linux/arch/x86/kvm/vmx/nested.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/objtool.h>
   4#include <linux/percpu.h>
   5
   6#include <asm/debugreg.h>
   7#include <asm/mmu_context.h>
   8
   9#include "cpuid.h"
  10#include "hyperv.h"
  11#include "mmu.h"
  12#include "nested.h"
  13#include "pmu.h"
  14#include "trace.h"
  15#include "x86.h"
  16
  17static bool __read_mostly enable_shadow_vmcs = 1;
  18module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  19
  20static bool __read_mostly nested_early_check = 0;
  21module_param(nested_early_check, bool, S_IRUGO);
  22
  23#define CC(consistency_check)                                           \
  24({                                                                      \
  25        bool failed = (consistency_check);                              \
  26        if (failed)                                                     \
  27                trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
  28        failed;                                                         \
  29})
  30
  31/*
  32 * Hyper-V requires all of these, so mark them as supported even though
  33 * they are just treated the same as all-context.
  34 */
  35#define VMX_VPID_EXTENT_SUPPORTED_MASK          \
  36        (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
  37        VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
  38        VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
  39        VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
  40
  41#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
  42
  43enum {
  44        VMX_VMREAD_BITMAP,
  45        VMX_VMWRITE_BITMAP,
  46        VMX_BITMAP_NR
  47};
  48static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
  49
  50#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
  51#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
  52
  53struct shadow_vmcs_field {
  54        u16     encoding;
  55        u16     offset;
  56};
  57static struct shadow_vmcs_field shadow_read_only_fields[] = {
  58#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
  59#include "vmcs_shadow_fields.h"
  60};
  61static int max_shadow_read_only_fields =
  62        ARRAY_SIZE(shadow_read_only_fields);
  63
  64static struct shadow_vmcs_field shadow_read_write_fields[] = {
  65#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
  66#include "vmcs_shadow_fields.h"
  67};
  68static int max_shadow_read_write_fields =
  69        ARRAY_SIZE(shadow_read_write_fields);
  70
  71static void init_vmcs_shadow_fields(void)
  72{
  73        int i, j;
  74
  75        memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
  76        memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
  77
  78        for (i = j = 0; i < max_shadow_read_only_fields; i++) {
  79                struct shadow_vmcs_field entry = shadow_read_only_fields[i];
  80                u16 field = entry.encoding;
  81
  82                if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
  83                    (i + 1 == max_shadow_read_only_fields ||
  84                     shadow_read_only_fields[i + 1].encoding != field + 1))
  85                        pr_err("Missing field from shadow_read_only_field %x\n",
  86                               field + 1);
  87
  88                clear_bit(field, vmx_vmread_bitmap);
  89                if (field & 1)
  90#ifdef CONFIG_X86_64
  91                        continue;
  92#else
  93                        entry.offset += sizeof(u32);
  94#endif
  95                shadow_read_only_fields[j++] = entry;
  96        }
  97        max_shadow_read_only_fields = j;
  98
  99        for (i = j = 0; i < max_shadow_read_write_fields; i++) {
 100                struct shadow_vmcs_field entry = shadow_read_write_fields[i];
 101                u16 field = entry.encoding;
 102
 103                if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
 104                    (i + 1 == max_shadow_read_write_fields ||
 105                     shadow_read_write_fields[i + 1].encoding != field + 1))
 106                        pr_err("Missing field from shadow_read_write_field %x\n",
 107                               field + 1);
 108
 109                WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
 110                          field <= GUEST_TR_AR_BYTES,
 111                          "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
 112
 113                /*
 114                 * PML and the preemption timer can be emulated, but the
 115                 * processor cannot vmwrite to fields that don't exist
 116                 * on bare metal.
 117                 */
 118                switch (field) {
 119                case GUEST_PML_INDEX:
 120                        if (!cpu_has_vmx_pml())
 121                                continue;
 122                        break;
 123                case VMX_PREEMPTION_TIMER_VALUE:
 124                        if (!cpu_has_vmx_preemption_timer())
 125                                continue;
 126                        break;
 127                case GUEST_INTR_STATUS:
 128                        if (!cpu_has_vmx_apicv())
 129                                continue;
 130                        break;
 131                default:
 132                        break;
 133                }
 134
 135                clear_bit(field, vmx_vmwrite_bitmap);
 136                clear_bit(field, vmx_vmread_bitmap);
 137                if (field & 1)
 138#ifdef CONFIG_X86_64
 139                        continue;
 140#else
 141                        entry.offset += sizeof(u32);
 142#endif
 143                shadow_read_write_fields[j++] = entry;
 144        }
 145        max_shadow_read_write_fields = j;
 146}
 147
 148/*
 149 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 150 * set the success or error code of an emulated VMX instruction (as specified
 151 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
 152 * instruction.
 153 */
 154static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
 155{
 156        vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
 157                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 158                            X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
 159        return kvm_skip_emulated_instruction(vcpu);
 160}
 161
 162static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
 163{
 164        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 165                        & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
 166                            X86_EFLAGS_SF | X86_EFLAGS_OF))
 167                        | X86_EFLAGS_CF);
 168        return kvm_skip_emulated_instruction(vcpu);
 169}
 170
 171static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
 172                                u32 vm_instruction_error)
 173{
 174        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 175                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 176                            X86_EFLAGS_SF | X86_EFLAGS_OF))
 177                        | X86_EFLAGS_ZF);
 178        get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
 179        /*
 180         * We don't need to force a shadow sync because
 181         * VM_INSTRUCTION_ERROR is not shadowed
 182         */
 183        return kvm_skip_emulated_instruction(vcpu);
 184}
 185
 186static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
 187{
 188        struct vcpu_vmx *vmx = to_vmx(vcpu);
 189
 190        /*
 191         * failValid writes the error number to the current VMCS, which
 192         * can't be done if there isn't a current VMCS.
 193         */
 194        if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
 195                return nested_vmx_failInvalid(vcpu);
 196
 197        return nested_vmx_failValid(vcpu, vm_instruction_error);
 198}
 199
 200static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
 201{
 202        /* TODO: not to reset guest simply here. */
 203        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 204        pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
 205}
 206
 207static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
 208{
 209        return fixed_bits_valid(control, low, high);
 210}
 211
 212static inline u64 vmx_control_msr(u32 low, u32 high)
 213{
 214        return low | ((u64)high << 32);
 215}
 216
 217static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
 218{
 219        secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
 220        vmcs_write64(VMCS_LINK_POINTER, -1ull);
 221        vmx->nested.need_vmcs12_to_shadow_sync = false;
 222}
 223
 224static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
 225{
 226        struct vcpu_vmx *vmx = to_vmx(vcpu);
 227
 228        if (!vmx->nested.hv_evmcs)
 229                return;
 230
 231        kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
 232        vmx->nested.hv_evmcs_vmptr = 0;
 233        vmx->nested.hv_evmcs = NULL;
 234}
 235
 236static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
 237                                     struct loaded_vmcs *prev)
 238{
 239        struct vmcs_host_state *dest, *src;
 240
 241        if (unlikely(!vmx->guest_state_loaded))
 242                return;
 243
 244        src = &prev->host_state;
 245        dest = &vmx->loaded_vmcs->host_state;
 246
 247        vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
 248        dest->ldt_sel = src->ldt_sel;
 249#ifdef CONFIG_X86_64
 250        dest->ds_sel = src->ds_sel;
 251        dest->es_sel = src->es_sel;
 252#endif
 253}
 254
 255static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
 256{
 257        struct vcpu_vmx *vmx = to_vmx(vcpu);
 258        struct loaded_vmcs *prev;
 259        int cpu;
 260
 261        if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
 262                return;
 263
 264        cpu = get_cpu();
 265        prev = vmx->loaded_vmcs;
 266        vmx->loaded_vmcs = vmcs;
 267        vmx_vcpu_load_vmcs(vcpu, cpu, prev);
 268        vmx_sync_vmcs_host_state(vmx, prev);
 269        put_cpu();
 270
 271        vmx_register_cache_reset(vcpu);
 272}
 273
 274/*
 275 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 276 * just stops using VMX.
 277 */
 278static void free_nested(struct kvm_vcpu *vcpu)
 279{
 280        struct vcpu_vmx *vmx = to_vmx(vcpu);
 281
 282        if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
 283                vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 284
 285        if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
 286                return;
 287
 288        kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
 289
 290        vmx->nested.vmxon = false;
 291        vmx->nested.smm.vmxon = false;
 292        free_vpid(vmx->nested.vpid02);
 293        vmx->nested.posted_intr_nv = -1;
 294        vmx->nested.current_vmptr = -1ull;
 295        if (enable_shadow_vmcs) {
 296                vmx_disable_shadow_vmcs(vmx);
 297                vmcs_clear(vmx->vmcs01.shadow_vmcs);
 298                free_vmcs(vmx->vmcs01.shadow_vmcs);
 299                vmx->vmcs01.shadow_vmcs = NULL;
 300        }
 301        kfree(vmx->nested.cached_vmcs12);
 302        vmx->nested.cached_vmcs12 = NULL;
 303        kfree(vmx->nested.cached_shadow_vmcs12);
 304        vmx->nested.cached_shadow_vmcs12 = NULL;
 305        /* Unpin physical memory we referred to in the vmcs02 */
 306        if (vmx->nested.apic_access_page) {
 307                kvm_release_page_clean(vmx->nested.apic_access_page);
 308                vmx->nested.apic_access_page = NULL;
 309        }
 310        kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
 311        kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
 312        vmx->nested.pi_desc = NULL;
 313
 314        kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
 315
 316        nested_release_evmcs(vcpu);
 317
 318        free_loaded_vmcs(&vmx->nested.vmcs02);
 319}
 320
 321/*
 322 * Ensure that the current vmcs of the logical processor is the
 323 * vmcs01 of the vcpu before calling free_nested().
 324 */
 325void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
 326{
 327        vcpu_load(vcpu);
 328        vmx_leave_nested(vcpu);
 329        vcpu_put(vcpu);
 330}
 331
 332static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
 333                struct x86_exception *fault)
 334{
 335        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 336        struct vcpu_vmx *vmx = to_vmx(vcpu);
 337        u32 vm_exit_reason;
 338        unsigned long exit_qualification = vcpu->arch.exit_qualification;
 339
 340        if (vmx->nested.pml_full) {
 341                vm_exit_reason = EXIT_REASON_PML_FULL;
 342                vmx->nested.pml_full = false;
 343                exit_qualification &= INTR_INFO_UNBLOCK_NMI;
 344        } else if (fault->error_code & PFERR_RSVD_MASK)
 345                vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
 346        else
 347                vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
 348
 349        nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
 350        vmcs12->guest_physical_address = fault->address;
 351}
 352
 353static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
 354{
 355        WARN_ON(mmu_is_nested(vcpu));
 356
 357        vcpu->arch.mmu = &vcpu->arch.guest_mmu;
 358        kvm_init_shadow_ept_mmu(vcpu,
 359                        to_vmx(vcpu)->nested.msrs.ept_caps &
 360                        VMX_EPT_EXECUTE_ONLY_BIT,
 361                        nested_ept_ad_enabled(vcpu),
 362                        nested_ept_get_eptp(vcpu));
 363        vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
 364        vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
 365        vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
 366
 367        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
 368}
 369
 370static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
 371{
 372        vcpu->arch.mmu = &vcpu->arch.root_mmu;
 373        vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
 374}
 375
 376static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
 377                                            u16 error_code)
 378{
 379        bool inequality, bit;
 380
 381        bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
 382        inequality =
 383                (error_code & vmcs12->page_fault_error_code_mask) !=
 384                 vmcs12->page_fault_error_code_match;
 385        return inequality ^ bit;
 386}
 387
 388
 389/*
 390 * KVM wants to inject page-faults which it got to the guest. This function
 391 * checks whether in a nested guest, we need to inject them to L1 or L2.
 392 */
 393static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
 394{
 395        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 396        unsigned int nr = vcpu->arch.exception.nr;
 397        bool has_payload = vcpu->arch.exception.has_payload;
 398        unsigned long payload = vcpu->arch.exception.payload;
 399
 400        if (nr == PF_VECTOR) {
 401                if (vcpu->arch.exception.nested_apf) {
 402                        *exit_qual = vcpu->arch.apf.nested_apf_token;
 403                        return 1;
 404                }
 405                if (nested_vmx_is_page_fault_vmexit(vmcs12,
 406                                                    vcpu->arch.exception.error_code)) {
 407                        *exit_qual = has_payload ? payload : vcpu->arch.cr2;
 408                        return 1;
 409                }
 410        } else if (vmcs12->exception_bitmap & (1u << nr)) {
 411                if (nr == DB_VECTOR) {
 412                        if (!has_payload) {
 413                                payload = vcpu->arch.dr6;
 414                                payload &= ~(DR6_FIXED_1 | DR6_BT);
 415                                payload ^= DR6_RTM;
 416                        }
 417                        *exit_qual = payload;
 418                } else
 419                        *exit_qual = 0;
 420                return 1;
 421        }
 422
 423        return 0;
 424}
 425
 426
 427static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
 428                struct x86_exception *fault)
 429{
 430        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 431
 432        WARN_ON(!is_guest_mode(vcpu));
 433
 434        if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
 435                !to_vmx(vcpu)->nested.nested_run_pending) {
 436                vmcs12->vm_exit_intr_error_code = fault->error_code;
 437                nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
 438                                  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
 439                                  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
 440                                  fault->address);
 441        } else {
 442                kvm_inject_page_fault(vcpu, fault);
 443        }
 444}
 445
 446static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
 447                                               struct vmcs12 *vmcs12)
 448{
 449        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
 450                return 0;
 451
 452        if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
 453            CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
 454                return -EINVAL;
 455
 456        return 0;
 457}
 458
 459static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
 460                                                struct vmcs12 *vmcs12)
 461{
 462        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 463                return 0;
 464
 465        if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
 466                return -EINVAL;
 467
 468        return 0;
 469}
 470
 471static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
 472                                                struct vmcs12 *vmcs12)
 473{
 474        if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
 475                return 0;
 476
 477        if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
 478                return -EINVAL;
 479
 480        return 0;
 481}
 482
 483/*
 484 * Check if MSR is intercepted for L01 MSR bitmap.
 485 */
 486static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
 487{
 488        unsigned long *msr_bitmap;
 489        int f = sizeof(unsigned long);
 490
 491        if (!cpu_has_vmx_msr_bitmap())
 492                return true;
 493
 494        msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
 495
 496        if (msr <= 0x1fff) {
 497                return !!test_bit(msr, msr_bitmap + 0x800 / f);
 498        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 499                msr &= 0x1fff;
 500                return !!test_bit(msr, msr_bitmap + 0xc00 / f);
 501        }
 502
 503        return true;
 504}
 505
 506/*
 507 * If a msr is allowed by L0, we should check whether it is allowed by L1.
 508 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
 509 */
 510static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
 511                                               unsigned long *msr_bitmap_nested,
 512                                               u32 msr, int type)
 513{
 514        int f = sizeof(unsigned long);
 515
 516        /*
 517         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
 518         * have the write-low and read-high bitmap offsets the wrong way round.
 519         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
 520         */
 521        if (msr <= 0x1fff) {
 522                if (type & MSR_TYPE_R &&
 523                   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
 524                        /* read-low */
 525                        __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
 526
 527                if (type & MSR_TYPE_W &&
 528                   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
 529                        /* write-low */
 530                        __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
 531
 532        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 533                msr &= 0x1fff;
 534                if (type & MSR_TYPE_R &&
 535                   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
 536                        /* read-high */
 537                        __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
 538
 539                if (type & MSR_TYPE_W &&
 540                   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
 541                        /* write-high */
 542                        __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
 543
 544        }
 545}
 546
 547static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
 548{
 549        int msr;
 550
 551        for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 552                unsigned word = msr / BITS_PER_LONG;
 553
 554                msr_bitmap[word] = ~0;
 555                msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
 556        }
 557}
 558
 559/*
 560 * Merge L0's and L1's MSR bitmap, return false to indicate that
 561 * we do not use the hardware.
 562 */
 563static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
 564                                                 struct vmcs12 *vmcs12)
 565{
 566        int msr;
 567        unsigned long *msr_bitmap_l1;
 568        unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
 569        struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
 570
 571        /* Nothing to do if the MSR bitmap is not in use.  */
 572        if (!cpu_has_vmx_msr_bitmap() ||
 573            !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 574                return false;
 575
 576        if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
 577                return false;
 578
 579        msr_bitmap_l1 = (unsigned long *)map->hva;
 580
 581        /*
 582         * To keep the control flow simple, pay eight 8-byte writes (sixteen
 583         * 4-byte writes on 32-bit systems) up front to enable intercepts for
 584         * the x2APIC MSR range and selectively disable them below.
 585         */
 586        enable_x2apic_msr_intercepts(msr_bitmap_l0);
 587
 588        if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
 589                if (nested_cpu_has_apic_reg_virt(vmcs12)) {
 590                        /*
 591                         * L0 need not intercept reads for MSRs between 0x800
 592                         * and 0x8ff, it just lets the processor take the value
 593                         * from the virtual-APIC page; take those 256 bits
 594                         * directly from the L1 bitmap.
 595                         */
 596                        for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 597                                unsigned word = msr / BITS_PER_LONG;
 598
 599                                msr_bitmap_l0[word] = msr_bitmap_l1[word];
 600                        }
 601                }
 602
 603                nested_vmx_disable_intercept_for_msr(
 604                        msr_bitmap_l1, msr_bitmap_l0,
 605                        X2APIC_MSR(APIC_TASKPRI),
 606                        MSR_TYPE_R | MSR_TYPE_W);
 607
 608                if (nested_cpu_has_vid(vmcs12)) {
 609                        nested_vmx_disable_intercept_for_msr(
 610                                msr_bitmap_l1, msr_bitmap_l0,
 611                                X2APIC_MSR(APIC_EOI),
 612                                MSR_TYPE_W);
 613                        nested_vmx_disable_intercept_for_msr(
 614                                msr_bitmap_l1, msr_bitmap_l0,
 615                                X2APIC_MSR(APIC_SELF_IPI),
 616                                MSR_TYPE_W);
 617                }
 618        }
 619
 620        /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
 621        nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 622                                             MSR_FS_BASE, MSR_TYPE_RW);
 623
 624        nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 625                                             MSR_GS_BASE, MSR_TYPE_RW);
 626
 627        nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
 628                                             MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
 629
 630        /*
 631         * Checking the L0->L1 bitmap is trying to verify two things:
 632         *
 633         * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
 634         *    ensures that we do not accidentally generate an L02 MSR bitmap
 635         *    from the L12 MSR bitmap that is too permissive.
 636         * 2. That L1 or L2s have actually used the MSR. This avoids
 637         *    unnecessarily merging of the bitmap if the MSR is unused. This
 638         *    works properly because we only update the L01 MSR bitmap lazily.
 639         *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
 640         *    updated to reflect this when L1 (or its L2s) actually write to
 641         *    the MSR.
 642         */
 643        if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
 644                nested_vmx_disable_intercept_for_msr(
 645                                        msr_bitmap_l1, msr_bitmap_l0,
 646                                        MSR_IA32_SPEC_CTRL,
 647                                        MSR_TYPE_R | MSR_TYPE_W);
 648
 649        if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
 650                nested_vmx_disable_intercept_for_msr(
 651                                        msr_bitmap_l1, msr_bitmap_l0,
 652                                        MSR_IA32_PRED_CMD,
 653                                        MSR_TYPE_W);
 654
 655        kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
 656
 657        return true;
 658}
 659
 660static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
 661                                       struct vmcs12 *vmcs12)
 662{
 663        struct kvm_host_map map;
 664        struct vmcs12 *shadow;
 665
 666        if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 667            vmcs12->vmcs_link_pointer == -1ull)
 668                return;
 669
 670        shadow = get_shadow_vmcs12(vcpu);
 671
 672        if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
 673                return;
 674
 675        memcpy(shadow, map.hva, VMCS12_SIZE);
 676        kvm_vcpu_unmap(vcpu, &map, false);
 677}
 678
 679static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
 680                                              struct vmcs12 *vmcs12)
 681{
 682        struct vcpu_vmx *vmx = to_vmx(vcpu);
 683
 684        if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 685            vmcs12->vmcs_link_pointer == -1ull)
 686                return;
 687
 688        kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
 689                        get_shadow_vmcs12(vcpu), VMCS12_SIZE);
 690}
 691
 692/*
 693 * In nested virtualization, check if L1 has set
 694 * VM_EXIT_ACK_INTR_ON_EXIT
 695 */
 696static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
 697{
 698        return get_vmcs12(vcpu)->vm_exit_controls &
 699                VM_EXIT_ACK_INTR_ON_EXIT;
 700}
 701
 702static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
 703                                          struct vmcs12 *vmcs12)
 704{
 705        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
 706            CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
 707                return -EINVAL;
 708        else
 709                return 0;
 710}
 711
 712static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
 713                                           struct vmcs12 *vmcs12)
 714{
 715        if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 716            !nested_cpu_has_apic_reg_virt(vmcs12) &&
 717            !nested_cpu_has_vid(vmcs12) &&
 718            !nested_cpu_has_posted_intr(vmcs12))
 719                return 0;
 720
 721        /*
 722         * If virtualize x2apic mode is enabled,
 723         * virtualize apic access must be disabled.
