linux/arch/powerpc/platforms/powernv/pci-ioda.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Support PCI/PCIe on PowerNV platforms
   4 *
   5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
   6 */
   7
   8#undef DEBUG
   9
  10#include <linux/kernel.h>
  11#include <linux/pci.h>
  12#include <linux/crash_dump.h>
  13#include <linux/delay.h>
  14#include <linux/string.h>
  15#include <linux/init.h>
  16#include <linux/memblock.h>
  17#include <linux/irq.h>
  18#include <linux/io.h>
  19#include <linux/msi.h>
  20#include <linux/iommu.h>
  21#include <linux/rculist.h>
  22#include <linux/sizes.h>
  23
  24#include <asm/sections.h>
  25#include <asm/io.h>
  26#include <asm/prom.h>
  27#include <asm/pci-bridge.h>
  28#include <asm/machdep.h>
  29#include <asm/msi_bitmap.h>
  30#include <asm/ppc-pci.h>
  31#include <asm/opal.h>
  32#include <asm/iommu.h>
  33#include <asm/tce.h>
  34#include <asm/xics.h>
  35#include <asm/debugfs.h>
  36#include <asm/firmware.h>
  37#include <asm/pnv-pci.h>
  38#include <asm/mmzone.h>
  39
  40#include <misc/cxl-base.h>
  41
  42#include "powernv.h"
  43#include "pci.h"
  44#include "../../../../drivers/pci/pci.h"
  45
  46#define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
  47#define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
  48#define PNV_IODA1_DMA32_SEGSIZE 0x10000000
  49
  50static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
  51                                              "NPU_OCAPI" };
  52
  53static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
  54static void pnv_pci_configure_bus(struct pci_bus *bus);
  55
  56void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
  57                            const char *fmt, ...)
  58{
  59        struct va_format vaf;
  60        va_list args;
  61        char pfix[32];
  62
  63        va_start(args, fmt);
  64
  65        vaf.fmt = fmt;
  66        vaf.va = &args;
  67
  68        if (pe->flags & PNV_IODA_PE_DEV)
  69                strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
  70        else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
  71                sprintf(pfix, "%04x:%02x     ",
  72                        pci_domain_nr(pe->pbus), pe->pbus->number);
  73#ifdef CONFIG_PCI_IOV
  74        else if (pe->flags & PNV_IODA_PE_VF)
  75                sprintf(pfix, "%04x:%02x:%2x.%d",
  76                        pci_domain_nr(pe->parent_dev->bus),
  77                        (pe->rid & 0xff00) >> 8,
  78                        PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
  79#endif /* CONFIG_PCI_IOV*/
  80
  81        printk("%spci %s: [PE# %.2x] %pV",
  82               level, pfix, pe->pe_number, &vaf);
  83
  84        va_end(args);
  85}
  86
  87static bool pnv_iommu_bypass_disabled __read_mostly;
  88static bool pci_reset_phbs __read_mostly;
  89
  90static int __init iommu_setup(char *str)
  91{
  92        if (!str)
  93                return -EINVAL;
  94
  95        while (*str) {
  96                if (!strncmp(str, "nobypass", 8)) {
  97                        pnv_iommu_bypass_disabled = true;
  98                        pr_info("PowerNV: IOMMU bypass window disabled.\n");
  99                        break;
 100                }
 101                str += strcspn(str, ",");
 102                if (*str == ',')
 103                        str++;
 104        }
 105
 106        return 0;
 107}
 108early_param("iommu", iommu_setup);
 109
 110static int __init pci_reset_phbs_setup(char *str)
 111{
 112        pci_reset_phbs = true;
 113        return 0;
 114}
 115
 116early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
 117
 118static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
 119{
 120        s64 rc;
 121
 122        phb->ioda.pe_array[pe_no].phb = phb;
 123        phb->ioda.pe_array[pe_no].pe_number = pe_no;
 124        phb->ioda.pe_array[pe_no].dma_setup_done = false;
 125
 126        /*
 127         * Clear the PE frozen state as it might be put into frozen state
 128         * in the last PCI remove path. It's not harmful to do so when the
 129         * PE is already in unfrozen state.
 130         */
 131        rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
 132                                       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 133        if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
 134                pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
 135                        __func__, rc, phb->hose->global_number, pe_no);
 136
 137        return &phb->ioda.pe_array[pe_no];
 138}
 139
 140static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
 141{
 142        if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
 143                pr_warn("%s: Invalid PE %x on PHB#%x\n",
 144                        __func__, pe_no, phb->hose->global_number);
 145                return;
 146        }
 147
 148        mutex_lock(&phb->ioda.pe_alloc_mutex);
 149        if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
 150                pr_debug("%s: PE %x was reserved on PHB#%x\n",
 151                         __func__, pe_no, phb->hose->global_number);
 152        mutex_unlock(&phb->ioda.pe_alloc_mutex);
 153
 154        pnv_ioda_init_pe(phb, pe_no);
 155}
 156
 157struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
 158{
 159        struct pnv_ioda_pe *ret = NULL;
 160        int run = 0, pe, i;
 161
 162        mutex_lock(&phb->ioda.pe_alloc_mutex);
 163
 164        /* scan backwards for a run of @count cleared bits */
 165        for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
 166                if (test_bit(pe, phb->ioda.pe_alloc)) {
 167                        run = 0;
 168                        continue;
 169                }
 170
 171                run++;
 172                if (run == count)
 173                        break;
 174        }
 175        if (run != count)
 176                goto out;
 177
 178        for (i = pe; i < pe + count; i++) {
 179                set_bit(i, phb->ioda.pe_alloc);
 180                pnv_ioda_init_pe(phb, i);
 181        }
 182        ret = &phb->ioda.pe_array[pe];
 183
 184out:
 185        mutex_unlock(&phb->ioda.pe_alloc_mutex);
 186        return ret;
 187}
 188
 189void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
 190{
 191        struct pnv_phb *phb = pe->phb;
 192        unsigned int pe_num = pe->pe_number;
 193
 194        WARN_ON(pe->pdev);
 195        WARN_ON(pe->npucomp); /* NPUs for nvlink are not supposed to be freed */
 196        kfree(pe->npucomp);
 197        memset(pe, 0, sizeof(struct pnv_ioda_pe));
 198
 199        mutex_lock(&phb->ioda.pe_alloc_mutex);
 200        clear_bit(pe_num, phb->ioda.pe_alloc);
 201        mutex_unlock(&phb->ioda.pe_alloc_mutex);
 202}
 203
 204/* The default M64 BAR is shared by all PEs */
 205static int pnv_ioda2_init_m64(struct pnv_phb *phb)
 206{
 207        const char *desc;
 208        struct resource *r;
 209        s64 rc;
 210
 211        /* Configure the default M64 BAR */
 212        rc = opal_pci_set_phb_mem_window(phb->opal_id,
 213                                         OPAL_M64_WINDOW_TYPE,
 214                                         phb->ioda.m64_bar_idx,
 215                                         phb->ioda.m64_base,
 216                                         0, /* unused */
 217                                         phb->ioda.m64_size);
 218        if (rc != OPAL_SUCCESS) {
 219                desc = "configuring";
 220                goto fail;
 221        }
 222
 223        /* Enable the default M64 BAR */
 224        rc = opal_pci_phb_mmio_enable(phb->opal_id,
 225                                      OPAL_M64_WINDOW_TYPE,
 226                                      phb->ioda.m64_bar_idx,
 227                                      OPAL_ENABLE_M64_SPLIT);
 228        if (rc != OPAL_SUCCESS) {
 229                desc = "enabling";
 230                goto fail;
 231        }
 232
 233        /*
 234         * Exclude the segments for reserved and root bus PE, which
 235         * are first or last two PEs.
 236         */
 237        r = &phb->hose->mem_resources[1];
 238        if (phb->ioda.reserved_pe_idx == 0)
 239                r->start += (2 * phb->ioda.m64_segsize);
 240        else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
 241                r->end -= (2 * phb->ioda.m64_segsize);
 242        else
 243                pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
 244                        phb->ioda.reserved_pe_idx);
 245
 246        return 0;
 247
 248fail:
 249        pr_warn("  Failure %lld %s M64 BAR#%d\n",
 250                rc, desc, phb->ioda.m64_bar_idx);
 251        opal_pci_phb_mmio_enable(phb->opal_id,
 252                                 OPAL_M64_WINDOW_TYPE,
 253                                 phb->ioda.m64_bar_idx,
 254                                 OPAL_DISABLE_M64);
 255        return -EIO;
 256}
 257
 258static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
 259                                         unsigned long *pe_bitmap)
 260{
 261        struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
 262        struct resource *r;
 263        resource_size_t base, sgsz, start, end;
 264        int segno, i;
 265
 266        base = phb->ioda.m64_base;
 267        sgsz = phb->ioda.m64_segsize;
 268        for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
 269                r = &pdev->resource[i];
 270                if (!r->parent || !pnv_pci_is_m64(phb, r))
 271                        continue;
 272
 273                start = ALIGN_DOWN(r->start - base, sgsz);
 274                end = ALIGN(r->end - base, sgsz);
 275                for (segno = start / sgsz; segno < end / sgsz; segno++) {
 276                        if (pe_bitmap)
 277                                set_bit(segno, pe_bitmap);
 278                        else
 279                                pnv_ioda_reserve_pe(phb, segno);
 280                }
 281        }
 282}
 283
 284static int pnv_ioda1_init_m64(struct pnv_phb *phb)
 285{
 286        struct resource *r;
 287        int index;
 288
 289        /*
 290         * There are 16 M64 BARs, each of which has 8 segments. So
 291         * there are as many M64 segments as the maximum number of
 292         * PEs, which is 128.
 293         */
 294        for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
 295                unsigned long base, segsz = phb->ioda.m64_segsize;
 296                int64_t rc;
 297
 298                base = phb->ioda.m64_base +
 299                       index * PNV_IODA1_M64_SEGS * segsz;
 300                rc = opal_pci_set_phb_mem_window(phb->opal_id,
 301                                OPAL_M64_WINDOW_TYPE, index, base, 0,
 302                                PNV_IODA1_M64_SEGS * segsz);
 303                if (rc != OPAL_SUCCESS) {
 304                        pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
 305                                rc, phb->hose->global_number, index);
 306                        goto fail;
 307                }
 308
 309                rc = opal_pci_phb_mmio_enable(phb->opal_id,
 310                                OPAL_M64_WINDOW_TYPE, index,
 311                                OPAL_ENABLE_M64_SPLIT);
 312                if (rc != OPAL_SUCCESS) {
 313                        pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
 314                                rc, phb->hose->global_number, index);
 315                        goto fail;
 316                }
 317        }
 318
 319        for (index = 0; index < phb->ioda.total_pe_num; index++) {
 320                int64_t rc;
 321
 322                /*
 323                 * P7IOC supports M64DT, which helps mapping M64 segment
 324                 * to one particular PE#. However, PHB3 has fixed mapping
 325                 * between M64 segment and PE#. In order to have same logic
 326                 * for P7IOC and PHB3, we enforce fixed mapping between M64
 327                 * segment and PE# on P7IOC.
 328                 */
 329                rc = opal_pci_map_pe_mmio_window(phb->opal_id,
 330                                index, OPAL_M64_WINDOW_TYPE,
 331                                index / PNV_IODA1_M64_SEGS,
 332                                index % PNV_IODA1_M64_SEGS);
 333                if (rc != OPAL_SUCCESS) {
 334                        pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
 335                                __func__, rc, phb->hose->global_number,
 336                                index);
 337                        goto fail;
 338                }
 339        }
 340
 341        /*
 342         * Exclude the segments for reserved and root bus PE, which
 343         * are first or last two PEs.
