linux/arch/x86/kvm/mmu/paging_tmpl.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * MMU support
   9 *
  10 * Copyright (C) 2006 Qumranet, Inc.
  11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  12 *
  13 * Authors:
  14 *   Yaniv Kamay  <yaniv@qumranet.com>
  15 *   Avi Kivity   <avi@qumranet.com>
  16 */
  17
  18/*
  19 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  20 * so the code in this file is compiled twice, once per pte size.
  21 */
  22
  23#if PTTYPE == 64
  24        #define pt_element_t u64
  25        #define guest_walker guest_walker64
  26        #define FNAME(name) paging##64_##name
  27        #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28        #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  29        #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  30        #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31        #define PT_LEVEL_BITS PT64_LEVEL_BITS
  32        #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  33        #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  34        #define PT_HAVE_ACCESSED_DIRTY(mmu) true
  35        #ifdef CONFIG_X86_64
  36        #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
  37        #define CMPXCHG cmpxchg
  38        #else
  39        #define CMPXCHG cmpxchg64
  40        #define PT_MAX_FULL_LEVELS 2
  41        #endif
  42#elif PTTYPE == 32
  43        #define pt_element_t u32
  44        #define guest_walker guest_walker32
  45        #define FNAME(name) paging##32_##name
  46        #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  47        #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  48        #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  49        #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  50        #define PT_LEVEL_BITS PT32_LEVEL_BITS
  51        #define PT_MAX_FULL_LEVELS 2
  52        #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  53        #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  54        #define PT_HAVE_ACCESSED_DIRTY(mmu) true
  55        #define CMPXCHG cmpxchg
  56#elif PTTYPE == PTTYPE_EPT
  57        #define pt_element_t u64
  58        #define guest_walker guest_walkerEPT
  59        #define FNAME(name) ept_##name
  60        #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  61        #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  62        #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  63        #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  64        #define PT_LEVEL_BITS PT64_LEVEL_BITS
  65        #define PT_GUEST_DIRTY_SHIFT 9
  66        #define PT_GUEST_ACCESSED_SHIFT 8
  67        #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
  68        #define CMPXCHG cmpxchg64
  69        #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
  70#else
  71        #error Invalid PTTYPE value
  72#endif
  73
  74#define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
  75#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
  76
  77#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  78#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
  79
  80/*
  81 * The guest_walker structure emulates the behavior of the hardware page
  82 * table walker.
  83 */
  84struct guest_walker {
  85        int level;
  86        unsigned max_level;
  87        gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  88        pt_element_t ptes[PT_MAX_FULL_LEVELS];
  89        pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  90        gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  91        pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
  92        bool pte_writable[PT_MAX_FULL_LEVELS];
  93        unsigned pt_access;
  94        unsigned pte_access;
  95        gfn_t gfn;
  96        struct x86_exception fault;
  97};
  98
  99static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
 100{
 101        return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
 102}
 103
 104static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
 105                                             unsigned gpte)
 106{
 107        unsigned mask;
 108
 109        /* dirty bit is not supported, so no need to track it */
 110        if (!PT_HAVE_ACCESSED_DIRTY(mmu))
 111                return;
 112
 113        BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
 114
 115        mask = (unsigned)~ACC_WRITE_MASK;
 116        /* Allow write access to dirty gptes */
 117        mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
 118                PT_WRITABLE_MASK;
 119        *access &= mask;
 120}
 121
 122static inline int FNAME(is_present_gpte)(unsigned long pte)
 123{
 124#if PTTYPE != PTTYPE_EPT
 125        return pte & PT_PRESENT_MASK;
 126#else
 127        return pte & 7;
 128#endif
 129}
 130
 131static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
 132{
 133#if PTTYPE != PTTYPE_EPT
 134        return false;
 135#else
 136        return __is_bad_mt_xwr(rsvd_check, gpte);
 137#endif
 138}
 139
 140static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
 141{
 142        return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
 143               FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
 144}
 145
 146static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 147                               pt_element_t __user *ptep_user, unsigned index,
 148                               pt_element_t orig_pte, pt_element_t new_pte)
 149{
 150        int npages;
 151        pt_element_t ret;
 152        pt_element_t *table;
 153        struct page *page;
 154
 155        npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