 724         */
 725        if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 726               nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
 727                return -EINVAL;
 728
 729        /*
 730         * If virtual interrupt delivery is enabled,
 731         * we must exit on external interrupts.
 732         */
 733        if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
 734                return -EINVAL;
 735
 736        /*
 737         * bits 15:8 should be zero in posted_intr_nv,
 738         * the descriptor address has been already checked
 739         * in nested_get_vmcs12_pages.
 740         *
 741         * bits 5:0 of posted_intr_desc_addr should be zero.
 742         */
 743        if (nested_cpu_has_posted_intr(vmcs12) &&
 744           (CC(!nested_cpu_has_vid(vmcs12)) ||
 745            CC(!nested_exit_intr_ack_set(vcpu)) ||
 746            CC((vmcs12->posted_intr_nv & 0xff00)) ||
 747            CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
 748            CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
 749                return -EINVAL;
 750
 751        /* tpr shadow is needed by all apicv features. */
 752        if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
 753                return -EINVAL;
 754
 755        return 0;
 756}
 757
 758static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
 759                                       u32 count, u64 addr)
 760{
 761        int maxphyaddr;
 762
 763        if (count == 0)
 764                return 0;
 765        maxphyaddr = cpuid_maxphyaddr(vcpu);
 766        if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
 767            (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
 768                return -EINVAL;
 769
 770        return 0;
 771}
 772
 773static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
 774                                                     struct vmcs12 *vmcs12)
 775{
 776        if (CC(nested_vmx_check_msr_switch(vcpu,
 777                                           vmcs12->vm_exit_msr_load_count,
 778                                           vmcs12->vm_exit_msr_load_addr)) ||
 779            CC(nested_vmx_check_msr_switch(vcpu,
 780                                           vmcs12->vm_exit_msr_store_count,
 781                                           vmcs12->vm_exit_msr_store_addr)))
 782                return -EINVAL;
 783
 784        return 0;
 785}
 786
 787static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
 788                                                      struct vmcs12 *vmcs12)
 789{
 790        if (CC(nested_vmx_check_msr_switch(vcpu,
 791                                           vmcs12->vm_entry_msr_load_count,
 792                                           vmcs12->vm_entry_msr_load_addr)))
 793                return -EINVAL;
 794
 795        return 0;
 796}
 797
 798static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
 799                                         struct vmcs12 *vmcs12)
 800{
 801        if (!nested_cpu_has_pml(vmcs12))
 802                return 0;
 803
 804        if (CC(!nested_cpu_has_ept(vmcs12)) ||
 805            CC(!page_address_valid(vcpu, vmcs12->pml_address)))
 806                return -EINVAL;
 807
 808        return 0;
 809}
 810
 811static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
 812                                                        struct vmcs12 *vmcs12)
 813{
 814        if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
 815               !nested_cpu_has_ept(vmcs12)))
 816                return -EINVAL;
 817        return 0;
 818}
 819
 820static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
 821                                                         struct vmcs12 *vmcs12)
 822{
 823        if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
 824               !nested_cpu_has_ept(vmcs12)))
 825                return -EINVAL;
 826        return 0;
 827}
 828
 829static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
 830                                                 struct vmcs12 *vmcs12)
 831{
 832        if (!nested_cpu_has_shadow_vmcs(vmcs12))
 833                return 0;
 834
 835        if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
 836            CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
 837                return -EINVAL;
 838
 839        return 0;
 840}
 841
 842static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
 843                                       struct vmx_msr_entry *e)
 844{
 845        /* x2APIC MSR accesses are not allowed */
 846        if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
 847                return -EINVAL;
 848        if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
 849            CC(e->index == MSR_IA32_UCODE_REV))
 850                return -EINVAL;
 851        if (CC(e->reserved != 0))
 852                return -EINVAL;
 853        return 0;
 854}
 855
 856static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
 857                                     struct vmx_msr_entry *e)
 858{
 859        if (CC(e->index == MSR_FS_BASE) ||
 860            CC(e->index == MSR_GS_BASE) ||
 861            CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
 862            nested_vmx_msr_check_common(vcpu, e))
 863                return -EINVAL;
 864        return 0;
 865}
 866
 867static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
 868                                      struct vmx_msr_entry *e)
 869{
 870        if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
 871            nested_vmx_msr_check_common(vcpu, e))
 872                return -EINVAL;
 873        return 0;
 874}
 875
 876static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
 877{
 878        struct vcpu_vmx *vmx = to_vmx(vcpu);
 879        u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
 880                                       vmx->nested.msrs.misc_high);
 881
 882        return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
 883}
 884
 885/*
 886 * Load guest's/host's msr at nested entry/exit.
 887 * return 0 for success, entry index for failure.
 888 *
 889 * One of the failure modes for MSR load/store is when a list exceeds the
 890 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
 891 * as possible, process all valid entries before failing rather than precheck
 892 * for a capacity violation.
 893 */
 894static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
 895{
 896        u32 i;
 897        struct vmx_msr_entry e;
 898        u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
 899
 900        for (i = 0; i < count; i++) {
 901                if (unlikely(i >= max_msr_list_size))
 902                        goto fail;
 903
 904                if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
 905                                        &e, sizeof(e))) {
 906                        pr_debug_ratelimited(
 907                                "%s cannot read MSR entry (%u, 0x%08llx)\n",
 908                                __func__, i, gpa + i * sizeof(e));
 909                        goto fail;
 910                }
 911                if (nested_vmx_load_msr_check(vcpu, &e)) {
 912                        pr_debug_ratelimited(
 913                                "%s check failed (%u, 0x%x, 0x%x)\n",
 914                                __func__, i, e.index, e.reserved);
 915                        goto fail;
 916                }
 917                if (kvm_set_msr(vcpu, e.index, e.value)) {
 918                        pr_debug_ratelimited(
 919                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
 920                                __func__, i, e.index, e.value);
 921                        goto fail;
 922                }
 923        }
 924        return 0;
 925fail:
 926        /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
 927        return i + 1;
 928}
 929
 930static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
 931                                            u32 msr_index,
 932                                            u64 *data)
 933{
 934        struct vcpu_vmx *vmx = to_vmx(vcpu);
 935
 936        /*
 937         * If the L0 hypervisor stored a more accurate value for the TSC that
 938         * does not include the time taken for emulation of the L2->L1
 939         * VM-exit in L0, use the more accurate value.
 940         */
 941        if (msr_index == MSR_IA32_TSC) {
 942                int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
 943                                                    MSR_IA32_TSC);
 944
 945                if (i >= 0) {
 946                        u64 val = vmx->msr_autostore.guest.val[i].value;
 947
 948                        *data = kvm_read_l1_tsc(vcpu, val);
 949                        return true;
 950                }
 951        }
 952
 953        if (kvm_get_msr(vcpu, msr_index, data)) {
 954                pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
 955                        msr_index);
 956                return false;
 957        }
 958        return true;
 959}
 960
 961static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
 962                                     struct vmx_msr_entry *e)
 963{
 964        if (kvm_vcpu_read_guest(vcpu,
 965                                gpa + i * sizeof(*e),
 966                                e, 2 * sizeof(u32))) {
 967                pr_debug_ratelimited(
 968                        "%s cannot read MSR entry (%u, 0x%08llx)\n",
 969                        __func__, i, gpa + i * sizeof(*e));
 970                return false;
 971        }
 972        if (nested_vmx_store_msr_check(vcpu, e)) {
 973                pr_debug_ratelimited(
 974                        "%s check failed (%u, 0x%x, 0x%x)\n",
 975                        __func__, i, e->index, e->reserved);
 976                return false;
 977        }
 978        return true;
 979}
 980
 981static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
 982{
 983        u64 data;
 984        u32 i;
 985        struct vmx_msr_entry e;
 986        u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
 987
 988        for (i = 0; i < count; i++) {
 989                if (unlikely(i >= max_msr_list_size))
 990                        return -EINVAL;
 991
 992                if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
 993                        return -EINVAL;
 994
 995                if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
 996                        return -EINVAL;
 997
 998                if (kvm_vcpu_write_guest(vcpu,
 999                                         gpa + i * sizeof(e) +
1000                                             offsetof(struct vmx_msr_entry, value),
1001                                         &data, sizeof(data))) {
1002                        pr_debug_ratelimited(
1003                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1004                                __func__, i, e.index, data);
1005                        return -EINVAL;
1006                }
1007        }
1008        return 0;
1009}
1010
1011static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1012{
1013        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1014        u32 count = vmcs12->vm_exit_msr_store_count;
1015        u64 gpa = vmcs12->vm_exit_msr_store_addr;
1016        struct vmx_msr_entry e;
1017        u32 i;
1018
1019        for (i = 0; i < count; i++) {
1020                if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1021                        return false;
1022
1023                if (e.index == msr_index)
1024                        return true;
1025        }
1026        return false;
1027}
1028
1029static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1030                                           u32 msr_index)
1031{
1032        struct vcpu_vmx *vmx = to_vmx(vcpu);
1033        struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1034        bool in_vmcs12_store_list;
1035        int msr_autostore_slot;
1036        bool in_autostore_list;
1037        int last;
1038
1039        msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1040        in_autostore_list = msr_autostore_slot >= 0;
1041        in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1042
1043        if (in_vmcs12_store_list && !in_autostore_list) {
1044                if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1045                        /*
1046                         * Emulated VMEntry does not fail here.  Instead a less
1047                         * accurate value will be returned by
1048                         * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1049                         * instead of reading the value from the vmcs02 VMExit
1050                         * MSR-store area.
1051                         */
1052                        pr_warn_ratelimited(
1053                                "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1054                                msr_index);
1055                        return;
1056                }
1057                last = autostore->nr++;
1058                autostore->val[last].index = msr_index;
1059        } else if (!in_vmcs12_store_list && in_autostore_list) {
1060                last = --autostore->nr;
1061                autostore->val[msr_autostore_slot] = autostore->val[last];
1062        }
1063}
1064
1065static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1066{
1067        unsigned long invalid_mask;
1068
1069        invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1070        return (val & invalid_mask) == 0;
1071}
1072
1073/*
1074 * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1075 * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1076 * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1077 * Here's why.
1078 *
1079 * If EPT is enabled by L0 a sync is never needed:
1080 * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1081 *   cannot be unsync'd SPTEs for either L1 or L2.
1082 *
1083 * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1084 *   VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1085 *   (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1086 *   stale guest-physical mappings for L2 from the TLB.  And as above, L0 isn't
1087 *   shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1088 *
1089 * If EPT is disabled by L0:
1090 * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1091 *   enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1092 *   required to invalidate linear mappings (EPT is disabled so there are
1093 *   no combined or guest-physical mappings), i.e. L1 can't rely on the
1094 *   (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1095 *
1096 * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1097 *   linear mappings (EPT is disabled so there are no combined or guest-physical
1098 *   mappings) to be invalidated on both VM-Enter and VM-Exit.
1099 *
1100 * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1101 * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1102 * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1103 * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1104 * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1105 * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1106 * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1107 * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1108 * stale TLB entries, at which point L0 will sync L2's MMU.
1109 */
1110static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1111{
1112        return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1113}
1114
1115/*
1116 * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1117 * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1118 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1119 * @entry_failure_code.
1120 */
1121static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1122                               enum vm_entry_failure_code *entry_failure_code)
1123{
1124        if (CC(!nested_cr3_valid(vcpu, cr3))) {
1125                *entry_failure_code = ENTRY_FAIL_DEFAULT;
1126                return -EINVAL;
1127        }
1128
1129        /*
1130         * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1131         * must not be dereferenced.
1132         */
1133        if (!nested_ept && is_pae_paging(vcpu) &&
1134            (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1135                if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1136                        *entry_failure_code = ENTRY_FAIL_PDPTE;
1137                        return -EINVAL;
1138                }
1139        }
1140
1141        /*
1142         * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1143         * flushes are handled by nested_vmx_transition_tlb_flush().  See
1144         * nested_vmx_transition_mmu_sync for details on skipping the MMU sync.
1145         */
1146        if (!nested_ept)
1147                kvm_mmu_new_pgd(vcpu, cr3, true,
1148                                !nested_vmx_transition_mmu_sync(vcpu));
1149
1150        vcpu->arch.cr3 = cr3;
1151        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1152
1153        kvm_init_mmu(vcpu, false);
1154
1155        return 0;
1156}
1157
1158/*
1159 * Returns if KVM is able to config CPU to tag TLB entries
1160 * populated by L2 differently than TLB entries populated
1161 * by L1.
1162 *
1163 * If L0 uses EPT, L1 and L2 run with different EPTP because
1164 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1165 * are tagged with different EPTP.
1166 *
1167 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1168 * with different VPID (L1 entries are tagged with vmx->vpid
1169 * while L2 entries are tagged with vmx->nested.vpid02).
1170 */
1171static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1172{
1173        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1174
1175        return enable_ept ||
1176               (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1177}
1178
1179static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1180                                            struct vmcs12 *vmcs12,
1181                                            bool is_vmenter)
1182{
1183        struct vcpu_vmx *vmx = to_vmx(vcpu);
1184
1185        /*
1186         * If VPID is disabled, linear and combined mappings are flushed on
1187         * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1188         * their associated EPTP.
1189         */
1190        if (!enable_vpid)
1191                return;
1192
1193        /*
1194         * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1195         * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1196         *
1197         * If VPID is enabled and used by vmc12, but L2 does not have a unique
1198         * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1199         * a VPID for L2, flush the current context as the effective ASID is
1200         * common to both L1 and L2.
1201         *
1202         * Defer the flush so that it runs after vmcs02.EPTP has been set by
1203         * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1204         * redundant flushes further down the nested pipeline.
1205         *
1206         * If a TLB flush isn't required due to any of the above, and vpid12 is
1207         * changing then the new "virtual" VPID (vpid12) will reuse the same
1208         * "real" VPID (vpid02), and so needs to be sync'd.  There is no direct
1209         * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1210         * all nested vCPUs.
1211         */
1212        if (!nested_cpu_has_vpid(vmcs12)) {
1213                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1214        } else if (!nested_has_guest_tlb_tag(vcpu)) {
1215                kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1216        } else if (is_vmenter &&
1217                   vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1218                vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1219                vpid_sync_context(nested_get_vpid02(vcpu));
1220        }
1221}
1222
1223static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1224{
1225        superset &= mask;
1226        subset &= mask;
1227
1228        return (superset | subset) == superset;
1229}
1230
1231static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1232{
1233        const u64 feature_and_reserved =
1234                /* feature (except bit 48; see below) */
1235                BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1236                /* reserved */
1237                BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1238        u64 vmx_basic = vmx->nested.msrs.basic;
1239
1240        if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1241                return -EINVAL;
1242
1243        /*
1244         * KVM does not emulate a version of VMX that constrains physical
1245         * addresses of VMX structures (e.g. VMCS) to 32-bits.
1246         */
1247        if (data & BIT_ULL(48))
1248                return -EINVAL;
1249
1250        if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1251            vmx_basic_vmcs_revision_id(data))
1252                return -EINVAL;
1253
1254        if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1255                return -EINVAL;
1256
1257        vmx->nested.msrs.basic = data;
1258        return 0;
1259}
1260
1261static int
1262vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1263{
1264        u64 supported;
1265        u32 *lowp, *highp;
1266
1267        switch (msr_index) {
1268        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1269                lowp = &vmx->nested.msrs.pinbased_ctls_low;
1270                highp = &vmx->nested.msrs.pinbased_ctls_high;
1271                break;
1272        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1273                lowp = &vmx->nested.msrs.procbased_ctls_low;
1274                highp = &vmx->nested.msrs.procbased_ctls_high;
1275                break;
1276        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1277                lowp = &vmx->nested.msrs.exit_ctls_low;
1278                highp = &vmx->nested.msrs.exit_ctls_high;
1279                break;
1280        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1281                lowp = &vmx->nested.msrs.entry_ctls_low;
1282                highp = &vmx->nested.msrs.entry_ctls_high;
1283                break;
1284        case MSR_IA32_VMX_PROCBASED_CTLS2:
1285                lowp = &vmx->nested.msrs.secondary_ctls_low;
1286                highp = &vmx->nested.msrs.secondary_ctls_high;
1287                break;
1288        default:
1289                BUG();
1290        }
1291
1292        supported = vmx_control_msr(*lowp, *highp);
1293
1294        /* Check must-be-1 bits are still 1. */
1295        if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1296                return -EINVAL;
1297
1298        /* Check must-be-0 bits are still 0. */
1299        if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1300                return -EINVAL;
1301
1302        *lowp = data;
1303        *highp = data >> 32;
1304        return 0;
1305}
1306
1307static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1308{
1309        const u64 feature_and_reserved_bits =
1310                /* feature */
1311                BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1312                BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1313                /* reserved */
1314                GENMASK_ULL(13, 9) | BIT_ULL(31);
1315        u64 vmx_misc;
1316
1317        vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1318                                   vmx->nested.msrs.misc_high);
1319
1320        if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1321                return -EINVAL;
1322
1323        if ((vmx->nested.msrs.pinbased_ctls_high &
1324             PIN_BASED_VMX_PREEMPTION_TIMER) &&
1325            vmx_misc_preemption_timer_rate(data) !=
1326            vmx_misc_preemption_timer_rate(vmx_misc))
1327                return -EINVAL;
1328
1329        if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1330                return -EINVAL;
1331
1332        if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1333                return -EINVAL;
1334
1335        if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1336                return -EINVAL;
1337
1338        vmx->nested.msrs.misc_low = data;
1339        vmx->nested.msrs.misc_high = data >> 32;
1340
1341        return 0;
1342}
1343
1344static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1345{
1346        u64 vmx_ept_vpid_cap;
1347
1348        vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1349                                           vmx->nested.msrs.vpid_caps);
1350
1351        /* Every bit is either reserved or a feature bit. */
1352        if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1353                return -EINVAL;
1354
1355        vmx->nested.msrs.ept_caps = data;
1356        vmx->nested.msrs.vpid_caps = data >> 32;
1357        return 0;
1358}
1359
1360static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1361{
1362        u64 *msr;
1363
1364        switch (msr_index) {
1365        case MSR_IA32_VMX_CR0_FIXED0:
1366                msr = &vmx->nested.msrs.cr0_fixed0;
1367                break;
1368        case MSR_IA32_VMX_CR4_FIXED0:
1369                msr = &vmx->nested.msrs.cr4_fixed0;
1370                break;
1371        default:
1372                BUG();
1373        }
1374
1375        /*
1376         * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1377         * must be 1 in the restored value.
1378         */
1379        if (!is_bitwise_subset(data, *msr, -1ULL))
1380                return -EINVAL;
1381
1382        *msr = data;
1383        return 0;
1384}
1385
1386/*
1387 * Called when userspace is restoring VMX MSRs.
1388 *
1389 * Returns 0 on success, non-0 otherwise.
1390 */
1391int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1392{
1393        struct vcpu_vmx *vmx = to_vmx(vcpu);
1394
1395        /*
1396         * Don't allow changes to the VMX capability MSRs while the vCPU
1397         * is in VMX operation.
1398         */
1399        if (vmx->nested.vmxon)
1400                return -EBUSY;
1401
1402        switch (msr_index) {
1403        case MSR_IA32_VMX_BASIC:
1404                return vmx_restore_vmx_basic(vmx, data);
1405        case MSR_IA32_VMX_PINBASED_CTLS:
1406        case MSR_IA32_VMX_PROCBASED_CTLS:
1407        case MSR_IA32_VMX_EXIT_CTLS:
1408        case MSR_IA32_VMX_ENTRY_CTLS:
1409                /*
1410                 * The "non-true" VMX capability MSRs are generated from the
1411                 * "true" MSRs, so we do not support restoring them directly.
1412                 *
1413                 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1414                 * should restore the "true" MSRs with the must-be-1 bits
1415                 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1416                 * DEFAULT SETTINGS".
1417                 */
1418                return -EINVAL;
1419        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1420        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1421        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1422        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1423        case MSR_IA32_VMX_PROCBASED_CTLS2:
1424                return vmx_restore_control_msr(vmx, msr_index, data);
1425        case MSR_IA32_VMX_MISC:
1426                return vmx_restore_vmx_misc(vmx, data);
1427        case MSR_IA32_VMX_CR0_FIXED0:
1428        case MSR_IA32_VMX_CR4_FIXED0:
1429                return vmx_restore_fixed0_msr(vmx, msr_index, data);
1430        case MSR_IA32_VMX_CR0_FIXED1:
1431        case MSR_IA32_VMX_CR4_FIXED1:
1432                /*
1433                 * These MSRs are generated based on the vCPU's CPUID, so we
1434                 * do not support restoring them directly.