 344         */
 345        r = &phb->hose->mem_resources[1];
 346        if (phb->ioda.reserved_pe_idx == 0)
 347                r->start += (2 * phb->ioda.m64_segsize);
 348        else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
 349                r->end -= (2 * phb->ioda.m64_segsize);
 350        else
 351                WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
 352                     phb->ioda.reserved_pe_idx, phb->hose->global_number);
 353
 354        return 0;
 355
 356fail:
 357        for ( ; index >= 0; index--)
 358                opal_pci_phb_mmio_enable(phb->opal_id,
 359                        OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
 360
 361        return -EIO;
 362}
 363
 364static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
 365                                    unsigned long *pe_bitmap,
 366                                    bool all)
 367{
 368        struct pci_dev *pdev;
 369
 370        list_for_each_entry(pdev, &bus->devices, bus_list) {
 371                pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
 372
 373                if (all && pdev->subordinate)
 374                        pnv_ioda_reserve_m64_pe(pdev->subordinate,
 375                                                pe_bitmap, all);
 376        }
 377}
 378
 379static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
 380{
 381        struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
 382        struct pnv_ioda_pe *master_pe, *pe;
 383        unsigned long size, *pe_alloc;
 384        int i;
 385
 386        /* Root bus shouldn't use M64 */
 387        if (pci_is_root_bus(bus))
 388                return NULL;
 389
 390        /* Allocate bitmap */
 391        size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
 392        pe_alloc = kzalloc(size, GFP_KERNEL);
 393        if (!pe_alloc) {
 394                pr_warn("%s: Out of memory !\n",
 395                        __func__);
 396                return NULL;
 397        }
 398
 399        /* Figure out reserved PE numbers by the PE */
 400        pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
 401
 402        /*
 403         * the current bus might not own M64 window and that's all
 404         * contributed by its child buses. For the case, we needn't
 405         * pick M64 dependent PE#.
 406         */
 407        if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
 408                kfree(pe_alloc);
 409                return NULL;
 410        }
 411
 412        /*
 413         * Figure out the master PE and put all slave PEs to master
 414         * PE's list to form compound PE.
 415         */
 416        master_pe = NULL;
 417        i = -1;
 418        while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
 419                phb->ioda.total_pe_num) {
 420                pe = &phb->ioda.pe_array[i];
 421
 422                phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
 423                if (!master_pe) {
 424                        pe->flags |= PNV_IODA_PE_MASTER;
 425                        INIT_LIST_HEAD(&pe->slaves);
 426                        master_pe = pe;
 427                } else {
 428                        pe->flags |= PNV_IODA_PE_SLAVE;
 429                        pe->master = master_pe;
 430                        list_add_tail(&pe->list, &master_pe->slaves);
 431                }
 432        }
 433
 434        kfree(pe_alloc);
 435        return master_pe;
 436}
 437
 438static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
 439{
 440        struct pci_controller *hose = phb->hose;
 441        struct device_node *dn = hose->dn;
 442        struct resource *res;
 443        u32 m64_range[2], i;
 444        const __be32 *r;
 445        u64 pci_addr;
 446
 447        if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
 448                pr_info("  Not support M64 window\n");
 449                return;
 450        }
 451
 452        if (!firmware_has_feature(FW_FEATURE_OPAL)) {
 453                pr_info("  Firmware too old to support M64 window\n");
 454                return;
 455        }
 456
 457        r = of_get_property(dn, "ibm,opal-m64-window", NULL);
 458        if (!r) {
 459                pr_info("  No <ibm,opal-m64-window> on %pOF\n",
 460                        dn);
 461                return;
 462        }
 463
 464        /*
 465         * Find the available M64 BAR range and pickup the last one for
 466         * covering the whole 64-bits space. We support only one range.
 467         */
 468        if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
 469                                       m64_range, 2)) {
 470                /* In absence of the property, assume 0..15 */
 471                m64_range[0] = 0;
 472                m64_range[1] = 16;
 473        }
 474        /* We only support 64 bits in our allocator */
 475        if (m64_range[1] > 63) {
 476                pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
 477                        __func__, m64_range[1], phb->hose->global_number);
 478                m64_range[1] = 63;
 479        }
 480        /* Empty range, no m64 */
 481        if (m64_range[1] <= m64_range[0]) {
 482                pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
 483                        __func__, phb->hose->global_number);
 484                return;
 485        }
 486
 487        /* Configure M64 informations */
 488        res = &hose->mem_resources[1];
 489        res->name = dn->full_name;
 490        res->start = of_translate_address(dn, r + 2);
 491        res->end = res->start + of_read_number(r + 4, 2) - 1;
 492        res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
 493        pci_addr = of_read_number(r, 2);
 494        hose->mem_offset[1] = res->start - pci_addr;
 495
 496        phb->ioda.m64_size = resource_size(res);
 497        phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
 498        phb->ioda.m64_base = pci_addr;
 499
 500        /* This lines up nicely with the display from processing OF ranges */
 501        pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
 502                res->start, res->end, pci_addr, m64_range[0],
 503                m64_range[0] + m64_range[1] - 1);
 504
 505        /* Mark all M64 used up by default */
 506        phb->ioda.m64_bar_alloc = (unsigned long)-1;
 507
 508        /* Use last M64 BAR to cover M64 window */
 509        m64_range[1]--;
 510        phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
 511
 512        pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
 513
 514        /* Mark remaining ones free */
 515        for (i = m64_range[0]; i < m64_range[1]; i++)
 516                clear_bit(i, &phb->ioda.m64_bar_alloc);
 517
 518        /*
 519         * Setup init functions for M64 based on IODA version, IODA3 uses
 520         * the IODA2 code.
 521         */
 522        if (phb->type == PNV_PHB_IODA1)
 523                phb->init_m64 = pnv_ioda1_init_m64;
 524        else
 525                phb->init_m64 = pnv_ioda2_init_m64;
 526}
 527
 528static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
 529{
 530        struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
 531        struct pnv_ioda_pe *slave;
 532        s64 rc;
 533
 534        /* Fetch master PE */
 535        if (pe->flags & PNV_IODA_PE_SLAVE) {
 536                pe = pe->master;
 537                if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
 538                        return;
 539
 540                pe_no = pe->pe_number;
 541        }
 542
 543        /* Freeze master PE */
 544        rc = opal_pci_eeh_freeze_set(phb->opal_id,
 545                                     pe_no,
 546                                     OPAL_EEH_ACTION_SET_FREEZE_ALL);
 547        if (rc != OPAL_SUCCESS) {
 548                pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
 549                        __func__, rc, phb->hose->global_number, pe_no);
 550                return;
 551        }
 552
 553        /* Freeze slave PEs */
 554        if (!(pe->flags & PNV_IODA_PE_MASTER))
 555                return;
 556
 557        list_for_each_entry(slave, &pe->slaves, list) {
 558                rc = opal_pci_eeh_freeze_set(phb->opal_id,
 559                                             slave->pe_number,
 560                                             OPAL_EEH_ACTION_SET_FREEZE_ALL);
 561                if (rc != OPAL_SUCCESS)
 562                        pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
 563                                __func__, rc, phb->hose->global_number,
 564                                slave->pe_number);
 565        }
 566}
 567
 568static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
 569{
 570        struct pnv_ioda_pe *pe, *slave;
 571        s64 rc;
 572
 573        /* Find master PE */
 574        pe = &phb->ioda.pe_array[pe_no];
 575        if (pe->flags & PNV_IODA_PE_SLAVE) {
 576                pe = pe->master;
 577                WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
 578                pe_no = pe->pe_number;
 579        }
 580
 581        /* Clear frozen state for master PE */
 582        rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
 583        if (rc != OPAL_SUCCESS) {
 584                pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
 585                        __func__, rc, opt, phb->hose->global_number, pe_no);
 586                return -EIO;
 587        }
 588
 589        if (!(pe->flags & PNV_IODA_PE_MASTER))
 590                return 0;
 591
 592        /* Clear frozen state for slave PEs */
 593        list_for_each_entry(slave, &pe->slaves, list) {
 594                rc = opal_pci_eeh_freeze_clear(phb->opal_id,
 595                                             slave->pe_number,
 596                                             opt);
 597                if (rc != OPAL_SUCCESS) {
 598                        pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
 599                                __func__, rc, opt, phb->hose->global_number,
 600                                slave->pe_number);
 601                        return -EIO;
 602                }
 603        }
 604
 605        return 0;
 606}
 607
 608static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
 609{
 610        struct pnv_ioda_pe *slave, *pe;
 611        u8 fstate = 0, state;
 612        __be16 pcierr = 0;
 613        s64 rc;
 614
 615        /* Sanity check on PE number */
 616        if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
 617                return OPAL_EEH_STOPPED_PERM_UNAVAIL;
 618
 619        /*
 620         * Fetch the master PE and the PE instance might be
 621         * not initialized yet.
 622         */
 623        pe = &phb->ioda.pe_array[pe_no];
 624        if (pe->flags & PNV_IODA_PE_SLAVE) {
 625                pe = pe->master;
 626                WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
 627                pe_no = pe->pe_number;
 628        }
 629
 630        /* Check the master PE */
 631        rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
 632                                        &state, &pcierr, NULL);
 633        if (rc != OPAL_SUCCESS) {
 634                pr_warn("%s: Failure %lld getting "
 635                        "PHB#%x-PE#%x state\n",
 636                        __func__, rc,
 637                        phb->hose->global_number, pe_no);
 638                return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
 639        }
 640
 641        /* Check the slave PE */
 642        if (!(pe->flags & PNV_IODA_PE_MASTER))
 643                return state;
 644
 645        list_for_each_entry(slave, &pe->slaves, list) {
 646                rc = opal_pci_eeh_freeze_status(phb->opal_id,
 647                                                slave->pe_number,
 648                                                &fstate,
 649                                                &pcierr,
 650                                                NULL);
 651                if (rc != OPAL_SUCCESS) {
 652                        pr_warn("%s: Failure %lld getting "
 653                                "PHB#%x-PE#%x state\n",
 654                                __func__, rc,
 655                                phb->hose->global_number, slave->pe_number);
 656                        return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
 657                }
 658
 659                /*
 660                 * Override the result based on the ascending
 661                 * priority.
 662                 */
 663                if (fstate > state)
 664                        state = fstate;
 665        }
 666
 667        return state;
 668}
 669
 670struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
 671{
 672        int pe_number = phb->ioda.pe_rmap[bdfn];
 673
 674        if (pe_number == IODA_INVALID_PE)
 675                return NULL;
 676
 677        return &phb->ioda.pe_array[pe_number];
 678}
 679
 680struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
 681{
 682        struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
 683        struct pci_dn *pdn = pci_get_pdn(dev);
 684
 685        if (!pdn)
 686                return NULL;
 687        if (pdn->pe_number == IODA_INVALID_PE)
 688                return NULL;
 689        return &phb->ioda.pe_array[pdn->pe_number];
 690}
 691
 692static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
 693                                  struct pnv_ioda_pe *parent,
 694                                  struct pnv_ioda_pe *child,
 695                                  bool is_add)
 696{
 697        const char *desc = is_add ? "adding" : "removing";
 698        uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
 699                              OPAL_REMOVE_PE_FROM_DOMAIN;
 700        struct pnv_ioda_pe *slave;
 701        long rc;
 702
 703        /* Parent PE affects child PE */
 704        rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
 705                                child->pe_number, op);
 706        if (rc != OPAL_SUCCESS) {
 707                pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
 708                        rc, desc);
 709                return -ENXIO;
 710        }
 711
 712        if (!(child->flags & PNV_IODA_PE_MASTER))
 713                return 0;
 714
 715        /* Compound case: parent PE affects slave PEs */
 716        list_for_each_entry(slave, &child->slaves, list) {
 717                rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
 718                                        slave->pe_number, op);
 719                if (rc != OPAL_SUCCESS) {
 720                        pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
 721                                rc, desc);
 722                        return -ENXIO;
 723                }
 724        }
 725
 726        return 0;
 727}
 728
 729static int pnv_ioda_set_peltv(struct pnv_phb *phb,
 730                              struct pnv_ioda_pe *pe,
 731                              bool is_add)
 732{
 733        struct pnv_ioda_pe *slave;
 734        struct pci_dev *pdev = NULL;
 735        int ret;
 736
 737        /*
 738         * Clear PE frozen state. If it's master PE, we need
 739         * clear slave PE frozen state as well.
 740         */
 741        if (is_add) {
 742                opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
 743                                          OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 744                if (pe->flags & PNV_IODA_PE_MASTER) {
 745                        list_for_each_entry(slave, &pe->slaves, list)
 746                                opal_pci_eeh_freeze_clear(phb->opal_id,
 747                                                          slave->pe_number,
 748                                                          OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 749                }
 750        }
 751
 752        /*
 753         * Associate PE in PELT. We need add the PE into the
 754         * corresponding PELT-V as well. Otherwise, the error
 755         * originated from the PE might contribute to other
 756         * PEs.
