_irq)
2293                        cp0_fdc_irq = -1;
2294
2295        } else {
2296                cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2297                cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2298                cp0_perfcount_irq = -1;
2299                cp0_fdc_irq = -1;
2300        }
2301
2302        if (cpu_has_mmid)
2303                cpu_data[cpu].asid_cache = 0;
2304        else if (!cpu_data[cpu].asid_cache)
2305                cpu_data[cpu].asid_cache = asid_first_version(cpu);
2306
2307        mmgrab(&init_mm);
2308        current->active_mm = &init_mm;
2309        BUG_ON(current->mm);
2310        enter_lazy_tlb(&init_mm, current);
2311
2312        /* Boot CPU's cache setup in setup_arch(). */
2313        if (!is_boot_cpu)
2314                cpu_cache_init();
2315        tlb_init();
2316        TLBMISS_HANDLER_SETUP();
2317}
2318
2319/* Install CPU exception handler */
2320void set_handler(unsigned long offset, void *addr, unsigned long size)
2321{
2322#ifdef CONFIG_CPU_MICROMIPS
2323        memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2324#else
2325        memcpy((void *)(ebase + offset), addr, size);
2326#endif
2327        local_flush_icache_range(ebase + offset, ebase + offset + size);
2328}
2329
2330static const char panic_null_cerr[] =
2331        "Trying to set NULL cache error exception handler\n";
2332
2333/*
2334 * Install uncached CPU exception handler.
2335 * This is suitable only for the cache error exception which is the only
2336 * exception handler that is being run uncached.
2337 */
2338void set_uncached_handler(unsigned long offset, void *addr,
2339        unsigned long size)
2340{
2341        unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2342
2343        if (!addr)
2344                panic(panic_null_cerr);
2345
2346        memcpy((void *)(uncached_ebase + offset), addr, size);
2347}
2348
2349static int __initdata rdhwr_noopt;
2350static int __init set_rdhwr_noopt(char *str)
2351{
2352        rdhwr_noopt = 1;
2353        return 1;
2354}
2355
2356__setup("rdhwr_noopt", set_rdhwr_noopt);
2357
2358void __init trap_init(void)
2359{
2360        extern char except_vec3_generic;
2361        extern char except_vec4;
2362        extern char except_vec3_r4000;
2363        unsigned long i, vec_size;
2364        phys_addr_t ebase_pa;
2365
2366        check_wait();
2367
2368        if (!cpu_has_mips_r2_r6) {
2369                ebase = CAC_BASE;
2370                ebase_pa = virt_to_phys((void *)ebase);
2371                vec_size = 0x400;
2372
2373                memblock_reserve(ebase_pa, vec_size);
2374        } else {
2375                if (cpu_has_veic || cpu_has_vint)
2376                        vec_size = 0x200 + VECTORSPACING*64;
2377                else
2378                        vec_size = PAGE_SIZE;
2379
2380                ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2381                if (!ebase_pa)
2382                        panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2383                              __func__, vec_size, 1 << fls(vec_size));
2384
2385                /*
2386                 * Try to ensure ebase resides in KSeg0 if possible.
2387                 *
2388                 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2389                 * hitting a poorly defined exception base for Cache Errors.
2390                 * The allocation is likely to be in the low 512MB of physical,
2391                 * in which case we should be able to convert to KSeg0.
2392                 *
2393                 * EVA is special though as it allows segments to be rearranged
2394                 * and to become uncached during cache error handling.
2395                 */
2396                if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2397                        ebase = CKSEG0ADDR(ebase_pa);
2398                else
2399                        ebase = (unsigned long)phys_to_virt(ebase_pa);
2400        }
2401
2402        if (cpu_has_mmips) {
2403                unsigned int config3 = read_c0_config3();
2404
2405                if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2406                        write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2407                else
2408                        write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2409        }
2410
2411        if (board_ebase_setup)
2412                board_ebase_setup();
2413        per_cpu_trap_init(true);
2414        memblock_set_bottom_up(false);
2415
2416        /*
2417         * Copy the generic exception handlers to their final destination.
2418         * This will be overridden later as suitable for a particular
2419         * configuration.
2420         */
2421        set_handler(0x180, &except_vec3_generic, 0x80);
2422
2423        /*
2424         * Setup default vectors
2425         */
2426        for (i = 0; i <= 31; i++)
2427                set_except_vector(i, handle_reserved);
2428
2429        /*
2430         * Copy the EJTAG debug exception vector handler code to it's final
2431         * destination.
2432         */
2433        if (cpu_has_ejtag && board_ejtag_handler_setup)
2434                board_ejtag_handler_setup();
2435
2436        /*
2437         * Only some CPUs have the watch exceptions.