1435                 */
1436                return -EINVAL;
1437        case MSR_IA32_VMX_EPT_VPID_CAP:
1438                return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1439        case MSR_IA32_VMX_VMCS_ENUM:
1440                vmx->nested.msrs.vmcs_enum = data;
1441                return 0;
1442        case MSR_IA32_VMX_VMFUNC:
1443                if (data & ~vmx->nested.msrs.vmfunc_controls)
1444                        return -EINVAL;
1445                vmx->nested.msrs.vmfunc_controls = data;
1446                return 0;
1447        default:
1448                /*
1449                 * The rest of the VMX capability MSRs do not support restore.
1450                 */
1451                return -EINVAL;
1452        }
1453}
1454
1455/* Returns 0 on success, non-0 otherwise. */
1456int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1457{
1458        switch (msr_index) {
1459        case MSR_IA32_VMX_BASIC:
1460                *pdata = msrs->basic;
1461                break;
1462        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1463        case MSR_IA32_VMX_PINBASED_CTLS:
1464                *pdata = vmx_control_msr(
1465                        msrs->pinbased_ctls_low,
1466                        msrs->pinbased_ctls_high);
1467                if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1468                        *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1469                break;
1470        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1471        case MSR_IA32_VMX_PROCBASED_CTLS:
1472                *pdata = vmx_control_msr(
1473                        msrs->procbased_ctls_low,
1474                        msrs->procbased_ctls_high);
1475                if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1476                        *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1477                break;
1478        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1479        case MSR_IA32_VMX_EXIT_CTLS:
1480                *pdata = vmx_control_msr(
1481                        msrs->exit_ctls_low,
1482                        msrs->exit_ctls_high);
1483                if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1484                        *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1485                break;
1486        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1487        case MSR_IA32_VMX_ENTRY_CTLS:
1488                *pdata = vmx_control_msr(
1489                        msrs->entry_ctls_low,
1490                        msrs->entry_ctls_high);
1491                if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1492                        *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1493                break;
1494        case MSR_IA32_VMX_MISC:
1495                *pdata = vmx_control_msr(
1496                        msrs->misc_low,
1497                        msrs->misc_high);
1498                break;
1499        case MSR_IA32_VMX_CR0_FIXED0:
1500                *pdata = msrs->cr0_fixed0;
1501                break;
1502        case MSR_IA32_VMX_CR0_FIXED1:
1503                *pdata = msrs->cr0_fixed1;
1504                break;
1505        case MSR_IA32_VMX_CR4_FIXED0:
1506                *pdata = msrs->cr4_fixed0;
1507                break;
1508        case MSR_IA32_VMX_CR4_FIXED1:
1509                *pdata = msrs->cr4_fixed1;
1510                break;
1511        case MSR_IA32_VMX_VMCS_ENUM:
1512                *pdata = msrs->vmcs_enum;
1513                break;
1514        case MSR_IA32_VMX_PROCBASED_CTLS2:
1515                *pdata = vmx_control_msr(
1516                        msrs->secondary_ctls_low,
1517                        msrs->secondary_ctls_high);
1518                break;
1519        case MSR_IA32_VMX_EPT_VPID_CAP:
1520                *pdata = msrs->ept_caps |
1521                        ((u64)msrs->vpid_caps << 32);
1522                break;
1523        case MSR_IA32_VMX_VMFUNC:
1524                *pdata = msrs->vmfunc_controls;
1525                break;
1526        default:
1527                return 1;
1528        }
1529
1530        return 0;
1531}
1532
1533/*
1534 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1535 * been modified by the L1 guest.  Note, "writable" in this context means
1536 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1537 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1538 * VM-exit information fields (which are actually writable if the vCPU is
1539 * configured to support "VMWRITE to any supported field in the VMCS").
1540 */
1541static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1542{
1543        struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1544        struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1545        struct shadow_vmcs_field field;
1546        unsigned long val;
1547        int i;
1548
1549        if (WARN_ON(!shadow_vmcs))
1550                return;
1551
1552        preempt_disable();
1553
1554        vmcs_load(shadow_vmcs);
1555
1556        for (i = 0; i < max_shadow_read_write_fields; i++) {
1557                field = shadow_read_write_fields[i];
1558                val = __vmcs_readl(field.encoding);
1559                vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1560        }
1561
1562        vmcs_clear(shadow_vmcs);
1563        vmcs_load(vmx->loaded_vmcs->vmcs);
1564
1565        preempt_enable();
1566}
1567
1568static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1569{
1570        const struct shadow_vmcs_field *fields[] = {
1571                shadow_read_write_fields,
1572                shadow_read_only_fields
1573        };
1574        const int max_fields[] = {
1575                max_shadow_read_write_fields,
1576                max_shadow_read_only_fields
1577        };
1578        struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1579        struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1580        struct shadow_vmcs_field field;
1581        unsigned long val;
1582        int i, q;
1583
1584        if (WARN_ON(!shadow_vmcs))
1585                return;
1586
1587        vmcs_load(shadow_vmcs);
1588
1589        for (q = 0; q < ARRAY_SIZE(fields); q++) {
1590                for (i = 0; i < max_fields[q]; i++) {
1591                        field = fields[q][i];
1592                        val = vmcs12_read_any(vmcs12, field.encoding,
1593                                              field.offset);
1594                        __vmcs_writel(field.encoding, val);
1595                }
1596        }
1597
1598        vmcs_clear(shadow_vmcs);
1599        vmcs_load(vmx->loaded_vmcs->vmcs);
1600}
1601
1602static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1603{
1604        struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1605        struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1606
1607        /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1608        vmcs12->tpr_threshold = evmcs->tpr_threshold;
1609        vmcs12->guest_rip = evmcs->guest_rip;
1610
1611        if (unlikely(!(evmcs->hv_clean_fields &
1612                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1613                vmcs12->guest_rsp = evmcs->guest_rsp;
1614                vmcs12->guest_rflags = evmcs->guest_rflags;
1615                vmcs12->guest_interruptibility_info =
1616                        evmcs->guest_interruptibility_info;
1617        }
1618
1619        if (unlikely(!(evmcs->hv_clean_fields &
1620                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1621                vmcs12->cpu_based_vm_exec_control =
1622                        evmcs->cpu_based_vm_exec_control;
1623        }
1624
1625        if (unlikely(!(evmcs->hv_clean_fields &
1626                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1627                vmcs12->exception_bitmap = evmcs->exception_bitmap;
1628        }
1629
1630        if (unlikely(!(evmcs->hv_clean_fields &
1631                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1632                vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1633        }
1634
1635        if (unlikely(!(evmcs->hv_clean_fields &
1636                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1637                vmcs12->vm_entry_intr_info_field =
1638                        evmcs->vm_entry_intr_info_field;
1639                vmcs12->vm_entry_exception_error_code =
1640                        evmcs->vm_entry_exception_error_code;
1641                vmcs12->vm_entry_instruction_len =
1642                        evmcs->vm_entry_instruction_len;
1643        }
1644
1645        if (unlikely(!(evmcs->hv_clean_fields &
1646                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1647                vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1648                vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1649                vmcs12->host_cr0 = evmcs->host_cr0;
1650                vmcs12->host_cr3 = evmcs->host_cr3;
1651                vmcs12->host_cr4 = evmcs->host_cr4;
1652                vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1653                vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1654                vmcs12->host_rip = evmcs->host_rip;
1655                vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1656                vmcs12->host_es_selector = evmcs->host_es_selector;
1657                vmcs12->host_cs_selector = evmcs->host_cs_selector;
1658                vmcs12->host_ss_selector = evmcs->host_ss_selector;
1659                vmcs12->host_ds_selector = evmcs->host_ds_selector;
1660                vmcs12->host_fs_selector = evmcs->host_fs_selector;
1661                vmcs12->host_gs_selector = evmcs->host_gs_selector;
1662                vmcs12->host_tr_selector = evmcs->host_tr_selector;
1663        }
1664
1665        if (unlikely(!(evmcs->hv_clean_fields &
1666                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1667                vmcs12->pin_based_vm_exec_control =
1668                        evmcs->pin_based_vm_exec_control;
1669                vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1670                vmcs12->secondary_vm_exec_control =
1671                        evmcs->secondary_vm_exec_control;
1672        }
1673
1674        if (unlikely(!(evmcs->hv_clean_fields &
1675                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1676                vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1677                vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1678        }
1679
1680        if (unlikely(!(evmcs->hv_clean_fields &
1681                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1682                vmcs12->msr_bitmap = evmcs->msr_bitmap;
1683        }
1684
1685        if (unlikely(!(evmcs->hv_clean_fields &
1686                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1687                vmcs12->guest_es_base = evmcs->guest_es_base;
1688                vmcs12->guest_cs_base = evmcs->guest_cs_base;
1689                vmcs12->guest_ss_base = evmcs->guest_ss_base;
1690                vmcs12->guest_ds_base = evmcs->guest_ds_base;
1691                vmcs12->guest_fs_base = evmcs->guest_fs_base;
1692                vmcs12->guest_gs_base = evmcs->guest_gs_base;
1693                vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1694                vmcs12->guest_tr_base = evmcs->guest_tr_base;
1695                vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1696                vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1697                vmcs12->guest_es_limit = evmcs->guest_es_limit;
1698                vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1699                vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1700                vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1701                vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1702                vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1703                vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1704                vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1705                vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1706                vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1707                vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1708                vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1709                vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1710                vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1711                vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1712                vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1713                vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1714                vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1715                vmcs12->guest_es_selector = evmcs->guest_es_selector;
1716                vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1717                vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1718                vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1719                vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1720                vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1721                vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1722                vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1723        }
1724
1725        if (unlikely(!(evmcs->hv_clean_fields &
1726                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1727                vmcs12->tsc_offset = evmcs->tsc_offset;
1728                vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1729                vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1730        }
1731
1732        if (unlikely(!(evmcs->hv_clean_fields &
1733                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1734                vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1735                vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1736                vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1737                vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1738                vmcs12->guest_cr0 = evmcs->guest_cr0;
1739                vmcs12->guest_cr3 = evmcs->guest_cr3;
1740                vmcs12->guest_cr4 = evmcs->guest_cr4;
1741                vmcs12->guest_dr7 = evmcs->guest_dr7;
1742        }
1743
1744        if (unlikely(!(evmcs->hv_clean_fields &
1745                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1746                vmcs12->host_fs_base = evmcs->host_fs_base;
1747                vmcs12->host_gs_base = evmcs->host_gs_base;
1748                vmcs12->host_tr_base = evmcs->host_tr_base;
1749                vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1750                vmcs12->host_idtr_base = evmcs->host_idtr_base;
1751                vmcs12->host_rsp = evmcs->host_rsp;
1752        }
1753
1754        if (unlikely(!(evmcs->hv_clean_fields &
1755                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1756                vmcs12->ept_pointer = evmcs->ept_pointer;
1757                vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1758        }
1759
1760        if (unlikely(!(evmcs->hv_clean_fields &
1761                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1762                vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1763                vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1764                vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1765                vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1766                vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1767                vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1768                vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1769                vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1770                vmcs12->guest_pending_dbg_exceptions =
1771                        evmcs->guest_pending_dbg_exceptions;
1772                vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1773                vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1774                vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1775                vmcs12->guest_activity_state = evmcs->guest_activity_state;
1776                vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1777        }
1778
1779        /*
1780         * Not used?
1781         * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1782         * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1783         * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1784         * vmcs12->page_fault_error_code_mask =
1785         *              evmcs->page_fault_error_code_mask;
1786         * vmcs12->page_fault_error_code_match =
1787         *              evmcs->page_fault_error_code_match;
1788         * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1789         * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1790         * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1791         * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1792         */
1793
1794        /*
1795         * Read only fields:
1796         * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1797         * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1798         * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1799         * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1800         * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1801         * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1802         * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1803         * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1804         * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1805         * vmcs12->exit_qualification = evmcs->exit_qualification;
1806         * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1807         *
1808         * Not present in struct vmcs12:
1809         * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1810         * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1811         * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1812         * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1813         */
1814
1815        return 0;
1816}
1817
1818static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1819{
1820        struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1821        struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1822
1823        /*
1824         * Should not be changed by KVM:
1825         *
1826         * evmcs->host_es_selector = vmcs12->host_es_selector;
1827         * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1828         * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1829         * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1830         * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1831         * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1832         * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1833         * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1834         * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1835         * evmcs->host_cr0 = vmcs12->host_cr0;
1836         * evmcs->host_cr3 = vmcs12->host_cr3;
1837         * evmcs->host_cr4 = vmcs12->host_cr4;
1838         * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1839         * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1840         * evmcs->host_rip = vmcs12->host_rip;
1841         * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1842         * evmcs->host_fs_base = vmcs12->host_fs_base;
1843         * evmcs->host_gs_base = vmcs12->host_gs_base;
1844         * evmcs->host_tr_base = vmcs12->host_tr_base;
1845         * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1846         * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1847         * evmcs->host_rsp = vmcs12->host_rsp;
1848         * sync_vmcs02_to_vmcs12() doesn't read these:
1849         * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1850         * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1851         * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1852         * evmcs->ept_pointer = vmcs12->ept_pointer;
1853         * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1854         * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1855         * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1856         * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1857         * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1858         * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1859         * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1860         * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1861         * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1862         * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1863         * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1864         * evmcs->page_fault_error_code_mask =
1865         *              vmcs12->page_fault_error_code_mask;
1866         * evmcs->page_fault_error_code_match =
1867         *              vmcs12->page_fault_error_code_match;
1868         * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1869         * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1870         * evmcs->tsc_offset = vmcs12->tsc_offset;
1871         * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1872         * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1873         * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1874         * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1875         * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1876         * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1877         * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1878         * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1879         *
1880         * Not present in struct vmcs12:
1881         * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1882         * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1883         * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1884         * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1885         */
1886
1887        evmcs->guest_es_selector = vmcs12->guest_es_selector;
1888        evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1889        evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1890        evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1891        evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1892        evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1893        evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1894        evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1895
1896        evmcs->guest_es_limit = vmcs12->guest_es_limit;
1897        evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1898        evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1899        evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1900        evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1901        evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1902        evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1903        evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1904        evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1905        evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1906
1907        evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1908        evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1909        evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1910        evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1911        evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1912        evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1913        evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1914        evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1915
1916        evmcs->guest_es_base = vmcs12->guest_es_base;
1917        evmcs->guest_cs_base = vmcs12->guest_cs_base;
1918        evmcs->guest_ss_base = vmcs12->guest_ss_base;
1919        evmcs->guest_ds_base = vmcs12->guest_ds_base;
1920        evmcs->guest_fs_base = vmcs12->guest_fs_base;
1921        evmcs->guest_gs_base = vmcs12->guest_gs_base;
1922        evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1923        evmcs->guest_tr_base = vmcs12->guest_tr_base;
1924        evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1925        evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1926
1927        evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1928        evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1929
1930        evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1931        evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1932        evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1933        evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1934
1935        evmcs->guest_pending_dbg_exceptions =
1936                vmcs12->guest_pending_dbg_exceptions;
1937        evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1938        evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1939
1940        evmcs->guest_activity_state = vmcs12->guest_activity_state;
1941        evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1942
1943        evmcs->guest_cr0 = vmcs12->guest_cr0;
1944        evmcs->guest_cr3 = vmcs12->guest_cr3;
1945        evmcs->guest_cr4 = vmcs12->guest_cr4;
1946        evmcs->guest_dr7 = vmcs12->guest_dr7;
1947
1948        evmcs->guest_physical_address = vmcs12->guest_physical_address;
1949
1950        evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1951        evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1952        evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1953        evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1954        evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1955        evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1956        evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1957        evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1958
1959        evmcs->exit_qualification = vmcs12->exit_qualification;
1960
1961        evmcs->guest_linear_address = vmcs12->guest_linear_address;
1962        evmcs->guest_rsp = vmcs12->guest_rsp;
1963        evmcs->guest_rflags = vmcs12->guest_rflags;
1964
1965        evmcs->guest_interruptibility_info =
1966                vmcs12->guest_interruptibility_info;
1967        evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1968        evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1969        evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1970        evmcs->vm_entry_exception_error_code =
1971                vmcs12->vm_entry_exception_error_code;
1972        evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1973
1974        evmcs->guest_rip = vmcs12->guest_rip;
1975
1976        evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1977
1978        return 0;
1979}
1980
1981/*
1982 * This is an equivalent of the nested hypervisor executing the vmptrld
1983 * instruction.
1984 */
1985static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1986        struct kvm_vcpu *vcpu, bool from_launch)
1987{
1988        struct vcpu_vmx *vmx = to_vmx(vcpu);
1989        bool evmcs_gpa_changed = false;
1990        u64 evmcs_gpa;
1991
1992        if (likely(!vmx->nested.enlightened_vmcs_enabled))
1993                return EVMPTRLD_DISABLED;
1994
1995        if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1996                return EVMPTRLD_DISABLED;
1997
1998        if (unlikely(!vmx->nested.hv_evmcs ||
1999                     evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2000                if (!vmx->nested.hv_evmcs)
2001                        vmx->nested.current_vmptr = -1ull;
2002
2003                nested_release_evmcs(vcpu);
2004
2005                if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2006                                 &vmx->nested.hv_evmcs_map))
2007                        return EVMPTRLD_ERROR;
2008
2009                vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2010
2011                /*
2012                 * Currently, KVM only supports eVMCS version 1
2013                 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2014                 * value to first u32 field of eVMCS which should specify eVMCS
2015                 * VersionNumber.
2016                 *
2017                 * Guest should be aware of supported eVMCS versions by host by
2018                 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2019                 * expected to set this CPUID leaf according to the value
2020                 * returned in vmcs_version from nested_enable_evmcs().
2021                 *
2022                 * However, it turns out that Microsoft Hyper-V fails to comply
2023                 * to their own invented interface: When Hyper-V use eVMCS, it
2024                 * just sets first u32 field of eVMCS to revision_id specified
2025                 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2026                 * which is one of the supported versions specified in
2027                 * CPUID.0x4000000A.EAX[0:15].
2028                 *
2029                 * To overcome Hyper-V bug, we accept here either a supported
2030                 * eVMCS version or VMCS12 revision_id as valid values for first
2031                 * u32 field of eVMCS.
2032                 */
2033                if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2034                    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2035                        nested_release_evmcs(vcpu);
2036                        return EVMPTRLD_VMFAIL;
2037                }
2038
2039                vmx->nested.dirty_vmcs12 = true;
2040                vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2041
2042                evmcs_gpa_changed = true;
2043                /*
2044                 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2045                 * reloaded from guest's memory (read only fields, fields not
2046                 * present in struct hv_enlightened_vmcs, ...). Make sure there
2047                 * are no leftovers.
2048                 */
2049                if (from_launch) {
2050                        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2051                        memset(vmcs12, 0, sizeof(*vmcs12));
2052                        vmcs12->hdr.revision_id = VMCS12_REVISION;
2053                }
2054
2055        }
2056
2057        /*
2058         * Clean fields data can't be used on VMLAUNCH and when we switch
2059         * between different L2 guests as KVM keeps a single VMCS12 per L1.
2060         */
2061        if (from_launch || evmcs_gpa_changed)
2062                vmx->nested.hv_evmcs->hv_clean_fields &=
2063                        ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2064
2065        return EVMPTRLD_SUCCEEDED;
2066}
2067
2068void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2069{
2070        struct vcpu_vmx *vmx = to_vmx(vcpu);
2071
2072        if (vmx->nested.hv_evmcs) {
2073                copy_vmcs12_to_enlightened(vmx);
2074                /* All fields are clean */
2075                vmx->nested.hv_evmcs->hv_clean_fields |=
2076                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2077        } else {
2078                copy_vmcs12_to_shadow(vmx);
2079        }
2080
2081        vmx->nested.need_vmcs12_to_shadow_sync = false;
2082}
2083
2084static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2085{
2086        struct vcpu_vmx *vmx =
2087                container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2088
2089        vmx->nested.preemption_timer_expired = true;
2090        kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2091        kvm_vcpu_kick(&vmx->vcpu);
2092
2093        return HRTIMER_NORESTART;
2094}
2095
2096static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2097{
2098        struct vcpu_vmx *vmx = to_vmx(vcpu);
2099        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2100
2101        u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2102                            VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2103
2104        if (!vmx->nested.has_preemption_timer_deadline) {
2105                vmx->nested.preemption_timer_deadline =
2106                        vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2107                vmx->nested.has_preemption_timer_deadline = true;
2108        }
2109        return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2110}
2111
2112static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2113                                        u64 preemption_timeout)
2114{
2115        struct vcpu_vmx *vmx = to_vmx(vcpu);
2116
2117        /*
2118         * A timer value of zero is architecturally guaranteed to cause
2119         * a VMExit prior to executing any instructions in the guest.