 757         */
 758        ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
 759        if (ret)
 760                return ret;
 761
 762        /* For compound PEs, any one affects all of them */
 763        if (pe->flags & PNV_IODA_PE_MASTER) {
 764                list_for_each_entry(slave, &pe->slaves, list) {
 765                        ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
 766                        if (ret)
 767                                return ret;
 768                }
 769        }
 770
 771        if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
 772                pdev = pe->pbus->self;
 773        else if (pe->flags & PNV_IODA_PE_DEV)
 774                pdev = pe->pdev->bus->self;
 775#ifdef CONFIG_PCI_IOV
 776        else if (pe->flags & PNV_IODA_PE_VF)
 777                pdev = pe->parent_dev;
 778#endif /* CONFIG_PCI_IOV */
 779        while (pdev) {
 780                struct pci_dn *pdn = pci_get_pdn(pdev);
 781                struct pnv_ioda_pe *parent;
 782
 783                if (pdn && pdn->pe_number != IODA_INVALID_PE) {
 784                        parent = &phb->ioda.pe_array[pdn->pe_number];
 785                        ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
 786                        if (ret)
 787                                return ret;
 788                }
 789
 790                pdev = pdev->bus->self;
 791        }
 792
 793        return 0;
 794}
 795
 796static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
 797                                 struct pnv_ioda_pe *pe,
 798                                 struct pci_dev *parent)
 799{
 800        int64_t rc;
 801
 802        while (parent) {
 803                struct pci_dn *pdn = pci_get_pdn(parent);
 804
 805                if (pdn && pdn->pe_number != IODA_INVALID_PE) {
 806                        rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
 807                                                pe->pe_number,
 808                                                OPAL_REMOVE_PE_FROM_DOMAIN);
 809                        /* XXX What to do in case of error ? */
 810                }
 811                parent = parent->bus->self;
 812        }
 813
 814        opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
 815                                  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
 816
 817        /* Disassociate PE in PELT */
 818        rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
 819                                pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
 820        if (rc)
 821                pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
 822}
 823
 824int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
 825{
 826        struct pci_dev *parent;
 827        uint8_t bcomp, dcomp, fcomp;
 828        int64_t rc;
 829        long rid_end, rid;
 830
 831        /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
 832        if (pe->pbus) {
 833                int count;
 834
 835                dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
 836                fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
 837                parent = pe->pbus->self;
 838                if (pe->flags & PNV_IODA_PE_BUS_ALL)
 839                        count = resource_size(&pe->pbus->busn_res);
 840                else
 841                        count = 1;
 842
 843                switch(count) {
 844                case  1: bcomp = OpalPciBusAll;         break;
 845                case  2: bcomp = OpalPciBus7Bits;       break;
 846                case  4: bcomp = OpalPciBus6Bits;       break;
 847                case  8: bcomp = OpalPciBus5Bits;       break;
 848                case 16: bcomp = OpalPciBus4Bits;       break;
 849                case 32: bcomp = OpalPciBus3Bits;       break;
 850                default:
 851                        dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
 852                                count);
 853                        /* Do an exact match only */
 854                        bcomp = OpalPciBusAll;
 855                }
 856                rid_end = pe->rid + (count << 8);
 857        } else {
 858#ifdef CONFIG_PCI_IOV
 859                if (pe->flags & PNV_IODA_PE_VF)
 860                        parent = pe->parent_dev;
 861                else
 862#endif
 863                        parent = pe->pdev->bus->self;
 864                bcomp = OpalPciBusAll;
 865                dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
 866                fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
 867                rid_end = pe->rid + 1;
 868        }
 869
 870        /* Clear the reverse map */
 871        for (rid = pe->rid; rid < rid_end; rid++)
 872                phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
 873
 874        /*
 875         * Release from all parents PELT-V. NPUs don't have a PELTV
 876         * table
 877         */
 878        if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
 879                pnv_ioda_unset_peltv(phb, pe, parent);
 880
 881        rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
 882                             bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
 883        if (rc)
 884                pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
 885
 886        pe->pbus = NULL;
 887        pe->pdev = NULL;
 888#ifdef CONFIG_PCI_IOV
 889        pe->parent_dev = NULL;
 890#endif
 891
 892        return 0;
 893}
 894
 895int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
 896{
 897        uint8_t bcomp, dcomp, fcomp;
 898        long rc, rid_end, rid;
 899
 900        /* Bus validation ? */
 901        if (pe->pbus) {
 902                int count;
 903
 904                dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
 905                fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
 906                if (pe->flags & PNV_IODA_PE_BUS_ALL)
 907                        count = resource_size(&pe->pbus->busn_res);
 908                else
 909                        count = 1;
 910
 911                switch(count) {
 912                case  1: bcomp = OpalPciBusAll;         break;
 913                case  2: bcomp = OpalPciBus7Bits;       break;
 914                case  4: bcomp = OpalPciBus6Bits;       break;
 915                case  8: bcomp = OpalPciBus5Bits;       break;
 916                case 16: bcomp = OpalPciBus4Bits;       break;
 917                case 32: bcomp = OpalPciBus3Bits;       break;
 918                default:
 919                        dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
 920                                count);
 921                        /* Do an exact match only */
 922                        bcomp = OpalPciBusAll;
 923                }
 924                rid_end = pe->rid + (count << 8);
 925        } else {
 926                bcomp = OpalPciBusAll;
 927                dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
 928                fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
 929                rid_end = pe->rid + 1;
 930        }
 931
 932        /*
 933         * Associate PE in PELT. We need add the PE into the
 934         * corresponding PELT-V as well. Otherwise, the error
 935         * originated from the PE might contribute to other
 936         * PEs.
 937         */
 938        rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
 939                             bcomp, dcomp, fcomp, OPAL_MAP_PE);
 940        if (rc) {
 941                pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
 942                return -ENXIO;
 943        }
 944
 945        /*
 946         * Configure PELTV. NPUs don't have a PELTV table so skip
 947         * configuration on them.
 948         */
 949        if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
 950                pnv_ioda_set_peltv(phb, pe, true);
 951
 952        /* Setup reverse map */
 953        for (rid = pe->rid; rid < rid_end; rid++)
 954                phb->ioda.pe_rmap[rid] = pe->pe_number;
 955
 956        /* Setup one MVTs on IODA1 */
 957        if (phb->type != PNV_PHB_IODA1) {
 958                pe->mve_number = 0;
 959                goto out;
 960        }
 961
 962        pe->mve_number = pe->pe_number;
 963        rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
 964        if (rc != OPAL_SUCCESS) {
 965                pe_err(pe, "OPAL error %ld setting up MVE %x\n",
 966                       rc, pe->mve_number);
 967                pe->mve_number = -1;
 968        } else {
 969                rc = opal_pci_set_mve_enable(phb->opal_id,
 970                                             pe->mve_number, OPAL_ENABLE_MVE);
 971                if (rc) {
 972                        pe_err(pe, "OPAL error %ld enabling MVE %x\n",
 973                               rc, pe->mve_number);
 974                        pe->mve_number = -1;
 975                }
 976        }
 977
 978out:
 979        return 0;
 980}
 981
 982static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
 983{
 984        struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
 985        struct pci_dn *pdn = pci_get_pdn(dev);
 986        struct pnv_ioda_pe *pe;
 987
 988        if (!pdn) {
 989                pr_err("%s: Device tree node not associated properly\n",
 990                           pci_name(dev));
 991                return NULL;
 992        }
 993        if (pdn->pe_number != IODA_INVALID_PE)
 994                return NULL;
 995
 996        pe = pnv_ioda_alloc_pe(phb, 1);
 997        if (!pe) {
 998                pr_warn("%s: Not enough PE# available, disabling device\n",
 999                        pci_name(dev));
1000                return NULL;
1001        }
1002
1003        /* NOTE: We don't get a reference for the pointer in the PE
1004         * data structure, both the device and PE structures should be
1005         * destroyed at the same time. However, removing nvlink
1006         * devices will need some work.
1007         *
1008         * At some point we want to remove the PDN completely anyways
1009         */
1010        pdn->pe_number = pe->pe_number;
1011        pe->flags = PNV_IODA_PE_DEV;
1012        pe->pdev = dev;
1013        pe->pbus = NULL;
1014        pe->mve_number = -1;
1015        pe->rid = dev->bus->number << 8 | pdn->devfn;
1016        pe->device_count++;
1017
1018        pe_info(pe, "Associated device to PE\n");
1019
1020        if (pnv_ioda_configure_pe(phb, pe)) {
1021                /* XXX What do we do here ? */
1022                pnv_ioda_free_pe(pe);
1023                pdn->pe_number = IODA_INVALID_PE;
1024                pe->pdev = NULL;
1025                return NULL;
1026        }
1027
1028        /* Put PE to the list */
1029        mutex_lock(&phb->ioda.pe_list_mutex);
1030        list_add_tail(&pe->list, &phb->ioda.pe_list);
1031        mutex_unlock(&phb->ioda.pe_list_mutex);
1032        return pe;
1033}
1034
1035/*
1036 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1037 * single PCI bus. Another one that contains the primary PCI bus and its
1038 * subordinate PCI devices and buses. The second type of PE is normally
1039 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1040 */
1041static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1042{
1043        struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
1044        struct pnv_ioda_pe *pe = NULL;
1045        unsigned int pe_num;
1046
1047        /*
1048         * In partial hotplug case, the PE instance might be still alive.
1049         * We should reuse it instead of allocating a new one.
1050         */
1051        pe_num = phb->ioda.pe_rmap[bus->number << 8];
1052        if (WARN_ON(pe_num != IODA_INVALID_PE)) {
1053                pe = &phb->ioda.pe_array[pe_num];
1054                return NULL;
1055        }
1056
1057        /* PE number for root bus should have been reserved */
1058        if (pci_is_root_bus(bus))
1059                pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1060
1061        /* Check if PE is determined by M64 */
1062        if (!pe)
1063                pe = pnv_ioda_pick_m64_pe(bus, all);
1064
1065        /* The PE number isn't pinned by M64 */
1066        if (!pe)
1067                pe = pnv_ioda_alloc_pe(phb, 1);
1068
1069        if (!pe) {
1070                pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1071                        __func__, pci_domain_nr(bus), bus->number);
1072                return NULL;
1073        }
1074
1075        pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1076        pe->pbus = bus;
1077        pe->pdev = NULL;
1078        pe->mve_number = -1;
1079        pe->rid = bus->busn_res.start << 8;
1080
1081        if (all)
1082                pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1083                        &bus->busn_res.start, &bus->busn_res.end,
1084                        pe->pe_number);
1085        else
1086                pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1087                        &bus->busn_res.start, pe->pe_number);
1088
1089        if (pnv_ioda_configure_pe(phb, pe)) {
1090                /* XXX What do we do here ? */
1091                pnv_ioda_free_pe(pe);
1092                pe->pbus = NULL;
1093                return NULL;
1094        }
1095
1096        /* Put PE to the list */
1097        list_add_tail(&pe->list, &phb->ioda.pe_list);
1098
1099        return pe;
1100}
1101
1102static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1103{
1104        int pe_num, found_pe = false, rc;
1105        long rid;
1106        struct pnv_ioda_pe *pe;
1107        struct pci_dev *gpu_pdev;
1108        struct pci_dn *npu_pdn;
1109        struct pnv_phb *phb = pci_bus_to_pnvhb(npu_pdev->bus);
1110
1111        /*
1112         * Intentionally leak a reference on the npu device (for
1113         * nvlink only; this is not an opencapi path) to make sure it
1114         * never goes away, as it's been the case all along and some
1115         * work is needed otherwise.
1116         */
1117        pci_dev_get(npu_pdev);
1118
1119        /*
1120         * Due to a hardware errata PE#0 on the NPU is reserved for
1121         * error handling. This means we only have three PEs remaining
1122         * which need to be assigned to four links, implying some
1123         * links must share PEs.
1124         *
1125         * To achieve this we assign PEs such that NPUs linking the
1126         * same GPU get assigned the same PE.
1127         */
1128        gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1129        for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1130                pe = &phb->ioda.pe_array[pe_num];
1131                if (!pe->pdev)
1132                        continue;
1133
1134                if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1135                        /*
1136                         * This device has the same peer GPU so should
1137                         * be assigned the same PE as the existing
1138                         * peer NPU.
