linux/arch/sparc/mm/srmmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * srmmu.c:  SRMMU specific routines for memory management.
   4 *
   5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10 */
  11
  12#include <linux/seq_file.h>
  13#include <linux/spinlock.h>
  14#include <linux/memblock.h>
  15#include <linux/pagemap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/kdebug.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/init.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25
  26#include <asm/mmu_context.h>
  27#include <asm/cacheflush.h>
  28#include <asm/tlbflush.h>
  29#include <asm/io-unit.h>
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/bitext.h>
  33#include <asm/vaddrs.h>
  34#include <asm/cache.h>
  35#include <asm/traps.h>
  36#include <asm/oplib.h>
  37#include <asm/mbus.h>
  38#include <asm/page.h>
  39#include <asm/asi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
  57EXPORT_SYMBOL(vac_cache_size);
  58int vac_line_size;
  59
  60extern struct resource sparc_iomap;
  61
  62extern unsigned long last_valid_pfn;
  63
  64static pgd_t *srmmu_swapper_pg_dir;
  65
  66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68
  69#ifdef CONFIG_SMP
  70const struct sparc32_cachetlb_ops *local_ops;
  71
  72#define FLUSH_BEGIN(mm)
  73#define FLUSH_END
  74#else
  75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76#define FLUSH_END       }
  77#endif
  78
  79int flush_page_for_dma_global = 1;
  80
  81char *srmmu_name;
  82
  83ctxd_t *srmmu_ctx_table_phys;
  84static ctxd_t *srmmu_context_table;
  85
  86int viking_mxcc_present;
  87static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88
  89static int is_hypersparc;
  90
  91static int srmmu_cache_pagetables;
  92
  93/* these will be initialized in srmmu_nocache_calcsize() */
  94static unsigned long srmmu_nocache_size;
  95static unsigned long srmmu_nocache_end;
  96
  97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99
 100/* The context table is a nocache user with the biggest alignment needs. */
 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102
 103void *srmmu_nocache_pool;
 104static struct bit_map srmmu_nocache_map;
 105
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 111{
 112        pte_t pte;
 113
 114        pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115        set_pte((pte_t *)ctxp, pte);
 116}
 117
 118/*
 119 * Locations of MSI Registers.
 120 */
 121#define MSI_MBUS_ARBEN  0xe0001008      /* MBus Arbiter Enable register */
 122
 123/*
 124 * Useful bits in the MSI Registers.
 125 */
 126#define MSI_ASYNC_MODE  0x80000000      /* Operate the MSI asynchronously */
 127
 128static void msi_set_sync(void)
 129{
 130        __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
 131                              "andn %%g3, %2, %%g3\n\t"
 132                              "sta %%g3, [%0] %1\n\t" : :
 133                              "r" (MSI_MBUS_ARBEN),
 134                              "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
 135}
 136
 137void pmd_set(pmd_t *pmdp, pte_t *ptep)
 138{
 139        unsigned long ptp = __nocache_pa(ptep) >> 4;
 140        set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
 141}
 142
 143/*
 144 * size: bytes to allocate in the nocache area.
 145 * align: bytes, number to align at.
 146 * Returns the virtual address of the allocated area.
 147 */
 148static void *__srmmu_get_nocache(int size, int align)
 149{
 150        int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
 151        unsigned long addr;
 152
 153        if (size < minsz) {
 154                printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 155                       size);
 156                size = minsz;
 157        }
 158        if (size & (minsz - 1)) {
 159                printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
 160                       size);
 161                size += minsz - 1;
 162        }
 163        BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 164
 165        offset = bit_map_string_get(&srmmu_nocache_map,
 166                                    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 167                                    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 168        if (offset == -1) {
 169                printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 170                       size, (int) srmmu_nocache_size,
 171                       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 172                return NULL;
 173        }
 174
 175        addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 176        return (void *)addr;
 177}
 178
 179void *srmmu_get_nocache(int size, int align)
 180{
 181        void *tmp;
 182
 183        tmp = __srmmu_get_nocache(size, align);
 184
 185        if (tmp)
 186                memset(tmp, 0, size);
 187
 188        return tmp;
 189}
 190
 191void srmmu_free_nocache(void *addr, int size)
 192{
 193        unsigned long vaddr;
 194        int offset;
 195
 196        vaddr = (unsigned long)addr;
 197        if (vaddr < SRMMU_NOCACHE_VADDR) {
 198                printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 199                    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 200                BUG();
 201        }
 202        if (vaddr + size > srmmu_nocache_end) {
 203                printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 204                    vaddr, srmmu_nocache_end);
 205                BUG();
 206        }
 207        if (!is_power_of_2(size)) {
 208                printk("Size 0x%x is not a power of 2\n", size);
 209                BUG();
 210        }
 211        if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 212                printk("Size 0x%x is too small\n", size);
 213                BUG();
 214        }
 215        if (vaddr & (size - 1)) {
 216                printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 217                BUG();
 218        }
 219
 220        offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 221        size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 222
 223        bit_map_clear(&srmmu_nocache_map, offset, size);
 224}
 225
 226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 227                                                 unsigned long end);
 228
 229/* Return how much physical memory we have.  */
 230static unsigned long __init probe_memory(void)
 231{
 232        unsigned long total = 0;
 233        int i;
 234
 235        for (i = 0; sp_banks[i].num_bytes; i++)
 236                total += sp_banks[i].num_bytes;
 237
 238        return total;
 239}
 240
 241/*
 242 * Reserve nocache dynamically proportionally to the amount of
 243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 244 */
 245static void __init srmmu_nocache_calcsize(void)
 246{
 247        unsigned long sysmemavail = probe_memory() / 1024;
 248        int srmmu_nocache_npages;
 249
 250        srmmu_nocache_npages =
 251                sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 252
 253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 254        // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 255        if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 256                srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 257
 258        /* anything above 1280 blows up */
 259        if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 260                srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 261
 262        srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 263        srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 264}
 265
 266static void __init srmmu_nocache_init(void)
 267{
 268        void *srmmu_nocache_bitmap;
 269        unsigned int bitmap_bits;
 270        pgd_t *pgd;
 271        p4d_t *p4d;
 272        pud_t *pud;
 273        pmd_t *pmd;
 274        pte_t *pte;
 275        unsigned long paddr, vaddr;
 276        unsigned long pteval;
 277
 278        bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 279
 280        srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
 281                                            SRMMU_NOCACHE_ALIGN_MAX);
 282        if (!srmmu_nocache_pool)
 283                panic("%s: Failed to allocate %lu bytes align=0x%x\n",
 284                      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
 285        memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 286
 287        srmmu_nocache_bitmap =
 288                memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 289                               SMP_CACHE_BYTES);
 290        if (!srmmu_nocache_bitmap)
 291                panic("%s: Failed to allocate %zu bytes\n", __func__,
 292                      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
 293        bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 294
 295        srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 296        memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 297        init_mm.pgd = srmmu_swapper_pg_dir;
 298
 299        srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 300
 301        paddr = __pa((unsigned long)srmmu_nocache_pool);
 302        vaddr = SRMMU_NOCACHE_VADDR;
 303
 304        while (vaddr < srmmu_nocache_end) {
 305                pgd = pgd_offset_k(vaddr);
 306                p4d = p4d_offset(pgd, vaddr);
 307                pud = pud_offset(p4d, vaddr);
 308                pmd = pmd_offset(__nocache_fix(pud), vaddr);
 309                pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 310
 311                pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 312
 313                if (srmmu_cache_pagetables)
 314                        pteval |= SRMMU_CACHE;
 315
 316                set_pte(__nocache_fix(pte), __pte(pteval));
 317
 318                vaddr += PAGE_SIZE;
 319                paddr += PAGE_SIZE;
 320        }
 321
 322        flush_cache_all();
 323        flush_tlb_all();
 324}
 325
 326pgd_t *get_pgd_fast(void)
 327{
 328        pgd_t *pgd = NULL;
 329
 330        pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 331        if (pgd) {
 332                pgd_t *init = pgd_offset_k(0);
 333                memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 334                memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 335                                                (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 336        }
 337
 338        return pgd;
 339}
 340
 341/*
 342 * Hardware needs alignment to 256 only, but we align to whole page size
 343 * to reduce fragmentation problems due to the buddy principle.