2120         */
2121        if (preemption_timeout == 0) {
2122                vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2123                return;
2124        }
2125
2126        if (vcpu->arch.virtual_tsc_khz == 0)
2127                return;
2128
2129        preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2130        preemption_timeout *= 1000000;
2131        do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2132        hrtimer_start(&vmx->nested.preemption_timer,
2133                      ktime_add_ns(ktime_get(), preemption_timeout),
2134                      HRTIMER_MODE_ABS_PINNED);
2135}
2136
2137static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2138{
2139        if (vmx->nested.nested_run_pending &&
2140            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2141                return vmcs12->guest_ia32_efer;
2142        else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2143                return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2144        else
2145                return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2146}
2147
2148static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2149{
2150        /*
2151         * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2152         * according to L0's settings (vmcs12 is irrelevant here).  Host
2153         * fields that come from L0 and are not constant, e.g. HOST_CR3,
2154         * will be set as needed prior to VMLAUNCH/VMRESUME.
2155         */
2156        if (vmx->nested.vmcs02_initialized)
2157                return;
2158        vmx->nested.vmcs02_initialized = true;
2159
2160        /*
2161         * We don't care what the EPTP value is we just need to guarantee
2162         * it's valid so we don't get a false positive when doing early
2163         * consistency checks.
2164         */
2165        if (enable_ept && nested_early_check)
2166                vmcs_write64(EPT_POINTER,
2167                             construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2168
2169        /* All VMFUNCs are currently emulated through L0 vmexits.  */
2170        if (cpu_has_vmx_vmfunc())
2171                vmcs_write64(VM_FUNCTION_CONTROL, 0);
2172
2173        if (cpu_has_vmx_posted_intr())
2174                vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2175
2176        if (cpu_has_vmx_msr_bitmap())
2177                vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2178
2179        /*
2180         * The PML address never changes, so it is constant in vmcs02.
2181         * Conceptually we want to copy the PML index from vmcs01 here,
2182         * and then back to vmcs01 on nested vmexit.  But since we flush
2183         * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2184         * index is also effectively constant in vmcs02.
2185         */
2186        if (enable_pml) {
2187                vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2188                vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2189        }
2190
2191        if (cpu_has_vmx_encls_vmexit())
2192                vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2193
2194        /*
2195         * Set the MSR load/store lists to match L0's settings.  Only the
2196         * addresses are constant (for vmcs02), the counts can change based
2197         * on L2's behavior, e.g. switching to/from long mode.
2198         */
2199        vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2200        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2201        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2202
2203        vmx_set_constant_host_state(vmx);
2204}
2205
2206static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2207                                      struct vmcs12 *vmcs12)
2208{
2209        prepare_vmcs02_constant_state(vmx);
2210
2211        vmcs_write64(VMCS_LINK_POINTER, -1ull);
2212
2213        if (enable_vpid) {
2214                if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2215                        vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2216                else
2217                        vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2218        }
2219}
2220
2221static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2222{
2223        u32 exec_control, vmcs12_exec_ctrl;
2224        u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2225
2226        if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2227                prepare_vmcs02_early_rare(vmx, vmcs12);
2228
2229        /*
2230         * PIN CONTROLS
2231         */
2232        exec_control = vmx_pin_based_exec_ctrl(vmx);
2233        exec_control |= (vmcs12->pin_based_vm_exec_control &
2234                         ~PIN_BASED_VMX_PREEMPTION_TIMER);
2235
2236        /* Posted interrupts setting is only taken from vmcs12.  */
2237        if (nested_cpu_has_posted_intr(vmcs12)) {
2238                vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2239                vmx->nested.pi_pending = false;
2240        } else {
2241                exec_control &= ~PIN_BASED_POSTED_INTR;
2242        }
2243        pin_controls_set(vmx, exec_control);
2244
2245        /*
2246         * EXEC CONTROLS
2247         */
2248        exec_control = vmx_exec_control(vmx); /* L0's desires */
2249        exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2250        exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2251        exec_control &= ~CPU_BASED_TPR_SHADOW;
2252        exec_control |= vmcs12->cpu_based_vm_exec_control;
2253
2254        vmx->nested.l1_tpr_threshold = -1;
2255        if (exec_control & CPU_BASED_TPR_SHADOW)
2256                vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2257#ifdef CONFIG_X86_64
2258        else
2259                exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2260                                CPU_BASED_CR8_STORE_EXITING;
2261#endif
2262
2263        /*
2264         * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2265         * for I/O port accesses.
2266         */
2267        exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2268        exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2269
2270        /*
2271         * This bit will be computed in nested_get_vmcs12_pages, because
2272         * we do not have access to L1's MSR bitmap yet.  For now, keep
2273         * the same bit as before, hoping to avoid multiple VMWRITEs that
2274         * only set/clear this bit.
2275         */
2276        exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2277        exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2278
2279        exec_controls_set(vmx, exec_control);
2280
2281        /*
2282         * SECONDARY EXEC CONTROLS
2283         */
2284        if (cpu_has_secondary_exec_ctrls()) {
2285                exec_control = vmx->secondary_exec_control;
2286
2287                /* Take the following fields only from vmcs12 */
2288                exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2289                                  SECONDARY_EXEC_ENABLE_INVPCID |
2290                                  SECONDARY_EXEC_ENABLE_RDTSCP |
2291                                  SECONDARY_EXEC_XSAVES |
2292                                  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2293                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2294                                  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2295                                  SECONDARY_EXEC_ENABLE_VMFUNC);
2296                if (nested_cpu_has(vmcs12,
2297                                   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2298                        vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2299                                ~SECONDARY_EXEC_ENABLE_PML;
2300                        exec_control |= vmcs12_exec_ctrl;
2301                }
2302
2303                /* VMCS shadowing for L2 is emulated for now */
2304                exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2305
2306                /*
2307                 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2308                 * will not have to rewrite the controls just for this bit.
2309                 */
2310                if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2311                    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2312                        exec_control |= SECONDARY_EXEC_DESC;
2313
2314                if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2315                        vmcs_write16(GUEST_INTR_STATUS,
2316                                vmcs12->guest_intr_status);
2317
2318                if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2319                    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2320
2321                secondary_exec_controls_set(vmx, exec_control);
2322        }
2323
2324        /*
2325         * ENTRY CONTROLS
2326         *
2327         * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2328         * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2329         * on the related bits (if supported by the CPU) in the hope that
2330         * we can avoid VMWrites during vmx_set_efer().
2331         */
2332        exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2333                        ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2334        if (cpu_has_load_ia32_efer()) {
2335                if (guest_efer & EFER_LMA)
2336                        exec_control |= VM_ENTRY_IA32E_MODE;
2337                if (guest_efer != host_efer)
2338                        exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2339        }
2340        vm_entry_controls_set(vmx, exec_control);
2341
2342        /*
2343         * EXIT CONTROLS
2344         *
2345         * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2346         * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2347         * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2348         */
2349        exec_control = vmx_vmexit_ctrl();
2350        if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2351                exec_control |= VM_EXIT_LOAD_IA32_EFER;
2352        vm_exit_controls_set(vmx, exec_control);
2353
2354        /*
2355         * Interrupt/Exception Fields
2356         */
2357        if (vmx->nested.nested_run_pending) {
2358                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2359                             vmcs12->vm_entry_intr_info_field);
2360                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2361                             vmcs12->vm_entry_exception_error_code);
2362                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2363                             vmcs12->vm_entry_instruction_len);
2364                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2365                             vmcs12->guest_interruptibility_info);
2366                vmx->loaded_vmcs->nmi_known_unmasked =
2367                        !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2368        } else {
2369                vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2370        }
2371}
2372
2373static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2374{
2375        struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2376
2377        if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2378                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2379                vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2380                vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2381                vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2382                vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2383                vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2384                vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2385                vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2386                vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2387                vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2388                vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2389                vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2390                vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2391                vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2392                vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2393                vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2394                vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2395                vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2396                vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2397                vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2398                vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2399                vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2400                vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2401                vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2402                vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2403                vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2404                vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2405                vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2406                vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2407                vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2408                vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2409                vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2410                vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2411                vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2412                vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2413                vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2414                vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2415
2416                vmx->segment_cache.bitmask = 0;
2417        }
2418
2419        if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2420                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2421                vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2422                vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2423                            vmcs12->guest_pending_dbg_exceptions);
2424                vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2425                vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2426
2427                /*
2428                 * L1 may access the L2's PDPTR, so save them to construct
2429                 * vmcs12
2430                 */
2431                if (enable_ept) {
2432                        vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2433                        vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2434                        vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2435                        vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2436                }
2437
2438                if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2439                    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2440                        vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2441        }
2442
2443        if (nested_cpu_has_xsaves(vmcs12))
2444                vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2445
2446        /*
2447         * Whether page-faults are trapped is determined by a combination of
2448         * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2449         * doesn't care about page faults then we should set all of these to
2450         * L1's desires. However, if L0 does care about (some) page faults, it
2451         * is not easy (if at all possible?) to merge L0 and L1's desires, we
2452         * simply ask to exit on each and every L2 page fault. This is done by
2453         * setting MASK=MATCH=0 and (see below) EB.PF=1.
2454         * Note that below we don't need special code to set EB.PF beyond the
2455         * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2456         * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2457         * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2458         */
2459        if (vmx_need_pf_intercept(&vmx->vcpu)) {
2460                /*
2461                 * TODO: if both L0 and L1 need the same MASK and MATCH,
2462                 * go ahead and use it?
2463                 */
2464                vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2465                vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2466        } else {
2467                vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2468                vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2469        }
2470
2471        if (cpu_has_vmx_apicv()) {
2472                vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2473                vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2474                vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2475                vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2476        }
2477
2478        /*
2479         * Make sure the msr_autostore list is up to date before we set the
2480         * count in the vmcs02.
2481         */
2482        prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2483
2484        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2485        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2486        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2487
2488        set_cr4_guest_host_mask(vmx);
2489}
2490
2491/*
2492 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2493 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2494 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2495 * guest in a way that will both be appropriate to L1's requests, and our
2496 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2497 * function also has additional necessary side-effects, like setting various
2498 * vcpu->arch fields.
2499 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2500 * is assigned to entry_failure_code on failure.
2501 */
2502static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2503                          enum vm_entry_failure_code *entry_failure_code)
2504{
2505        struct vcpu_vmx *vmx = to_vmx(vcpu);
2506        struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2507        bool load_guest_pdptrs_vmcs12 = false;
2508
2509        if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2510                prepare_vmcs02_rare(vmx, vmcs12);
2511                vmx->nested.dirty_vmcs12 = false;
2512
2513                load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2514                        !(hv_evmcs->hv_clean_fields &
2515                          HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2516        }
2517
2518        if (vmx->nested.nested_run_pending &&
2519            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2520                kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2521                vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2522        } else {
2523                kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2524                vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2525        }
2526        if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2527            !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2528                vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2529        vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2530
2531        /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2532         * bitwise-or of what L1 wants to trap for L2, and what we want to
2533         * trap. Note that CR0.TS also needs updating - we do this later.
2534         */
2535        update_exception_bitmap(vcpu);
2536        vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2537        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2538
2539        if (vmx->nested.nested_run_pending &&
2540            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2541                vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2542                vcpu->arch.pat = vmcs12->guest_ia32_pat;
2543        } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2544                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2545        }
2546
2547        vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2548
2549        if (kvm_has_tsc_control)
2550                decache_tsc_multiplier(vmx);
2551
2552        nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2553
2554        if (nested_cpu_has_ept(vmcs12))
2555                nested_ept_init_mmu_context(vcpu);
2556
2557        /*
2558         * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2559         * bits which we consider mandatory enabled.
2560         * The CR0_READ_SHADOW is what L2 should have expected to read given
2561         * the specifications by L1; It's not enough to take
2562         * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2563         * have more bits than L1 expected.
2564         */
2565        vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2566        vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2567
2568        vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2569        vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2570
2571        vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2572        /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2573        vmx_set_efer(vcpu, vcpu->arch.efer);
2574
2575        /*
2576         * Guest state is invalid and unrestricted guest is disabled,
2577         * which means L1 attempted VMEntry to L2 with invalid state.
2578         * Fail the VMEntry.
2579         */
2580        if (CC(!vmx_guest_state_valid(vcpu))) {
2581                *entry_failure_code = ENTRY_FAIL_DEFAULT;
2582                return -EINVAL;
2583        }
2584
2585        /* Shadow page tables on either EPT or shadow page tables. */
2586        if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2587                                entry_failure_code))
2588                return -EINVAL;
2589
2590        /*
2591         * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2592         * on nested VM-Exit, which can occur without actually running L2 and
2593         * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2594         * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2595         * transition to HLT instead of running L2.
2596         */
2597        if (enable_ept)
2598                vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2599
2600        /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2601        if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2602            is_pae_paging(vcpu)) {
2603                vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2604                vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2605                vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2606                vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2607        }
2608
2609        if (!enable_ept)
2610                vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2611
2612        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2613            WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2614                                     vmcs12->guest_ia32_perf_global_ctrl)))
2615                return -EINVAL;
2616
2617        kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2618        kvm_rip_write(vcpu, vmcs12->guest_rip);
2619        return 0;
2620}
2621
2622static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2623{
2624        if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2625               nested_cpu_has_virtual_nmis(vmcs12)))
2626                return -EINVAL;
2627
2628        if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2629               nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2630                return -EINVAL;
2631
2632        return 0;
2633}
2634
2635static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2636{
2637        struct vcpu_vmx *vmx = to_vmx(vcpu);
2638        int maxphyaddr = cpuid_maxphyaddr(vcpu);
2639
2640        /* Check for memory type validity */
2641        switch (new_eptp & VMX_EPTP_MT_MASK) {
2642        case VMX_EPTP_MT_UC:
2643                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2644                        return false;
2645                break;
2646        case VMX_EPTP_MT_WB:
2647                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2648                        return false;
2649                break;
2650        default:
2651                return false;
2652        }
2653
2654        /* Page-walk levels validity. */
2655        switch (new_eptp & VMX_EPTP_PWL_MASK) {
2656        case VMX_EPTP_PWL_5:
2657                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2658                        return false;
2659                break;
2660        case VMX_EPTP_PWL_4:
2661                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2662                        return false;
2663                break;
2664        default:
2665                return false;
2666        }
2667
2668        /* Reserved bits should not be set */
2669        if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2670                return false;
2671
2672        /* AD, if set, should be supported */
2673        if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2674                if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2675                        return false;
2676        }
2677
2678        return true;
2679}
2680
2681/*
2682 * Checks related to VM-Execution Control Fields
2683 */
2684static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2685                                              struct vmcs12 *vmcs12)
2686{
2687        struct vcpu_vmx *vmx = to_vmx(vcpu);
2688
2689        if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2690                                   vmx->nested.msrs.pinbased_ctls_low,
2691                                   vmx->nested.msrs.pinbased_ctls_high)) ||
2692            CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2693                                   vmx->nested.msrs.procbased_ctls_low,
2694                                   vmx->nested.msrs.procbased_ctls_high)))
2695                return -EINVAL;
2696
2697        if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2698            CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2699                                   vmx->nested.msrs.secondary_ctls_low,
2700                                   vmx->nested.msrs.secondary_ctls_high)))
2701                return -EINVAL;
2702
2703        if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2704            nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2705            nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2706            nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2707            nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2708            nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2709            nested_vmx_check_nmi_controls(vmcs12) ||
2710            nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2711            nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2712            nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2713            nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2714            CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2715                return -EINVAL;
2716
2717        if (!nested_cpu_has_preemption_timer(vmcs12) &&
2718            nested_cpu_has_save_preemption_timer(vmcs12))
2719                return -EINVAL;
2720
2721        if (nested_cpu_has_ept(vmcs12) &&
2722            CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2723                return -EINVAL;
2724
2725        if (nested_cpu_has_vmfunc(vmcs12)) {
2726                if (CC(vmcs12->vm_function_control &
2727                       ~vmx->nested.msrs.vmfunc_controls))
2728                        return -EINVAL;
2729
2730                if (nested_cpu_has_eptp_switching(vmcs12)) {
2731                        if (CC(!nested_cpu_has_ept(vmcs12)) ||
2732                            CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2733                                return -EINVAL;
2734                }
2735        }
2736
2737        return 0;
2738}
2739
2740/*
2741 * Checks related to VM-Exit Control Fields
2742 */
2743static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2744                                         struct vmcs12 *vmcs12)
2745{
2746        struct vcpu_vmx *vmx = to_vmx(vcpu);
2747
2748        if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2749                                    vmx->nested.msrs.exit_ctls_low,
2750                                    vmx->nested.msrs.exit_ctls_high)) ||
2751            CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2752                return -EINVAL;
2753
2754        return 0;
2755}
2756
2757/*
2758 * Checks related to VM-Entry Control Fields
2759 */
2760static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2761                                          struct vmcs12 *vmcs12)
2762{
2763        struct vcpu_vmx *vmx = to_vmx(vcpu);
2764
2765        if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2766                                    vmx->nested.msrs.entry_ctls_low,
2767                                    vmx->nested.msrs.entry_ctls_high)))
2768                return -EINVAL;
2769
2770        /*
2771         * From the Intel SDM, volume 3:
2772         * Fields relevant to VM-entry event injection must be set properly.
2773         * These fields are the VM-entry interruption-information field, the
2774         * VM-entry exception error code, and the VM-entry instruction length.
2775         */
2776        if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2777                u32 intr_info = vmcs12->vm_entry_intr_info_field;
2778                u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2779                u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2780                bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2781                bool should_have_error_code;
2782                bool urg = nested_cpu_has2(vmcs12,
2783                                           SECONDARY_EXEC_UNRESTRICTED_GUEST);
2784                bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2785
2786                /* VM-entry interruption-info field: interruption type */
2787                if (CC(intr_type == INTR_TYPE_RESERVED) ||
2788                    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2789                       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2790                        return -EINVAL;
2791
2792                /* VM-entry interruption-info field: vector */
2793                if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2794                    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2795                    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2796                        return -EINVAL;
2797
2798                /* VM-entry interruption-info field: deliver error code */
2799                should_have_error_code =
2800                        intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2801                        x86_exception_has_error_code(vector);
2802                if (CC(has_error_code != should_have_error_code))
2803                        return -EINVAL;
2804
2805                /* VM-entry exception error code */
2806                if (CC(has_error_code &&
2807                       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2808                        return -EINVAL;
2809
2810                /* VM-entry interruption-info field: reserved bits */
2811                if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2812                        return -EINVAL;
2813
2814                /* VM-entry instruction length */
2815                switch (intr_type) {
2816                case INTR_TYPE_SOFT_EXCEPTION:
2817                case INTR_TYPE_SOFT_INTR:
2818                case INTR_TYPE_PRIV_SW_EXCEPTION:
2819                        if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2820                            CC(vmcs12->vm_entry_instruction_len == 0 &&
2821                            CC(!nested_cpu_has_zero_length_injection(vcpu))))
2822                                return -EINVAL;
2823                }
2824        }
2825
2826        if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2827                return -EINVAL;
2828
2829        return 0;
2830}
2831
2832static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2833                                     struct vmcs12 *vmcs12)
2834{
2835        if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2836            nested_check_vm_exit_controls(vcpu, vmcs12) ||
2837            nested_check_vm_entry_controls(vcpu, vmcs12))
2838                return -EINVAL;
2839
2840        if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2841                return nested_evmcs_check_controls(vmcs12);
2842
2843        return 0;
2844}
2845
2846static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2847                                       struct vmcs12 *vmcs12)
2848{
2849        bool ia32e;
2850
2851        if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2852            CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2853            CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2854                return -EINVAL;
2855
2856        if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2857            CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2858                return -EINVAL;
2859
2860        if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2861            CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2862                return -EINVAL;
2863
2864        if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2865            CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2866                                           vmcs12->host_ia32_perf_global_ctrl)))
2867                return -EINVAL;
2868
2869#ifdef CONFIG_X86_64
2870        ia32e = !!(vcpu->arch.efer & EFER_LMA);
2871#else
2872        ia32e = false;
2873#endif
2874
2875        if (ia32e) {
2876                if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2877                    CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2878                        return -EINVAL;
2879        } else {
2880                if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2881                    CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2882                    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2883                    CC((vmcs12->host_rip) >> 32))
2884                        return -EINVAL;
2885        }
2886
2887        if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2888            CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2889            CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2890            CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2891            CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2892            CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2893            CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2894            CC(vmcs12->host_cs_selector == 0) ||
2895            CC(vmcs12->host_tr_selector == 0) ||
2896            CC(vmcs12->host_ss_selector == 0 && !ia32e))
2897                return -EINVAL;
2898
2899        if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2900            CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2901            CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2902            CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2903            CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2904            CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2905                return -EINVAL;
2906
2907        /*
2908         * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2909         * IA32_EFER MSR must be 0 in the field for that register. In addition,
2910         * the values of the LMA and LME bits in the field must each be that of
2911         * the host address-space size VM-exit control.
