linux/arch/powerpc/oprofile/cell/spu_profiler.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Cell Broadband Engine OProfile Support
   4 *
   5 * (C) Copyright IBM Corporation 2006
   6 *
   7 * Authors: Maynard Johnson <maynardj@us.ibm.com>
   8 *          Carl Love <carll@us.ibm.com>
   9 */
  10
  11#include <linux/hrtimer.h>
  12#include <linux/smp.h>
  13#include <linux/slab.h>
  14#include <asm/cell-pmu.h>
  15#include <asm/time.h>
  16#include "pr_util.h"
  17
  18#define SCALE_SHIFT 14
  19
  20static u32 *samples;
  21
  22/* spu_prof_running is a flag used to indicate if spu profiling is enabled
  23 * or not.  It is set by the routines start_spu_profiling_cycles() and
  24 * start_spu_profiling_events().  The flag is cleared by the routines
  25 * stop_spu_profiling_cycles() and stop_spu_profiling_events().  These
  26 * routines are called via global_start() and global_stop() which are called in
  27 * op_powerpc_start() and op_powerpc_stop().  These routines are called once
  28 * per system as a result of the user starting/stopping oprofile.  Hence, only
  29 * one CPU per user at a time will be changing  the value of spu_prof_running.
  30 * In general, OProfile does not protect against multiple users trying to run
  31 * OProfile at a time.
  32 */
  33int spu_prof_running;
  34static unsigned int profiling_interval;
  35
  36#define NUM_SPU_BITS_TRBUF 16
  37#define SPUS_PER_TB_ENTRY   4
  38
  39#define SPU_PC_MASK          0xFFFF
  40
  41DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck);
  42static unsigned long oprof_spu_smpl_arry_lck_flags;
  43
  44void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset)
  45{
  46        unsigned long ns_per_cyc;
  47
  48        if (!freq_khz)
  49                freq_khz = ppc_proc_freq/1000;
  50
  51        /* To calculate a timeout in nanoseconds, the basic
  52         * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
  53         * To avoid floating point math, we use the scale math
  54         * technique as described in linux/jiffies.h.  We use
  55         * a scale factor of SCALE_SHIFT, which provides 4 decimal places
  56         * of precision.  This is close enough for the purpose at hand.
  57         *
  58         * The value of the timeout should be small enough that the hw
  59         * trace buffer will not get more than about 1/3 full for the
  60         * maximum user specified (the LFSR value) hw sampling frequency.
  61         * This is to ensure the trace buffer will never fill even if the
  62         * kernel thread scheduling varies under a heavy system load.
  63         */
  64
  65        ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz;
  66        profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT;
  67
  68}
  69
  70/*
  71 * Extract SPU PC from trace buffer entry
  72 */
  73static void spu_pc_extract(int cpu, int entry)
  74{
  75        /* the trace buffer is 128 bits */
  76        u64 trace_buffer[2];
  77        u64 spu_mask;
  78        int spu;
  79
  80        spu_mask = SPU_PC_MASK;
  81
  82        /* Each SPU PC is 16 bits; hence, four spus in each of
  83         * the two 64-bit buffer entries that make up the
  84         * 128-bit trace_buffer entry.  Process two 64-bit values
  85         * simultaneously.