 344 * XXX Provide actual fragmentation statistics in /proc.
 345 *
 346 * Alignments up to the page size are the same for physical and virtual
 347 * addresses of the nocache area.
 348 */
 349pgtable_t pte_alloc_one(struct mm_struct *mm)
 350{
 351        pte_t *ptep;
 352        struct page *page;
 353
 354        if ((ptep = pte_alloc_one_kernel(mm)) == 0)
 355                return NULL;
 356        page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 357        spin_lock(&mm->page_table_lock);
 358        if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
 359                page_ref_dec(page);
 360                ptep = NULL;
 361        }
 362        spin_unlock(&mm->page_table_lock);
 363
 364        return ptep;
 365}
 366
 367void pte_free(struct mm_struct *mm, pgtable_t ptep)
 368{
 369        struct page *page;
 370
 371        page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 372        spin_lock(&mm->page_table_lock);
 373        if (page_ref_dec_return(page) == 1)
 374                pgtable_pte_page_dtor(page);
 375        spin_unlock(&mm->page_table_lock);
 376
 377        srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
 378}
 379
 380/* context handling - a dynamically sized pool is used */
 381#define NO_CONTEXT      -1
 382
 383struct ctx_list {
 384        struct ctx_list *next;
 385        struct ctx_list *prev;
 386        unsigned int ctx_number;
 387        struct mm_struct *ctx_mm;
 388};
 389
 390static struct ctx_list *ctx_list_pool;
 391static struct ctx_list ctx_free;
 392static struct ctx_list ctx_used;
 393
 394/* At boot time we determine the number of contexts */
 395static int num_contexts;
 396
 397static inline void remove_from_ctx_list(struct ctx_list *entry)
 398{
 399        entry->next->prev = entry->prev;
 400        entry->prev->next = entry->next;
 401}
 402
 403static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 404{
 405        entry->next = head;
 406        (entry->prev = head->prev)->next = entry;
 407        head->prev = entry;
 408}
 409#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 410#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 411
 412
 413static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 414{
 415        struct ctx_list *ctxp;
 416
 417        ctxp = ctx_free.next;
 418        if (ctxp != &ctx_free) {
 419                remove_from_ctx_list(ctxp);
 420                add_to_used_ctxlist(ctxp);
 421                mm->context = ctxp->ctx_number;
 422                ctxp->ctx_mm = mm;
 423                return;
 424        }
 425        ctxp = ctx_used.next;
 426        if (ctxp->ctx_mm == old_mm)
 427                ctxp = ctxp->next;
 428        if (ctxp == &ctx_used)
 429                panic("out of mmu contexts");
 430        flush_cache_mm(ctxp->ctx_mm);
 431        flush_tlb_mm(ctxp->ctx_mm);
 432        remove_from_ctx_list(ctxp);
 433        add_to_used_ctxlist(ctxp);
 434        ctxp->ctx_mm->context = NO_CONTEXT;
 435        ctxp->ctx_mm = mm;
 436        mm->context = ctxp->ctx_number;
 437}
 438
 439static inline void free_context(int context)
 440{
 441        struct ctx_list *ctx_old;
 442
 443        ctx_old = ctx_list_pool + context;
 444        remove_from_ctx_list(ctx_old);
 445        add_to_free_ctxlist(ctx_old);
 446}
 447
 448static void __init sparc_context_init(int numctx)
 449{
 450        int ctx;
 451        unsigned long size;
 452
 453        size = numctx * sizeof(struct ctx_list);
 454        ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
 455        if (!ctx_list_pool)
 456                panic("%s: Failed to allocate %lu bytes\n", __func__, size);
 457
 458        for (ctx = 0; ctx < numctx; ctx++) {
 459                struct ctx_list *clist;
 460
 461                clist = (ctx_list_pool + ctx);
 462                clist->ctx_number = ctx;
 463                clist->ctx_mm = NULL;
 464        }
 465        ctx_free.next = ctx_free.prev = &ctx_free;
 466        ctx_used.next = ctx_used.prev = &ctx_used;
 467        for (ctx = 0; ctx < numctx; ctx++)
 468                add_to_free_ctxlist(ctx_list_pool + ctx);
 469}
 470
 471void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 472               struct task_struct *tsk)
 473{
 474        unsigned long flags;
 475
 476        if (mm->context == NO_CONTEXT) {
 477                spin_lock_irqsave(&srmmu_context_spinlock, flags);
 478                alloc_context(old_mm, mm);
 479                spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 480                srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 481        }
 482
 483        if (sparc_cpu_model == sparc_leon)
 484                leon_switch_mm();
 485
 486        if (is_hypersparc)
 487                hyper_flush_whole_icache();
 488
 489        srmmu_set_context(mm->context);
 490}
 491
 492/* Low level IO area allocation on the SRMMU. */
 493static inline void srmmu_mapioaddr(unsigned long physaddr,
 494                                   unsigned long virt_addr, int bus_type)
 495{
 496        pgd_t *pgdp;
 497        p4d_t *p4dp;
 498        pud_t *pudp;
 499        pmd_t *pmdp;
 500        pte_t *ptep;
 501        unsigned long tmp;
 502
 503        physaddr &= PAGE_MASK;
 504        pgdp = pgd_offset_k(virt_addr);
 505        p4dp = p4d_offset(pgdp, virt_addr);
 506        pudp = pud_offset(p4dp, virt_addr);
 507        pmdp = pmd_offset(pudp, virt_addr);
 508        ptep = pte_offset_kernel(pmdp, virt_addr);
 509        tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 510
 511        /* I need to test whether this is consistent over all
 512         * sun4m's.  The bus_type represents the upper 4 bits of
 513         * 36-bit physical address on the I/O space lines...