2912         */
2913        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2914                if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2915                    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2916                    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2917                        return -EINVAL;
2918        }
2919
2920        return 0;
2921}
2922
2923static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2924                                          struct vmcs12 *vmcs12)
2925{
2926        int r = 0;
2927        struct vmcs12 *shadow;
2928        struct kvm_host_map map;
2929
2930        if (vmcs12->vmcs_link_pointer == -1ull)
2931                return 0;
2932
2933        if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2934                return -EINVAL;
2935
2936        if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2937                return -EINVAL;
2938
2939        shadow = map.hva;
2940
2941        if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2942            CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2943                r = -EINVAL;
2944
2945        kvm_vcpu_unmap(vcpu, &map, false);
2946        return r;
2947}
2948
2949/*
2950 * Checks related to Guest Non-register State
2951 */
2952static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2953{
2954        if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2955               vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2956                return -EINVAL;
2957
2958        return 0;
2959}
2960
2961static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2962                                        struct vmcs12 *vmcs12,
2963                                        enum vm_entry_failure_code *entry_failure_code)
2964{
2965        bool ia32e;
2966
2967        *entry_failure_code = ENTRY_FAIL_DEFAULT;
2968
2969        if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2970            CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2971                return -EINVAL;
2972
2973        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2974            CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2975                return -EINVAL;
2976
2977        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2978            CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2979                return -EINVAL;
2980
2981        if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2982                *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2983                return -EINVAL;
2984        }
2985
2986        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2987            CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2988                                           vmcs12->guest_ia32_perf_global_ctrl)))
2989                return -EINVAL;
2990
2991        /*
2992         * If the load IA32_EFER VM-entry control is 1, the following checks
2993         * are performed on the field for the IA32_EFER MSR:
2994         * - Bits reserved in the IA32_EFER MSR must be 0.
2995         * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2996         *   the IA-32e mode guest VM-exit control. It must also be identical
2997         *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2998         *   CR0.PG) is 1.
2999         */
3000        if (to_vmx(vcpu)->nested.nested_run_pending &&
3001            (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3002                ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3003                if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3004                    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3005                    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3006                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3007                        return -EINVAL;
3008        }
3009
3010        if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3011            (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3012             CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3013                return -EINVAL;
3014
3015        if (nested_check_guest_non_reg_state(vmcs12))
3016                return -EINVAL;
3017
3018        return 0;
3019}
3020
3021static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3022{
3023        struct vcpu_vmx *vmx = to_vmx(vcpu);
3024        unsigned long cr3, cr4;
3025        bool vm_fail;
3026
3027        if (!nested_early_check)
3028                return 0;
3029
3030        if (vmx->msr_autoload.host.nr)
3031                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3032        if (vmx->msr_autoload.guest.nr)
3033                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3034
3035        preempt_disable();
3036
3037        vmx_prepare_switch_to_guest(vcpu);
3038
3039        /*
3040         * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3041         * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3042         * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3043         * there is no need to preserve other bits or save/restore the field.
3044         */
3045        vmcs_writel(GUEST_RFLAGS, 0);
3046
3047        cr3 = __get_current_cr3_fast();
3048        if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3049                vmcs_writel(HOST_CR3, cr3);
3050                vmx->loaded_vmcs->host_state.cr3 = cr3;
3051        }
3052
3053        cr4 = cr4_read_shadow();
3054        if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3055                vmcs_writel(HOST_CR4, cr4);
3056                vmx->loaded_vmcs->host_state.cr4 = cr4;
3057        }
3058
3059        asm(
3060                "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
3061                "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3062                "je 1f \n\t"
3063                __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
3064                "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3065                "1: \n\t"
3066                "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
3067
3068                /* Check if vmlaunch or vmresume is needed */
3069                "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
3070
3071                /*
3072                 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
3073                 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
3074                 * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
3075                 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
3076                 */
3077                "call vmx_vmenter\n\t"
3078
3079                CC_SET(be)
3080              : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3081              : [HOST_RSP]"r"((unsigned long)HOST_RSP),
3082                [loaded_vmcs]"r"(vmx->loaded_vmcs),
3083                [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3084                [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3085                [wordsize]"i"(sizeof(ulong))
3086              : "memory"
3087        );
3088
3089        if (vmx->msr_autoload.host.nr)
3090                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3091        if (vmx->msr_autoload.guest.nr)
3092                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3093
3094        if (vm_fail) {
3095                u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3096
3097                preempt_enable();
3098
3099                trace_kvm_nested_vmenter_failed(
3100                        "early hardware check VM-instruction error: ", error);
3101                WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3102                return 1;
3103        }
3104
3105        /*
3106         * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3107         */
3108        if (hw_breakpoint_active())
3109                set_debugreg(__this_cpu_read(cpu_dr7), 7);
3110        local_irq_enable();
3111        preempt_enable();
3112
3113        /*
3114         * A non-failing VMEntry means we somehow entered guest mode with
3115         * an illegal RIP, and that's just the tip of the iceberg.  There
3116         * is no telling what memory has been modified or what state has
3117         * been exposed to unknown code.  Hitting this all but guarantees
3118         * a (very critical) hardware issue.
3119         */
3120        WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3121                VMX_EXIT_REASONS_FAILED_VMENTRY));
3122
3123        return 0;
3124}
3125
3126static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3127{
3128        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3129        struct vcpu_vmx *vmx = to_vmx(vcpu);
3130        struct kvm_host_map *map;
3131        struct page *page;
3132        u64 hpa;
3133
3134        /*
3135         * hv_evmcs may end up being not mapped after migration (when
3136         * L2 was running), map it here to make sure vmcs12 changes are
3137         * properly reflected.
3138         */
3139        if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3140                enum nested_evmptrld_status evmptrld_status =
3141                        nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3142
3143                if (evmptrld_status == EVMPTRLD_VMFAIL ||
3144                    evmptrld_status == EVMPTRLD_ERROR) {
3145                        pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3146                                             __func__);
3147                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3148                        vcpu->run->internal.suberror =
3149                                KVM_INTERNAL_ERROR_EMULATION;
3150                        vcpu->run->internal.ndata = 0;
3151                        return false;
3152                }
3153        }
3154
3155        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3156                /*
3157                 * Translate L1 physical address to host physical
3158                 * address for vmcs02. Keep the page pinned, so this
3159                 * physical address remains valid. We keep a reference
3160                 * to it so we can release it later.
3161                 */
3162                if (vmx->nested.apic_access_page) { /* shouldn't happen */
3163                        kvm_release_page_clean(vmx->nested.apic_access_page);
3164                        vmx->nested.apic_access_page = NULL;
3165                }
3166                page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3167                if (!is_error_page(page)) {
3168                        vmx->nested.apic_access_page = page;
3169                        hpa = page_to_phys(vmx->nested.apic_access_page);
3170                        vmcs_write64(APIC_ACCESS_ADDR, hpa);
3171                } else {
3172                        pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3173                                             __func__);
3174                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3175                        vcpu->run->internal.suberror =
3176                                KVM_INTERNAL_ERROR_EMULATION;
3177                        vcpu->run->internal.ndata = 0;
3178                        return false;
3179                }
3180        }
3181
3182        if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3183                map = &vmx->nested.virtual_apic_map;
3184
3185                if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3186                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3187                } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3188                           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3189                           !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3190                        /*
3191                         * The processor will never use the TPR shadow, simply
3192                         * clear the bit from the execution control.  Such a
3193                         * configuration is useless, but it happens in tests.
3194                         * For any other configuration, failing the vm entry is
3195                         * _not_ what the processor does but it's basically the
3196                         * only possibility we have.
3197                         */
3198                        exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3199                } else {
3200                        /*
3201                         * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3202                         * force VM-Entry to fail.
3203                         */
3204                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3205                }
3206        }
3207
3208        if (nested_cpu_has_posted_intr(vmcs12)) {
3209                map = &vmx->nested.pi_desc_map;
3210
3211                if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3212                        vmx->nested.pi_desc =
3213                                (struct pi_desc *)(((void *)map->hva) +
3214                                offset_in_page(vmcs12->posted_intr_desc_addr));
3215                        vmcs_write64(POSTED_INTR_DESC_ADDR,
3216                                     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3217                }
3218        }
3219        if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3220                exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3221        else
3222                exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3223        return true;
3224}
3225
3226static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3227{
3228        struct vmcs12 *vmcs12;
3229        struct vcpu_vmx *vmx = to_vmx(vcpu);
3230        gpa_t dst;
3231
3232        if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3233                return 0;
3234
3235        if (WARN_ON_ONCE(vmx->nested.pml_full))
3236                return 1;
3237
3238        /*
3239         * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3240         * set is already checked as part of A/D emulation.
3241         */
3242        vmcs12 = get_vmcs12(vcpu);
3243        if (!nested_cpu_has_pml(vmcs12))
3244                return 0;
3245
3246        if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3247                vmx->nested.pml_full = true;
3248                return 1;
3249        }
3250
3251        gpa &= ~0xFFFull;
3252        dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3253
3254        if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3255                                 offset_in_page(dst), sizeof(gpa)))
3256                return 0;
3257
3258        vmcs12->guest_pml_index--;
3259
3260        return 0;
3261}
3262
3263/*
3264 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3265 * for running VMX instructions (except VMXON, whose prerequisites are
3266 * slightly different). It also specifies what exception to inject otherwise.
3267 * Note that many of these exceptions have priority over VM exits, so they
3268 * don't have to be checked again here.
3269 */
3270static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3271{
3272        if (!to_vmx(vcpu)->nested.vmxon) {
3273                kvm_queue_exception(vcpu, UD_VECTOR);
3274                return 0;
3275        }
3276
3277        if (vmx_get_cpl(vcpu)) {
3278                kvm_inject_gp(vcpu, 0);
3279                return 0;
3280        }
3281
3282        return 1;
3283}
3284
3285static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3286{
3287        u8 rvi = vmx_get_rvi();
3288        u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3289
3290        return ((rvi & 0xf0) > (vppr & 0xf0));
3291}
3292
3293static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3294                                   struct vmcs12 *vmcs12);
3295
3296/*
3297 * If from_vmentry is false, this is being called from state restore (either RSM
3298 * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3299 *
3300 * Returns:
3301 *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3302 *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3303 *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3304 *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3305 */
3306enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3307                                                        bool from_vmentry)
3308{
3309        struct vcpu_vmx *vmx = to_vmx(vcpu);
3310        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3311        enum vm_entry_failure_code entry_failure_code;
3312        bool evaluate_pending_interrupts;
3313        u32 exit_reason, failed_index;
3314
3315        if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3316                kvm_vcpu_flush_tlb_current(vcpu);
3317
3318        evaluate_pending_interrupts = exec_controls_get(vmx) &
3319                (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3320        if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3321                evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3322
3323        if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3324                vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3325        if (kvm_mpx_supported() &&
3326                !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3327                vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3328
3329        /*
3330         * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3331         * nested early checks are disabled.  In the event of a "late" VM-Fail,
3332         * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3333         * software model to the pre-VMEntry host state.  When EPT is disabled,
3334         * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3335         * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3336         * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3337         * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3338         * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3339         * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3340         * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3341         * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3342         * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3343         * path would need to manually save/restore vmcs01.GUEST_CR3.
3344         */
3345        if (!enable_ept && !nested_early_check)
3346                vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3347
3348        vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3349
3350        prepare_vmcs02_early(vmx, vmcs12);
3351
3352        if (from_vmentry) {
3353                if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3354                        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3355                        return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3356                }
3357
3358                if (nested_vmx_check_vmentry_hw(vcpu)) {
3359                        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3360                        return NVMX_VMENTRY_VMFAIL;
3361                }
3362
3363                if (nested_vmx_check_guest_state(vcpu, vmcs12,
3364                                                 &entry_failure_code)) {
3365                        exit_reason = EXIT_REASON_INVALID_STATE;
3366                        vmcs12->exit_qualification = entry_failure_code;
3367                        goto vmentry_fail_vmexit;
3368                }
3369        }
3370
3371        enter_guest_mode(vcpu);
3372        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3373                vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3374
3375        if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3376                exit_reason = EXIT_REASON_INVALID_STATE;
3377                vmcs12->exit_qualification = entry_failure_code;
3378                goto vmentry_fail_vmexit_guest_mode;
3379        }
3380
3381        if (from_vmentry) {
3382                failed_index = nested_vmx_load_msr(vcpu,
3383                                                   vmcs12->vm_entry_msr_load_addr,
3384                                                   vmcs12->vm_entry_msr_load_count);
3385                if (failed_index) {
3386                        exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3387                        vmcs12->exit_qualification = failed_index;
3388                        goto vmentry_fail_vmexit_guest_mode;
3389                }
3390        } else {
3391                /*
3392                 * The MMU is not initialized to point at the right entities yet and
3393                 * "get pages" would need to read data from the guest (i.e. we will
3394                 * need to perform gpa to hpa translation). Request a call
3395                 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3396                 * have already been set at vmentry time and should not be reset.
3397                 */
3398                kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3399        }
3400
3401        /*
3402         * If L1 had a pending IRQ/NMI until it executed
3403         * VMLAUNCH/VMRESUME which wasn't delivered because it was
3404         * disallowed (e.g. interrupts disabled), L0 needs to
3405         * evaluate if this pending event should cause an exit from L2
3406         * to L1 or delivered directly to L2 (e.g. In case L1 don't
3407         * intercept EXTERNAL_INTERRUPT).
3408         *
3409         * Usually this would be handled by the processor noticing an
3410         * IRQ/NMI window request, or checking RVI during evaluation of
3411         * pending virtual interrupts.  However, this setting was done
3412         * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3413         * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3414         */
3415        if (unlikely(evaluate_pending_interrupts))
3416                kvm_make_request(KVM_REQ_EVENT, vcpu);
3417
3418        /*
3419         * Do not start the preemption timer hrtimer until after we know
3420         * we are successful, so that only nested_vmx_vmexit needs to cancel
3421         * the timer.
3422         */
3423        vmx->nested.preemption_timer_expired = false;
3424        if (nested_cpu_has_preemption_timer(vmcs12)) {
3425                u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3426                vmx_start_preemption_timer(vcpu, timer_value);
3427        }
3428
3429        /*
3430         * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3431         * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3432         * returned as far as L1 is concerned. It will only return (and set
3433         * the success flag) when L2 exits (see nested_vmx_vmexit()).
3434         */
3435        return NVMX_VMENTRY_SUCCESS;
3436
3437        /*
3438         * A failed consistency check that leads to a VMExit during L1's
3439         * VMEnter to L2 is a variation of a normal VMexit, as explained in
3440         * 26.7 "VM-entry failures during or after loading guest state".
3441         */
3442vmentry_fail_vmexit_guest_mode:
3443        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3444                vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3445        leave_guest_mode(vcpu);
3446
3447vmentry_fail_vmexit:
3448        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3449
3450        if (!from_vmentry)
3451                return NVMX_VMENTRY_VMEXIT;
3452
3453        load_vmcs12_host_state(vcpu, vmcs12);
3454        vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3455        if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3456                vmx->nested.need_vmcs12_to_shadow_sync = true;
3457        return NVMX_VMENTRY_VMEXIT;
3458}
3459
3460/*
3461 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3462 * for running an L2 nested guest.
3463 */
3464static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3465{
3466        struct vmcs12 *vmcs12;
3467        enum nvmx_vmentry_status status;
3468        struct vcpu_vmx *vmx = to_vmx(vcpu);
3469        u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3470        enum nested_evmptrld_status evmptrld_status;
3471
3472        if (!nested_vmx_check_permission(vcpu))
3473                return 1;
3474
3475        evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3476        if (evmptrld_status == EVMPTRLD_ERROR) {
3477                kvm_queue_exception(vcpu, UD_VECTOR);
3478                return 1;
3479        } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3480                return nested_vmx_failInvalid(vcpu);
3481        }
3482
3483        if (CC(!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull))
3484                return nested_vmx_failInvalid(vcpu);
3485
3486        vmcs12 = get_vmcs12(vcpu);
3487
3488        /*
3489         * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3490         * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3491         * rather than RFLAGS.ZF, and no error number is stored to the
3492         * VM-instruction error field.
3493         */
3494        if (CC(vmcs12->hdr.shadow_vmcs))
3495                return nested_vmx_failInvalid(vcpu);
3496
3497        if (vmx->nested.hv_evmcs) {
3498                copy_enlightened_to_vmcs12(vmx);
3499                /* Enlightened VMCS doesn't have launch state */
3500                vmcs12->launch_state = !launch;
3501        } else if (enable_shadow_vmcs) {
3502                copy_shadow_to_vmcs12(vmx);
3503        }
3504
3505        /*
3506         * The nested entry process starts with enforcing various prerequisites
3507         * on vmcs12 as required by the Intel SDM, and act appropriately when
3508         * they fail: As the SDM explains, some conditions should cause the
3509         * instruction to fail, while others will cause the instruction to seem
3510         * to succeed, but return an EXIT_REASON_INVALID_STATE.
3511         * To speed up the normal (success) code path, we should avoid checking
3512         * for misconfigurations which will anyway be caught by the processor
3513         * when using the merged vmcs02.
3514         */
3515        if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3516                return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3517
3518        if (CC(vmcs12->launch_state == launch))
3519                return nested_vmx_fail(vcpu,
3520                        launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3521                               : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3522
3523        if (nested_vmx_check_controls(vcpu, vmcs12))
3524                return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3525
3526        if (nested_vmx_check_host_state(vcpu, vmcs12))
3527                return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3528
3529        /*
3530         * We're finally done with prerequisite checking, and can start with
3531         * the nested entry.
3532         */
3533        vmx->nested.nested_run_pending = 1;
3534        vmx->nested.has_preemption_timer_deadline = false;
3535        status = nested_vmx_enter_non_root_mode(vcpu, true);
3536        if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3537                goto vmentry_failed;
3538
3539        /* Emulate processing of posted interrupts on VM-Enter. */
3540        if (nested_cpu_has_posted_intr(vmcs12) &&
3541            kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3542                vmx->nested.pi_pending = true;
3543                kvm_make_request(KVM_REQ_EVENT, vcpu);
3544                kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3545        }
3546
3547        /* Hide L1D cache contents from the nested guest.  */
3548        vmx->vcpu.arch.l1tf_flush_l1d = true;
3549
3550        /*
3551         * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3552         * also be used as part of restoring nVMX state for
3553         * snapshot restore (migration).
3554         *
3555         * In this flow, it is assumed that vmcs12 cache was
3556         * trasferred as part of captured nVMX state and should
3557         * therefore not be read from guest memory (which may not
3558         * exist on destination host yet).
3559         */
3560        nested_cache_shadow_vmcs12(vcpu, vmcs12);
3561
3562        /*
3563         * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3564         * awakened by event injection or by an NMI-window VM-exit or
3565         * by an interrupt-window VM-exit, halt the vcpu.
3566         */
3567        if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3568            !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3569            !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3570            !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3571              (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3572                vmx->nested.nested_run_pending = 0;
3573                return kvm_vcpu_halt(vcpu);
3574        }
3575        return 1;
3576
3577vmentry_failed:
3578        vmx->nested.nested_run_pending = 0;
3579        if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3580                return 0;
3581        if (status == NVMX_VMENTRY_VMEXIT)
3582                return 1;
3583        WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3584        return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3585}
3586
3587/*
3588 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3589 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3590 * This function returns the new value we should put in vmcs12.guest_cr0.
3591 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3592 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3593 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3594 *     didn't trap the bit, because if L1 did, so would L0).
3595 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3596 *     been modified by L2, and L1 knows it. So just leave the old value of
3597 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3598 *     isn't relevant, because if L0 traps this bit it can set it to anything.
3599 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3600 *     changed these bits, and therefore they need to be updated, but L0
3601 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3602 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3603 */
3604static inline unsigned long
3605vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3606{
3607        return
3608        /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3609        /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3610        /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3611                        vcpu->arch.cr0_guest_owned_bits));
3612}
3613
3614static inline unsigned long
3615vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3616{
3617        return
3618        /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3619        /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3620        /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3621                        vcpu->arch.cr4_guest_owned_bits));
3622}
3623
3624static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3625                                      struct vmcs12 *vmcs12)
3626{
3627        u32 idt_vectoring;
3628        unsigned int nr;
3629
3630        if (vcpu->arch.exception.injected) {
3631                nr = vcpu->arch.exception.nr;
3632                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3633
3634                if (kvm_exception_is_soft(nr)) {
3635                        vmcs12->vm_exit_instruction_len =
3636                                vcpu->arch.event_exit_inst_len;
3637                        idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3638                } else
3639                        idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3640
3641                if (vcpu->arch.exception.has_error_code) {
3642                        idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3643                        vmcs12->idt_vectoring_error_code =
3644                                vcpu->arch.exception.error_code;
3645                }
3646
3647                vmcs12->idt_vectoring_info_field = idt_vectoring;
3648        } else if (vcpu->arch.nmi_injected) {
3649                vmcs12->idt_vectoring_info_field =
3650                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3651        } else if (vcpu->arch.interrupt.injected) {
3652                nr = vcpu->arch.interrupt.nr;
3653                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3654
3655                if (vcpu->arch.interrupt.soft) {
3656                        idt_vectoring |= INTR_TYPE_SOFT_INTR;
3657                        vmcs12->vm_entry_instruction_len =
3658                                vcpu->arch.event_exit_inst_len;
3659                } else
3660                        idt_vectoring |= INTR_TYPE_EXT_INTR;
3661
3662                vmcs12->idt_vectoring_info_field = idt_vectoring;
3663        }
3664}
3665
3666
3667void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3668{
3669        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3670        gfn_t gfn;
3671
3672        /*
3673         * Don't need to mark the APIC access page dirty; it is never
3674         * written to by the CPU during APIC virtualization.