1139                         */
1140                        dev_info(&npu_pdev->dev,
1141                                "Associating to existing PE %x\n", pe_num);
1142                        npu_pdn = pci_get_pdn(npu_pdev);
1143                        rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1144                        npu_pdn->pe_number = pe_num;
1145                        phb->ioda.pe_rmap[rid] = pe->pe_number;
1146                        pe->device_count++;
1147
1148                        /* Map the PE to this link */
1149                        rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1150                                        OpalPciBusAll,
1151                                        OPAL_COMPARE_RID_DEVICE_NUMBER,
1152                                        OPAL_COMPARE_RID_FUNCTION_NUMBER,
1153                                        OPAL_MAP_PE);
1154                        WARN_ON(rc != OPAL_SUCCESS);
1155                        found_pe = true;
1156                        break;
1157                }
1158        }
1159
1160        if (!found_pe)
1161                /*
1162                 * Could not find an existing PE so allocate a new
1163                 * one.
1164                 */
1165                return pnv_ioda_setup_dev_PE(npu_pdev);
1166        else
1167                return pe;
1168}
1169
1170static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1171{
1172        struct pci_dev *pdev;
1173
1174        list_for_each_entry(pdev, &bus->devices, bus_list)
1175                pnv_ioda_setup_npu_PE(pdev);
1176}
1177
1178static void pnv_pci_ioda_setup_nvlink(void)
1179{
1180        struct pci_controller *hose;
1181        struct pnv_phb *phb;
1182        struct pnv_ioda_pe *pe;
1183
1184        list_for_each_entry(hose, &hose_list, list_node) {
1185                phb = hose->private_data;
1186                if (phb->type == PNV_PHB_NPU_NVLINK) {
1187                        /* PE#0 is needed for error reporting */
1188                        pnv_ioda_reserve_pe(phb, 0);
1189                        pnv_ioda_setup_npu_PEs(hose->bus);
1190                        if (phb->model == PNV_PHB_MODEL_NPU2)
1191                                WARN_ON_ONCE(pnv_npu2_init(hose));
1192                }
1193        }
1194        list_for_each_entry(hose, &hose_list, list_node) {
1195                phb = hose->private_data;
1196                if (phb->type != PNV_PHB_IODA2)
1197                        continue;
1198
1199                list_for_each_entry(pe, &phb->ioda.pe_list, list)
1200                        pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1201        }
1202
1203#ifdef CONFIG_IOMMU_API
1204        /* setup iommu groups so we can do nvlink pass-thru */
1205        pnv_pci_npu_setup_iommu_groups();
1206#endif
1207}
1208
1209static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1210                                       struct pnv_ioda_pe *pe);
1211
1212static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1213{
1214        struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1215        struct pci_dn *pdn = pci_get_pdn(pdev);
1216        struct pnv_ioda_pe *pe;
1217
1218        /* Check if the BDFN for this device is associated with a PE yet */
1219        pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1220        if (!pe) {
1221                /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1222                if (WARN_ON(pdev->is_virtfn))
1223                        return;
1224
1225                pnv_pci_configure_bus(pdev->bus);
1226                pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1227                pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1228
1229
1230                /*
1231                 * If we can't setup the IODA PE something has gone horribly
1232                 * wrong and we can't enable DMA for the device.
1233                 */
1234                if (WARN_ON(!pe))
1235                        return;
1236        } else {
1237                pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1238        }
1239
1240        /*
1241         * We assume that bridges *probably* don't need to do any DMA so we can
1242         * skip allocating a TCE table, etc unless we get a non-bridge device.
1243         */
1244        if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1245                switch (phb->type) {
1246                case PNV_PHB_IODA1:
1247                        pnv_pci_ioda1_setup_dma_pe(phb, pe);
1248                        break;
1249                case PNV_PHB_IODA2:
1250                        pnv_pci_ioda2_setup_dma_pe(phb, pe);
1251                        break;
1252                default:
1253                        pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1254                                __func__, phb->hose->global_number, phb->type);
1255                }
1256        }
1257
1258        if (pdn)
1259                pdn->pe_number = pe->pe_number;
1260        pe->device_count++;
1261
1262        WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1263        pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1264        set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1265
1266        /* PEs with a DMA weight of zero won't have a group */
1267        if (pe->table_group.group)
1268                iommu_add_device(&pe->table_group, &pdev->dev);
1269}
1270
1271/*
1272 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1273 *
1274 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1275 * Devices can only access more than that if bit 59 of the PCI address is set
1276 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1277 * Many PCI devices are not capable of addressing that many bits, and as a
1278 * result are limited to the 4GB of virtual memory made available to 32-bit
1279 * devices in TVE#0.
1280 *
1281 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1282 * devices by configuring the virtual memory past the first 4GB inaccessible
1283 * by 64-bit DMAs.  This should only be used by devices that want more than
1284 * 4GB, and only on PEs that have no 32-bit devices.
1285 *
1286 * Currently this will only work on PHB3 (POWER8).
1287 */
1288static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1289{
1290        u64 window_size, table_size, tce_count, addr;
1291        struct page *table_pages;
1292        u64 tce_order = 28; /* 256MB TCEs */
1293        __be64 *tces;
1294        s64 rc;
1295
1296        /*
1297         * Window size needs to be a power of two, but needs to account for
1298         * shifting memory by the 4GB offset required to skip 32bit space.
1299         */
1300        window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1301        tce_count = window_size >> tce_order;
1302        table_size = tce_count << 3;
1303
1304        if (table_size < PAGE_SIZE)
1305                table_size = PAGE_SIZE;
1306
1307        table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1308                                       get_order(table_size));
1309        if (!table_pages)
1310                goto err;
1311
1312        tces = page_address(table_pages);
1313        if (!tces)
1314                goto err;
1315
1316        memset(tces, 0, table_size);
1317
1318        for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1319                tces[(addr + (1ULL << 32)) >> tce_order] =
1320                        cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1321        }
1322
1323        rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1324                                        pe->pe_number,
1325                                        /* reconfigure window 0 */
1326                                        (pe->pe_number << 1) + 0,
1327                                        1,
1328                                        __pa(tces),
1329                                        table_size,
1330                                        1 << tce_order);
1331        if (rc == OPAL_SUCCESS) {
1332                pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1333                return 0;
1334        }
1335err:
1336        pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1337        return -EIO;
1338}
1339
1340static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1341                u64 dma_mask)
1342{
1343        struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1344        struct pci_dn *pdn = pci_get_pdn(pdev);
1345        struct pnv_ioda_pe *pe;
1346
1347        if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1348                return false;
1349
1350        pe = &phb->ioda.pe_array[pdn->pe_number];
1351        if (pe->tce_bypass_enabled) {
1352                u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1353                if (dma_mask >= top)
1354                        return true;
1355        }
1356
1357        /*
1358         * If the device can't set the TCE bypass bit but still wants
1359         * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1360         * bypass the 32-bit region and be usable for 64-bit DMAs.
1361         * The device needs to be able to address all of this space.
1362         */
1363        if (dma_mask >> 32 &&
1364            dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1365            /* pe->pdev should be set if it's a single device, pe->pbus if not */
1366            (pe->device_count == 1 || !pe->pbus) &&
1367            phb->model == PNV_PHB_MODEL_PHB3) {
1368                /* Configure the bypass mode */
1369                s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1370                if (rc)
1371                        return false;
1372                /* 4GB offset bypasses 32-bit space */
1373                pdev->dev.archdata.dma_offset = (1ULL << 32);
1374                return true;
1375        }
1376
1377        return false;
1378}
1379
1380static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1381                                                     bool real_mode)
1382{
1383        return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1384                (phb->regs + 0x210);
1385}
1386
1387static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1388                unsigned long index, unsigned long npages, bool rm)
1389{
1390        struct iommu_table_group_link *tgl = list_first_entry_or_null(
1391                        &tbl->it_group_list, struct iommu_table_group_link,
1392                        next);
1393        struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1394                        struct pnv_ioda_pe, table_group);
1395        __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1396        unsigned long start, end, inc;
1397
1398        start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1399        end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1400                        npages - 1);
1401
1402        /* p7ioc-style invalidation, 2 TCEs per write */
1403        start |= (1ull << 63);
1404        end |= (1ull << 63);
1405        inc = 16;
1406        end |= inc - 1; /* round up end to be different than start */
1407
1408        mb(); /* Ensure above stores are visible */
1409        while (start <= end) {
1410                if (rm)
1411                        __raw_rm_writeq_be(start, invalidate);
1412                else
1413                        __raw_writeq_be(start, invalidate);
1414
1415                start += inc;
1416        }
1417
1418        /*
1419         * The iommu layer will do another mb() for us on build()
1420         * and we don't care on free()
1421         */
1422}
1423
1424static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1425                long npages, unsigned long uaddr,
1426                enum dma_data_direction direction,
1427                unsigned long attrs)
1428{
1429        int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1430                        attrs);
1431
1432        if (!ret)
1433                pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1434
1435        return ret;
1436}
1437
1438#ifdef CONFIG_IOMMU_API
1439/* Common for IODA1 and IODA2 */
1440static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1441                unsigned long *hpa, enum dma_data_direction *direction,
1442                bool realmode)
1443{
1444        return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
1445}
1446#endif
1447
1448static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1449                long npages)
1450{
1451        pnv_tce_free(tbl, index, npages);
1452
1453        pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1454}
1455
1456static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1457        .set = pnv_ioda1_tce_build,
1458#ifdef CONFIG_IOMMU_API
1459        .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1460        .tce_kill = pnv_pci_p7ioc_tce_invalidate,
1461        .useraddrptr = pnv_tce_useraddrptr,
1462#endif
1463        .clear = pnv_ioda1_tce_free,
1464        .get = pnv_tce_get,
1465};
1466
1467#define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
1468#define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
1469#define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
1470
1471static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1472{
1473        __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1474        const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1475
1476        mb(); /* Ensure previous TCE table stores are visible */
1477        if (rm)
1478                __raw_rm_writeq_be(val, invalidate);
1479        else
1480                __raw_writeq_be(val, invalidate);
1481}
1482
1483static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1484{
1485        /* 01xb - invalidate TCEs that match the specified PE# */
1486        __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1487        unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1488
1489        mb(); /* Ensure above stores are visible */
1490        __raw_writeq_be(val, invalidate);
1491}
1492
1493static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1494                                        unsigned shift, unsigned long index,
1495                                        unsigned long npages)
1496{
1497        __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1498        unsigned long start, end, inc;
1499
1500        /* We'll invalidate DMA address in PE scope */
1501        start = PHB3_TCE_KILL_INVAL_ONE;
1502        start |= (pe->pe_number & 0xFF);
1503        end = start;
1504
1505        /* Figure out the start, end and step */
1506        start |= (index << shift);
1507        end |= ((index + npages - 1) << shift);
1508        inc = (0x1ull << shift);
1509        mb();
1510
1511        while (start <= end) {
1512                if (rm)
1513                        __raw_rm_writeq_be(start, invalidate);
1514                else
1515                        __raw_writeq_be(start, invalidate);
1516                start += inc;
1517        }
1518}
1519
1520static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1521{
1522        struct pnv_phb *phb = pe->phb;
1523
1524        if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1525                pnv_pci_phb3_tce_invalidate_pe(pe);
1526        else
1527                opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1528                                  pe->pe_number, 0, 0, 0);
1529}
1530
1531static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1532                unsigned long index, unsigned long npages, bool rm)
1533{
1534        struct iommu_table_group_link *tgl;
1535
1536        list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1537                struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1538                                struct pnv_ioda_pe, table_group);
1539                struct pnv_phb *phb = pe->phb;
1540                unsigned int shift = tbl->it_page_shift;
1541
1542                /*
1543                 * NVLink1 can use the TCE kill register directly as
1544                 * it's the same as PHB3. NVLink2 is different and
1545                 * should go via the OPAL call.
1546                 */
1547                if (phb->model == PNV_PHB_MODEL_NPU) {
1548                        /*
1549                         * The NVLink hardware does not support TCE kill
1550                         * per TCE entry so we have to invalidate
1551                         * the entire cache for it.