  86         * trace[0] SPU PC contents are: 0 1 2 3
  87         * trace[1] SPU PC contents are: 4 5 6 7
  88         */
  89
  90        cbe_read_trace_buffer(cpu, trace_buffer);
  91
  92        for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) {
  93                /* spu PC trace entry is upper 16 bits of the
  94                 * 18 bit SPU program counter
  95                 */
  96                samples[spu * TRACE_ARRAY_SIZE + entry]
  97                        = (spu_mask & trace_buffer[0]) << 2;
  98                samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry]
  99                        = (spu_mask & trace_buffer[1]) << 2;
 100
 101                trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF;
 102                trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF;
 103        }
 104}
 105
 106static int cell_spu_pc_collection(int cpu)
 107{
 108        u32 trace_addr;
 109        int entry;
 110
 111        /* process the collected SPU PC for the node */
 112
 113        entry = 0;
 114
 115        trace_addr = cbe_read_pm(cpu, trace_address);
 116        while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
 117                /* there is data in the trace buffer to process */
 118                spu_pc_extract(cpu, entry);
 119
 120                entry++;
 121
 122                if (entry >= TRACE_ARRAY_SIZE)
 123                        /* spu_samples is full */
 124                        break;
 125
 126                trace_addr = cbe_read_pm(cpu, trace_address);
 127        }
 128
 129        return entry;
 130}
 131
 132
 133static enum hrtimer_restart profile_spus(struct hrtimer *timer)
 134{
 135        ktime_t kt;
 136        int cpu, node, k, num_samples, spu_num;
 137
 138        if (!spu_prof_running)
 139                goto stop;
 140
 141        for_each_online_cpu(cpu) {
 142                if (cbe_get_hw_thread_id(cpu))
 143                        continue;
 144
 145                node = cbe_cpu_to_node(cpu);
 146
 147                /* There should only be one kernel thread at a time processing
 148                 * the samples.  In the very unlikely case that the processing
 149                 * is taking a very long time and multiple kernel threads are
 150                 * started to process the samples.  Make sure only one kernel
 151                 * thread is working on the samples array at a time.  The
 152                 * sample array must be loaded and then processed for a given
 153                 * cpu.  The sample array is not per cpu.
 154                 */
 155                spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
 156                                  oprof_spu_smpl_arry_lck_flags);
 157                num_samples = cell_spu_pc_collection(cpu);
 158
 159                if (num_samples == 0) {
 160                        spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
 161                                               oprof_spu_smpl_arry_lck_flags);
 162                        continue;
 163                }
 164
 165                for (k = 0; k < SPUS_PER_NODE; k++) {
 166                        spu_num = k + (node * SPUS_PER_NODE);
 167                        spu_sync_buffer(spu_num,
 168                                        samples + (k * TRACE_ARRAY_SIZE),
 169                                        num_samples);
 170                }
 171
 172                spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
 173                                       oprof_spu_smpl_arry_lck_flags);
 174
 175        }
 176        smp_wmb();      /* insure spu event buffer updates are written */
 177                        /* don't want events intermingled... */
 178
 179        kt = profiling_interval;
 180        if (!spu_prof_running)
 181                goto stop;
 182        hrtimer_forward(timer, timer->base->get_time(), kt);
 183        return HRTIMER_RESTART;
 184
 185 stop:
 186        printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n");
 187        return HRTIMER_NORESTART;
 188}
 189
 190static struct hrtimer timer;
 191/*
 192 * Entry point for SPU cycle profiling.
 193 * NOTE:  SPU profiling is done system-wide, not per-CPU.
 194 *
 195 * cycles_reset is the count value specified by the user when
 196 * setting up OProfile to count SPU_CYCLES.
 197 */
 198int start_spu_profiling_cycles(unsigned int cycles_reset)
 199{
 200        ktime_t kt;
 201
 202        pr_debug("timer resolution: %lu\n", TICK_NSEC);
 203        kt = profiling_interval;
 204        hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 205        hrtimer_set_expires(&timer, kt);
 206        timer.function = profile_spus;
 207
 208        /* Allocate arrays for collecting SPU PC samples */
 209        samples = kcalloc(SPUS_PER_NODE * TRACE_ARRAY_SIZE, sizeof(u32),
 210                          GFP_KERNEL);
 211
 212        if (!samples)
 213                return -ENOMEM;
 214
 215        spu_prof_running = 1;
 216        hrtimer_start(&timer, kt, HRTIMER_MODE_REL);
 217        schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
 218
 219        return 0;
 220}
 221
 222/*
 223 * Entry point for SPU event profiling.
 224 * NOTE:  SPU profiling is done system-wide, not per-CPU.
 225 *
 226 * cycles_reset is the count value specified by the user when
 227 * setting up OProfile to count SPU_CYCLES.
 228 */
 229void start_spu_profiling_events(void)
 230{
 231        spu_prof_running = 1;
 232        schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
 233
 234        return;
 235}
 236
 237void stop_spu_profiling_cycles(void)
 238{
 239        spu_prof_running = 0;
 240        hrtimer_cancel(&timer);
 241        kfree(samples);
 242        pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n");
 243}
 244
 245void stop_spu_profiling_events(void)
 246{
 247        spu_prof_running = 0;
 248}
 249