3675         */
3676
3677        if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3678                gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3679                kvm_vcpu_mark_page_dirty(vcpu, gfn);
3680        }
3681
3682        if (nested_cpu_has_posted_intr(vmcs12)) {
3683                gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3684                kvm_vcpu_mark_page_dirty(vcpu, gfn);
3685        }
3686}
3687
3688static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3689{
3690        struct vcpu_vmx *vmx = to_vmx(vcpu);
3691        int max_irr;
3692        void *vapic_page;
3693        u16 status;
3694
3695        if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3696                return;
3697
3698        vmx->nested.pi_pending = false;
3699        if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3700                return;
3701
3702        max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3703        if (max_irr != 256) {
3704                vapic_page = vmx->nested.virtual_apic_map.hva;
3705                if (!vapic_page)
3706                        return;
3707
3708                __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3709                        vapic_page, &max_irr);
3710                status = vmcs_read16(GUEST_INTR_STATUS);
3711                if ((u8)max_irr > ((u8)status & 0xff)) {
3712                        status &= ~0xff;
3713                        status |= (u8)max_irr;
3714                        vmcs_write16(GUEST_INTR_STATUS, status);
3715                }
3716        }
3717
3718        nested_mark_vmcs12_pages_dirty(vcpu);
3719}
3720
3721static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3722                                               unsigned long exit_qual)
3723{
3724        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3725        unsigned int nr = vcpu->arch.exception.nr;
3726        u32 intr_info = nr | INTR_INFO_VALID_MASK;
3727
3728        if (vcpu->arch.exception.has_error_code) {
3729                vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3730                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3731        }
3732
3733        if (kvm_exception_is_soft(nr))
3734                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3735        else
3736                intr_info |= INTR_TYPE_HARD_EXCEPTION;
3737
3738        if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3739            vmx_get_nmi_mask(vcpu))
3740                intr_info |= INTR_INFO_UNBLOCK_NMI;
3741
3742        nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3743}
3744
3745/*
3746 * Returns true if a debug trap is pending delivery.
3747 *
3748 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3749 * exception may be inferred from the presence of an exception payload.
3750 */
3751static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3752{
3753        return vcpu->arch.exception.pending &&
3754                        vcpu->arch.exception.nr == DB_VECTOR &&
3755                        vcpu->arch.exception.payload;
3756}
3757
3758/*
3759 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3760 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3761 * represents these debug traps with a payload that is said to be compatible
3762 * with the 'pending debug exceptions' field, write the payload to the VMCS
3763 * field if a VM-exit is delivered before the debug trap.
3764 */
3765static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3766{
3767        if (vmx_pending_dbg_trap(vcpu))
3768                vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3769                            vcpu->arch.exception.payload);
3770}
3771
3772static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3773{
3774        return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3775               to_vmx(vcpu)->nested.preemption_timer_expired;
3776}
3777
3778static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3779{
3780        struct vcpu_vmx *vmx = to_vmx(vcpu);
3781        unsigned long exit_qual;
3782        bool block_nested_events =
3783            vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3784        bool mtf_pending = vmx->nested.mtf_pending;
3785        struct kvm_lapic *apic = vcpu->arch.apic;
3786
3787        /*
3788         * Clear the MTF state. If a higher priority VM-exit is delivered first,
3789         * this state is discarded.
3790         */
3791        if (!block_nested_events)
3792                vmx->nested.mtf_pending = false;
3793
3794        if (lapic_in_kernel(vcpu) &&
3795                test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3796                if (block_nested_events)
3797                        return -EBUSY;
3798                nested_vmx_update_pending_dbg(vcpu);
3799                clear_bit(KVM_APIC_INIT, &apic->pending_events);
3800                nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3801                return 0;
3802        }
3803
3804        /*
3805         * Process any exceptions that are not debug traps before MTF.
3806         */
3807        if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3808                if (block_nested_events)
3809                        return -EBUSY;
3810                if (!nested_vmx_check_exception(vcpu, &exit_qual))
3811                        goto no_vmexit;
3812                nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3813                return 0;
3814        }
3815
3816        if (mtf_pending) {
3817                if (block_nested_events)
3818                        return -EBUSY;
3819                nested_vmx_update_pending_dbg(vcpu);
3820                nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3821                return 0;
3822        }
3823
3824        if (vcpu->arch.exception.pending) {
3825                if (block_nested_events)
3826                        return -EBUSY;
3827                if (!nested_vmx_check_exception(vcpu, &exit_qual))
3828                        goto no_vmexit;
3829                nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3830                return 0;
3831        }
3832
3833        if (nested_vmx_preemption_timer_pending(vcpu)) {
3834                if (block_nested_events)
3835                        return -EBUSY;
3836                nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3837                return 0;
3838        }
3839
3840        if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3841                if (block_nested_events)
3842                        return -EBUSY;
3843                goto no_vmexit;
3844        }
3845
3846        if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3847                if (block_nested_events)
3848                        return -EBUSY;
3849                if (!nested_exit_on_nmi(vcpu))
3850                        goto no_vmexit;
3851
3852                nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3853                                  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3854                                  INTR_INFO_VALID_MASK, 0);
3855                /*
3856                 * The NMI-triggered VM exit counts as injection:
3857                 * clear this one and block further NMIs.
3858                 */
3859                vcpu->arch.nmi_pending = 0;
3860                vmx_set_nmi_mask(vcpu, true);
3861                return 0;
3862        }
3863
3864        if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3865                if (block_nested_events)
3866                        return -EBUSY;
3867                if (!nested_exit_on_intr(vcpu))
3868                        goto no_vmexit;
3869                nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3870                return 0;
3871        }
3872
3873no_vmexit:
3874        vmx_complete_nested_posted_interrupt(vcpu);
3875        return 0;
3876}
3877
3878static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3879{
3880        ktime_t remaining =
3881                hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3882        u64 value;
3883
3884        if (ktime_to_ns(remaining) <= 0)
3885                return 0;
3886
3887        value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3888        do_div(value, 1000000);
3889        return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3890}
3891
3892static bool is_vmcs12_ext_field(unsigned long field)
3893{
3894        switch (field) {
3895        case GUEST_ES_SELECTOR:
3896        case GUEST_CS_SELECTOR:
3897        case GUEST_SS_SELECTOR:
3898        case GUEST_DS_SELECTOR:
3899        case GUEST_FS_SELECTOR:
3900        case GUEST_GS_SELECTOR:
3901        case GUEST_LDTR_SELECTOR:
3902        case GUEST_TR_SELECTOR:
3903        case GUEST_ES_LIMIT:
3904        case GUEST_CS_LIMIT:
3905        case GUEST_SS_LIMIT:
3906        case GUEST_DS_LIMIT:
3907        case GUEST_FS_LIMIT:
3908        case GUEST_GS_LIMIT:
3909        case GUEST_LDTR_LIMIT:
3910        case GUEST_TR_LIMIT:
3911        case GUEST_GDTR_LIMIT:
3912        case GUEST_IDTR_LIMIT:
3913        case GUEST_ES_AR_BYTES:
3914        case GUEST_DS_AR_BYTES:
3915        case GUEST_FS_AR_BYTES:
3916        case GUEST_GS_AR_BYTES:
3917        case GUEST_LDTR_AR_BYTES:
3918        case GUEST_TR_AR_BYTES:
3919        case GUEST_ES_BASE:
3920        case GUEST_CS_BASE:
3921        case GUEST_SS_BASE:
3922        case GUEST_DS_BASE:
3923        case GUEST_FS_BASE:
3924        case GUEST_GS_BASE:
3925        case GUEST_LDTR_BASE:
3926        case GUEST_TR_BASE:
3927        case GUEST_GDTR_BASE:
3928        case GUEST_IDTR_BASE:
3929        case GUEST_PENDING_DBG_EXCEPTIONS:
3930        case GUEST_BNDCFGS:
3931                return true;
3932        default:
3933                break;
3934        }
3935
3936        return false;
3937}
3938
3939static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3940                                       struct vmcs12 *vmcs12)
3941{
3942        struct vcpu_vmx *vmx = to_vmx(vcpu);
3943
3944        vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3945        vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3946        vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3947        vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3948        vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3949        vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3950        vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3951        vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3952        vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3953        vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3954        vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3955        vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3956        vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3957        vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3958        vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3959        vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3960        vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3961        vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3962        vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3963        vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3964        vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3965        vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3966        vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3967        vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3968        vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3969        vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3970        vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3971        vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3972        vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3973        vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3974        vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3975        vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3976        vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3977        vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3978        vmcs12->guest_pending_dbg_exceptions =
3979                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3980        if (kvm_mpx_supported())
3981                vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3982
3983        vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3984}
3985
3986static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3987                                       struct vmcs12 *vmcs12)
3988{
3989        struct vcpu_vmx *vmx = to_vmx(vcpu);
3990        int cpu;
3991
3992        if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3993                return;
3994
3995
3996        WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3997
3998        cpu = get_cpu();
3999        vmx->loaded_vmcs = &vmx->nested.vmcs02;
4000        vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4001
4002        sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4003
4004        vmx->loaded_vmcs = &vmx->vmcs01;
4005        vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4006        put_cpu();
4007}
4008
4009/*
4010 * Update the guest state fields of vmcs12 to reflect changes that
4011 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4012 * VM-entry controls is also updated, since this is really a guest
4013 * state bit.)
4014 */
4015static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4016{
4017        struct vcpu_vmx *vmx = to_vmx(vcpu);
4018
4019        if (vmx->nested.hv_evmcs)
4020                sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4021
4022        vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4023
4024        vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4025        vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4026
4027        vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4028        vmcs12->guest_rip = kvm_rip_read(vcpu);
4029        vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4030
4031        vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4032        vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4033
4034        vmcs12->guest_interruptibility_info =
4035                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4036
4037        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4038                vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4039        else
4040                vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4041
4042        if (nested_cpu_has_preemption_timer(vmcs12) &&
4043            vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4044            !vmx->nested.nested_run_pending)
4045                vmcs12->vmx_preemption_timer_value =
4046                        vmx_get_preemption_timer_value(vcpu);
4047
4048        /*
4049         * In some cases (usually, nested EPT), L2 is allowed to change its
4050         * own CR3 without exiting. If it has changed it, we must keep it.
4051         * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4052         * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4053         *
4054         * Additionally, restore L2's PDPTR to vmcs12.
4055         */
4056        if (enable_ept) {
4057                vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4058                if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4059                        vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4060                        vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4061                        vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4062                        vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4063                }
4064        }
4065
4066        vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4067
4068        if (nested_cpu_has_vid(vmcs12))
4069                vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4070
4071        vmcs12->vm_entry_controls =
4072                (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4073                (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4074
4075        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4076                kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4077
4078        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4079                vmcs12->guest_ia32_efer = vcpu->arch.efer;
4080}
4081
4082/*
4083 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4084 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4085 * and this function updates it to reflect the changes to the guest state while
4086 * L2 was running (and perhaps made some exits which were handled directly by L0
4087 * without going back to L1), and to reflect the exit reason.
4088 * Note that we do not have to copy here all VMCS fields, just those that
4089 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4090 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4091 * which already writes to vmcs12 directly.
4092 */
4093static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4094                           u32 vm_exit_reason, u32 exit_intr_info,
4095                           unsigned long exit_qualification)
4096{
4097        /* update exit information fields: */
4098        vmcs12->vm_exit_reason = vm_exit_reason;
4099        vmcs12->exit_qualification = exit_qualification;
4100        vmcs12->vm_exit_intr_info = exit_intr_info;
4101
4102        vmcs12->idt_vectoring_info_field = 0;
4103        vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4104        vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4105
4106        if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4107                vmcs12->launch_state = 1;
4108
4109                /* vm_entry_intr_info_field is cleared on exit. Emulate this
4110                 * instead of reading the real value. */
4111                vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4112
4113                /*
4114                 * Transfer the event that L0 or L1 may wanted to inject into
4115                 * L2 to IDT_VECTORING_INFO_FIELD.
4116                 */
4117                vmcs12_save_pending_event(vcpu, vmcs12);
4118
4119                /*
4120                 * According to spec, there's no need to store the guest's
4121                 * MSRs if the exit is due to a VM-entry failure that occurs
4122                 * during or after loading the guest state. Since this exit
4123                 * does not fall in that category, we need to save the MSRs.
4124                 */
4125                if (nested_vmx_store_msr(vcpu,
4126                                         vmcs12->vm_exit_msr_store_addr,
4127                                         vmcs12->vm_exit_msr_store_count))
4128                        nested_vmx_abort(vcpu,
4129                                         VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4130        }
4131
4132        /*
4133         * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4134         * preserved above and would only end up incorrectly in L1.
4135         */
4136        vcpu->arch.nmi_injected = false;
4137        kvm_clear_exception_queue(vcpu);
4138        kvm_clear_interrupt_queue(vcpu);
4139}
4140
4141/*
4142 * A part of what we need to when the nested L2 guest exits and we want to
4143 * run its L1 parent, is to reset L1's guest state to the host state specified
4144 * in vmcs12.
4145 * This function is to be called not only on normal nested exit, but also on
4146 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4147 * Failures During or After Loading Guest State").
4148 * This function should be called when the active VMCS is L1's (vmcs01).
4149 */
4150static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4151                                   struct vmcs12 *vmcs12)
4152{
4153        enum vm_entry_failure_code ignored;
4154        struct kvm_segment seg;
4155
4156        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4157                vcpu->arch.efer = vmcs12->host_ia32_efer;
4158        else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4159                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4160        else
4161                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4162        vmx_set_efer(vcpu, vcpu->arch.efer);
4163
4164        kvm_rsp_write(vcpu, vmcs12->host_rsp);
4165        kvm_rip_write(vcpu, vmcs12->host_rip);
4166        vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4167        vmx_set_interrupt_shadow(vcpu, 0);
4168
4169        /*
4170         * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4171         * actually changed, because vmx_set_cr0 refers to efer set above.
4172         *
4173         * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4174         * (KVM doesn't change it);
4175         */
4176        vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4177        vmx_set_cr0(vcpu, vmcs12->host_cr0);
4178
4179        /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4180        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4181        vmx_set_cr4(vcpu, vmcs12->host_cr4);
4182
4183        nested_ept_uninit_mmu_context(vcpu);
4184
4185        /*
4186         * Only PDPTE load can fail as the value of cr3 was checked on entry and
4187         * couldn't have changed.
4188         */
4189        if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4190                nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4191
4192        if (!enable_ept)
4193                vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4194
4195        nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4196
4197        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4198        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4199        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4200        vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4201        vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4202        vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4203        vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4204
4205        /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4206        if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4207                vmcs_write64(GUEST_BNDCFGS, 0);
4208
4209        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4210                vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4211                vcpu->arch.pat = vmcs12->host_ia32_pat;
4212        }
4213        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4214                WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4215                                         vmcs12->host_ia32_perf_global_ctrl));
4216
4217        /* Set L1 segment info according to Intel SDM
4218            27.5.2 Loading Host Segment and Descriptor-Table Registers */
4219        seg = (struct kvm_segment) {
4220                .base = 0,
4221                .limit = 0xFFFFFFFF,
4222                .selector = vmcs12->host_cs_selector,
4223                .type = 11,
4224                .present = 1,
4225                .s = 1,
4226                .g = 1
4227        };
4228        if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4229                seg.l = 1;
4230        else
4231                seg.db = 1;
4232        vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4233        seg = (struct kvm_segment) {
4234                .base = 0,
4235                .limit = 0xFFFFFFFF,
4236                .type = 3,
4237                .present = 1,
4238                .s = 1,
4239                .db = 1,
4240                .g = 1
4241        };
4242        seg.selector = vmcs12->host_ds_selector;
4243        vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4244        seg.selector = vmcs12->host_es_selector;
4245        vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4246        seg.selector = vmcs12->host_ss_selector;
4247        vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4248        seg.selector = vmcs12->host_fs_selector;
4249        seg.base = vmcs12->host_fs_base;
4250        vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4251        seg.selector = vmcs12->host_gs_selector;
4252        seg.base = vmcs12->host_gs_base;
4253        vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4254        seg = (struct kvm_segment) {
4255                .base = vmcs12->host_tr_base,
4256                .limit = 0x67,
4257                .selector = vmcs12->host_tr_selector,
4258                .type = 11,
4259                .present = 1
4260        };
4261        vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4262
4263        kvm_set_dr(vcpu, 7, 0x400);
4264        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4265
4266        if (cpu_has_vmx_msr_bitmap())
4267                vmx_update_msr_bitmap(vcpu);
4268
4269        if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4270                                vmcs12->vm_exit_msr_load_count))
4271                nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4272}
4273
4274static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4275{
4276        struct vmx_uret_msr *efer_msr;
4277        unsigned int i;
4278
4279        if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4280                return vmcs_read64(GUEST_IA32_EFER);
4281
4282        if (cpu_has_load_ia32_efer())
4283                return host_efer;
4284
4285        for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4286                if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4287                        return vmx->msr_autoload.guest.val[i].value;
4288        }
4289
4290        efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4291        if (efer_msr)
4292                return efer_msr->data;
4293
4294        return host_efer;
4295}
4296
4297static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4298{
4299        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4300        struct vcpu_vmx *vmx = to_vmx(vcpu);
4301        struct vmx_msr_entry g, h;
4302        gpa_t gpa;
4303        u32 i, j;
4304
4305        vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4306
4307        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4308                /*
4309                 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4310                 * as vmcs01.GUEST_DR7 contains a userspace defined value
4311                 * and vcpu->arch.dr7 is not squirreled away before the
4312                 * nested VMENTER (not worth adding a variable in nested_vmx).
4313                 */
4314                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4315                        kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4316                else
4317                        WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4318        }
4319
4320        /*
4321         * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4322         * handle a variety of side effects to KVM's software model.
4323         */
4324        vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4325
4326        vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4327        vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4328
4329        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4330        vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4331
4332        nested_ept_uninit_mmu_context(vcpu);
4333        vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4334        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4335
4336        /*
4337         * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4338         * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4339         * VMFail, like everything else we just need to ensure our
4340         * software model is up-to-date.
4341         */
4342        if (enable_ept && is_pae_paging(vcpu))
4343                ept_save_pdptrs(vcpu);
4344
4345        kvm_mmu_reset_context(vcpu);
4346
4347        if (cpu_has_vmx_msr_bitmap())
4348                vmx_update_msr_bitmap(vcpu);
4349
4350        /*
4351         * This nasty bit of open coding is a compromise between blindly
4352         * loading L1's MSRs using the exit load lists (incorrect emulation
4353         * of VMFail), leaving the nested VM's MSRs in the software model
4354         * (incorrect behavior) and snapshotting the modified MSRs (too
4355         * expensive since the lists are unbound by hardware).  For each
4356         * MSR that was (prematurely) loaded from the nested VMEntry load
4357         * list, reload it from the exit load list if it exists and differs
4358         * from the guest value.  The intent is to stuff host state as
4359         * silently as possible, not to fully process the exit load list.
4360         */
4361        for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4362                gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4363                if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4364                        pr_debug_ratelimited(
4365                                "%s read MSR index failed (%u, 0x%08llx)\n",
4366                                __func__, i, gpa);
4367                        goto vmabort;
4368                }
4369
4370                for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4371                        gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4372                        if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4373                                pr_debug_ratelimited(
4374                                        "%s read MSR failed (%u, 0x%08llx)\n",
4375                                        __func__, j, gpa);
4376                                goto vmabort;
4377                        }
4378                        if (h.index != g.index)
4379                                continue;
4380                        if (h.value == g.value)
4381                                break;
4382
4383                        if (nested_vmx_load_msr_check(vcpu, &h)) {
4384                                pr_debug_ratelimited(
4385                                        "%s check failed (%u, 0x%x, 0x%x)\n",
4386                                        __func__, j, h.index, h.reserved);
4387                                goto vmabort;
4388                        }
4389
4390                        if (kvm_set_msr(vcpu, h.index, h.value)) {
4391                                pr_debug_ratelimited(
4392                                        "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4393                                        __func__, j, h.index, h.value);
4394                                goto vmabort;
4395                        }
4396                }
4397        }
4398
4399        return;
4400
4401vmabort:
4402        nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4403}
4404
4405/*
4406 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4407 * and modify vmcs12 to make it see what it would expect to see there if
4408 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4409 */
4410void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4411                       u32 exit_intr_info, unsigned long exit_qualification)
4412{
4413        struct vcpu_vmx *vmx = to_vmx(vcpu);
4414        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4415
4416        /* trying to cancel vmlaunch/vmresume is a bug */
4417        WARN_ON_ONCE(vmx->nested.nested_run_pending);
4418
4419        /* Service the TLB flush request for L2 before switching to L1. */
4420        if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4421                kvm_vcpu_flush_tlb_current(vcpu);
4422
4423        /*
4424         * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4425         * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4426         * up-to-date before switching to L1.