 514         */
 515        tmp |= (bus_type << 28);
 516        tmp |= SRMMU_PRIV;
 517        __flush_page_to_ram(virt_addr);
 518        set_pte(ptep, __pte(tmp));
 519}
 520
 521void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 522                      unsigned long xva, unsigned int len)
 523{
 524        while (len != 0) {
 525                len -= PAGE_SIZE;
 526                srmmu_mapioaddr(xpa, xva, bus);
 527                xva += PAGE_SIZE;
 528                xpa += PAGE_SIZE;
 529        }
 530        flush_tlb_all();
 531}
 532
 533static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 534{
 535        pgd_t *pgdp;
 536        p4d_t *p4dp;
 537        pud_t *pudp;
 538        pmd_t *pmdp;
 539        pte_t *ptep;
 540
 541
 542        pgdp = pgd_offset_k(virt_addr);
 543        p4dp = p4d_offset(pgdp, virt_addr);
 544        pudp = pud_offset(p4dp, virt_addr);
 545        pmdp = pmd_offset(pudp, virt_addr);
 546        ptep = pte_offset_kernel(pmdp, virt_addr);
 547
 548        /* No need to flush uncacheable page. */
 549        __pte_clear(ptep);
 550}
 551
 552void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 553{
 554        while (len != 0) {
 555                len -= PAGE_SIZE;
 556                srmmu_unmapioaddr(virt_addr);
 557                virt_addr += PAGE_SIZE;
 558        }
 559        flush_tlb_all();
 560}
 561
 562/* tsunami.S */
 563extern void tsunami_flush_cache_all(void);
 564extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 565extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 566extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 567extern void tsunami_flush_page_to_ram(unsigned long page);
 568extern void tsunami_flush_page_for_dma(unsigned long page);
 569extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 570extern void tsunami_flush_tlb_all(void);
 571extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 572extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 573extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 574extern void tsunami_setup_blockops(void);
 575
 576/* swift.S */
 577extern void swift_flush_cache_all(void);
 578extern void swift_flush_cache_mm(struct mm_struct *mm);
 579extern void swift_flush_cache_range(struct vm_area_struct *vma,
 580                                    unsigned long start, unsigned long end);
 581extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 582extern void swift_flush_page_to_ram(unsigned long page);
 583extern void swift_flush_page_for_dma(unsigned long page);
 584extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 585extern void swift_flush_tlb_all(void);
 586extern void swift_flush_tlb_mm(struct mm_struct *mm);
 587extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 588                                  unsigned long start, unsigned long end);
 589extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 590
 591#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 592void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 593{
 594        int cctx, ctx1;
 595
 596        page &= PAGE_MASK;
 597        if ((ctx1 = vma->vm_mm->context) != -1) {
 598                cctx = srmmu_get_context();
 599/* Is context # ever different from current context? P3 */
 600                if (cctx != ctx1) {
 601                        printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 602                        srmmu_set_context(ctx1);
 603                        swift_flush_page(page);
 604                        __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 605                                        "r" (page), "i" (ASI_M_FLUSH_PROBE));
 606                        srmmu_set_context(cctx);
 607                } else {
 608                         /* Rm. prot. bits from virt. c. */
 609                        /* swift_flush_cache_all(); */
 610                        /* swift_flush_cache_page(vma, page); */
 611                        swift_flush_page(page);
 612
 613                        __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 614                                "r" (page), "i" (ASI_M_FLUSH_PROBE));
 615                        /* same as above: srmmu_flush_tlb_page() */
 616                }
 617        }
 618}
 619#endif
 620
 621/*
 622 * The following are all MBUS based SRMMU modules, and therefore could
 623 * be found in a multiprocessor configuration.  On the whole, these
 624 * chips seems to be much more touchy about DVMA and page tables
 625 * with respect to cache coherency.
 626 */
 627
 628/* viking.S */
 629extern void viking_flush_cache_all(void);
 630extern void viking_flush_cache_mm(struct mm_struct *mm);
 631extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 632                                     unsigned long end);
 633extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 634extern void viking_flush_page_to_ram(unsigned long page);
 635extern void viking_flush_page_for_dma(unsigned long page);
 636extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 637extern void viking_flush_page(unsigned long page);
 638extern void viking_mxcc_flush_page(unsigned long page);
 639extern void viking_flush_tlb_all(void);
 640extern void viking_flush_tlb_mm(struct mm_struct *mm);
 641extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 642                                   unsigned long end);
 643extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 644                                  unsigned long page);
 645extern void sun4dsmp_flush_tlb_all(void);
 646extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 647extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 648                                   unsigned long end);
 649extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 650                                  unsigned long page);
 651
 652/* hypersparc.S */
 653extern void hypersparc_flush_cache_all(void);
 654extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 655extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 656extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 657extern void hypersparc_flush_page_to_ram(unsigned long page);
 658extern void hypersparc_flush_page_for_dma(unsigned long page);
 659extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 660extern void hypersparc_flush_tlb_all(void);
 661extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 662extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 663extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 664extern void hypersparc_setup_blockops(void);
 665
 666/*
 667 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 668 *       kernel mappings are done with one single contiguous chunk of
 669 *       ram.  On small ram machines (classics mainly) we only get
 670 *       around 8mb mapped for us.
 671 */
 672
 673static void __init early_pgtable_allocfail(char *type)
 674{
 675        prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 676        prom_halt();
 677}
 678
 679static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 680                                                        unsigned long end)
 681{
 682        pgd_t *pgdp;
 683        p4d_t *p4dp;
 684        pud_t *pudp;
 685        pmd_t *pmdp;
 686        pte_t *ptep;
 687
 688        while (start < end) {
 689                pgdp = pgd_offset_k(start);
 690                p4dp = p4d_offset(pgdp, start);
 691                pudp = pud_offset(p4dp, start);
 692                if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
 693                        pmdp = __srmmu_get_nocache(
 694                            SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 695                        if (pmdp == NULL)
 696                                early_pgtable_allocfail("pmd");
 697                        memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 698                        pud_set(__nocache_fix(pudp), pmdp);
 699                }
 700                pmdp = pmd_offset(__nocache_fix(pudp), start);
 701                if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 702                        ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 703                        if (ptep == NULL)
 704                                early_pgtable_allocfail("pte");
 705                        memset(__nocache_fix(ptep), 0, PTE_SIZE);
 706                        pmd_set(__nocache_fix(pmdp), ptep);
 707                }
 708                if (start > (0xffffffffUL - PMD_SIZE))
 709                        break;
 710                start = (start + PMD_SIZE) & PMD_MASK;
 711        }
 712}
 713
 714static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 715                                                  unsigned long end)
 716{
 717        pgd_t *pgdp;
 718        p4d_t *p4dp;
 719        pud_t *pudp;
 720        pmd_t *pmdp;
 721        pte_t *ptep;
 722
 723        while (start < end) {
 724                pgdp = pgd_offset_k(start);
 725                p4dp = p4d_offset(pgdp, start);
 726                pudp = pud_offset(p4dp, start);
 727                if (pud_none(*pudp)) {
 728                        pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 729                        if (pmdp == NULL)
 730                                early_pgtable_allocfail("pmd");
 731                        memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 732                        pud_set((pud_t *)pgdp, pmdp);
 733                }
 734                pmdp = pmd_offset(pudp, start);
 735                if (srmmu_pmd_none(*pmdp)) {
 736                        ptep = __srmmu_get_nocache(PTE_SIZE,
 737                                                             PTE_SIZE);
 738                        if (ptep == NULL)
 739                                early_pgtable_allocfail("pte");
 740                        memset(ptep, 0, PTE_SIZE);
 741                        pmd_set(pmdp, ptep);
 742                }
 743                if (start > (0xffffffffUL - PMD_SIZE))
 744                        break;
 745                start = (start + PMD_SIZE) & PMD_MASK;
 746        }
 747}
 748
 749/* These flush types are not available on all chips... */
 750static inline unsigned long srmmu_probe(unsigned long vaddr)
 751{
 752        unsigned long retval;
 753
 754        if (sparc_cpu_model != sparc_leon) {
 755
 756                vaddr &= PAGE_MASK;
 757                __asm__ __volatile__("lda [%1] %2, %0\n\t" :
 758                                     "=r" (retval) :
 759                                     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 760        } else {
 761                retval = leon_swprobe(vaddr, NULL);
 762        }
 763        return retval;
 764}
 765
 766/*
 767 * This is much cleaner than poking around physical address space
 768 * looking at the prom's page table directly which is what most
 769 * other OS's do.  Yuck... this is much better.