1552                         */
1553                        pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1554                        continue;
1555                }
1556                if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1557                        pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1558                                                    index, npages);
1559                else
1560                        opal_pci_tce_kill(phb->opal_id,
1561                                          OPAL_PCI_TCE_KILL_PAGES,
1562                                          pe->pe_number, 1u << shift,
1563                                          index << shift, npages);
1564        }
1565}
1566
1567void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1568{
1569        if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
1570                pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1571        else
1572                opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
1573}
1574
1575static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1576                long npages, unsigned long uaddr,
1577                enum dma_data_direction direction,
1578                unsigned long attrs)
1579{
1580        int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1581                        attrs);
1582
1583        if (!ret)
1584                pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1585
1586        return ret;
1587}
1588
1589static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1590                long npages)
1591{
1592        pnv_tce_free(tbl, index, npages);
1593
1594        pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1595}
1596
1597static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1598        .set = pnv_ioda2_tce_build,
1599#ifdef CONFIG_IOMMU_API
1600        .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1601        .tce_kill = pnv_pci_ioda2_tce_invalidate,
1602        .useraddrptr = pnv_tce_useraddrptr,
1603#endif
1604        .clear = pnv_ioda2_tce_free,
1605        .get = pnv_tce_get,
1606        .free = pnv_pci_ioda2_table_free_pages,
1607};
1608
1609static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1610{
1611        unsigned int *weight = (unsigned int *)data;
1612
1613        /* This is quite simplistic. The "base" weight of a device
1614         * is 10. 0 means no DMA is to be accounted for it.
1615         */
1616        if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1617                return 0;
1618
1619        if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1620            dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1621            dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1622                *weight += 3;
1623        else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1624                *weight += 15;
1625        else
1626                *weight += 10;
1627
1628        return 0;
1629}
1630
1631static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1632{
1633        unsigned int weight = 0;
1634
1635        /* SRIOV VF has same DMA32 weight as its PF */
1636#ifdef CONFIG_PCI_IOV
1637        if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1638                pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1639                return weight;
1640        }
1641#endif
1642
1643        if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1644                pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1645        } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1646                struct pci_dev *pdev;
1647
1648                list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1649                        pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1650        } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
1651                pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
1652        }
1653
1654        return weight;
1655}
1656
1657static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1658                                       struct pnv_ioda_pe *pe)
1659{
1660
1661        struct page *tce_mem = NULL;
1662        struct iommu_table *tbl;
1663        unsigned int weight, total_weight = 0;
1664        unsigned int tce32_segsz, base, segs, avail, i;
1665        int64_t rc;
1666        void *addr;
1667
1668        /* XXX FIXME: Handle 64-bit only DMA devices */
1669        /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1670        /* XXX FIXME: Allocate multi-level tables on PHB3 */
1671        weight = pnv_pci_ioda_pe_dma_weight(pe);
1672        if (!weight)
1673                return;
1674
1675        pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
1676                     &total_weight);
1677        segs = (weight * phb->ioda.dma32_count) / total_weight;
1678        if (!segs)
1679                segs = 1;
1680
1681        /*
1682         * Allocate contiguous DMA32 segments. We begin with the expected
1683         * number of segments. With one more attempt, the number of DMA32
1684         * segments to be allocated is decreased by one until one segment
1685         * is allocated successfully.
1686         */
1687        do {
1688                for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
1689                        for (avail = 0, i = base; i < base + segs; i++) {
1690                                if (phb->ioda.dma32_segmap[i] ==
1691                                    IODA_INVALID_PE)
1692                                        avail++;
1693                        }
1694
1695                        if (avail == segs)
1696                                goto found;
1697                }
1698        } while (--segs);
1699
1700        if (!segs) {
1701                pe_warn(pe, "No available DMA32 segments\n");
1702                return;
1703        }
1704
1705found:
1706        tbl = pnv_pci_table_alloc(phb->hose->node);
1707        if (WARN_ON(!tbl))
1708                return;
1709
1710        iommu_register_group(&pe->table_group, phb->hose->global_number,
1711                        pe->pe_number);
1712        pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1713
1714        /* Grab a 32-bit TCE table */
1715        pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
1716                weight, total_weight, base, segs);
1717        pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1718                base * PNV_IODA1_DMA32_SEGSIZE,
1719                (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
1720
1721        /* XXX Currently, we allocate one big contiguous table for the
1722         * TCEs. We only really need one chunk per 256M of TCE space
1723         * (ie per segment) but that's an optimization for later, it
1724         * requires some added smarts with our get/put_tce implementation
1725         *
1726         * Each TCE page is 4KB in size and each TCE entry occupies 8
1727         * bytes
1728         */
1729        tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
1730        tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1731                                   get_order(tce32_segsz * segs));
1732        if (!tce_mem) {
1733                pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1734                goto fail;
1735        }
1736        addr = page_address(tce_mem);
1737        memset(addr, 0, tce32_segsz * segs);
1738
1739        /* Configure HW */
1740        for (i = 0; i < segs; i++) {
1741                rc = opal_pci_map_pe_dma_window(phb->opal_id,
1742                                              pe->pe_number,
1743                                              base + i, 1,
1744                                              __pa(addr) + tce32_segsz * i,
1745                                              tce32_segsz, IOMMU_PAGE_SIZE_4K);
1746                if (rc) {
1747                        pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
1748                               rc);
1749                        goto fail;
1750                }
1751        }
1752
1753        /* Setup DMA32 segment mapping */
1754        for (i = base; i < base + segs; i++)
1755                phb->ioda.dma32_segmap[i] = pe->pe_number;
1756
1757        /* Setup linux iommu table */
1758        pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
1759                                  base * PNV_IODA1_DMA32_SEGSIZE,
1760                                  IOMMU_PAGE_SHIFT_4K);
1761
1762        tbl->it_ops = &pnv_ioda1_iommu_ops;
1763        pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1764        pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1765        iommu_init_table(tbl, phb->hose->node, 0, 0);
1766
1767        pe->dma_setup_done = true;
1768        return;
1769 fail:
1770        /* XXX Failure: Try to fallback to 64-bit only ? */
1771        if (tce_mem)
1772                __free_pages(tce_mem, get_order(tce32_segsz * segs));
1773        if (tbl) {
1774                pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1775                iommu_tce_table_put(tbl);
1776        }
1777}
1778
1779static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1780                int num, struct iommu_table *tbl)
1781{
1782        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1783                        table_group);
1784        struct pnv_phb *phb = pe->phb;
1785        int64_t rc;
1786        const unsigned long size = tbl->it_indirect_levels ?
1787                        tbl->it_level_size : tbl->it_size;
1788        const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1789        const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1790
1791        pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1792                num, start_addr, start_addr + win_size - 1,
1793                IOMMU_PAGE_SIZE(tbl));
1794
1795        /*
1796         * Map TCE table through TVT. The TVE index is the PE number
1797         * shifted by 1 bit for 32-bits DMA space.
1798         */
1799        rc = opal_pci_map_pe_dma_window(phb->opal_id,
1800                        pe->pe_number,
1801                        (pe->pe_number << 1) + num,
1802                        tbl->it_indirect_levels + 1,
1803                        __pa(tbl->it_base),
1804                        size << 3,
1805                        IOMMU_PAGE_SIZE(tbl));
1806        if (rc) {
1807                pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1808                return rc;
1809        }
1810
1811        pnv_pci_link_table_and_group(phb->hose->node, num,
1812                        tbl, &pe->table_group);
1813        pnv_pci_ioda2_tce_invalidate_pe(pe);
1814
1815        return 0;
1816}
1817
1818static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1819{
1820        uint16_t window_id = (pe->pe_number << 1 ) + 1;
1821        int64_t rc;
1822
1823        pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1824        if (enable) {
1825                phys_addr_t top = memblock_end_of_DRAM();
1826
1827                top = roundup_pow_of_two(top);
1828                rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1829                                                     pe->pe_number,
1830                                                     window_id,
1831                                                     pe->tce_bypass_base,
1832                                                     top);
1833        } else {
1834                rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1835                                                     pe->pe_number,
1836                                                     window_id,
1837                                                     pe->tce_bypass_base,
1838                                                     0);
1839        }
1840        if (rc)
1841                pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1842        else
1843                pe->tce_bypass_enabled = enable;
1844}
1845
1846static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1847                int num, __u32 page_shift, __u64 window_size, __u32 levels,
1848                bool alloc_userspace_copy, struct iommu_table **ptbl)
1849{
1850        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1851                        table_group);
1852        int nid = pe->phb->hose->node;
1853        __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1854        long ret;
1855        struct iommu_table *tbl;
1856
1857        tbl = pnv_pci_table_alloc(nid);
1858        if (!tbl)
1859                return -ENOMEM;
1860
1861        tbl->it_ops = &pnv_ioda2_iommu_ops;
1862
1863        ret = pnv_pci_ioda2_table_alloc_pages(nid,
1864                        bus_offset, page_shift, window_size,
1865                        levels, alloc_userspace_copy, tbl);
1866        if (ret) {
1867                iommu_tce_table_put(tbl);
1868                return ret;
1869        }
1870
1871        *ptbl = tbl;
1872
1873        return 0;
1874}
1875
1876static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1877{
1878        struct iommu_table *tbl = NULL;
1879        long rc;
1880        unsigned long res_start, res_end;
1881
1882        /*
1883         * crashkernel= specifies the kdump kernel's maximum memory at
1884         * some offset and there is no guaranteed the result is a power
1885         * of 2, which will cause errors later.
1886         */
1887        const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1888
1889        /*
1890         * In memory constrained environments, e.g. kdump kernel, the
1891         * DMA window can be larger than available memory, which will
1892         * cause errors later.
1893         */
1894        const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
1895
1896        /*
1897         * We create the default window as big as we can. The constraint is
1898         * the max order of allocation possible. The TCE table is likely to
1899         * end up being multilevel and with on-demand allocation in place,
1900         * the initial use is not going to be huge as the default window aims
1901         * to support crippled devices (i.e. not fully 64bit DMAble) only.
1902         */
1903        /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1904        const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1905        /* Each TCE level cannot exceed maxblock so go multilevel if needed */
1906        unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1907        unsigned long tcelevel_order = ilog2(maxblock >> 3);
1908        unsigned int levels = tces_order / tcelevel_order;
1909
1910        if (tces_order % tcelevel_order)
1911                levels += 1;
1912        /*
1913         * We try to stick to default levels (which is >1 at the moment) in
1914         * order to save memory by relying on on-demain TCE level allocation.
1915         */
1916        levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1917
1918        rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1919                        window_size, levels, false, &tbl);
1920        if (rc) {
1921                pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1922                                rc);
1923                return rc;
1924        }
1925
1926        /* We use top part of 32bit space for MMIO so exclude it from DMA */
1927        res_start = 0;
1928        res_end = 0;
1929        if (window_size > pe->phb->ioda.m32_pci_base) {
1930                res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1931                res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1932        }
1933        iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end);
1934
1935        rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1936        if (rc) {
1937                pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
1938                                rc);
1939                iommu_tce_table_put(tbl);
1940                return rc;
1941        }
1942
1943        if (!pnv_iommu_bypass_disabled)
1944                pnv_pci_ioda2_set_bypass(pe, true);
1945
1946        /*
1947         * Set table base for the case of IOMMU DMA use. Usually this is done
1948         * from dma_dev_setup() which is not called when a device is returned
1949         * from VFIO so do it here.