 156        if (likely(npages == 1)) {
 157                table = kmap_atomic(page);
 158                ret = CMPXCHG(&table[index], orig_pte, new_pte);
 159                kunmap_atomic(table);
 160
 161                kvm_release_page_dirty(page);
 162        } else {
 163                struct vm_area_struct *vma;
 164                unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
 165                unsigned long pfn;
 166                unsigned long paddr;
 167
 168                mmap_read_lock(current->mm);
 169                vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
 170                if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
 171                        mmap_read_unlock(current->mm);
 172                        return -EFAULT;
 173                }
 174                pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 175                paddr = pfn << PAGE_SHIFT;
 176                table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
 177                if (!table) {
 178                        mmap_read_unlock(current->mm);
 179                        return -EFAULT;
 180                }
 181                ret = CMPXCHG(&table[index], orig_pte, new_pte);
 182                memunmap(table);
 183                mmap_read_unlock(current->mm);
 184        }
 185
 186        return (ret != orig_pte);
 187}
 188
 189static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
 190                                  struct kvm_mmu_page *sp, u64 *spte,
 191                                  u64 gpte)
 192{
 193        if (!FNAME(is_present_gpte)(gpte))
 194                goto no_present;
 195
 196        /* if accessed bit is not supported prefetch non accessed gpte */
 197        if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
 198            !(gpte & PT_GUEST_ACCESSED_MASK))
 199                goto no_present;
 200
 201        if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
 202                goto no_present;
 203
 204        return false;
 205
 206no_present:
 207        drop_spte(vcpu->kvm, spte);
 208        return true;
 209}
 210
 211/*
 212 * For PTTYPE_EPT, a page table can be executable but not readable
 213 * on supported processors. Therefore, set_spte does not automatically
 214 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
 215 * to signify readability since it isn't used in the EPT case
 216 */
 217static inline unsigned FNAME(gpte_access)(u64 gpte)
 218{
 219        unsigned access;
 220#if PTTYPE == PTTYPE_EPT
 221        access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
 222                ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
 223                ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
 224#else
 225        BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
 226        BUILD_BUG_ON(ACC_EXEC_MASK != 1);
 227        access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
 228        /* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
 229        access ^= (gpte >> PT64_NX_SHIFT);
 230#endif
 231
 232        return access;
 233}
 234
 235static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
 236                                             struct kvm_mmu *mmu,
 237                                             struct guest_walker *walker,
 238                                             gpa_t addr, int write_fault)
 239{
 240        unsigned level, index;
 241        pt_element_t pte, orig_pte;
 242        pt_element_t __user *ptep_user;
 243        gfn_t table_gfn;
 244        int ret;
 245
 246        /* dirty/accessed bits are not supported, so no need to update them */
 247        if (!PT_HAVE_ACCESSED_DIRTY(mmu))
 248                return 0;
 249
 250        for (level = walker->max_level; level >= walker->level; --level) {
 251                pte = orig_pte = walker->ptes[level - 1];
 252                table_gfn = walker->table_gfn[level - 1];
 253                ptep_user = walker->ptep_user[level - 1];
 254                index = offset_in_page(ptep_user) / sizeof(pt_element_t);
 255                if (!(pte & PT_GUEST_ACCESSED_MASK)) {
 256                        trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
 257                        pte |= PT_GUEST_ACCESSED_MASK;
 258                }
 259                if (level == walker->level && write_fault &&
 260                                !(pte & PT_GUEST_DIRTY_MASK)) {
 261                        trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
 262#if PTTYPE == PTTYPE_EPT
 263                        if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
 264                                return -EINVAL;
 265#endif
 266                        pte |= PT_GUEST_DIRTY_MASK;
 267                }
 268                if (pte == orig_pte)
 269                        continue;
 270
 271                /*
 272                 * If the slot is read-only, simply do not process the accessed
 273                 * and dirty bits.  This is the correct thing to do if the slot
 274                 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
 275                 * are only supported if the accessed and dirty bits are already
 276                 * set in the ROM (so that MMIO writes are never needed).
 277                 *
 278                 * Note that NPT does not allow this at all and faults, since
 279                 * it always wants nested page table entries for the guest
 280                 * page tables to be writable.  And EPT works but will simply
 281                 * overwrite the read-only memory to set the accessed and dirty
 282                 * bits.