 770 */
 771static void __init srmmu_inherit_prom_mappings(unsigned long start,
 772                                               unsigned long end)
 773{
 774        unsigned long probed;
 775        unsigned long addr;
 776        pgd_t *pgdp;
 777        p4d_t *p4dp;
 778        pud_t *pudp;
 779        pmd_t *pmdp;
 780        pte_t *ptep;
 781        int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 782
 783        while (start <= end) {
 784                if (start == 0)
 785                        break; /* probably wrap around */
 786                if (start == 0xfef00000)
 787                        start = KADB_DEBUGGER_BEGVM;
 788                probed = srmmu_probe(start);
 789                if (!probed) {
 790                        /* continue probing until we find an entry */
 791                        start += PAGE_SIZE;
 792                        continue;
 793                }
 794
 795                /* A red snapper, see what it really is. */
 796                what = 0;
 797                addr = start - PAGE_SIZE;
 798
 799                if (!(start & ~(PMD_MASK))) {
 800                        if (srmmu_probe(addr + PMD_SIZE) == probed)
 801                                what = 1;
 802                }
 803
 804                if (!(start & ~(PGDIR_MASK))) {
 805                        if (srmmu_probe(addr + PGDIR_SIZE) == probed)
 806                                what = 2;
 807                }
 808
 809                pgdp = pgd_offset_k(start);
 810                p4dp = p4d_offset(pgdp, start);
 811                pudp = pud_offset(p4dp, start);
 812                if (what == 2) {
 813                        *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
 814                        start += PGDIR_SIZE;
 815                        continue;
 816                }
 817                if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
 818                        pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 819                                                   SRMMU_PMD_TABLE_SIZE);
 820                        if (pmdp == NULL)
 821                                early_pgtable_allocfail("pmd");
 822                        memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 823                        pud_set(__nocache_fix(pudp), pmdp);
 824                }
 825                pmdp = pmd_offset(__nocache_fix(pgdp), start);
 826                if (what == 1) {
 827                        *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
 828                        start += PMD_SIZE;
 829                        continue;
 830                }
 831                if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 832                        ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 833                        if (ptep == NULL)
 834                                early_pgtable_allocfail("pte");
 835                        memset(__nocache_fix(ptep), 0, PTE_SIZE);
 836                        pmd_set(__nocache_fix(pmdp), ptep);
 837                }
 838                ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 839                *(pte_t *)__nocache_fix(ptep) = __pte(probed);
 840                start += PAGE_SIZE;
 841        }
 842}
 843
 844#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 845
 846/* Create a third-level SRMMU 16MB page mapping. */
 847static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 848{
 849        pgd_t *pgdp = pgd_offset_k(vaddr);
 850        unsigned long big_pte;
 851
 852        big_pte = KERNEL_PTE(phys_base >> 4);
 853        *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 854}
 855
 856/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 857static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 858{
 859        unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
 860        unsigned long vstart = (vbase & PGDIR_MASK);
 861        unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 862        /* Map "low" memory only */
 863        const unsigned long min_vaddr = PAGE_OFFSET;
 864        const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 865
 866        if (vstart < min_vaddr || vstart >= max_vaddr)
 867                return vstart;
 868
 869        if (vend > max_vaddr || vend < min_vaddr)
 870                vend = max_vaddr;
 871
 872        while (vstart < vend) {
 873                do_large_mapping(vstart, pstart);
 874                vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
 875        }
 876        return vstart;
 877}
 878
 879static void __init map_kernel(void)
 880{
 881        int i;
 882
 883        if (phys_base > 0) {
 884                do_large_mapping(PAGE_OFFSET, phys_base);
 885        }
 886
 887        for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 888                map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 889        }
 890}
 891
 892void (*poke_srmmu)(void) = NULL;
 893
 894void __init srmmu_paging_init(void)
 895{
 896        int i;
 897        phandle cpunode;
 898        char node_str[128];
 899        pgd_t *pgd;
 900        p4d_t *p4d;
 901        pud_t *pud;
 902        pmd_t *pmd;
 903        pte_t *pte;
 904        unsigned long pages_avail;
 905
 906        init_mm.context = (unsigned long) NO_CONTEXT;
 907        sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
 908
 909        if (sparc_cpu_model == sun4d)
 910                num_contexts = 65536; /* We know it is Viking */
 911        else {
 912                /* Find the number of contexts on the srmmu. */
 913                cpunode = prom_getchild(prom_root_node);
 914                num_contexts = 0;
 915                while (cpunode != 0) {
 916                        prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 917                        if (!strcmp(node_str, "cpu")) {
 918                                num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 919                                break;
 920                        }
 921                        cpunode = prom_getsibling(cpunode);
 922                }
 923        }
 924
 925        if (!num_contexts) {
 926                prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 927                prom_halt();
 928        }
 929
 930        pages_avail = 0;
 931        last_valid_pfn = bootmem_init(&pages_avail);
 932
 933        srmmu_nocache_calcsize();
 934        srmmu_nocache_init();
 935        srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 936        map_kernel();
 937
 938        /* ctx table has to be physically aligned to its size */
 939        srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 940        srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 941
 942        for (i = 0; i < num_contexts; i++)
 943                srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 944
 945        flush_cache_all();
 946        srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 947#ifdef CONFIG_SMP
 948        /* Stop from hanging here... */
 949        local_ops->tlb_all();
 950#else
 951        flush_tlb_all();
 952#endif
 953        poke_srmmu();
 954
 955        srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 956        srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 957
 958        srmmu_allocate_ptable_skeleton(
 959                __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 960        srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 961
 962        pgd = pgd_offset_k(PKMAP_BASE);
 963        p4d = p4d_offset(pgd, PKMAP_BASE);
 964        pud = pud_offset(p4d, PKMAP_BASE);
 965        pmd = pmd_offset(pud, PKMAP_BASE);
 966        pte = pte_offset_kernel(pmd, PKMAP_BASE);
 967        pkmap_page_table = pte;
 968
 969        flush_cache_all();
 970        flush_tlb_all();
 971
 972        sparc_context_init(num_contexts);
 973
 974        kmap_init();
 975
 976        {
 977                unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
 978
 979                max_zone_pfn[ZONE_DMA] = max_low_pfn;
 980                max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
 981                max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
 982
 983                free_area_init(max_zone_pfn);
 984        }
 985}
 986
 987void mmu_info(struct seq_file *m)
