linux/arch/x86/kvm/cpuid.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef ARCH_X86_KVM_CPUID_H
   3#define ARCH_X86_KVM_CPUID_H
   4
   5#include "x86.h"
   6#include <asm/cpu.h>
   7#include <asm/processor.h>
   8#include <uapi/asm/kvm_para.h>
   9
  10extern u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
  11void kvm_set_cpu_caps(void);
  12
  13void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
  14void kvm_update_pv_runtime(struct kvm_vcpu *vcpu);
  15struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  16                                              u32 function, u32 index);
  17int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
  18                            struct kvm_cpuid_entry2 __user *entries,
  19                            unsigned int type);
  20int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  21                             struct kvm_cpuid *cpuid,
  22                             struct kvm_cpuid_entry __user *entries);
  23int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  24                              struct kvm_cpuid2 *cpuid,
  25                              struct kvm_cpuid_entry2 __user *entries);
  26int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  27                              struct kvm_cpuid2 *cpuid,
  28                              struct kvm_cpuid_entry2 __user *entries);
  29bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
  30               u32 *ecx, u32 *edx, bool exact_only);
  31
  32int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);
  33
  34static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  35{
  36        return vcpu->arch.maxphyaddr;
  37}
  38
  39static inline bool kvm_vcpu_is_illegal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  40{
  41        return (gpa >= BIT_ULL(cpuid_maxphyaddr(vcpu)));
  42}
  43
  44struct cpuid_reg {
  45        u32 function;
  46        u32 index;
  47        int reg;
  48};
  49
  50static const struct cpuid_reg reverse_cpuid[] = {
  51        [CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
  52        [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
  53        [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
  54        [CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
  55        [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
  56        [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
  57        [CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
  58        [CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
  59        [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
  60        [CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
  61        [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
  62        [CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
  63        [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
  64        [CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
  65        [CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
  66};
  67
  68/*
  69 * Reverse CPUID and its derivatives can only be used for hardware-defined
  70 * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
  71 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
  72 * is nonsensical as the bit number/mask is an arbitrary software-defined value
  73 * and can't be used by KVM to query/control guest capabilities.  And obviously
  74 * the leaf being queried must have an entry in the lookup table.
  75 */
  76static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
  77{
  78        BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
  79        BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
  80        BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
  81        BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
  82        BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
  83        BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
  84}
  85
  86/*
  87 * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
  88 * the hardware defined bit number (stored in bits 4:0) and a software defined
  89 * "word" (stored in bits 31:5).  The word is used to index into arrays of
  90 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
  91 */
  92static __always_inline u32 __feature_bit(int x86_feature)
  93{
  94        reverse_cpuid_check(x86_feature / 32);
  95        return 1 << (x86_feature & 31);
  96}
  97
  98#define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
  99
 100static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
 101{
 102        unsigned int x86_leaf = x86_feature / 32;
 103
 104        reverse_cpuid_check(x86_leaf);
 105        return reverse_cpuid[x86_leaf];
 106}
 107
 108static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
 109                                                  u32 reg)
 110{
 111        switch (reg) {
 112        case CPUID_EAX:
 113                return &entry->eax;
 114        case CPUID_EBX:
 115                return &entry->ebx;
 116        case CPUID_ECX:
 117                return &entry->ecx;
 118        case CPUID_EDX:
 119                return &entry->edx;
 120        default:
 121                BUILD_BUG();
 122                return NULL;
 123        }
 124}
 125
 126static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
 127                                                unsigned int x86_feature)
 128{
 129        const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
 130
 131        return __cpuid_entry_get_reg(entry, cpuid.reg);
 132}
 133
 134static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
 135                                           unsigned int x86_feature)
 136{
 137        u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
 138
 139        return *reg & __feature_bit(x86_feature);
 140}
 141
 142static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
 143                                            unsigned int x86_feature)
 144{
 145        return cpuid_entry_get(entry, x86_feature);
 146}
 147
 148static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
 149                                              unsigned int x86_feature)
 150{
 151        u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
 152
 153        *reg &= ~__feature_bit(x86_feature);
 154}
 155
 156static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
 157                                            unsigned int x86_feature)
 158{
 159        u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
 160
 161        *reg |= __feature_bit(x86_feature);
 162}
 163
 164static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
 165                                               unsigned int x86_feature,
 166                                               bool set)
 167{
 168        u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
 169
 170        /*
 171         * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
 172         * compiler into using CMOV instead of Jcc when possible.