4427         */
4428        if (enable_ept && is_pae_paging(vcpu))
4429                vmx_ept_load_pdptrs(vcpu);
4430
4431        leave_guest_mode(vcpu);
4432
4433        if (nested_cpu_has_preemption_timer(vmcs12))
4434                hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4435
4436        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4437                vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4438
4439        if (likely(!vmx->fail)) {
4440                sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4441
4442                if (vm_exit_reason != -1)
4443                        prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4444                                       exit_intr_info, exit_qualification);
4445
4446                /*
4447                 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4448                 * also be used to capture vmcs12 cache as part of
4449                 * capturing nVMX state for snapshot (migration).
4450                 *
4451                 * Otherwise, this flush will dirty guest memory at a
4452                 * point it is already assumed by user-space to be
4453                 * immutable.
4454                 */
4455                nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4456        } else {
4457                /*
4458                 * The only expected VM-instruction error is "VM entry with
4459                 * invalid control field(s)." Anything else indicates a
4460                 * problem with L0.  And we should never get here with a
4461                 * VMFail of any type if early consistency checks are enabled.
4462                 */
4463                WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4464                             VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4465                WARN_ON_ONCE(nested_early_check);
4466        }
4467
4468        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4469
4470        /* Update any VMCS fields that might have changed while L2 ran */
4471        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4472        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4473        vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4474        if (vmx->nested.l1_tpr_threshold != -1)
4475                vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4476
4477        if (kvm_has_tsc_control)
4478                decache_tsc_multiplier(vmx);
4479
4480        if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4481                vmx->nested.change_vmcs01_virtual_apic_mode = false;
4482                vmx_set_virtual_apic_mode(vcpu);
4483        }
4484
4485        /* Unpin physical memory we referred to in vmcs02 */
4486        if (vmx->nested.apic_access_page) {
4487                kvm_release_page_clean(vmx->nested.apic_access_page);
4488                vmx->nested.apic_access_page = NULL;
4489        }
4490        kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4491        kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4492        vmx->nested.pi_desc = NULL;
4493
4494        if (vmx->nested.reload_vmcs01_apic_access_page) {
4495                vmx->nested.reload_vmcs01_apic_access_page = false;
4496                kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4497        }
4498
4499        if ((vm_exit_reason != -1) &&
4500            (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4501                vmx->nested.need_vmcs12_to_shadow_sync = true;
4502
4503        /* in case we halted in L2 */
4504        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4505
4506        if (likely(!vmx->fail)) {
4507                if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4508                    nested_exit_intr_ack_set(vcpu)) {
4509                        int irq = kvm_cpu_get_interrupt(vcpu);
4510                        WARN_ON(irq < 0);
4511                        vmcs12->vm_exit_intr_info = irq |
4512                                INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4513                }
4514
4515                if (vm_exit_reason != -1)
4516                        trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4517                                                       vmcs12->exit_qualification,
4518                                                       vmcs12->idt_vectoring_info_field,
4519                                                       vmcs12->vm_exit_intr_info,
4520                                                       vmcs12->vm_exit_intr_error_code,
4521                                                       KVM_ISA_VMX);
4522
4523                load_vmcs12_host_state(vcpu, vmcs12);
4524
4525                return;
4526        }
4527
4528        /*
4529         * After an early L2 VM-entry failure, we're now back
4530         * in L1 which thinks it just finished a VMLAUNCH or
4531         * VMRESUME instruction, so we need to set the failure
4532         * flag and the VM-instruction error field of the VMCS
4533         * accordingly, and skip the emulated instruction.
4534         */
4535        (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4536
4537        /*
4538         * Restore L1's host state to KVM's software model.  We're here
4539         * because a consistency check was caught by hardware, which
4540         * means some amount of guest state has been propagated to KVM's
4541         * model and needs to be unwound to the host's state.
4542         */
4543        nested_vmx_restore_host_state(vcpu);
4544
4545        vmx->fail = 0;
4546}
4547
4548/*
4549 * Decode the memory-address operand of a vmx instruction, as recorded on an
4550 * exit caused by such an instruction (run by a guest hypervisor).
4551 * On success, returns 0. When the operand is invalid, returns 1 and throws
4552 * #UD, #GP, or #SS.
4553 */
4554int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4555                        u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4556{
4557        gva_t off;
4558        bool exn;
4559        struct kvm_segment s;
4560
4561        /*
4562         * According to Vol. 3B, "Information for VM Exits Due to Instruction
4563         * Execution", on an exit, vmx_instruction_info holds most of the
4564         * addressing components of the operand. Only the displacement part
4565         * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4566         * For how an actual address is calculated from all these components,
4567         * refer to Vol. 1, "Operand Addressing".
4568         */
4569        int  scaling = vmx_instruction_info & 3;
4570        int  addr_size = (vmx_instruction_info >> 7) & 7;
4571        bool is_reg = vmx_instruction_info & (1u << 10);
4572        int  seg_reg = (vmx_instruction_info >> 15) & 7;
4573        int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4574        bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4575        int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4576        bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4577
4578        if (is_reg) {
4579                kvm_queue_exception(vcpu, UD_VECTOR);
4580                return 1;
4581        }
4582
4583        /* Addr = segment_base + offset */
4584        /* offset = base + [index * scale] + displacement */
4585        off = exit_qualification; /* holds the displacement */
4586        if (addr_size == 1)
4587                off = (gva_t)sign_extend64(off, 31);
4588        else if (addr_size == 0)
4589                off = (gva_t)sign_extend64(off, 15);
4590        if (base_is_valid)
4591                off += kvm_register_read(vcpu, base_reg);
4592        if (index_is_valid)
4593                off += kvm_register_read(vcpu, index_reg) << scaling;
4594        vmx_get_segment(vcpu, &s, seg_reg);
4595
4596        /*
4597         * The effective address, i.e. @off, of a memory operand is truncated
4598         * based on the address size of the instruction.  Note that this is
4599         * the *effective address*, i.e. the address prior to accounting for
4600         * the segment's base.
4601         */
4602        if (addr_size == 1) /* 32 bit */
4603                off &= 0xffffffff;
4604        else if (addr_size == 0) /* 16 bit */
4605                off &= 0xffff;
4606
4607        /* Checks for #GP/#SS exceptions. */
4608        exn = false;
4609        if (is_long_mode(vcpu)) {
4610                /*
4611                 * The virtual/linear address is never truncated in 64-bit
4612                 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4613                 * address when using FS/GS with a non-zero base.
4614                 */
4615                if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4616                        *ret = s.base + off;
4617                else
4618                        *ret = off;
4619
4620                /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4621                 * non-canonical form. This is the only check on the memory
4622                 * destination for long mode!
4623                 */
4624                exn = is_noncanonical_address(*ret, vcpu);
4625        } else {
4626                /*
4627                 * When not in long mode, the virtual/linear address is
4628                 * unconditionally truncated to 32 bits regardless of the
4629                 * address size.
4630                 */
4631                *ret = (s.base + off) & 0xffffffff;
4632
4633                /* Protected mode: apply checks for segment validity in the
4634                 * following order:
4635                 * - segment type check (#GP(0) may be thrown)
4636                 * - usability check (#GP(0)/#SS(0))
4637                 * - limit check (#GP(0)/#SS(0))
4638                 */
4639                if (wr)
4640                        /* #GP(0) if the destination operand is located in a
4641                         * read-only data segment or any code segment.
4642                         */
4643                        exn = ((s.type & 0xa) == 0 || (s.type & 8));
4644                else
4645                        /* #GP(0) if the source operand is located in an
4646                         * execute-only code segment
4647                         */
4648                        exn = ((s.type & 0xa) == 8);
4649                if (exn) {
4650                        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4651                        return 1;
4652                }
4653                /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4654                 */
4655                exn = (s.unusable != 0);
4656
4657                /*
4658                 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4659                 * outside the segment limit.  All CPUs that support VMX ignore
4660                 * limit checks for flat segments, i.e. segments with base==0,
4661                 * limit==0xffffffff and of type expand-up data or code.
4662                 */
4663                if (!(s.base == 0 && s.limit == 0xffffffff &&
4664                     ((s.type & 8) || !(s.type & 4))))
4665                        exn = exn || ((u64)off + len - 1 > s.limit);
4666        }
4667        if (exn) {
4668                kvm_queue_exception_e(vcpu,
4669                                      seg_reg == VCPU_SREG_SS ?
4670                                                SS_VECTOR : GP_VECTOR,
4671                                      0);
4672                return 1;
4673        }
4674
4675        return 0;
4676}
4677
4678void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4679{
4680        struct vcpu_vmx *vmx;
4681
4682        if (!nested_vmx_allowed(vcpu))
4683                return;
4684
4685        vmx = to_vmx(vcpu);
4686        if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4687                vmx->nested.msrs.entry_ctls_high |=
4688                                VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4689                vmx->nested.msrs.exit_ctls_high |=
4690                                VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4691        } else {
4692                vmx->nested.msrs.entry_ctls_high &=
4693                                ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4694                vmx->nested.msrs.exit_ctls_high &=
4695                                ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4696        }
4697}
4698
4699static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4700                                int *ret)
4701{
4702        gva_t gva;
4703        struct x86_exception e;
4704        int r;
4705
4706        if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4707                                vmcs_read32(VMX_INSTRUCTION_INFO), false,
4708                                sizeof(*vmpointer), &gva)) {
4709                *ret = 1;
4710                return -EINVAL;
4711        }
4712
4713        r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4714        if (r != X86EMUL_CONTINUE) {
4715                *ret = kvm_handle_memory_failure(vcpu, r, &e);
4716                return -EINVAL;
4717        }
4718
4719        return 0;
4720}
4721
4722/*
4723 * Allocate a shadow VMCS and associate it with the currently loaded
4724 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4725 * VMCS is also VMCLEARed, so that it is ready for use.
4726 */
4727static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4728{
4729        struct vcpu_vmx *vmx = to_vmx(vcpu);
4730        struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4731
4732        /*
4733         * We should allocate a shadow vmcs for vmcs01 only when L1
4734         * executes VMXON and free it when L1 executes VMXOFF.
4735         * As it is invalid to execute VMXON twice, we shouldn't reach
4736         * here when vmcs01 already have an allocated shadow vmcs.
4737         */
4738        WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4739
4740        if (!loaded_vmcs->shadow_vmcs) {
4741                loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4742                if (loaded_vmcs->shadow_vmcs)
4743                        vmcs_clear(loaded_vmcs->shadow_vmcs);
4744        }
4745        return loaded_vmcs->shadow_vmcs;
4746}
4747
4748static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4749{
4750        struct vcpu_vmx *vmx = to_vmx(vcpu);
4751        int r;
4752
4753        r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4754        if (r < 0)
4755                goto out_vmcs02;
4756
4757        vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4758        if (!vmx->nested.cached_vmcs12)
4759                goto out_cached_vmcs12;
4760
4761        vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4762        if (!vmx->nested.cached_shadow_vmcs12)
4763                goto out_cached_shadow_vmcs12;
4764
4765        if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4766                goto out_shadow_vmcs;
4767
4768        hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4769                     HRTIMER_MODE_ABS_PINNED);
4770        vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4771
4772        vmx->nested.vpid02 = allocate_vpid();
4773
4774        vmx->nested.vmcs02_initialized = false;
4775        vmx->nested.vmxon = true;
4776
4777        if (vmx_pt_mode_is_host_guest()) {
4778                vmx->pt_desc.guest.ctl = 0;
4779                pt_update_intercept_for_msr(vcpu);
4780        }
4781
4782        return 0;
4783
4784out_shadow_vmcs:
4785        kfree(vmx->nested.cached_shadow_vmcs12);
4786
4787out_cached_shadow_vmcs12:
4788        kfree(vmx->nested.cached_vmcs12);
4789
4790out_cached_vmcs12:
4791        free_loaded_vmcs(&vmx->nested.vmcs02);
4792
4793out_vmcs02:
4794        return -ENOMEM;
4795}
4796
4797/*
4798 * Emulate the VMXON instruction.
4799 * Currently, we just remember that VMX is active, and do not save or even
4800 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4801 * do not currently need to store anything in that guest-allocated memory
4802 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4803 * argument is different from the VMXON pointer (which the spec says they do).
4804 */
4805static int handle_vmon(struct kvm_vcpu *vcpu)
4806{
4807        int ret;
4808        gpa_t vmptr;
4809        uint32_t revision;
4810        struct vcpu_vmx *vmx = to_vmx(vcpu);
4811        const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4812                | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4813
4814        /*
4815         * The Intel VMX Instruction Reference lists a bunch of bits that are
4816         * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4817         * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4818         * Otherwise, we should fail with #UD.  But most faulting conditions
4819         * have already been checked by hardware, prior to the VM-exit for
4820         * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4821         * that bit set to 1 in non-root mode.
4822         */
4823        if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4824                kvm_queue_exception(vcpu, UD_VECTOR);
4825                return 1;
4826        }
4827
4828        /* CPL=0 must be checked manually. */
4829        if (vmx_get_cpl(vcpu)) {
4830                kvm_inject_gp(vcpu, 0);
4831                return 1;
4832        }
4833
4834        if (vmx->nested.vmxon)
4835                return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4836
4837        if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4838                        != VMXON_NEEDED_FEATURES) {
4839                kvm_inject_gp(vcpu, 0);
4840                return 1;
4841        }
4842
4843        if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4844                return ret;
4845
4846        /*
4847         * SDM 3: 24.11.5
4848         * The first 4 bytes of VMXON region contain the supported
4849         * VMCS revision identifier
4850         *
4851         * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4852         * which replaces physical address width with 32
4853         */
4854        if (!page_address_valid(vcpu, vmptr))
4855                return nested_vmx_failInvalid(vcpu);
4856
4857        if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4858            revision != VMCS12_REVISION)
4859                return nested_vmx_failInvalid(vcpu);
4860
4861        vmx->nested.vmxon_ptr = vmptr;
4862        ret = enter_vmx_operation(vcpu);
4863        if (ret)
4864                return ret;
4865
4866        return nested_vmx_succeed(vcpu);
4867}
4868
4869static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4870{
4871        struct vcpu_vmx *vmx = to_vmx(vcpu);
4872
4873        if (vmx->nested.current_vmptr == -1ull)
4874                return;
4875
4876        copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4877
4878        if (enable_shadow_vmcs) {
4879                /* copy to memory all shadowed fields in case
4880                   they were modified */
4881                copy_shadow_to_vmcs12(vmx);
4882                vmx_disable_shadow_vmcs(vmx);
4883        }
4884        vmx->nested.posted_intr_nv = -1;
4885
4886        /* Flush VMCS12 to guest memory */
4887        kvm_vcpu_write_guest_page(vcpu,
4888                                  vmx->nested.current_vmptr >> PAGE_SHIFT,
4889                                  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4890
4891        kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4892
4893        vmx->nested.current_vmptr = -1ull;
4894}
4895
4896/* Emulate the VMXOFF instruction */
4897static int handle_vmoff(struct kvm_vcpu *vcpu)
4898{
4899        if (!nested_vmx_check_permission(vcpu))
4900                return 1;
4901
4902        free_nested(vcpu);
4903
4904        /* Process a latched INIT during time CPU was in VMX operation */
4905        kvm_make_request(KVM_REQ_EVENT, vcpu);
4906
4907        return nested_vmx_succeed(vcpu);
4908}
4909
4910/* Emulate the VMCLEAR instruction */
4911static int handle_vmclear(struct kvm_vcpu *vcpu)
4912{
4913        struct vcpu_vmx *vmx = to_vmx(vcpu);
4914        u32 zero = 0;
4915        gpa_t vmptr;
4916        u64 evmcs_gpa;
4917        int r;
4918
4919        if (!nested_vmx_check_permission(vcpu))
4920                return 1;
4921
4922        if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
4923                return r;
4924
4925        if (!page_address_valid(vcpu, vmptr))
4926                return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4927
4928        if (vmptr == vmx->nested.vmxon_ptr)
4929                return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
4930
4931        /*
4932         * When Enlightened VMEntry is enabled on the calling CPU we treat
4933         * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4934         * way to distinguish it from VMCS12) and we must not corrupt it by
4935         * writing to the non-existent 'launch_state' field. The area doesn't
4936         * have to be the currently active EVMCS on the calling CPU and there's
4937         * nothing KVM has to do to transition it from 'active' to 'non-active'
4938         * state. It is possible that the area will stay mapped as
4939         * vmx->nested.hv_evmcs but this shouldn't be a problem.
4940         */
4941        if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4942                   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4943                if (vmptr == vmx->nested.current_vmptr)
4944                        nested_release_vmcs12(vcpu);
4945
4946                kvm_vcpu_write_guest(vcpu,
4947                                     vmptr + offsetof(struct vmcs12,
4948                                                      launch_state),
4949                                     &zero, sizeof(zero));
4950        }
4951
4952        return nested_vmx_succeed(vcpu);
4953}
4954
4955/* Emulate the VMLAUNCH instruction */
4956static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4957{
4958        return nested_vmx_run(vcpu, true);
4959}
4960
4961/* Emulate the VMRESUME instruction */
4962static int handle_vmresume(struct kvm_vcpu *vcpu)
4963{
4964
4965        return nested_vmx_run(vcpu, false);
4966}
4967
4968static int handle_vmread(struct kvm_vcpu *vcpu)
4969{
4970        struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4971                                                    : get_vmcs12(vcpu);
4972        unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
4973        u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4974        struct vcpu_vmx *vmx = to_vmx(vcpu);
4975        struct x86_exception e;
4976        unsigned long field;
4977        u64 value;
4978        gva_t gva = 0;
4979        short offset;
4980        int len, r;
4981
4982        if (!nested_vmx_check_permission(vcpu))
4983                return 1;
4984
4985        /*
4986         * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4987         * any VMREAD sets the ALU flags for VMfailInvalid.
4988         */
4989        if (vmx->nested.current_vmptr == -1ull ||
4990            (is_guest_mode(vcpu) &&
4991             get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4992                return nested_vmx_failInvalid(vcpu);
4993
4994        /* Decode instruction info and find the field to read */
4995        field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4996
4997        offset = vmcs_field_to_offset(field);
4998        if (offset < 0)
4999                return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5000
5001        if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5002                copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5003
5004        /* Read the field, zero-extended to a u64 value */
5005        value = vmcs12_read_any(vmcs12, field, offset);
5006
5007        /*
5008         * Now copy part of this value to register or memory, as requested.
5009         * Note that the number of bits actually copied is 32 or 64 depending
5010         * on the guest's mode (32 or 64 bit), not on the given field's length.
5011         */
5012        if (instr_info & BIT(10)) {
5013                kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
5014        } else {
5015                len = is_64_bit_mode(vcpu) ? 8 : 4;
5016                if (get_vmx_mem_address(vcpu, exit_qualification,
5017                                        instr_info, true, len, &gva))
5018                        return 1;
5019                /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5020                r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5021                if (r != X86EMUL_CONTINUE)
5022                        return kvm_handle_memory_failure(vcpu, r, &e);
5023        }
5024
5025        return nested_vmx_succeed(vcpu);
5026}
5027
5028static bool is_shadow_field_rw(unsigned long field)
5029{
5030        switch (field) {
5031#define SHADOW_FIELD_RW(x, y) case x:
5032#include "vmcs_shadow_fields.h"
5033                return true;
5034        default:
5035                break;
5036        }
5037        return false;
5038}
5039
5040static bool is_shadow_field_ro(unsigned long field)
5041{
5042        switch (field) {
5043#define SHADOW_FIELD_RO(x, y) case x:
5044#include "vmcs_shadow_fields.h"
5045                return true;
5046        default:
5047                break;
5048        }
5049        return false;
5050}
5051
5052static int handle_vmwrite(struct kvm_vcpu *vcpu)
5053{
5054        struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5055                                                    : get_vmcs12(vcpu);
5056        unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5057        u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5058        struct vcpu_vmx *vmx = to_vmx(vcpu);
5059        struct x86_exception e;
5060        unsigned long field;
5061        short offset;
5062        gva_t gva;
5063        int len, r;
5064
5065        /*
5066         * The value to write might be 32 or 64 bits, depending on L1's long
5067         * mode, and eventually we need to write that into a field of several
5068         * possible lengths. The code below first zero-extends the value to 64
5069         * bit (value), and then copies only the appropriate number of
5070         * bits into the vmcs12 field.
5071         */
5072        u64 value = 0;
5073
5074        if (!nested_vmx_check_permission(vcpu))
5075                return 1;
5076
5077        /*
5078         * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5079         * any VMWRITE sets the ALU flags for VMfailInvalid.