 988{
 989        seq_printf(m,
 990                   "MMU type\t: %s\n"
 991                   "contexts\t: %d\n"
 992                   "nocache total\t: %ld\n"
 993                   "nocache used\t: %d\n",
 994                   srmmu_name,
 995                   num_contexts,
 996                   srmmu_nocache_size,
 997                   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 998}
 999
1000int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1001{
1002        mm->context = NO_CONTEXT;
1003        return 0;
1004}
1005
1006void destroy_context(struct mm_struct *mm)
1007{
1008        unsigned long flags;
1009
1010        if (mm->context != NO_CONTEXT) {
1011                flush_cache_mm(mm);
1012                srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1013                flush_tlb_mm(mm);
1014                spin_lock_irqsave(&srmmu_context_spinlock, flags);
1015                free_context(mm->context);
1016                spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1017                mm->context = NO_CONTEXT;
1018        }
1019}
1020
1021/* Init various srmmu chip types. */
1022static void __init srmmu_is_bad(void)
1023{
1024        prom_printf("Could not determine SRMMU chip type.\n");
1025        prom_halt();
1026}
1027
1028static void __init init_vac_layout(void)
1029{
1030        phandle nd;
1031        int cache_lines;
1032        char node_str[128];
1033#ifdef CONFIG_SMP
1034        int cpu = 0;
1035        unsigned long max_size = 0;
1036        unsigned long min_line_size = 0x10000000;
1037#endif
1038
1039        nd = prom_getchild(prom_root_node);
1040        while ((nd = prom_getsibling(nd)) != 0) {
1041                prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1042                if (!strcmp(node_str, "cpu")) {
1043                        vac_line_size = prom_getint(nd, "cache-line-size");
1044                        if (vac_line_size == -1) {
1045                                prom_printf("can't determine cache-line-size, halting.\n");
1046                                prom_halt();
1047                        }
1048                        cache_lines = prom_getint(nd, "cache-nlines");
1049                        if (cache_lines == -1) {
1050                                prom_printf("can't determine cache-nlines, halting.\n");
1051                                prom_halt();
1052                        }
1053
1054                        vac_cache_size = cache_lines * vac_line_size;
1055#ifdef CONFIG_SMP
1056                        if (vac_cache_size > max_size)
1057                                max_size = vac_cache_size;
1058                        if (vac_line_size < min_line_size)
1059                                min_line_size = vac_line_size;
1060                        //FIXME: cpus not contiguous!!
1061                        cpu++;
1062                        if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1063                                break;
1064#else
1065                        break;
1066#endif
1067                }
1068        }
1069        if (nd == 0) {
1070                prom_printf("No CPU nodes found, halting.\n");
1071                prom_halt();
1072        }
1073#ifdef CONFIG_SMP
1074        vac_cache_size = max_size;
1075        vac_line_size = min_line_size;
1076#endif
1077        printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1078               (int)vac_cache_size, (int)vac_line_size);
1079}
1080
1081static void poke_hypersparc(void)
1082{
1083        volatile unsigned long clear;
1084        unsigned long mreg = srmmu_get_mmureg();
1085
1086        hyper_flush_unconditional_combined();
1087
1088        mreg &= ~(HYPERSPARC_CWENABLE);
1089        mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1090        mreg |= (HYPERSPARC_CMODE);
1091
1092        srmmu_set_mmureg(mreg);
1093
1094#if 0 /* XXX I think this is bad news... -DaveM */
1095        hyper_clear_all_tags();
1096#endif
1097
1098        put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1099        hyper_flush_whole_icache();
1100        clear = srmmu_get_faddr();
1101        clear = srmmu_get_fstatus();
1102}
1103
1104static const struct sparc32_cachetlb_ops hypersparc_ops = {
1105        .cache_all      = hypersparc_flush_cache_all,
1106        .cache_mm       = hypersparc_flush_cache_mm,
1107        .cache_page     = hypersparc_flush_cache_page,
1108        .cache_range    = hypersparc_flush_cache_range,
1109        .tlb_all        = hypersparc_flush_tlb_all,
1110        .tlb_mm         = hypersparc_flush_tlb_mm,
1111        .tlb_page       = hypersparc_flush_tlb_page,
1112        .tlb_range      = hypersparc_flush_tlb_range,
1113        .page_to_ram    = hypersparc_flush_page_to_ram,
1114        .sig_insns      = hypersparc_flush_sig_insns,
1115        .page_for_dma   = hypersparc_flush_page_for_dma,
1116};
1117
1118static void __init init_hypersparc(void)
1119{
1120        srmmu_name = "ROSS HyperSparc";
1121        srmmu_modtype = HyperSparc;
1122
1123        init_vac_layout();
1124
1125        is_hypersparc = 1;
1126        sparc32_cachetlb_ops = &hypersparc_ops;
1127
1128        poke_srmmu = poke_hypersparc;
1129
1130        hypersparc_setup_blockops();
1131}
1132
1133static void poke_swift(void)
1134{
1135        unsigned long mreg;
1136
1137        /* Clear any crap from the cache or else... */
1138        swift_flush_cache_all();
1139
1140        /* Enable I & D caches */
1141        mreg = srmmu_get_mmureg();
1142        mreg |= (SWIFT_IE | SWIFT_DE);
1143        /*
1144         * The Swift branch folding logic is completely broken.  At
1145         * trap time, if things are just right, if can mistakenly
1146         * think that a trap is coming from kernel mode when in fact
1147         * it is coming from user mode (it mis-executes the branch in
1148         * the trap code).  So you see things like crashme completely
1149         * hosing your machine which is completely unacceptable.  Turn
1150         * this shit off... nice job Fujitsu.
1151         */
1152        mreg &= ~(SWIFT_BF);
1153        srmmu_set_mmureg(mreg);
1154}
1155
1156static const struct sparc32_cachetlb_ops swift_ops = {
1157        .cache_all      = swift_flush_cache_all,
1158        .cache_mm       = swift_flush_cache_mm,
1159        .cache_page     = swift_flush_cache_page,
1160        .cache_range    = swift_flush_cache_range,
1161        .tlb_all        = swift_flush_tlb_all,
1162        .tlb_mm         = swift_flush_tlb_mm,
1163        .tlb_page       = swift_flush_tlb_page,
1164        .tlb_range      = swift_flush_tlb_range,
1165        .page_to_ram    = swift_flush_page_to_ram,
1166        .sig_insns      = swift_flush_sig_insns,
1167        .page_for_dma   = swift_flush_page_for_dma,
1168};
1169
1170#define SWIFT_MASKID_ADDR  0x10003018
1171static void __init init_swift(void)
1172{
1173        unsigned long swift_rev;
1174
1175        __asm__ __volatile__("lda [%1] %2, %0\n\t"
1176                             "srl %0, 0x18, %0\n\t" :
1177                             "=r" (swift_rev) :
1178                             "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1179        srmmu_name = "Fujitsu Swift";
1180        switch (swift_rev) {
1181        case 0x11:
1182        case 0x20:
1183        case 0x23:
1184        case 0x30:
1185                srmmu_modtype = Swift_lots_o_bugs;
1186                hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1187                /*
1188                 * Gee george, I wonder why Sun is so hush hush about
1189                 * this hardware bug... really braindamage stuff going
1190                 * on here.  However I think we can find a way to avoid
1191                 * all of the workaround overhead under Linux.  Basically,
1192                 * any page fault can cause kernel pages to become user
1193                 * accessible (the mmu gets confused and clears some of
1194                 * the ACC bits in kernel ptes).  Aha, sounds pretty
1195                 * horrible eh?  But wait, after extensive testing it appears
1196                 * that if you use pgd_t level large kernel pte's (like the
1197                 * 4MB pages on the Pentium) the bug does not get tripped
1198                 * at all.  This avoids almost all of the major overhead.