 283                 */
 284                if (unlikely(!walker->pte_writable[level - 1]))
 285                        continue;
 286
 287                ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
 288                if (ret)
 289                        return ret;
 290
 291                kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
 292                walker->ptes[level - 1] = pte;
 293        }
 294        return 0;
 295}
 296
 297static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
 298{
 299        unsigned pkeys = 0;
 300#if PTTYPE == 64
 301        pte_t pte = {.pte = gpte};
 302
 303        pkeys = pte_flags_pkey(pte_flags(pte));
 304#endif
 305        return pkeys;
 306}
 307
 308/*
 309 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
 310 */
 311static int FNAME(walk_addr_generic)(struct guest_walker *walker,
 312                                    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 313                                    gpa_t addr, u32 access)
 314{
 315        int ret;
 316        pt_element_t pte;
 317        pt_element_t __user *ptep_user;
 318        gfn_t table_gfn;
 319        u64 pt_access, pte_access;
 320        unsigned index, accessed_dirty, pte_pkey;
 321        unsigned nested_access;
 322        gpa_t pte_gpa;
 323        bool have_ad;
 324        int offset;
 325        u64 walk_nx_mask = 0;
 326        const int write_fault = access & PFERR_WRITE_MASK;
 327        const int user_fault  = access & PFERR_USER_MASK;
 328        const int fetch_fault = access & PFERR_FETCH_MASK;
 329        u16 errcode = 0;
 330        gpa_t real_gpa;
 331        gfn_t gfn;
 332
 333        trace_kvm_mmu_pagetable_walk(addr, access);
 334retry_walk:
 335        walker->level = mmu->root_level;
 336        pte           = mmu->get_guest_pgd(vcpu);
 337        have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
 338
 339#if PTTYPE == 64
 340        walk_nx_mask = 1ULL << PT64_NX_SHIFT;
 341        if (walker->level == PT32E_ROOT_LEVEL) {
 342                pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
 343                trace_kvm_mmu_paging_element(pte, walker->level);
 344                if (!FNAME(is_present_gpte)(pte))
 345                        goto error;
 346                --walker->level;
 347        }
 348#endif
 349        walker->max_level = walker->level;
 350        ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
 351
 352        /*
 353         * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
 354         * by the MOV to CR instruction are treated as reads and do not cause the
 355         * processor to set the dirty flag in any EPT paging-structure entry.
 356         */
 357        nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
 358
 359        pte_access = ~0;
 360        ++walker->level;
 361
 362        do {
 363                unsigned long host_addr;
 364
 365                pt_access = pte_access;
 366                --walker->level;
 367
 368                index = PT_INDEX(addr, walker->level);
 369                table_gfn = gpte_to_gfn(pte);
 370                offset    = index * sizeof(pt_element_t);
 371                pte_gpa   = gfn_to_gpa(table_gfn) + offset;
 372
 373                BUG_ON(walker->level < 1);
 374                walker->table_gfn[walker->level - 1] = table_gfn;
 375                walker->pte_gpa[walker->level - 1] = pte_gpa;
 376
 377                real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
 378                                              nested_access,
 379                                              &walker->fault);
 380
 381                /*
 382                 * FIXME: This can happen if emulation (for of an INS/OUTS
 383                 * instruction) triggers a nested page fault.  The exit
 384                 * qualification / exit info field will incorrectly have
 385                 * "guest page access" as the nested page fault's cause,
 386                 * instead of "guest page structure access".  To fix this,
 387                 * the x86_exception struct should be augmented with enough
 388                 * information to fix the exit_qualification or exit_info_1
 389                 * fields.
 390                 */
 391                if (unlikely(real_gpa == UNMAPPED_GVA))
 392                        return 0;
 393
 394                host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
 395                                            &walker->pte_writable[walker->level - 1]);
 396                if (unlikely(kvm_is_error_hva(host_addr)))
 397                        goto error;
 398
 399                ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
 400                if (unlikely(__get_user(pte, ptep_user)))
 401                        goto error;
 402                walker->ptep_user[walker->level - 1] = ptep_user;
 403
 404                trace_kvm_mmu_paging_element(pte, walker->level);
 405
 406                /*
 407                 * Inverting the NX it lets us AND it like other
 408                 * permission bits.