1950         */
1951        if (pe->pdev)
1952                set_iommu_table_base(&pe->pdev->dev, tbl);
1953
1954        return 0;
1955}
1956
1957static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1958                int num)
1959{
1960        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1961                        table_group);
1962        struct pnv_phb *phb = pe->phb;
1963        long ret;
1964
1965        pe_info(pe, "Removing DMA window #%d\n", num);
1966
1967        ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1968                        (pe->pe_number << 1) + num,
1969                        0/* levels */, 0/* table address */,
1970                        0/* table size */, 0/* page size */);
1971        if (ret)
1972                pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1973        else
1974                pnv_pci_ioda2_tce_invalidate_pe(pe);
1975
1976        pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1977
1978        return ret;
1979}
1980
1981#ifdef CONFIG_IOMMU_API
1982unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1983                __u64 window_size, __u32 levels)
1984{
1985        unsigned long bytes = 0;
1986        const unsigned window_shift = ilog2(window_size);
1987        unsigned entries_shift = window_shift - page_shift;
1988        unsigned table_shift = entries_shift + 3;
1989        unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1990        unsigned long direct_table_size;
1991
1992        if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1993                        !is_power_of_2(window_size))
1994                return 0;
1995
1996        /* Calculate a direct table size from window_size and levels */
1997        entries_shift = (entries_shift + levels - 1) / levels;
1998        table_shift = entries_shift + 3;
1999        table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2000        direct_table_size =  1UL << table_shift;
2001
2002        for ( ; levels; --levels) {
2003                bytes += ALIGN(tce_table_size, direct_table_size);
2004
2005                tce_table_size /= direct_table_size;
2006                tce_table_size <<= 3;
2007                tce_table_size = max_t(unsigned long,
2008                                tce_table_size, direct_table_size);
2009        }
2010
2011        return bytes + bytes; /* one for HW table, one for userspace copy */
2012}
2013
2014static long pnv_pci_ioda2_create_table_userspace(
2015                struct iommu_table_group *table_group,
2016                int num, __u32 page_shift, __u64 window_size, __u32 levels,
2017                struct iommu_table **ptbl)
2018{
2019        long ret = pnv_pci_ioda2_create_table(table_group,
2020                        num, page_shift, window_size, levels, true, ptbl);
2021
2022        if (!ret)
2023                (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2024                                page_shift, window_size, levels);
2025        return ret;
2026}
2027
2028static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
2029{
2030        struct pci_dev *dev;
2031
2032        list_for_each_entry(dev, &bus->devices, bus_list) {
2033                set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
2034                dev->dev.archdata.dma_offset = pe->tce_bypass_base;
2035
2036                if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2037                        pnv_ioda_setup_bus_dma(pe, dev->subordinate);
2038        }
2039}
2040
2041static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2042{
2043        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2044                                                table_group);
2045        /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2046        struct iommu_table *tbl = pe->table_group.tables[0];
2047
2048        pnv_pci_ioda2_set_bypass(pe, false);
2049        pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2050        if (pe->pbus)
2051                pnv_ioda_setup_bus_dma(pe, pe->pbus);
2052        else if (pe->pdev)
2053                set_iommu_table_base(&pe->pdev->dev, NULL);
2054        iommu_tce_table_put(tbl);
2055}
2056
2057static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2058{
2059        struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2060                                                table_group);
2061
2062        pnv_pci_ioda2_setup_default_config(pe);
2063        if (pe->pbus)
2064                pnv_ioda_setup_bus_dma(pe, pe->pbus);
2065}
2066
2067static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2068        .get_table_size = pnv_pci_ioda2_get_table_size,
2069        .create_table = pnv_pci_ioda2_create_table_userspace,
2070        .set_window = pnv_pci_ioda2_set_window,
2071        .unset_window = pnv_pci_ioda2_unset_window,
2072        .take_ownership = pnv_ioda2_take_ownership,
2073        .release_ownership = pnv_ioda2_release_ownership,
2074};
2075#endif
2076
2077void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2078                                struct pnv_ioda_pe *pe)
2079{
2080        int64_t rc;
2081
2082        /* TVE #1 is selected by PCI address bit 59 */
2083        pe->tce_bypass_base = 1ull << 59;
2084
2085        /* The PE will reserve all possible 32-bits space */
2086        pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2087                phb->ioda.m32_pci_base);
2088
2089        /* Setup linux iommu table */
2090        pe->table_group.tce32_start = 0;
2091        pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2092        pe->table_group.max_dynamic_windows_supported =
2093                        IOMMU_TABLE_GROUP_MAX_TABLES;
2094        pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2095        pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2096
2097        rc = pnv_pci_ioda2_setup_default_config(pe);
2098        if (rc)
2099                return;
2100
2101#ifdef CONFIG_IOMMU_API
2102        pe->table_group.ops = &pnv_pci_ioda2_ops;
2103        iommu_register_group(&pe->table_group, phb->hose->global_number,
2104                             pe->pe_number);
2105#endif
2106        pe->dma_setup_done = true;
2107}
2108
2109int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2110{
2111        struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2112                                           ioda.irq_chip);
2113
2114        return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2115}
2116
2117static void pnv_ioda2_msi_eoi(struct irq_data *d)
2118{
2119        int64_t rc;
2120        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2121        struct irq_chip *chip = irq_data_get_irq_chip(d);
2122
2123        rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2124        WARN_ON_ONCE(rc);
2125
2126        icp_native_eoi(d);
2127}
2128
2129
2130void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2131{
2132        struct irq_data *idata;
2133        struct irq_chip *ichip;
2134
2135        /* The MSI EOI OPAL call is only needed on PHB3 */
2136        if (phb->model != PNV_PHB_MODEL_PHB3)
2137                return;
2138
2139        if (!phb->ioda.irq_chip_init) {
2140                /*
2141                 * First time we setup an MSI IRQ, we need to setup the
2142                 * corresponding IRQ chip to route correctly.
2143                 */
2144                idata = irq_get_irq_data(virq);
2145                ichip = irq_data_get_irq_chip(idata);
2146                phb->ioda.irq_chip_init = 1;
2147                phb->ioda.irq_chip = *ichip;
2148                phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2149        }
2150        irq_set_chip(virq, &phb->ioda.irq_chip);
2151}
2152
2153/*
2154 * Returns true iff chip is something that we could call
2155 * pnv_opal_pci_msi_eoi for.
2156 */
2157bool is_pnv_opal_msi(struct irq_chip *chip)
2158{
2159        return chip->irq_eoi == pnv_ioda2_msi_eoi;
2160}
2161EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2162
2163static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2164                                  unsigned int hwirq, unsigned int virq,
2165                                  unsigned int is_64, struct msi_msg *msg)
2166{
2167        struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2168        unsigned int xive_num = hwirq - phb->msi_base;
2169        __be32 data;
2170        int rc;
2171
2172        /* No PE assigned ? bail out ... no MSI for you ! */
2173        if (pe == NULL)
2174                return -ENXIO;
2175
2176        /* Check if we have an MVE */
2177        if (pe->mve_number < 0)
2178                return -ENXIO;
2179
2180        /* Force 32-bit MSI on some broken devices */
2181        if (dev->no_64bit_msi)
2182                is_64 = 0;
2183
2184        /* Assign XIVE to PE */
2185        rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2186        if (rc) {
2187                pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2188                        pci_name(dev), rc, xive_num);
2189                return -EIO;
2190        }
2191
2192        if (is_64) {
2193                __be64 addr64;
2194
2195                rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2196                                     &addr64, &data);
2197                if (rc) {
2198                        pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2199                                pci_name(dev), rc);
2200                        return -EIO;
2201                }
2202                msg->address_hi = be64_to_cpu(addr64) >> 32;
2203                msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2204        } else {
2205                __be32 addr32;
2206
2207                rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2208                                     &addr32, &data);
2209                if (rc) {
2210                        pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2211                                pci_name(dev), rc);
2212                        return -EIO;
2213                }
2214                msg->address_hi = 0;
2215                msg->address_lo = be32_to_cpu(addr32);
2216        }
2217        msg->data = be32_to_cpu(data);
2218
2219        pnv_set_msi_irq_chip(phb, virq);
2220
2221        pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2222                 " address=%x_%08x data=%x PE# %x\n",
2223                 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2224                 msg->address_hi, msg->address_lo, data, pe->pe_number);
2225
2226        return 0;
2227}
2228
2229static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2230{
2231        unsigned int count;
2232        const __be32 *prop = of_get_property(phb->hose->dn,
2233                                             "ibm,opal-msi-ranges", NULL);
2234        if (!prop) {
2235                /* BML Fallback */
2236                prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2237        }
2238        if (!prop)
2239                return;
2240
2241        phb->msi_base = be32_to_cpup(prop);
2242        count = be32_to_cpup(prop + 1);
2243        if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2244                pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2245                       phb->hose->global_number);
2246                return;
2247        }
2248
2249        phb->msi_setup = pnv_pci_ioda_msi_setup;
2250        phb->msi32_support = 1;
2251        pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2252                count, phb->msi_base);
2253}
2254
2255static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2256                                  struct resource *res)
2257{
2258        struct pnv_phb *phb = pe->phb;
2259        struct pci_bus_region region;
2260        int index;
2261        int64_t rc;
2262
2263        if (!res || !res->flags || res->start > res->end)
2264                return;
2265
2266        if (res->flags & IORESOURCE_IO) {
2267                region.start = res->start - phb->ioda.io_pci_base;
2268                region.end   = res->end - phb->ioda.io_pci_base;
2269                index = region.start / phb->ioda.io_segsize;
2270
2271                while (index < phb->ioda.total_pe_num &&
2272                       region.start <= region.end) {
2273                        phb->ioda.io_segmap[index] = pe->pe_number;
2274                        rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2275                                pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2276                        if (rc != OPAL_SUCCESS) {
2277                                pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2278                                       __func__, rc, index, pe->pe_number);
2279                                break;
2280                        }
2281
2282                        region.start += phb->ioda.io_segsize;
2283                        index++;
2284                }
2285        } else if ((res->flags & IORESOURCE_MEM) &&
2286                   !pnv_pci_is_m64(phb, res)) {
2287                region.start = res->start -
2288                               phb->hose->mem_offset[0] -
2289                               phb->ioda.m32_pci_base;
2290                region.end   = res->end -
2291                               phb->hose->mem_offset[0] -
2292                               phb->ioda.m32_pci_base;
2293                index = region.start / phb->ioda.m32_segsize;
2294
2295                while (index < phb->ioda.total_pe_num &&
2296                       region.start <= region.end) {
2297                        phb->ioda.m32_segmap[index] = pe->pe_number;
2298                        rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2299                                pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2300                        if (rc != OPAL_SUCCESS) {
2301                                pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2302                                       __func__, rc, index, pe->pe_number);
2303                                break;
2304                        }
2305
2306                        region.start += phb->ioda.m32_segsize;
2307                        index++;
2308                }
2309        }
2310}
2311
2312/*
2313 * This function is supposed to be called on basis of PE from top
2314 * to bottom style. So the the I/O or MMIO segment assigned to
2315 * parent PE could be overridden by its child PEs if necessary.
2316 */
2317static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2318{
2319        struct pci_dev *pdev;
2320        int i;
2321
2322        /*
2323         * NOTE: We only care PCI bus based PE for now. For PCI
2324         * device based PE, for example SRIOV sensitive VF should
2325         * be figured out later.
2326         */
2327        BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2328
2329        list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2330                for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2331                        pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2332
2333                /*
2334                 * If the PE contains all subordinate PCI buses, the
2335                 * windows of the child bridges should be mapped to
2336                 * the PE as well.
2337                 */
2338                if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2339                        continue;
2340                for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2341                        pnv_ioda_setup_pe_res(pe,
2342                                &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2343        }
2344}
2345
2346#ifdef CONFIG_DEBUG_FS
2347static int pnv_pci_diag_data_set(void *data, u64 val)
2348{
2349        struct pnv_phb *phb = data;
2350        s64 ret;
2351
2352        /* Retrieve the diag data from firmware */
2353        ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2354                                          phb->diag_data_size);
2355        if (ret != OPAL_SUCCESS)
2356                return -EIO;
2357
2358        /* Print the diag data to the kernel log */
2359        pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2360        return 0;
2361}
2362
2363DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2364                         "%llu\n");
2365
2366static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2367{
2368        struct pnv_phb *phb = data;
2369        int pe_num;
2370
2371        for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2372                struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2373
2374                if (!test_bit(pe_num, phb->ioda.pe_alloc))
2375                        continue;
2376
2377                pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2378                        pe->rid, pe->device_count,
2379                        (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2380                        (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2381                        (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2382                        (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2383                        (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2384                        (pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2385        }
2386
2387        return 0;
2388}
2389
2390DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2391                         pnv_pci_ioda_pe_dump, "%llu\n");
2392
2393#endif /* CONFIG_DEBUG_FS */
2394
2395static void pnv_pci_ioda_create_dbgfs(void)
2396{
2397#ifdef CONFIG_DEBUG_FS
2398        struct pci_controller *hose, *tmp;
2399        struct pnv_phb *phb;
2400        char name[16];
2401
2402        list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2403                phb = hose->private_data;
2404
2405                /* Notify initialization of PHB done */
2406                phb->initialized = 1;
2407
2408                sprintf(name, "PCI%04x", hose->global_number);
2409                phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2410
2411                debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2412                                           phb, &pnv_pci_diag_data_fops);
2413                debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2414                                           phb, &pnv_pci_ioda_pe_dump_fops);
2415        }
2416#endif /* CONFIG_DEBUG_FS */
2417}
2418
2419static void pnv_pci_enable_bridge(struct pci_bus *bus)
2420{
2421        struct pci_dev *dev = bus->self;
2422        struct pci_bus *child;
2423
2424        /* Empty bus ? bail */
2425        if (list_empty(&bus->devices))
2426                return;
2427
2428        /*
2429         * If there's a bridge associated with that bus enable it. This works
2430         * around races in the generic code if the enabling is done during
2431         * parallel probing. This can be removed once those races have been
2432         * fixed.