1199                 * Welcome to a world where your vendor tells you to,
1200                 * "apply this kernel patch" instead of "sorry for the
1201                 * broken hardware, send it back and we'll give you
1202                 * properly functioning parts"
1203                 */
1204                break;
1205        case 0x25:
1206        case 0x31:
1207                srmmu_modtype = Swift_bad_c;
1208                hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1209                /*
1210                 * You see Sun allude to this hardware bug but never
1211                 * admit things directly, they'll say things like,
1212                 * "the Swift chip cache problems" or similar.
1213                 */
1214                break;
1215        default:
1216                srmmu_modtype = Swift_ok;
1217                break;
1218        }
1219
1220        sparc32_cachetlb_ops = &swift_ops;
1221        flush_page_for_dma_global = 0;
1222
1223        /*
1224         * Are you now convinced that the Swift is one of the
1225         * biggest VLSI abortions of all time?  Bravo Fujitsu!
1226         * Fujitsu, the !#?!%$'d up processor people.  I bet if
1227         * you examined the microcode of the Swift you'd find
1228         * XXX's all over the place.
1229         */
1230        poke_srmmu = poke_swift;
1231}
1232
1233static void turbosparc_flush_cache_all(void)
1234{
1235        flush_user_windows();
1236        turbosparc_idflash_clear();
1237}
1238
1239static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1240{
1241        FLUSH_BEGIN(mm)
1242        flush_user_windows();
1243        turbosparc_idflash_clear();
1244        FLUSH_END
1245}
1246
1247static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1248{
1249        FLUSH_BEGIN(vma->vm_mm)
1250        flush_user_windows();
1251        turbosparc_idflash_clear();
1252        FLUSH_END
1253}
1254
1255static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1256{
1257        FLUSH_BEGIN(vma->vm_mm)
1258        flush_user_windows();
1259        if (vma->vm_flags & VM_EXEC)
1260                turbosparc_flush_icache();
1261        turbosparc_flush_dcache();
1262        FLUSH_END
1263}
1264
1265/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1266static void turbosparc_flush_page_to_ram(unsigned long page)
1267{
1268#ifdef TURBOSPARC_WRITEBACK
1269        volatile unsigned long clear;
1270
1271        if (srmmu_probe(page))
1272                turbosparc_flush_page_cache(page);
1273        clear = srmmu_get_fstatus();
1274#endif
1275}
1276
1277static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1278{
1279}
1280
1281static void turbosparc_flush_page_for_dma(unsigned long page)
1282{
1283        turbosparc_flush_dcache();
1284}
1285
1286static void turbosparc_flush_tlb_all(void)
1287{
1288        srmmu_flush_whole_tlb();
1289}
1290
1291static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1292{
1293        FLUSH_BEGIN(mm)
1294        srmmu_flush_whole_tlb();
1295        FLUSH_END
1296}
1297
1298static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1299{
1300        FLUSH_BEGIN(vma->vm_mm)
1301        srmmu_flush_whole_tlb();
1302        FLUSH_END
1303}
1304
1305static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1306{
1307        FLUSH_BEGIN(vma->vm_mm)
1308        srmmu_flush_whole_tlb();
1309        FLUSH_END
1310}
1311
1312
1313static void poke_turbosparc(void)
1314{
1315        unsigned long mreg = srmmu_get_mmureg();
1316        unsigned long ccreg;
1317
1318        /* Clear any crap from the cache or else... */
1319        turbosparc_flush_cache_all();
1320        /* Temporarily disable I & D caches */
1321        mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1322        mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1323        srmmu_set_mmureg(mreg);
1324
1325        ccreg = turbosparc_get_ccreg();
1326
1327#ifdef TURBOSPARC_WRITEBACK
1328        ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1329        ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1330                        /* Write-back D-cache, emulate VLSI
1331                         * abortion number three, not number one */
1332#else
1333        /* For now let's play safe, optimize later */
1334        ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1335                        /* Do DVMA snooping in Dcache, Write-thru D-cache */
1336        ccreg &= ~(TURBOSPARC_uS2);
1337                        /* Emulate VLSI abortion number three, not number one */
1338#endif
1339
1340        switch (ccreg & 7) {
1341        case 0: /* No SE cache */
1342        case 7: /* Test mode */
1343                break;
1344        default:
1345                ccreg |= (TURBOSPARC_SCENABLE);
1346        }
1347        turbosparc_set_ccreg(ccreg);
1348
1349        mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1350        mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1351        srmmu_set_mmureg(mreg);
1352}
1353
1354static const struct sparc32_cachetlb_ops turbosparc_ops = {
1355        .cache_all      = turbosparc_flush_cache_all,
1356        .cache_mm       = turbosparc_flush_cache_mm,
1357        .cache_page     = turbosparc_flush_cache_page,
1358        .cache_range    = turbosparc_flush_cache_range,
1359        .tlb_all        = turbosparc_flush_tlb_all,
1360        .tlb_mm         = turbosparc_flush_tlb_mm,
1361        .tlb_page       = turbosparc_flush_tlb_page,
1362        .tlb_range      = turbosparc_flush_tlb_range,
1363        .page_to_ram    = turbosparc_flush_page_to_ram,
1364        .sig_insns      = turbosparc_flush_sig_insns,
1365        .page_for_dma   = turbosparc_flush_page_for_dma,
1366};
1367
1368static void __init init_turbosparc(void)
1369{
1370        srmmu_name = "Fujitsu TurboSparc";
1371        srmmu_modtype = TurboSparc;
1372        sparc32_cachetlb_ops = &turbosparc_ops;
1373        poke_srmmu = poke_turbosparc;
1374}
1375
1376static void poke_tsunami(void)
1377{
1378        unsigned long mreg = srmmu_get_mmureg();
1379
1380        tsunami_flush_icache();
1381        tsunami_flush_dcache();
1382        mreg &= ~TSUNAMI_ITD;
1383        mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1384        srmmu_set_mmureg(mreg);
1385}
1386
1387static const struct sparc32_cachetlb_ops tsunami_ops = {
1388        .cache_all      = tsunami_flush_cache_all,
1389        .cache_mm       = tsunami_flush_cache_mm,
1390        .cache_page     = tsunami_flush_cache_page,
1391        .cache_range    = tsunami_flush_cache_range,
1392        .tlb_all        = tsunami_flush_tlb_all,
1393        .tlb_mm         = tsunami_flush_tlb_mm,
1394        .tlb_page       = tsunami_flush_tlb_page,
1395        .tlb_range      = tsunami_flush_tlb_range,
1396        .page_to_ram    = tsunami_flush_page_to_ram,
1397        .sig_insns      = tsunami_flush_sig_insns,
1398        .page_for_dma   = tsunami_flush_page_for_dma,
1399};
1400
1401static void __init init_tsunami(void)
1402{
1403        /*
1404         * Tsunami's pretty sane, Sun and TI actually got it
1405         * somewhat right this time.  Fujitsu should have
1406         * taken some lessons from them.