 409                 */
 410                pte_access = pt_access & (pte ^ walk_nx_mask);
 411
 412                if (unlikely(!FNAME(is_present_gpte)(pte)))
 413                        goto error;
 414
 415                if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
 416                        errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
 417                        goto error;
 418                }
 419
 420                walker->ptes[walker->level - 1] = pte;
 421        } while (!is_last_gpte(mmu, walker->level, pte));
 422
 423        pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
 424        accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
 425
 426        /* Convert to ACC_*_MASK flags for struct guest_walker.  */
 427        walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
 428        walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
 429        errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
 430        if (unlikely(errcode))
 431                goto error;
 432
 433        gfn = gpte_to_gfn_lvl(pte, walker->level);
 434        gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
 435
 436        if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
 437                gfn += pse36_gfn_delta(pte);
 438
 439        real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
 440        if (real_gpa == UNMAPPED_GVA)
 441                return 0;
 442
 443        walker->gfn = real_gpa >> PAGE_SHIFT;
 444
 445        if (!write_fault)
 446                FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
 447        else
 448                /*
 449                 * On a write fault, fold the dirty bit into accessed_dirty.
 450                 * For modes without A/D bits support accessed_dirty will be
 451                 * always clear.
 452                 */
 453                accessed_dirty &= pte >>
 454                        (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
 455
 456        if (unlikely(!accessed_dirty)) {
 457                ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
 458                                                        addr, write_fault);
 459                if (unlikely(ret < 0))
 460                        goto error;
 461                else if (ret)
 462                        goto retry_walk;
 463        }
 464
 465        pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
 466                 __func__, (u64)pte, walker->pte_access, walker->pt_access);
 467        return 1;
 468
 469error:
 470        errcode |= write_fault | user_fault;
 471        if (fetch_fault && (mmu->nx ||
 472                            kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
 473                errcode |= PFERR_FETCH_MASK;
 474
 475        walker->fault.vector = PF_VECTOR;
 476        walker->fault.error_code_valid = true;
 477        walker->fault.error_code = errcode;
 478
 479#if PTTYPE == PTTYPE_EPT
 480        /*
 481         * Use PFERR_RSVD_MASK in error_code to to tell if EPT
 482         * misconfiguration requires to be injected. The detection is
 483         * done by is_rsvd_bits_set() above.
 484         *
 485         * We set up the value of exit_qualification to inject:
 486         * [2:0] - Derive from the access bits. The exit_qualification might be
 487         *         out of date if it is serving an EPT misconfiguration.
 488         * [5:3] - Calculated by the page walk of the guest EPT page tables
 489         * [7:8] - Derived from [7:8] of real exit_qualification
 490         *
 491         * The other bits are set to 0.
 492         */
 493        if (!(errcode & PFERR_RSVD_MASK)) {
 494                vcpu->arch.exit_qualification &= 0x180;
 495                if (write_fault)
 496                        vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
 497                if (user_fault)
 498                        vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
 499                if (fetch_fault)
 500                        vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
 501                vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
 502        }
 503#endif
 504        walker->fault.address = addr;
 505        walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
 506
 507        trace_kvm_mmu_walker_error(walker->fault.error_code);
 508        return 0;
 509}
 510
 511static int FNAME(walk_addr)(struct guest_walker *walker,
 512                            struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
 513{
 514        return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
 515                                        access);
 516}
 517
 518#if PTTYPE != PTTYPE_EPT
 519static int FNAME(walk_addr_nested)(struct guest_walker *walker,
 520                                   struct kvm_vcpu *vcpu, gva_t addr,
 521                                   u32 access)
 522{
 523        return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
 524                                        addr, access);
 525}
 526#endif
 527
 528static bool
 529FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 530                     u64 *spte, pt_element_t gpte, bool no_dirty_log)
 531{
 532        unsigned pte_access;
 533        gfn_t gfn;
 534        kvm_pfn_t pfn;
 535
 536        if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
 537                return false;
 538
 539        pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
 540
 541        gfn = gpte_to_gfn(gpte);
 542        pte_access = sp->role.access & FNAME(gpte_access)(gpte);
 543        FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
 544        pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
 545                        no_dirty_log && (pte_access & ACC_WRITE_MASK));
 546        if (is_error_pfn(pfn))
 547                return false;
 548
 549        /*
 550         * we call mmu_set_spte() with host_writable = true because
 551         * pte_prefetch_gfn_to_pfn always gets a writable pfn.