 173         */
 174        if (set)
 175                *reg |= __feature_bit(x86_feature);
 176        else
 177                *reg &= ~__feature_bit(x86_feature);
 178}
 179
 180static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry,
 181                                                 enum cpuid_leafs leaf)
 182{
 183        u32 *reg = cpuid_entry_get_reg(entry, leaf * 32);
 184
 185        BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps));
 186        *reg = kvm_cpu_caps[leaf];
 187}
 188
 189static __always_inline u32 *guest_cpuid_get_register(struct kvm_vcpu *vcpu,
 190                                                     unsigned int x86_feature)
 191{
 192        const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
 193        struct kvm_cpuid_entry2 *entry;
 194
 195        entry = kvm_find_cpuid_entry(vcpu, cpuid.function, cpuid.index);
 196        if (!entry)
 197                return NULL;
 198
 199        return __cpuid_entry_get_reg(entry, cpuid.reg);
 200}
 201
 202static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu,
 203                                            unsigned int x86_feature)
 204{
 205        u32 *reg;
 206
 207        reg = guest_cpuid_get_register(vcpu, x86_feature);
 208        if (!reg)
 209                return false;
 210
 211        return *reg & __feature_bit(x86_feature);
 212}
 213
 214static __always_inline void guest_cpuid_clear(struct kvm_vcpu *vcpu,
 215                                              unsigned int x86_feature)
 216{
 217        u32 *reg;
 218
 219        reg = guest_cpuid_get_register(vcpu, x86_feature);
 220        if (reg)
 221                *reg &= ~__feature_bit(x86_feature);
 222}
 223
 224static inline bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
 225{
 226        struct kvm_cpuid_entry2 *best;
 227
 228        best = kvm_find_cpuid_entry(vcpu, 0, 0);
 229        return best &&
 230               (is_guest_vendor_amd(best->ebx, best->ecx, best->edx) ||
 231                is_guest_vendor_hygon(best->ebx, best->ecx, best->edx));
 232}
 233
 234static inline int guest_cpuid_family(struct kvm_vcpu *vcpu)
 235{
 236        struct kvm_cpuid_entry2 *best;
 237
 238        best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 239        if (!best)
 240                return -1;
 241
 242        return x86_family(best->eax);
 243}
 244
 245static inline int guest_cpuid_model(struct kvm_vcpu *vcpu)
 246{
 247        struct kvm_cpuid_entry2 *best;
 248
 249        best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 250        if (!best)
 251                return -1;
 252
 253        return x86_model(best->eax);
 254}
 255
 256static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu)
 257{
 258        struct kvm_cpuid_entry2 *best;
 259
 260        best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 261        if (!best)
 262                return -1;
 263
 264        return x86_stepping(best->eax);
 265}
 266
 267static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu)
 268{
 269        return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT;
 270}
 271
 272static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
 273{
 274        return vcpu->arch.msr_misc_features_enables &
 275                  MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 276}
 277
 278static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
 279{
 280        unsigned int x86_leaf = x86_feature / 32;
 281
 282        reverse_cpuid_check(x86_leaf);
 283        kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
 284}
 285
 286static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
 287{
 288        unsigned int x86_leaf = x86_feature / 32;
 289
 290        reverse_cpuid_check(x86_leaf);
 291        kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
 292}
 293
 294static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature)
 295{
 296        unsigned int x86_leaf = x86_feature / 32;
 297
 298        reverse_cpuid_check(x86_leaf);
 299        return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature);
 300}
 301
 302static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
 303{
 304        return !!kvm_cpu_cap_get(x86_feature);
 305}
 306
 307static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
 308{
 309        if (boot_cpu_has(x86_feature))
 310                kvm_cpu_cap_set(x86_feature);
 311}
 312
 313static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
 314{
 315        return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
 316}
 317
 318static __always_inline bool guest_pv_has(struct kvm_vcpu *vcpu,
 319                                         unsigned int kvm_feature)
 320{
 321        if (!vcpu->arch.pv_cpuid.enforce)
 322                return true;
 323
 324        return vcpu->arch.pv_cpuid.features & (1u << kvm_feature);
 325}
 326
 327#endif
 328