1407         */
1408
1409        srmmu_name = "TI Tsunami";
1410        srmmu_modtype = Tsunami;
1411        sparc32_cachetlb_ops = &tsunami_ops;
1412        poke_srmmu = poke_tsunami;
1413
1414        tsunami_setup_blockops();
1415}
1416
1417static void poke_viking(void)
1418{
1419        unsigned long mreg = srmmu_get_mmureg();
1420        static int smp_catch;
1421
1422        if (viking_mxcc_present) {
1423                unsigned long mxcc_control = mxcc_get_creg();
1424
1425                mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1426                mxcc_control &= ~(MXCC_CTL_RRC);
1427                mxcc_set_creg(mxcc_control);
1428
1429                /*
1430                 * We don't need memory parity checks.
1431                 * XXX This is a mess, have to dig out later. ecd.
1432                viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1433                 */
1434
1435                /* We do cache ptables on MXCC. */
1436                mreg |= VIKING_TCENABLE;
1437        } else {
1438                unsigned long bpreg;
1439
1440                mreg &= ~(VIKING_TCENABLE);
1441                if (smp_catch++) {
1442                        /* Must disable mixed-cmd mode here for other cpu's. */
1443                        bpreg = viking_get_bpreg();
1444                        bpreg &= ~(VIKING_ACTION_MIX);
1445                        viking_set_bpreg(bpreg);
1446
1447                        /* Just in case PROM does something funny. */
1448                        msi_set_sync();
1449                }
1450        }
1451
1452        mreg |= VIKING_SPENABLE;
1453        mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1454        mreg |= VIKING_SBENABLE;
1455        mreg &= ~(VIKING_ACENABLE);
1456        srmmu_set_mmureg(mreg);
1457}
1458
1459static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1460        .cache_all      = viking_flush_cache_all,
1461        .cache_mm       = viking_flush_cache_mm,
1462        .cache_page     = viking_flush_cache_page,
1463        .cache_range    = viking_flush_cache_range,
1464        .tlb_all        = viking_flush_tlb_all,
1465        .tlb_mm         = viking_flush_tlb_mm,
1466        .tlb_page       = viking_flush_tlb_page,
1467        .tlb_range      = viking_flush_tlb_range,
1468        .page_to_ram    = viking_flush_page_to_ram,
1469        .sig_insns      = viking_flush_sig_insns,
1470        .page_for_dma   = viking_flush_page_for_dma,
1471};
1472
1473#ifdef CONFIG_SMP
1474/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1475 * perform the local TLB flush and all the other cpus will see it.
1476 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1477 * that requires that we add some synchronization to these flushes.
1478 *
1479 * The bug is that the fifo which keeps track of all the pending TLB
1480 * broadcasts in the system is an entry or two too small, so if we
1481 * have too many going at once we'll overflow that fifo and lose a TLB
1482 * flush resulting in corruption.
1483 *
1484 * Our workaround is to take a global spinlock around the TLB flushes,
1485 * which guarentees we won't ever have too many pending.  It's a big
1486 * hammer, but a semaphore like system to make sure we only have N TLB
1487 * flushes going at once will require SMP locking anyways so there's
1488 * no real value in trying any harder than this.
1489 */
1490static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1491        .cache_all      = viking_flush_cache_all,
1492        .cache_mm       = viking_flush_cache_mm,
1493        .cache_page     = viking_flush_cache_page,
1494        .cache_range    = viking_flush_cache_range,
1495        .tlb_all        = sun4dsmp_flush_tlb_all,
1496        .tlb_mm         = sun4dsmp_flush_tlb_mm,
1497        .tlb_page       = sun4dsmp_flush_tlb_page,
1498        .tlb_range      = sun4dsmp_flush_tlb_range,
1499        .page_to_ram    = viking_flush_page_to_ram,
1500        .sig_insns      = viking_flush_sig_insns,
1501        .page_for_dma   = viking_flush_page_for_dma,
1502};
1503#endif
1504
1505static void __init init_viking(void)
1506{
1507        unsigned long mreg = srmmu_get_mmureg();
1508
1509        /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1510        if (mreg & VIKING_MMODE) {
1511                srmmu_name = "TI Viking";
1512                viking_mxcc_present = 0;
1513                msi_set_sync();
1514
1515                /*
1516                 * We need this to make sure old viking takes no hits
1517                 * on it's cache for dma snoops to workaround the
1518                 * "load from non-cacheable memory" interrupt bug.
1519                 * This is only necessary because of the new way in
1520                 * which we use the IOMMU.
1521                 */
1522                viking_ops.page_for_dma = viking_flush_page;
1523#ifdef CONFIG_SMP
1524                viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1525#endif
1526                flush_page_for_dma_global = 0;
1527        } else {
1528                srmmu_name = "TI Viking/MXCC";
1529                viking_mxcc_present = 1;
1530                srmmu_cache_pagetables = 1;
1531        }
1532
1533        sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1534                &viking_ops;
1535#ifdef CONFIG_SMP
1536        if (sparc_cpu_model == sun4d)
1537                sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1538                        &viking_sun4d_smp_ops;
1539#endif
1540
1541        poke_srmmu = poke_viking;
1542}
1543
1544/* Probe for the srmmu chip version. */
1545static void __init get_srmmu_type(void)
1546{
1547        unsigned long mreg, psr;
1548        unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1549
1550        srmmu_modtype = SRMMU_INVAL_MOD;
1551        hwbug_bitmask = 0;
1552
1553        mreg = srmmu_get_mmureg(); psr = get_psr();
1554        mod_typ = (mreg & 0xf0000000) >> 28;
1555        mod_rev = (mreg & 0x0f000000) >> 24;
1556        psr_typ = (psr >> 28) & 0xf;
1557        psr_vers = (psr >> 24) & 0xf;
1558
1559        /* First, check for sparc-leon. */
1560        if (sparc_cpu_model == sparc_leon) {
1561                init_leon();
1562                return;
1563        }
1564
1565        /* Second, check for HyperSparc or Cypress. */
1566        if (mod_typ == 1) {
1567                switch (mod_rev) {
1568                case 7:
1569                        /* UP or MP Hypersparc */
1570                        init_hypersparc();
1571                        break;
1572                case 0:
1573                case 2:
1574                case 10:
1575                case 11:
1576                case 12:
1577                case 13:
1578                case 14:
1579                case 15:
1580                default:
1581                        prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1582                        prom_halt();
1583                        break;
1584                }
1585                return;
1586        }
1587
1588        /* Now Fujitsu TurboSparc. It might happen that it is
1589         * in Swift emulation mode, so we will check later...