 552         */
 553        mmu_set_spte(vcpu, spte, pte_access, false, PG_LEVEL_4K, gfn, pfn,
 554                     true, true);
 555
 556        kvm_release_pfn_clean(pfn);
 557        return true;
 558}
 559
 560static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 561                              u64 *spte, const void *pte)
 562{
 563        pt_element_t gpte = *(const pt_element_t *)pte;
 564
 565        FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
 566}
 567
 568static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
 569                                struct guest_walker *gw, int level)
 570{
 571        pt_element_t curr_pte;
 572        gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
 573        u64 mask;
 574        int r, index;
 575
 576        if (level == PG_LEVEL_4K) {
 577                mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
 578                base_gpa = pte_gpa & ~mask;
 579                index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
 580
 581                r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
 582                                gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
 583                curr_pte = gw->prefetch_ptes[index];
 584        } else
 585                r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
 586                                  &curr_pte, sizeof(curr_pte));
 587
 588        return r || curr_pte != gw->ptes[level - 1];
 589}
 590
 591static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
 592                                u64 *sptep)
 593{
 594        struct kvm_mmu_page *sp;
 595        pt_element_t *gptep = gw->prefetch_ptes;
 596        u64 *spte;
 597        int i;
 598
 599        sp = sptep_to_sp(sptep);
 600
 601        if (sp->role.level > PG_LEVEL_4K)
 602                return;
 603
 604        if (sp->role.direct)
 605                return __direct_pte_prefetch(vcpu, sp, sptep);
 606
 607        i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
 608        spte = sp->spt + i;
 609
 610        for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
 611                if (spte == sptep)
 612                        continue;
 613
 614                if (is_shadow_present_pte(*spte))
 615                        continue;
 616
 617                if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
 618                        break;
 619        }
 620}
 621
 622/*
 623 * Fetch a shadow pte for a specific level in the paging hierarchy.
 624 * If the guest tries to write a write-protected page, we need to
 625 * emulate this operation, return 1 to indicate this case.
 626 */
 627static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
 628                         struct guest_walker *gw, u32 error_code,
 629                         int max_level, kvm_pfn_t pfn, bool map_writable,
 630                         bool prefault)
 631{
 632        bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
 633        bool write_fault = error_code & PFERR_WRITE_MASK;
 634        bool exec = error_code & PFERR_FETCH_MASK;
 635        bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
 636        struct kvm_mmu_page *sp = NULL;
 637        struct kvm_shadow_walk_iterator it;
 638        unsigned direct_access, access = gw->pt_access;
 639        int top_level, level, req_level, ret;
 640        gfn_t base_gfn = gw->gfn;
 641
 642        direct_access = gw->pte_access;
 643
 644        top_level = vcpu->arch.mmu->root_level;
 645        if (top_level == PT32E_ROOT_LEVEL)
 646                top_level = PT32_ROOT_LEVEL;
 647        /*
 648         * Verify that the top-level gpte is still there.  Since the page
 649         * is a root page, it is either write protected (and cannot be
 650         * changed from now on) or it is invalid (in which case, we don't
 651         * really care if it changes underneath us after this point).
 652         */
 653        if (FNAME(gpte_changed)(vcpu, gw, top_level))
 654                goto out_gpte_changed;
 655
 656        if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
 657                goto out_gpte_changed;
 658
 659        for (shadow_walk_init(&it, vcpu, addr);
 660             shadow_walk_okay(&it) && it.level > gw->level;
 661             shadow_walk_next(&it)) {
 662                gfn_t table_gfn;
 663
 664                clear_sp_write_flooding_count(it.sptep);
 665                drop_large_spte(vcpu, it.sptep);
 666
 667                sp = NULL;
 668                if (!is_shadow_present_pte(*it.sptep)) {
 669                        table_gfn = gw->table_gfn[it.level - 2];
 670                        sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
 671                                              false, access);
 672                }
 673
 674                /*
 675                 * Verify that the gpte in the page we've just write
 676                 * protected is still there.
 677                 */
 678                if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
 679                        goto out_gpte_changed;
 680
 681                if (sp)
 682                        link_shadow_page(vcpu, it.sptep, sp);
 683        }
 684
 685        level = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn,
 686                                        huge_page_disallowed, &req_level);
 687
 688        trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
 689
 690        for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
 691                clear_sp_write_flooding_count(it.sptep);
 692
 693                /*
 694                 * We cannot overwrite existing page tables with an NX
 695                 * large page, as the leaf could be executable.