2433         */
2434        if (dev) {
2435                int rc = pci_enable_device(dev);
2436                if (rc)
2437                        pci_err(dev, "Error enabling bridge (%d)\n", rc);
2438                pci_set_master(dev);
2439        }
2440
2441        /* Perform the same to child busses */
2442        list_for_each_entry(child, &bus->children, node)
2443                pnv_pci_enable_bridge(child);
2444}
2445
2446static void pnv_pci_enable_bridges(void)
2447{
2448        struct pci_controller *hose;
2449
2450        list_for_each_entry(hose, &hose_list, list_node)
2451                pnv_pci_enable_bridge(hose->bus);
2452}
2453
2454static void pnv_pci_ioda_fixup(void)
2455{
2456        pnv_pci_ioda_setup_nvlink();
2457        pnv_pci_ioda_create_dbgfs();
2458
2459        pnv_pci_enable_bridges();
2460
2461#ifdef CONFIG_EEH
2462        pnv_eeh_post_init();
2463#endif
2464}
2465
2466/*
2467 * Returns the alignment for I/O or memory windows for P2P
2468 * bridges. That actually depends on how PEs are segmented.
2469 * For now, we return I/O or M32 segment size for PE sensitive
2470 * P2P bridges. Otherwise, the default values (4KiB for I/O,
2471 * 1MiB for memory) will be returned.
2472 *
2473 * The current PCI bus might be put into one PE, which was
2474 * create against the parent PCI bridge. For that case, we
2475 * needn't enlarge the alignment so that we can save some
2476 * resources.
2477 */
2478static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2479                                                unsigned long type)
2480{
2481        struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2482        int num_pci_bridges = 0;
2483        struct pci_dev *bridge;
2484
2485        bridge = bus->self;
2486        while (bridge) {
2487                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2488                        num_pci_bridges++;
2489                        if (num_pci_bridges >= 2)
2490                                return 1;
2491                }
2492
2493                bridge = bridge->bus->self;
2494        }
2495
2496        /*
2497         * We fall back to M32 if M64 isn't supported. We enforce the M64
2498         * alignment for any 64-bit resource, PCIe doesn't care and
2499         * bridges only do 64-bit prefetchable anyway.
2500         */
2501        if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2502                return phb->ioda.m64_segsize;
2503        if (type & IORESOURCE_MEM)
2504                return phb->ioda.m32_segsize;
2505
2506        return phb->ioda.io_segsize;
2507}
2508
2509/*
2510 * We are updating root port or the upstream port of the
2511 * bridge behind the root port with PHB's windows in order
2512 * to accommodate the changes on required resources during
2513 * PCI (slot) hotplug, which is connected to either root
2514 * port or the downstream ports of PCIe switch behind the
2515 * root port.
2516 */
2517static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2518                                           unsigned long type)
2519{
2520        struct pci_controller *hose = pci_bus_to_host(bus);
2521        struct pnv_phb *phb = hose->private_data;
2522        struct pci_dev *bridge = bus->self;
2523        struct resource *r, *w;
2524        bool msi_region = false;
2525        int i;
2526
2527        /* Check if we need apply fixup to the bridge's windows */
2528        if (!pci_is_root_bus(bridge->bus) &&
2529            !pci_is_root_bus(bridge->bus->self->bus))
2530                return;
2531
2532        /* Fixup the resources */
2533        for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2534                r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2535                if (!r->flags || !r->parent)
2536                        continue;
2537
2538                w = NULL;
2539                if (r->flags & type & IORESOURCE_IO)
2540                        w = &hose->io_resource;
2541                else if (pnv_pci_is_m64(phb, r) &&
2542                         (type & IORESOURCE_PREFETCH) &&
2543                         phb->ioda.m64_segsize)
2544                        w = &hose->mem_resources[1];
2545                else if (r->flags & type & IORESOURCE_MEM) {
2546                        w = &hose->mem_resources[0];
2547                        msi_region = true;
2548                }
2549
2550                r->start = w->start;
2551                r->end = w->end;
2552
2553                /* The 64KB 32-bits MSI region shouldn't be included in
2554                 * the 32-bits bridge window. Otherwise, we can see strange
2555                 * issues. One of them is EEH error observed on Garrison.
2556                 *
2557                 * Exclude top 1MB region which is the minimal alignment of
2558                 * 32-bits bridge window.
2559                 */
2560                if (msi_region) {
2561                        r->end += 0x10000;
2562                        r->end -= 0x100000;
2563                }
2564        }
2565}
2566
2567static void pnv_pci_configure_bus(struct pci_bus *bus)
2568{
2569        struct pci_dev *bridge = bus->self;
2570        struct pnv_ioda_pe *pe;
2571        bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2572
2573        dev_info(&bus->dev, "Configuring PE for bus\n");
2574
2575        /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2576        if (WARN_ON(list_empty(&bus->devices)))
2577                return;
2578
2579        /* Reserve PEs according to used M64 resources */
2580        pnv_ioda_reserve_m64_pe(bus, NULL, all);
2581
2582        /*
2583         * Assign PE. We might run here because of partial hotplug.
2584         * For the case, we just pick up the existing PE and should
2585         * not allocate resources again.
2586         */
2587        pe = pnv_ioda_setup_bus_PE(bus, all);
2588        if (!pe)
2589                return;
2590
2591        pnv_ioda_setup_pe_seg(pe);
2592}
2593
2594static resource_size_t pnv_pci_default_alignment(void)
2595{
2596        return PAGE_SIZE;
2597}
2598
2599/* Prevent enabling devices for which we couldn't properly
2600 * assign a PE
2601 */
2602static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2603{
2604        struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
2605        struct pci_dn *pdn;
2606
2607        /* The function is probably called while the PEs have
2608         * not be created yet. For example, resource reassignment
2609         * during PCI probe period. We just skip the check if
2610         * PEs isn't ready.
2611         */
2612        if (!phb->initialized)
2613                return true;
2614
2615        pdn = pci_get_pdn(dev);
2616        if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2617                return false;
2618
2619        return true;
2620}
2621
2622static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2623{
2624        struct pci_controller *hose = pci_bus_to_host(dev->bus);
2625        struct pnv_phb *phb = hose->private_data;
2626        struct pci_dn *pdn;
2627        struct pnv_ioda_pe *pe;
2628
2629        if (!phb->initialized)
2630                return true;
2631
2632        pdn = pci_get_pdn(dev);
2633        if (!pdn)
2634                return false;
2635
2636        if (pdn->pe_number == IODA_INVALID_PE) {
2637                pe = pnv_ioda_setup_dev_PE(dev);
2638                if (!pe)
2639                        return false;
2640        }
2641        return true;
2642}
2643
2644static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
2645                                       int num)
2646{
2647        struct pnv_ioda_pe *pe = container_of(table_group,
2648                                              struct pnv_ioda_pe, table_group);
2649        struct pnv_phb *phb = pe->phb;
2650        unsigned int idx;
2651        long rc;
2652
2653        pe_info(pe, "Removing DMA window #%d\n", num);
2654        for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
2655                if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
2656                        continue;
2657
2658                rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2659                                                idx, 0, 0ul, 0ul, 0ul);
2660                if (rc != OPAL_SUCCESS) {
2661                        pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
2662                                rc, idx);
2663                        return rc;
2664                }
2665
2666                phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
2667        }
2668
2669        pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2670        return OPAL_SUCCESS;
2671}
2672
2673static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
2674{
2675        struct iommu_table *tbl = pe->table_group.tables[0];
2676        int64_t rc;
2677
2678        if (!pe->dma_setup_done)
2679                return;
2680
2681        rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
2682        if (rc != OPAL_SUCCESS)
2683                return;
2684
2685        pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
2686        if (pe->table_group.group) {
2687                iommu_group_put(pe->table_group.group);
2688                WARN_ON(pe->table_group.group);
2689        }
2690
2691        free_pages(tbl->it_base, get_order(tbl->it_size << 3));
2692        iommu_tce_table_put(tbl);
2693}
2694
2695void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2696{
2697        struct iommu_table *tbl = pe->table_group.tables[0];
2698        int64_t rc;
2699
2700        if (!pe->dma_setup_done)
2701                return;
2702
2703        rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2704        if (rc)
2705                pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2706
2707        pnv_pci_ioda2_set_bypass(pe, false);
2708        if (pe->table_group.group) {
2709                iommu_group_put(pe->table_group.group);
2710                WARN_ON(pe->table_group.group);
2711        }
2712
2713        iommu_tce_table_put(tbl);
2714}
2715
2716static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2717                                 unsigned short win,
2718                                 unsigned int *map)
2719{
2720        struct pnv_phb *phb = pe->phb;
2721        int idx;
2722        int64_t rc;
2723
2724        for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2725                if (map[idx] != pe->pe_number)
2726                        continue;
2727
2728                rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2729                                phb->ioda.reserved_pe_idx, win, 0, idx);
2730
2731                if (rc != OPAL_SUCCESS)
2732                        pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2733                                rc, win, idx);
2734
2735                map[idx] = IODA_INVALID_PE;
2736        }
2737}
2738
2739static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2740{
2741        struct pnv_phb *phb = pe->phb;
2742
2743        if (phb->type == PNV_PHB_IODA1) {
2744                pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
2745                                     phb->ioda.io_segmap);
2746                pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2747                                     phb->ioda.m32_segmap);
2748                /* M64 is pre-configured by pnv_ioda1_init_m64() */
2749        } else if (phb->type == PNV_PHB_IODA2) {
2750                pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2751                                     phb->ioda.m32_segmap);
2752        }
2753}
2754
2755static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2756{
2757        struct pnv_phb *phb = pe->phb;
2758        struct pnv_ioda_pe *slave, *tmp;
2759
2760        pe_info(pe, "Releasing PE\n");
2761
2762        mutex_lock(&phb->ioda.pe_list_mutex);
2763        list_del(&pe->list);
2764        mutex_unlock(&phb->ioda.pe_list_mutex);
2765
2766        switch (phb->type) {
2767        case PNV_PHB_IODA1:
2768                pnv_pci_ioda1_release_pe_dma(pe);
2769                break;
2770        case PNV_PHB_IODA2:
2771                pnv_pci_ioda2_release_pe_dma(pe);
2772                break;
2773        case PNV_PHB_NPU_OCAPI:
2774                break;
2775        default:
2776                WARN_ON(1);
2777        }
2778
2779        pnv_ioda_release_pe_seg(pe);
2780        pnv_ioda_deconfigure_pe(pe->phb, pe);
2781
2782        /* Release slave PEs in the compound PE */
2783        if (pe->flags & PNV_IODA_PE_MASTER) {
2784                list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2785                        list_del(&slave->list);
2786                        pnv_ioda_free_pe(slave);
2787                }
2788        }
2789
2790        /*
2791         * The PE for root bus can be removed because of hotplug in EEH
2792         * recovery for fenced PHB error. We need to mark the PE dead so
2793         * that it can be populated again in PCI hot add path. The PE
2794         * shouldn't be destroyed as it's the global reserved resource.
2795         */
2796        if (phb->ioda.root_pe_idx == pe->pe_number)
2797                return;
2798
2799        pnv_ioda_free_pe(pe);
2800}
2801
2802static void pnv_pci_release_device(struct pci_dev *pdev)
2803{
2804        struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2805        struct pci_dn *pdn = pci_get_pdn(pdev);
2806        struct pnv_ioda_pe *pe;
2807
2808        /* The VF PE state is torn down when sriov_disable() is called */
2809        if (pdev->is_virtfn)
2810                return;
2811
2812        if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2813                return;
2814
2815#ifdef CONFIG_PCI_IOV
2816        /*
2817         * FIXME: Try move this to sriov_disable(). It's here since we allocate
2818         * the iov state at probe time since we need to fiddle with the IOV
2819         * resources.
2820         */
2821        if (pdev->is_physfn)
2822                kfree(pdev->dev.archdata.iov_data);
2823#endif
2824
2825        /*
2826         * PCI hotplug can happen as part of EEH error recovery. The @pdn
2827         * isn't removed and added afterwards in this scenario. We should
2828         * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2829         * device count is decreased on removing devices while failing to
2830         * be increased on adding devices. It leads to unbalanced PE's device
2831         * count and eventually make normal PCI hotplug path broken.