1590         */
1591        if (psr_typ == 0 && psr_vers == 5) {
1592                init_turbosparc();
1593                return;
1594        }
1595
1596        /* Next check for Fujitsu Swift. */
1597        if (psr_typ == 0 && psr_vers == 4) {
1598                phandle cpunode;
1599                char node_str[128];
1600
1601                /* Look if it is not a TurboSparc emulating Swift... */
1602                cpunode = prom_getchild(prom_root_node);
1603                while ((cpunode = prom_getsibling(cpunode)) != 0) {
1604                        prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1605                        if (!strcmp(node_str, "cpu")) {
1606                                if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1607                                    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1608                                        init_turbosparc();
1609                                        return;
1610                                }
1611                                break;
1612                        }
1613                }
1614
1615                init_swift();
1616                return;
1617        }
1618
1619        /* Now the Viking family of srmmu. */
1620        if (psr_typ == 4 &&
1621           ((psr_vers == 0) ||
1622            ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1623                init_viking();
1624                return;
1625        }
1626
1627        /* Finally the Tsunami. */
1628        if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1629                init_tsunami();
1630                return;
1631        }
1632
1633        /* Oh well */
1634        srmmu_is_bad();
1635}
1636
1637#ifdef CONFIG_SMP
1638/* Local cross-calls. */
1639static void smp_flush_page_for_dma(unsigned long page)
1640{
1641        xc1((smpfunc_t) local_ops->page_for_dma, page);
1642        local_ops->page_for_dma(page);
1643}
1644
1645static void smp_flush_cache_all(void)
1646{
1647        xc0((smpfunc_t) local_ops->cache_all);
1648        local_ops->cache_all();
1649}
1650
1651static void smp_flush_tlb_all(void)
1652{
1653        xc0((smpfunc_t) local_ops->tlb_all);
1654        local_ops->tlb_all();
1655}
1656
1657static void smp_flush_cache_mm(struct mm_struct *mm)
1658{
1659        if (mm->context != NO_CONTEXT) {
1660                cpumask_t cpu_mask;
1661                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1662                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1663                if (!cpumask_empty(&cpu_mask))
1664                        xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1665                local_ops->cache_mm(mm);
1666        }
1667}
1668
1669static void smp_flush_tlb_mm(struct mm_struct *mm)
1670{
1671        if (mm->context != NO_CONTEXT) {
1672                cpumask_t cpu_mask;
1673                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1674                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1675                if (!cpumask_empty(&cpu_mask)) {
1676                        xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1677                        if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1678                                cpumask_copy(mm_cpumask(mm),
1679                                             cpumask_of(smp_processor_id()));
1680                }
1681                local_ops->tlb_mm(mm);
1682        }
1683}
1684
1685static void smp_flush_cache_range(struct vm_area_struct *vma,
1686                                  unsigned long start,
1687                                  unsigned long end)
1688{
1689        struct mm_struct *mm = vma->vm_mm;
1690
1691        if (mm->context != NO_CONTEXT) {
1692                cpumask_t cpu_mask;
1693                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1694                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1695                if (!cpumask_empty(&cpu_mask))
1696                        xc3((smpfunc_t) local_ops->cache_range,
1697                            (unsigned long) vma, start, end);
1698                local_ops->cache_range(vma, start, end);
1699        }
1700}
1701
1702static void smp_flush_tlb_range(struct vm_area_struct *vma,
1703                                unsigned long start,
1704                                unsigned long end)
1705{
1706        struct mm_struct *mm = vma->vm_mm;
1707
1708        if (mm->context != NO_CONTEXT) {
1709                cpumask_t cpu_mask;
1710                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1711                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1712                if (!cpumask_empty(&cpu_mask))
1713                        xc3((smpfunc_t) local_ops->tlb_range,
1714                            (unsigned long) vma, start, end);
1715                local_ops->tlb_range(vma, start, end);
1716        }
1717}
1718
1719static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1720{
1721        struct mm_struct *mm = vma->vm_mm;
1722
1723        if (mm->context != NO_CONTEXT) {
1724                cpumask_t cpu_mask;
1725                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1726                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1727                if (!cpumask_empty(&cpu_mask))
1728                        xc2((smpfunc_t) local_ops->cache_page,
1729                            (unsigned long) vma, page);
1730                local_ops->cache_page(vma, page);
1731        }
1732}
1733
1734static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1735{
1736        struct mm_struct *mm = vma->vm_mm;
1737
1738        if (mm->context != NO_CONTEXT) {
1739                cpumask_t cpu_mask;
1740                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1741                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1742                if (!cpumask_empty(&cpu_mask))
1743                        xc2((smpfunc_t) local_ops->tlb_page,
1744                            (unsigned long) vma, page);
1745                local_ops->tlb_page(vma, page);
1746        }
1747}
1748
1749static void smp_flush_page_to_ram(unsigned long page)
1750{
1751        /* Current theory is that those who call this are the one's
1752         * who have just dirtied their cache with the pages contents
1753         * in kernel space, therefore we only run this on local cpu.
1754         *
1755         * XXX This experiment failed, research further... -DaveM
1756         */
1757#if 1
1758        xc1((smpfunc_t) local_ops->page_to_ram, page);
1759#endif
1760        local_ops->page_to_ram(page);
1761}
1762
1763static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1764{
1765        cpumask_t cpu_mask;
1766        cpumask_copy(&cpu_mask, mm_cpumask(mm));
1767        cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1768        if (!cpumask_empty(&cpu_mask))
1769                xc2((smpfunc_t) local_ops->sig_insns,
1770                    (unsigned long) mm, insn_addr);
1771        local_ops->sig_insns(mm, insn_addr);
1772}
1773
1774static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1775        .cache_all      = smp_flush_cache_all,
1776        .cache_mm       = smp_flush_cache_mm,
1777        .cache_page     = smp_flush_cache_page,
1778        .cache_range    = smp_flush_cache_range,
1779        .tlb_all        = smp_flush_tlb_all,
1780        .tlb_mm         = smp_flush_tlb_mm,
1781        .tlb_page       = smp_flush_tlb_page,
1782        .tlb_range      = smp_flush_tlb_range,
1783        .page_to_ram    = smp_flush_page_to_ram,
1784        .sig_insns      = smp_flush_sig_insns,
1785        .page_for_dma   = smp_flush_page_for_dma,
1786};
1787#endif
1788
1789/* Load up routines and constants for sun4m and sun4d mmu */
1790void __init load_mmu(void)
1791{
1792        /* Functions */
1793        get_srmmu_type();
1794
1795#ifdef CONFIG_SMP
1796        /* El switcheroo... */
1797        local_ops = sparc32_cachetlb_ops;
1798
1799        if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1800                smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1801                smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1802                smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1803                smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1804        }
1805
1806        if (poke_srmmu == poke_viking) {
1807                /* Avoid unnecessary cross calls. */
1808                smp_cachetlb_ops.cache_all = local_ops->cache_all;
1809                smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1810                smp_cachetlb_ops.cache_range = local_ops->cache_range;
1811                smp_cachetlb_ops.cache_page = local_ops->cache_page;
1812
1813                smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1814                smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1815                smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1816        }
1817
1818        /* It really is const after this point. */
1819        sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1820                &smp_cachetlb_ops;
1821#endif
1822
1823        if (sparc_cpu_model != sun4d)
1824                ld_mmu_iommu();
1825#ifdef CONFIG_SMP
1826        if (sparc_cpu_model == sun4d)
1827                sun4d_init_smp();
1828        else if (sparc_cpu_model == sparc_leon)
1829                leon_init_smp();
1830        else
1831                sun4m_init_smp();
1832#endif
1833}
1834