 696                 */
 697                if (nx_huge_page_workaround_enabled)
 698                        disallowed_hugepage_adjust(*it.sptep, gw->gfn, it.level,
 699                                                   &pfn, &level);
 700
 701                base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
 702                if (it.level == level)
 703                        break;
 704
 705                validate_direct_spte(vcpu, it.sptep, direct_access);
 706
 707                drop_large_spte(vcpu, it.sptep);
 708
 709                if (!is_shadow_present_pte(*it.sptep)) {
 710                        sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
 711                                              it.level - 1, true, direct_access);
 712                        link_shadow_page(vcpu, it.sptep, sp);
 713                        if (huge_page_disallowed && req_level >= it.level)
 714                                account_huge_nx_page(vcpu->kvm, sp);
 715                }
 716        }
 717
 718        ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
 719                           it.level, base_gfn, pfn, prefault, map_writable);
 720        if (ret == RET_PF_SPURIOUS)
 721                return ret;
 722
 723        FNAME(pte_prefetch)(vcpu, gw, it.sptep);
 724        ++vcpu->stat.pf_fixed;
 725        return ret;
 726
 727out_gpte_changed:
 728        return RET_PF_RETRY;
 729}
 730
 731 /*
 732 * To see whether the mapped gfn can write its page table in the current
 733 * mapping.
 734 *
 735 * It is the helper function of FNAME(page_fault). When guest uses large page
 736 * size to map the writable gfn which is used as current page table, we should
 737 * force kvm to use small page size to map it because new shadow page will be
 738 * created when kvm establishes shadow page table that stop kvm using large
 739 * page size. Do it early can avoid unnecessary #PF and emulation.
 740 *
 741 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
 742 * currently used as its page table.
 743 *
 744 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
 745 * since the PDPT is always shadowed, that means, we can not use large page
 746 * size to map the gfn which is used as PDPT.
 747 */
 748static bool
 749FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
 750                              struct guest_walker *walker, bool user_fault,
 751                              bool *write_fault_to_shadow_pgtable)
 752{
 753        int level;
 754        gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
 755        bool self_changed = false;
 756
 757        if (!(walker->pte_access & ACC_WRITE_MASK ||
 758              (!is_write_protection(vcpu) && !user_fault)))
 759                return false;
 760
 761        for (level = walker->level; level <= walker->max_level; level++) {
 762                gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
 763
 764                self_changed |= !(gfn & mask);
 765                *write_fault_to_shadow_pgtable |= !gfn;
 766        }
 767
 768        return self_changed;
 769}
 770
 771/*
 772 * Page fault handler.  There are several causes for a page fault:
 773 *   - there is no shadow pte for the guest pte
 774 *   - write access through a shadow pte marked read only so that we can set
 775 *     the dirty bit
 776 *   - write access to a shadow pte marked read only so we can update the page
 777 *     dirty bitmap, when userspace requests it
 778 *   - mmio access; in this case we will never install a present shadow pte
 779 *   - normal guest page fault due to the guest pte marked not present, not
 780 *     writable, or not executable
 781 *
 782 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
 783 *           a negative value on error.
 784 */
 785static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
 786                             bool prefault)
 787{
 788        bool write_fault = error_code & PFERR_WRITE_MASK;
 789        bool user_fault = error_code & PFERR_USER_MASK;
 790        struct guest_walker walker;
 791        int r;
 792        kvm_pfn_t pfn;
 793        unsigned long mmu_seq;
 794        bool map_writable, is_self_change_mapping;
 795        int max_level;
 796
 797        pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
 798
 799        /*
 800         * If PFEC.RSVD is set, this is a shadow page fault.
 801         * The bit needs to be cleared before walking guest page tables.
 802         */
 803        error_code &= ~PFERR_RSVD_MASK;
 804
 805        /*
 806         * Look up the guest pte for the faulting address.
 807         */
 808        r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
 809
 810        /*
 811         * The page is not mapped by the guest.  Let the guest handle it.