2832         */
2833        pe = &phb->ioda.pe_array[pdn->pe_number];
2834        pdn->pe_number = IODA_INVALID_PE;
2835
2836        WARN_ON(--pe->device_count < 0);
2837        if (pe->device_count == 0)
2838                pnv_ioda_release_pe(pe);
2839}
2840
2841static void pnv_npu_disable_device(struct pci_dev *pdev)
2842{
2843        struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
2844        struct eeh_pe *eehpe = edev ? edev->pe : NULL;
2845
2846        if (eehpe && eeh_ops && eeh_ops->reset)
2847                eeh_ops->reset(eehpe, EEH_RESET_HOT);
2848}
2849
2850static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2851{
2852        struct pnv_phb *phb = hose->private_data;
2853
2854        opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2855                       OPAL_ASSERT_RESET);
2856}
2857
2858static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2859{
2860        struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2861        struct pnv_ioda_pe *pe;
2862
2863        list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2864                if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2865                        continue;
2866
2867                if (!pe->pbus)
2868                        continue;
2869
2870                if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2871                        pe->pbus = bus;
2872                        break;
2873                }
2874        }
2875}
2876
2877static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2878        .dma_dev_setup          = pnv_pci_ioda_dma_dev_setup,
2879        .dma_bus_setup          = pnv_pci_ioda_dma_bus_setup,
2880        .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
2881        .setup_msi_irqs         = pnv_setup_msi_irqs,
2882        .teardown_msi_irqs      = pnv_teardown_msi_irqs,
2883        .enable_device_hook     = pnv_pci_enable_device_hook,
2884        .release_device         = pnv_pci_release_device,
2885        .window_alignment       = pnv_pci_window_alignment,
2886        .setup_bridge           = pnv_pci_fixup_bridge_resources,
2887        .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2888        .shutdown               = pnv_pci_ioda_shutdown,
2889};
2890
2891static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
2892        .setup_msi_irqs         = pnv_setup_msi_irqs,
2893        .teardown_msi_irqs      = pnv_teardown_msi_irqs,
2894        .enable_device_hook     = pnv_pci_enable_device_hook,
2895        .window_alignment       = pnv_pci_window_alignment,
2896        .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2897        .shutdown               = pnv_pci_ioda_shutdown,
2898        .disable_device         = pnv_npu_disable_device,
2899};
2900
2901static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2902        .enable_device_hook     = pnv_ocapi_enable_device_hook,
2903        .release_device         = pnv_pci_release_device,
2904        .window_alignment       = pnv_pci_window_alignment,
2905        .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2906        .shutdown               = pnv_pci_ioda_shutdown,
2907};
2908
2909static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2910                                         u64 hub_id, int ioda_type)
2911{
2912        struct pci_controller *hose;
2913        struct pnv_phb *phb;
2914        unsigned long size, m64map_off, m32map_off, pemap_off;
2915        unsigned long iomap_off = 0, dma32map_off = 0;
2916        struct pnv_ioda_pe *root_pe;
2917        struct resource r;
2918        const __be64 *prop64;
2919        const __be32 *prop32;
2920        int len;
2921        unsigned int segno;
2922        u64 phb_id;
2923        void *aux;
2924        long rc;
2925
2926        if (!of_device_is_available(np))
2927                return;
2928
2929        pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
2930
2931        prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2932        if (!prop64) {
2933                pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2934                return;
2935        }
2936        phb_id = be64_to_cpup(prop64);
2937        pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2938
2939        phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
2940        if (!phb)
2941                panic("%s: Failed to allocate %zu bytes\n", __func__,
2942                      sizeof(*phb));
2943
2944        /* Allocate PCI controller */
2945        phb->hose = hose = pcibios_alloc_controller(np);
2946        if (!phb->hose) {
2947                pr_err("  Can't allocate PCI controller for %pOF\n",
2948                       np);
2949                memblock_free(__pa(phb), sizeof(struct pnv_phb));
2950                return;
2951        }
2952
2953        spin_lock_init(&phb->lock);
2954        prop32 = of_get_property(np, "bus-range", &len);
2955        if (prop32 && len == 8) {
2956                hose->first_busno = be32_to_cpu(prop32[0]);
2957                hose->last_busno = be32_to_cpu(prop32[1]);
2958        } else {
2959                pr_warn("  Broken <bus-range> on %pOF\n", np);
2960                hose->first_busno = 0;
2961                hose->last_busno = 0xff;
2962        }
2963        hose->private_data = phb;
2964        phb->hub_id = hub_id;
2965        phb->opal_id = phb_id;
2966        phb->type = ioda_type;
2967        mutex_init(&phb->ioda.pe_alloc_mutex);
2968
2969        /* Detect specific models for error handling */
2970        if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2971                phb->model = PNV_PHB_MODEL_P7IOC;
2972        else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2973                phb->model = PNV_PHB_MODEL_PHB3;
2974        else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
2975                phb->model = PNV_PHB_MODEL_NPU;
2976        else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
2977                phb->model = PNV_PHB_MODEL_NPU2;
2978        else
2979                phb->model = PNV_PHB_MODEL_UNKNOWN;
2980
2981        /* Initialize diagnostic data buffer */
2982        prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
2983        if (prop32)
2984                phb->diag_data_size = be32_to_cpup(prop32);
2985        else
2986                phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
2987
2988        phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
2989        if (!phb->diag_data)
2990                panic("%s: Failed to allocate %u bytes\n", __func__,
2991                      phb->diag_data_size);
2992
2993        /* Parse 32-bit and IO ranges (if any) */
2994        pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2995
2996        /* Get registers */
2997        if (!of_address_to_resource(np, 0, &r)) {
2998                phb->regs_phys = r.start;
2999                phb->regs = ioremap(r.start, resource_size(&r));
3000                if (phb->regs == NULL)
3001                        pr_err("  Failed to map registers !\n");
3002        }
3003
3004        /* Initialize more IODA stuff */
3005        phb->ioda.total_pe_num = 1;
3006        prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3007        if (prop32)
3008                phb->ioda.total_pe_num = be32_to_cpup(prop32);
3009        prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3010        if (prop32)
3011                phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3012
3013        /* Invalidate RID to PE# mapping */
3014        for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3015                phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3016
3017        /* Parse 64-bit MMIO range */
3018        pnv_ioda_parse_m64_window(phb);
3019
3020        phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3021        /* FW Has already off top 64k of M32 space (MSI space) */
3022        phb->ioda.m32_size += 0x10000;
3023
3024        phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3025        phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3026        phb->ioda.io_size = hose->pci_io_size;
3027        phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3028        phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3029
3030        /* Calculate how many 32-bit TCE segments we have */
3031        phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3032                                PNV_IODA1_DMA32_SEGSIZE;
3033
3034        /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3035        size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3036                        sizeof(unsigned long));
3037        m64map_off = size;
3038        size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3039        m32map_off = size;
3040        size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3041        if (phb->type == PNV_PHB_IODA1) {
3042                iomap_off = size;
3043                size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3044                dma32map_off = size;
3045                size += phb->ioda.dma32_count *
3046                        sizeof(phb->ioda.dma32_segmap[0]);
3047        }
3048        pemap_off = size;
3049        size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3050        aux = memblock_alloc(size, SMP_CACHE_BYTES);
3051        if (!aux)
3052                panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3053        phb->ioda.pe_alloc = aux;
3054        phb->ioda.m64_segmap = aux + m64map_off;
3055        phb->ioda.m32_segmap = aux + m32map_off;
3056        for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3057                phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3058                phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3059        }
3060        if (phb->type == PNV_PHB_IODA1) {
3061                phb->ioda.io_segmap = aux + iomap_off;
3062                for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3063                        phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3064
3065                phb->ioda.dma32_segmap = aux + dma32map_off;
3066                for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3067                        phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3068        }
3069        phb->ioda.pe_array = aux + pemap_off;
3070
3071        /*
3072         * Choose PE number for root bus, which shouldn't have
3073         * M64 resources consumed by its child devices. To pick
3074         * the PE number adjacent to the reserved one if possible.
3075         */
3076        pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3077        if (phb->ioda.reserved_pe_idx == 0) {
3078                phb->ioda.root_pe_idx = 1;
3079                pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3080        } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3081                phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3082                pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3083        } else {
3084                /* otherwise just allocate one */
3085                root_pe = pnv_ioda_alloc_pe(phb, 1);
3086                phb->ioda.root_pe_idx = root_pe->pe_number;
3087        }
3088
3089        INIT_LIST_HEAD(&phb->ioda.pe_list);
3090        mutex_init(&phb->ioda.pe_list_mutex);
3091
3092        /* Calculate how many 32-bit TCE segments we have */
3093        phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3094                                PNV_IODA1_DMA32_SEGSIZE;
3095
3096#if 0 /* We should really do that ... */
3097        rc = opal_pci_set_phb_mem_window(opal->phb_id,
3098                                         window_type,
3099                                         window_num,
3100                                         starting_real_address,
3101                                         starting_pci_address,
3102                                         segment_size);
3103#endif
3104
3105        pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3106                phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3107                phb->ioda.m32_size, phb->ioda.m32_segsize);
3108        if (phb->ioda.m64_size)
3109                pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3110                        phb->ioda.m64_size, phb->ioda.m64_segsize);
3111        if (phb->ioda.io_size)
3112                pr_info("                  IO: 0x%x [segment=0x%x]\n",
3113                        phb->ioda.io_size, phb->ioda.io_segsize);
3114
3115
3116        phb->hose->ops = &pnv_pci_ops;
3117        phb->get_pe_state = pnv_ioda_get_pe_state;
3118        phb->freeze_pe = pnv_ioda_freeze_pe;
3119        phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3120
3121        /* Setup MSI support */
3122        pnv_pci_init_ioda_msis(phb);
3123
3124        /*
3125         * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3126         * to let the PCI core do resource assignment. It's supposed
3127         * that the PCI core will do correct I/O and MMIO alignment
3128         * for the P2P bridge bars so that each PCI bus (excluding
3129         * the child P2P bridges) can form individual PE.
3130         */
3131        ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3132
3133        switch (phb->type) {
3134        case PNV_PHB_NPU_NVLINK:
3135                hose->controller_ops = pnv_npu_ioda_controller_ops;
3136                break;
3137        case PNV_PHB_NPU_OCAPI:
3138                hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3139                break;
3140        default:
3141                hose->controller_ops = pnv_pci_ioda_controller_ops;
3142        }
3143
3144        ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3145
3146#ifdef CONFIG_PCI_IOV
3147        ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
3148        ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3149        ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3150        ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3151#endif
3152
3153        pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3154
3155        /* Reset IODA tables to a clean state */
3156        rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3157        if (rc)
3158                pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3159
3160        /*
3161         * If we're running in kdump kernel, the previous kernel never
3162         * shutdown PCI devices correctly. We already got IODA table
3163         * cleaned out. So we have to issue PHB reset to stop all PCI
3164         * transactions from previous kernel. The ppc_pci_reset_phbs
3165         * kernel parameter will force this reset too. Additionally,
3166         * if the IODA reset above failed then use a bigger hammer.
3167         * This can happen if we get a PHB fatal error in very early
3168         * boot.
3169         */
3170        if (is_kdump_kernel() || pci_reset_phbs || rc) {
3171                pr_info("  Issue PHB reset ...\n");
3172                pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3173                pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3174        }
3175
3176        /* Remove M64 resource if we can't configure it successfully */
3177        if (!phb->init_m64 || phb->init_m64(phb))
3178                hose->mem_resources[1].flags = 0;
3179}
3180
3181void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3182{
3183        pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3184}
3185
3186void __init pnv_pci_init_npu_phb(struct device_node *np)
3187{
3188        pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3189}
3190
3191void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3192{
3193        pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3194}
3195
3196static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3197{
3198        struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
3199
3200        if (!machine_is(powernv))
3201                return;
3202
3203        if (phb->type == PNV_PHB_NPU_OCAPI)
3204                dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3205}
3206DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3207
3208void __init pnv_pci_init_ioda_hub(struct device_node *np)
3209{
3210        struct device_node *phbn;
3211        const __be64 *prop64;
3212        u64 hub_id;
3213
3214        pr_info("Probing IODA IO-Hub %pOF\n", np);
3215
3216        prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3217        if (!prop64) {
3218                pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3219                return;
3220        }
3221        hub_id = be64_to_cpup(prop64);
3222        pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3223
3224        /* Count child PHBs */
3225        for_each_child_of_node(np, phbn) {
3226                /* Look for IODA1 PHBs */
3227                if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3228                        pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3229        }
3230}
3231