2438         */
2439        if (cpu_has_watch)
2440                set_except_vector(EXCCODE_WATCH, handle_watch);
2441
2442        /*
2443         * Initialise interrupt handlers
2444         */
2445        if (cpu_has_veic || cpu_has_vint) {
2446                int nvec = cpu_has_veic ? 64 : 8;
2447                for (i = 0; i < nvec; i++)
2448                        set_vi_handler(i, NULL);
2449        }
2450        else if (cpu_has_divec)
2451                set_handler(0x200, &except_vec4, 0x8);
2452
2453        /*
2454         * Some CPUs can enable/disable for cache parity detection, but does
2455         * it different ways.
2456         */
2457        parity_protection_init();
2458
2459        /*
2460         * The Data Bus Errors / Instruction Bus Errors are signaled
2461         * by external hardware.  Therefore these two exceptions
2462         * may have board specific handlers.
2463         */
2464        if (board_be_init)
2465                board_be_init();
2466
2467        set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2468                                        rollback_handle_int : handle_int);
2469        set_except_vector(EXCCODE_MOD, handle_tlbm);
2470        set_except_vector(EXCCODE_TLBL, handle_tlbl);
2471        set_except_vector(EXCCODE_TLBS, handle_tlbs);
2472
2473        set_except_vector(EXCCODE_ADEL, handle_adel);
2474        set_except_vector(EXCCODE_ADES, handle_ades);
2475
2476        set_except_vector(EXCCODE_IBE, handle_ibe);
2477        set_except_vector(EXCCODE_DBE, handle_dbe);
2478
2479        set_except_vector(EXCCODE_SYS, handle_sys);
2480        set_except_vector(EXCCODE_BP, handle_bp);
2481
2482        if (rdhwr_noopt)
2483                set_except_vector(EXCCODE_RI, handle_ri);
2484        else {
2485                if (cpu_has_vtag_icache)
2486                        set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2487                else if (current_cpu_type() == CPU_LOONGSON64)
2488                        set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2489                else
2490                        set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2491        }
2492
2493        set_except_vector(EXCCODE_CPU, handle_cpu);
2494        set_except_vector(EXCCODE_OV, handle_ov);
2495        set_except_vector(EXCCODE_TR, handle_tr);
2496        set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2497
2498        if (board_nmi_handler_setup)
2499                board_nmi_handler_setup();
2500
2501        if (cpu_has_fpu && !cpu_has_nofpuex)
2502                set_except_vector(EXCCODE_FPE, handle_fpe);
2503
2504        if (cpu_has_ftlbparex)
2505                set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2506
2507        if (cpu_has_gsexcex)
2508                set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2509
2510        if (cpu_has_rixiex) {
2511                set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2512                set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2513        }
2514
2515        set_except_vector(EXCCODE_MSADIS, handle_msa);
2516        set_except_vector(EXCCODE_MDMX, handle_mdmx);
2517
2518        if (cpu_has_mcheck)
2519                set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2520
2521        if (cpu_has_mipsmt)
2522                set_except_vector(EXCCODE_THREAD, handle_mt);
2523
2524        set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2525
2526        if (board_cache_error_setup)
2527                board_cache_error_setup();
2528
2529        if (cpu_has_vce)
2530                /* Special exception: R4[04]00 uses also the divec space. */
2531                set_handler(0x180, &except_vec3_r4000, 0x100);
2532        else if (cpu_has_4kex)
2533                set_handler(0x180, &except_vec3_generic, 0x80);
2534        else
2535                set_handler(0x080, &except_vec3_generic, 0x80);
2536
2537        local_flush_icache_range(ebase, ebase + vec_size);
2538
2539        sort_extable(__start___dbe_table, __stop___dbe_table);
2540
2541        cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
2542}
2543
2544static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2545                            void *v)
2546{
2547        switch (cmd) {
2548        case CPU_PM_ENTER_FAILED:
2549        case CPU_PM_EXIT:
2550                configure_status();
2551                configure_hwrena();
2552                configure_exception_vector();
2553
2554                /* Restore register with CPU number for TLB handlers */
2555                TLBMISS_HANDLER_RESTORE();
2556
2557                break;
2558        }
2559
2560        return NOTIFY_OK;
2561}
2562
2563static struct notifier_block trap_pm_notifier_block = {
2564        .notifier_call = trap_pm_notifier,
2565};
2566
2567static int __init trap_pm_init(void)
2568{
2569        return cpu_pm_register_notifier(&trap_pm_notifier_block);
2570}
2571arch_initcall(trap_pm_init);
2572