 812         */
 813        if (!r) {
 814                pgprintk("%s: guest page fault\n", __func__);
 815                if (!prefault)
 816                        kvm_inject_emulated_page_fault(vcpu, &walker.fault);
 817
 818                return RET_PF_RETRY;
 819        }
 820
 821        if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
 822                shadow_page_table_clear_flood(vcpu, addr);
 823                return RET_PF_EMULATE;
 824        }
 825
 826        r = mmu_topup_memory_caches(vcpu, true);
 827        if (r)
 828                return r;
 829
 830        vcpu->arch.write_fault_to_shadow_pgtable = false;
 831
 832        is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
 833              &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
 834
 835        if (is_self_change_mapping)
 836                max_level = PG_LEVEL_4K;
 837        else
 838                max_level = walker.level;
 839
 840        mmu_seq = vcpu->kvm->mmu_notifier_seq;
 841        smp_rmb();
 842
 843        if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
 844                         &map_writable))
 845                return RET_PF_RETRY;
 846
 847        if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
 848                return r;
 849
 850        /*
 851         * Do not change pte_access if the pfn is a mmio page, otherwise
 852         * we will cache the incorrect access into mmio spte.
 853         */
 854        if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
 855             !is_write_protection(vcpu) && !user_fault &&
 856              !is_noslot_pfn(pfn)) {
 857                walker.pte_access |= ACC_WRITE_MASK;
 858                walker.pte_access &= ~ACC_USER_MASK;
 859
 860                /*
 861                 * If we converted a user page to a kernel page,
 862                 * so that the kernel can write to it when cr0.wp=0,
 863                 * then we should prevent the kernel from executing it
 864                 * if SMEP is enabled.
 865                 */
 866                if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
 867                        walker.pte_access &= ~ACC_EXEC_MASK;
 868        }
 869
 870        r = RET_PF_RETRY;
 871        spin_lock(&vcpu->kvm->mmu_lock);
 872        if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
 873                goto out_unlock;
 874
 875        kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
 876        r = make_mmu_pages_available(vcpu);
 877        if (r)
 878                goto out_unlock;
 879        r = FNAME(fetch)(vcpu, addr, &walker, error_code, max_level, pfn,
 880                         map_writable, prefault);
 881        kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
 882
 883out_unlock:
 884        spin_unlock(&vcpu->kvm->mmu_lock);
 885        kvm_release_pfn_clean(pfn);
 886        return r;
 887}
 888
 889static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
 890{
 891        int offset = 0;
 892
 893        WARN_ON(sp->role.level != PG_LEVEL_4K);
 894
 895        if (PTTYPE == 32)
 896                offset = sp->role.quadrant << PT64_LEVEL_BITS;
 897
 898        return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
 899}
 900
 901static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
 902{
 903        struct kvm_shadow_walk_iterator iterator;
 904        struct kvm_mmu_page *sp;
 905        u64 old_spte;
 906        int level;
 907        u64 *sptep;
 908
 909        vcpu_clear_mmio_info(vcpu, gva);
 910
 911        /*
 912         * No need to check return value here, rmap_can_add() can
 913         * help us to skip pte prefetch later.
 914         */
 915        mmu_topup_memory_caches(vcpu, true);
 916
 917        if (!VALID_PAGE(root_hpa)) {
 918                WARN_ON(1);
 919                return;
 920        }
 921
 922        spin_lock(&vcpu->kvm->mmu_lock);
 923        for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
 924                level = iterator.level;
 925                sptep = iterator.sptep;
 926
 927                sp = sptep_to_sp(sptep);
 928                old_spte = *sptep;
 929                if (is_last_spte(old_spte, level)) {
 930                        pt_element_t gpte;
 931                        gpa_t pte_gpa;
 932
 933                        if (!sp->unsync)
 934                                break;
 935
 936                        pte_gpa = FNAME(get_level1_sp_gpa)(sp);
 937                        pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
 938
 939                        mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
 940                        if (is_shadow_present_pte(old_spte))
 941                                kvm_flush_remote_tlbs_with_address(vcpu->kvm,
 942                                        sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
 943
 944                        if (!rmap_can_add(vcpu))
 945                                break;
 946
 947                        if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
 948                                                       sizeof(pt_element_t)))
 949                                break;
 950
 951                        FNAME(update_pte)(vcpu, sp, sptep, &gpte);
 952                }
 953
 954                if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
 955                        break;
 956        }
 957        spin_unlock(&vcpu->kvm->mmu_lock);
 958}
 959
 960/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
 961static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
 962                               struct x86_exception *exception)
 963{
 964        struct guest_walker walker;
 965        gpa_t gpa = UNMAPPED_GVA;
 966        int r;
 967
 968        r = FNAME(walk_addr)(&walker, vcpu, addr, access);
 969
 970        if (r) {
 971                gpa = gfn_to_gpa(walker.gfn);
 972                gpa |= addr & ~PAGE_MASK;
 973        } else if (exception)
 974                *exception = walker.fault;
 975
 976        return gpa;
 977}
 978
 979#if PTTYPE != PTTYPE_EPT
 980/* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
 981static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
 982                                      u32 access,
 983                                      struct x86_exception *exception)
 984{
 985        struct guest_walker walker;
 986        gpa_t gpa = UNMAPPED_GVA;
 987        int r;
 988
 989#ifndef CONFIG_X86_64
 990        /* A 64-bit GVA should be impossible on 32-bit KVM. */
 991        WARN_ON_ONCE(vaddr >> 32);
 992#endif
 993
 994        r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
 995
 996        if (r) {
 997                gpa = gfn_to_gpa(walker.gfn);
 998                gpa |= vaddr & ~PAGE_MASK;
 999        } else if (exception)
1000                *exception = walker.fault;
1001
1002        return gpa;
1003}
1004#endif
1005
1006/*
1007 * Using the cached information from sp->gfns is safe because:
1008 * - The spte has a reference to the struct page, so the pfn for a given gfn
1009 *   can't change unless all sptes pointing to it are nuked first.
1010 *
1011 * Note:
1012 *   We should flush all tlbs if spte is dropped even though guest is
1013 *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1014 *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1015 *   used by guest then tlbs are not flushed, so guest is allowed to access the
1016 *   freed pages.
1017 *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
1018 */
1019static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1020{
1021        int i, nr_present = 0;
1022        bool host_writable;
1023        gpa_t first_pte_gpa;
1024        int set_spte_ret = 0;
1025
1026        /* direct kvm_mmu_page can not be unsync. */
1027        BUG_ON(sp->role.direct);
1028
1029        first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1030
1031        for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1032                unsigned pte_access;
1033                pt_element_t gpte;
1034                gpa_t pte_gpa;
1035                gfn_t gfn;
1036
1037                if (!sp->spt[i])
1038                        continue;
1039
1040                pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1041
1042                if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1043                                               sizeof(pt_element_t)))
1044                        return 0;
1045
1046                if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1047                        /*
1048                         * Update spte before increasing tlbs_dirty to make
1049                         * sure no tlb flush is lost after spte is zapped; see
1050                         * the comments in kvm_flush_remote_tlbs().
1051                         */
1052                        smp_wmb();
1053                        vcpu->kvm->tlbs_dirty++;
1054                        continue;
1055                }
1056
1057                gfn = gpte_to_gfn(gpte);
1058                pte_access = sp->role.access;
1059                pte_access &= FNAME(gpte_access)(gpte);
1060                FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1061
1062                if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1063                      &nr_present))
1064                        continue;
1065
1066                if (gfn != sp->gfns[i]) {
1067                        drop_spte(vcpu->kvm, &sp->spt[i]);
1068                        /*
1069                         * The same as above where we are doing
1070                         * prefetch_invalid_gpte().
1071                         */
1072                        smp_wmb();
1073                        vcpu->kvm->tlbs_dirty++;
1074                        continue;
1075                }
1076
1077                nr_present++;
1078
1079                host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1080
1081                set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1082                                         pte_access, PG_LEVEL_4K,
1083                                         gfn, spte_to_pfn(sp->spt[i]),
1084                                         true, false, host_writable);
1085        }
1086
1087        if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1088                kvm_flush_remote_tlbs(vcpu->kvm);
1089
1090        return nr_present;
1091}
1092
1093#undef pt_element_t
1094#undef guest_walker
1095#undef FNAME
1096#undef PT_BASE_ADDR_MASK
1097#undef PT_INDEX
1098#undef PT_LVL_ADDR_MASK
1099#undef PT_LVL_OFFSET_MASK
1100#undef PT_LEVEL_BITS
1101#undef PT_MAX_FULL_LEVELS
1102#undef gpte_to_gfn
1103#undef gpte_to_gfn_lvl
1104#undef CMPXCHG
1105#undef PT_GUEST_ACCESSED_MASK
1106#undef PT_GUEST_DIRTY_MASK
1107#undef PT_GUEST_DIRTY_SHIFT
1108#undef PT_GUEST_ACCESSED_SHIFT
1109#undef PT_HAVE_ACCESSED_DIRTY
1110