5080         */
5081        if (vmx->nested.current_vmptr == -1ull ||
5082            (is_guest_mode(vcpu) &&
5083             get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5084                return nested_vmx_failInvalid(vcpu);
5085
5086        if (instr_info & BIT(10))
5087                value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
5088        else {
5089                len = is_64_bit_mode(vcpu) ? 8 : 4;
5090                if (get_vmx_mem_address(vcpu, exit_qualification,
5091                                        instr_info, false, len, &gva))
5092                        return 1;
5093                r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5094                if (r != X86EMUL_CONTINUE)
5095                        return kvm_handle_memory_failure(vcpu, r, &e);
5096        }
5097
5098        field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5099
5100        offset = vmcs_field_to_offset(field);
5101        if (offset < 0)
5102                return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5103
5104        /*
5105         * If the vCPU supports "VMWRITE to any supported field in the
5106         * VMCS," then the "read-only" fields are actually read/write.
5107         */
5108        if (vmcs_field_readonly(field) &&
5109            !nested_cpu_has_vmwrite_any_field(vcpu))
5110                return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5111
5112        /*
5113         * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5114         * vmcs12, else we may crush a field or consume a stale value.
5115         */
5116        if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5117                copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5118
5119        /*
5120         * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5121         * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5122         * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5123         * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5124         * from L1 will return a different value than VMREAD from L2 (L1 sees
5125         * the stripped down value, L2 sees the full value as stored by KVM).
5126         */
5127        if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5128                value &= 0x1f0ff;
5129
5130        vmcs12_write_any(vmcs12, field, offset, value);
5131
5132        /*
5133         * Do not track vmcs12 dirty-state if in guest-mode as we actually
5134         * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5135         * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5136         * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5137         */
5138        if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5139                /*
5140                 * L1 can read these fields without exiting, ensure the
5141                 * shadow VMCS is up-to-date.
5142                 */
5143                if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5144                        preempt_disable();
5145                        vmcs_load(vmx->vmcs01.shadow_vmcs);
5146
5147                        __vmcs_writel(field, value);
5148
5149                        vmcs_clear(vmx->vmcs01.shadow_vmcs);
5150                        vmcs_load(vmx->loaded_vmcs->vmcs);
5151                        preempt_enable();
5152                }
5153                vmx->nested.dirty_vmcs12 = true;
5154        }
5155
5156        return nested_vmx_succeed(vcpu);
5157}
5158
5159static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5160{
5161        vmx->nested.current_vmptr = vmptr;
5162        if (enable_shadow_vmcs) {
5163                secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5164                vmcs_write64(VMCS_LINK_POINTER,
5165                             __pa(vmx->vmcs01.shadow_vmcs));
5166                vmx->nested.need_vmcs12_to_shadow_sync = true;
5167        }
5168        vmx->nested.dirty_vmcs12 = true;
5169}
5170
5171/* Emulate the VMPTRLD instruction */
5172static int handle_vmptrld(struct kvm_vcpu *vcpu)
5173{
5174        struct vcpu_vmx *vmx = to_vmx(vcpu);
5175        gpa_t vmptr;
5176        int r;
5177
5178        if (!nested_vmx_check_permission(vcpu))
5179                return 1;
5180
5181        if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5182                return r;
5183
5184        if (!page_address_valid(vcpu, vmptr))
5185                return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5186
5187        if (vmptr == vmx->nested.vmxon_ptr)
5188                return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5189
5190        /* Forbid normal VMPTRLD if Enlightened version was used */
5191        if (vmx->nested.hv_evmcs)
5192                return 1;
5193
5194        if (vmx->nested.current_vmptr != vmptr) {
5195                struct kvm_host_map map;
5196                struct vmcs12 *new_vmcs12;
5197
5198                if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5199                        /*
5200                         * Reads from an unbacked page return all 1s,
5201                         * which means that the 32 bits located at the
5202                         * given physical address won't match the required
5203                         * VMCS12_REVISION identifier.
5204                         */
5205                        return nested_vmx_fail(vcpu,
5206                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5207                }
5208
5209                new_vmcs12 = map.hva;
5210
5211                if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5212                    (new_vmcs12->hdr.shadow_vmcs &&
5213                     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5214                        kvm_vcpu_unmap(vcpu, &map, false);
5215                        return nested_vmx_fail(vcpu,
5216                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5217                }
5218
5219                nested_release_vmcs12(vcpu);
5220
5221                /*
5222                 * Load VMCS12 from guest memory since it is not already
5223                 * cached.
5224                 */
5225                memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5226                kvm_vcpu_unmap(vcpu, &map, false);
5227
5228                set_current_vmptr(vmx, vmptr);
5229        }
5230
5231        return nested_vmx_succeed(vcpu);
5232}
5233
5234/* Emulate the VMPTRST instruction */
5235static int handle_vmptrst(struct kvm_vcpu *vcpu)
5236{
5237        unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5238        u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5239        gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5240        struct x86_exception e;
5241        gva_t gva;
5242        int r;
5243
5244        if (!nested_vmx_check_permission(vcpu))
5245                return 1;
5246
5247        if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5248                return 1;
5249
5250        if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5251                                true, sizeof(gpa_t), &gva))
5252                return 1;
5253        /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5254        r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5255                                        sizeof(gpa_t), &e);
5256        if (r != X86EMUL_CONTINUE)
5257                return kvm_handle_memory_failure(vcpu, r, &e);
5258
5259        return nested_vmx_succeed(vcpu);
5260}
5261
5262#define EPTP_PA_MASK   GENMASK_ULL(51, 12)
5263
5264static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5265{
5266        return VALID_PAGE(root_hpa) &&
5267                ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5268}
5269
5270/* Emulate the INVEPT instruction */
5271static int handle_invept(struct kvm_vcpu *vcpu)
5272{
5273        struct vcpu_vmx *vmx = to_vmx(vcpu);
5274        u32 vmx_instruction_info, types;
5275        unsigned long type, roots_to_free;
5276        struct kvm_mmu *mmu;
5277        gva_t gva;
5278        struct x86_exception e;
5279        struct {
5280                u64 eptp, gpa;
5281        } operand;
5282        int i, r;
5283
5284        if (!(vmx->nested.msrs.secondary_ctls_high &
5285              SECONDARY_EXEC_ENABLE_EPT) ||
5286            !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5287                kvm_queue_exception(vcpu, UD_VECTOR);
5288                return 1;
5289        }
5290
5291        if (!nested_vmx_check_permission(vcpu))
5292                return 1;
5293
5294        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5295        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5296
5297        types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5298
5299        if (type >= 32 || !(types & (1 << type)))
5300                return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5301
5302        /* According to the Intel VMX instruction reference, the memory
5303         * operand is read even if it isn't needed (e.g., for type==global)
5304         */
5305        if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5306                        vmx_instruction_info, false, sizeof(operand), &gva))
5307                return 1;
5308        r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5309        if (r != X86EMUL_CONTINUE)
5310                return kvm_handle_memory_failure(vcpu, r, &e);
5311
5312        /*
5313         * Nested EPT roots are always held through guest_mmu,
5314         * not root_mmu.
5315         */
5316        mmu = &vcpu->arch.guest_mmu;
5317
5318        switch (type) {
5319        case VMX_EPT_EXTENT_CONTEXT:
5320                if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5321                        return nested_vmx_fail(vcpu,
5322                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5323
5324                roots_to_free = 0;
5325                if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5326                                            operand.eptp))
5327                        roots_to_free |= KVM_MMU_ROOT_CURRENT;
5328
5329                for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5330                        if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5331                                                    mmu->prev_roots[i].pgd,
5332                                                    operand.eptp))
5333                                roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5334                }
5335                break;
5336        case VMX_EPT_EXTENT_GLOBAL:
5337                roots_to_free = KVM_MMU_ROOTS_ALL;
5338                break;
5339        default:
5340                BUG();
5341                break;
5342        }
5343
5344        if (roots_to_free)
5345                kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5346
5347        return nested_vmx_succeed(vcpu);
5348}
5349
5350static int handle_invvpid(struct kvm_vcpu *vcpu)
5351{
5352        struct vcpu_vmx *vmx = to_vmx(vcpu);
5353        u32 vmx_instruction_info;
5354        unsigned long type, types;
5355        gva_t gva;
5356        struct x86_exception e;
5357        struct {
5358                u64 vpid;
5359                u64 gla;
5360        } operand;
5361        u16 vpid02;
5362        int r;
5363
5364        if (!(vmx->nested.msrs.secondary_ctls_high &
5365              SECONDARY_EXEC_ENABLE_VPID) ||
5366                        !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5367                kvm_queue_exception(vcpu, UD_VECTOR);
5368                return 1;
5369        }
5370
5371        if (!nested_vmx_check_permission(vcpu))
5372                return 1;
5373
5374        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5375        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5376
5377        types = (vmx->nested.msrs.vpid_caps &
5378                        VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5379
5380        if (type >= 32 || !(types & (1 << type)))
5381                return nested_vmx_fail(vcpu,
5382                        VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5383
5384        /* according to the intel vmx instruction reference, the memory
5385         * operand is read even if it isn't needed (e.g., for type==global)
5386         */
5387        if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5388                        vmx_instruction_info, false, sizeof(operand), &gva))
5389                return 1;
5390        r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5391        if (r != X86EMUL_CONTINUE)
5392                return kvm_handle_memory_failure(vcpu, r, &e);
5393
5394        if (operand.vpid >> 16)
5395                return nested_vmx_fail(vcpu,
5396                        VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5397
5398        vpid02 = nested_get_vpid02(vcpu);
5399        switch (type) {
5400        case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5401                if (!operand.vpid ||
5402                    is_noncanonical_address(operand.gla, vcpu))
5403                        return nested_vmx_fail(vcpu,
5404                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5405                vpid_sync_vcpu_addr(vpid02, operand.gla);
5406                break;
5407        case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5408        case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5409                if (!operand.vpid)
5410                        return nested_vmx_fail(vcpu,
5411                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5412                vpid_sync_context(vpid02);
5413                break;
5414        case VMX_VPID_EXTENT_ALL_CONTEXT:
5415                vpid_sync_context(vpid02);
5416                break;
5417        default:
5418                WARN_ON_ONCE(1);
5419                return kvm_skip_emulated_instruction(vcpu);
5420        }
5421
5422        /*
5423         * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5424         * linear mappings for L2 (tagged with L2's VPID).  Free all roots as
5425         * VPIDs are not tracked in the MMU role.
5426         *
5427         * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5428         * an MMU when EPT is disabled.
5429         *
5430         * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5431         */
5432        if (!enable_ept)
5433                kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5434                                   KVM_MMU_ROOTS_ALL);
5435
5436        return nested_vmx_succeed(vcpu);
5437}
5438
5439static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5440                                     struct vmcs12 *vmcs12)
5441{
5442        u32 index = kvm_rcx_read(vcpu);
5443        u64 new_eptp;
5444        bool accessed_dirty;
5445        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5446
5447        if (!nested_cpu_has_eptp_switching(vmcs12) ||
5448            !nested_cpu_has_ept(vmcs12))
5449                return 1;
5450
5451        if (index >= VMFUNC_EPTP_ENTRIES)
5452                return 1;
5453
5454
5455        if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5456                                     &new_eptp, index * 8, 8))
5457                return 1;
5458
5459        accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
5460
5461        /*
5462         * If the (L2) guest does a vmfunc to the currently
5463         * active ept pointer, we don't have to do anything else
5464         */
5465        if (vmcs12->ept_pointer != new_eptp) {
5466                if (!nested_vmx_check_eptp(vcpu, new_eptp))
5467                        return 1;
5468
5469                kvm_mmu_unload(vcpu);
5470                mmu->ept_ad = accessed_dirty;
5471                mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5472                vmcs12->ept_pointer = new_eptp;
5473                /*
5474                 * TODO: Check what's the correct approach in case
5475                 * mmu reload fails. Currently, we just let the next
5476                 * reload potentially fail
5477                 */
5478                kvm_mmu_reload(vcpu);
5479        }
5480
5481        return 0;
5482}
5483
5484static int handle_vmfunc(struct kvm_vcpu *vcpu)
5485{
5486        struct vcpu_vmx *vmx = to_vmx(vcpu);
5487        struct vmcs12 *vmcs12;
5488        u32 function = kvm_rax_read(vcpu);
5489
5490        /*
5491         * VMFUNC is only supported for nested guests, but we always enable the
5492         * secondary control for simplicity; for non-nested mode, fake that we
5493         * didn't by injecting #UD.
5494         */
5495        if (!is_guest_mode(vcpu)) {
5496                kvm_queue_exception(vcpu, UD_VECTOR);
5497                return 1;
5498        }
5499
5500        vmcs12 = get_vmcs12(vcpu);
5501        if ((vmcs12->vm_function_control & (1 << function)) == 0)
5502                goto fail;
5503
5504        switch (function) {
5505        case 0:
5506                if (nested_vmx_eptp_switching(vcpu, vmcs12))
5507                        goto fail;
5508                break;
5509        default:
5510                goto fail;
5511        }
5512        return kvm_skip_emulated_instruction(vcpu);
5513
5514fail:
5515        nested_vmx_vmexit(vcpu, vmx->exit_reason,
5516                          vmx_get_intr_info(vcpu),
5517                          vmx_get_exit_qual(vcpu));
5518        return 1;
5519}
5520
5521/*
5522 * Return true if an IO instruction with the specified port and size should cause
5523 * a VM-exit into L1.
5524 */
5525bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5526                                 int size)
5527{
5528        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5529        gpa_t bitmap, last_bitmap;
5530        u8 b;
5531
5532        last_bitmap = (gpa_t)-1;
5533        b = -1;
5534
5535        while (size > 0) {
5536                if (port < 0x8000)
5537                        bitmap = vmcs12->io_bitmap_a;
5538                else if (port < 0x10000)
5539                        bitmap = vmcs12->io_bitmap_b;
5540                else
5541                        return true;
5542                bitmap += (port & 0x7fff) / 8;
5543
5544                if (last_bitmap != bitmap)
5545                        if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5546                                return true;
5547                if (b & (1 << (port & 7)))
5548                        return true;
5549
5550                port++;
5551                size--;
5552                last_bitmap = bitmap;
5553        }
5554
5555        return false;
5556}
5557
5558static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5559                                       struct vmcs12 *vmcs12)
5560{
5561        unsigned long exit_qualification;
5562        unsigned short port;
5563        int size;
5564
5565        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5566                return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5567
5568        exit_qualification = vmx_get_exit_qual(vcpu);
5569
5570        port = exit_qualification >> 16;
5571        size = (exit_qualification & 7) + 1;
5572
5573        return nested_vmx_check_io_bitmaps(vcpu, port, size);
5574}
5575
5576/*
5577 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5578 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5579 * disinterest in the current event (read or write a specific MSR) by using an
5580 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5581 */
5582static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5583        struct vmcs12 *vmcs12, u32 exit_reason)
5584{
5585        u32 msr_index = kvm_rcx_read(vcpu);
5586        gpa_t bitmap;
5587
5588        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5589                return true;
5590
5591        /*
5592         * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5593         * for the four combinations of read/write and low/high MSR numbers.
5594         * First we need to figure out which of the four to use:
5595         */
5596        bitmap = vmcs12->msr_bitmap;
5597        if (exit_reason == EXIT_REASON_MSR_WRITE)
5598                bitmap += 2048;
5599        if (msr_index >= 0xc0000000) {
5600                msr_index -= 0xc0000000;
5601                bitmap += 1024;
5602        }
5603
5604        /* Then read the msr_index'th bit from this bitmap: */
5605        if (msr_index < 1024*8) {
5606                unsigned char b;
5607                if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5608                        return true;
5609                return 1 & (b >> (msr_index & 7));
5610        } else
5611                return true; /* let L1 handle the wrong parameter */
5612}
5613
5614/*
5615 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5616 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5617 * intercept (via guest_host_mask etc.) the current event.
5618 */
5619static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5620        struct vmcs12 *vmcs12)
5621{
5622        unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5623        int cr = exit_qualification & 15;
5624        int reg;
5625        unsigned long val;
5626
5627        switch ((exit_qualification >> 4) & 3) {
5628        case 0: /* mov to cr */
5629                reg = (exit_qualification >> 8) & 15;
5630                val = kvm_register_readl(vcpu, reg);
5631                switch (cr) {
5632                case 0:
5633                        if (vmcs12->cr0_guest_host_mask &
5634                            (val ^ vmcs12->cr0_read_shadow))
5635                                return true;
5636                        break;
5637                case 3:
5638                        if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5639                                return true;
5640                        break;
5641                case 4:
5642                        if (vmcs12->cr4_guest_host_mask &
5643                            (vmcs12->cr4_read_shadow ^ val))
5644                                return true;
5645                        break;
5646                case 8:
5647                        if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5648                                return true;
5649                        break;
5650                }
5651                break;
5652        case 2: /* clts */
5653                if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5654                    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5655                        return true;
5656                break;
5657        case 1: /* mov from cr */
5658                switch (cr) {
5659                case 3:
5660                        if (vmcs12->cpu_based_vm_exec_control &
5661                            CPU_BASED_CR3_STORE_EXITING)
5662                                return true;
5663                        break;
5664                case 8:
5665                        if (vmcs12->cpu_based_vm_exec_control &
5666                            CPU_BASED_CR8_STORE_EXITING)
5667                                return true;
5668                        break;
5669                }
5670                break;
5671        case 3: /* lmsw */
5672                /*
5673                 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5674                 * cr0. Other attempted changes are ignored, with no exit.
5675                 */
5676                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5677                if (vmcs12->cr0_guest_host_mask & 0xe &
5678                    (val ^ vmcs12->cr0_read_shadow))
5679                        return true;
5680                if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5681                    !(vmcs12->cr0_read_shadow & 0x1) &&
5682                    (val & 0x1))
5683                        return true;
5684                break;
5685        }
5686        return false;
5687}
5688
5689static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5690        struct vmcs12 *vmcs12, gpa_t bitmap)
5691{
5692        u32 vmx_instruction_info;
5693        unsigned long field;
5694        u8 b;
5695
5696        if (!nested_cpu_has_shadow_vmcs(vmcs12))
5697                return true;
5698
5699        /* Decode instruction info and find the field to access */
5700        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5701        field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5702
5703        /* Out-of-range fields always cause a VM exit from L2 to L1 */
5704        if (field >> 15)
5705                return true;
5706
5707        if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5708                return true;
5709
5710        return 1 & (b >> (field & 7));
5711}
5712
5713static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5714{
5715        u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5716
5717        if (nested_cpu_has_mtf(vmcs12))
5718                return true;
5719
5720        /*
5721         * An MTF VM-exit may be injected into the guest by setting the
5722         * interruption-type to 7 (other event) and the vector field to 0. Such
5723         * is the case regardless of the 'monitor trap flag' VM-execution
5724         * control.
5725         */
5726        return entry_intr_info == (INTR_INFO_VALID_MASK
5727                                   | INTR_TYPE_OTHER_EVENT);
5728}
5729
5730/*
5731 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5732 * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5733 */
5734static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5735{
5736        u32 intr_info;
5737
5738        switch ((u16)exit_reason) {
5739        case EXIT_REASON_EXCEPTION_NMI:
5740                intr_info = vmx_get_intr_info(vcpu);
5741                if (is_nmi(intr_info))
5742                        return true;
5743                else if (is_page_fault(intr_info))
5744                        return vcpu->arch.apf.host_apf_flags || !enable_ept;
5745                else if (is_debug(intr_info) &&
5746                         vcpu->guest_debug &
5747                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5748                        return true;
5749                else if (is_breakpoint(intr_info) &&
5750                         vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5751                        return true;
5752                return false;
5753        case EXIT_REASON_EXTERNAL_INTERRUPT:
5754                return true;
5755        case EXIT_REASON_MCE_DURING_VMENTRY:
5756                return true;
5757        case EXIT_REASON_EPT_VIOLATION:
5758                /*
5759                 * L0 always deals with the EPT violation. If nested EPT is
5760                 * used, and the nested mmu code discovers that the address is
5761                 * missing in the guest EPT table (EPT12), the EPT violation
5762                 * will be injected with nested_ept_inject_page_fault()
5763                 */
5764                return true;
5765        case EXIT_REASON_EPT_MISCONFIG:
5766                /*
5767                 * L2 never uses directly L1's EPT, but rather L0's own EPT
5768                 * table (shadow on EPT) or a merged EPT table that L0 built
5769                 * (EPT on EPT). So any problems with the structure of the
5770                 * table is L0's fault.
5771                 */
5772                return true;
5773        case EXIT_REASON_PREEMPTION_TIMER:
5774                return true;
5775        case EXIT_REASON_PML_FULL:
5776                /* We emulate PML support to L1. */
5777                return true;
5778        case EXIT_REASON_VMFUNC:
5779                /* VM functions are emulated through L2->L0 vmexits. */
5780                return true;
5781        case EXIT_REASON_ENCLS:
5782                /* SGX is never exposed to L1 */
5783                return true;
5784        default:
5785                break;
5786        }
5787        return false;
5788}
5789
5790/*
5791 * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5792 * is_guest_mode (L2).
5793 */
5794static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5795{
5796        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5797        u32 intr_info;
5798
5799        switch ((u16)exit_reason) {
5800        case EXIT_REASON_EXCEPTION_NMI:
5801                intr_info = vmx_get_intr_info(vcpu);
5802                if (is_nmi(intr_info))
5803                        return true;
5804                else if (is_page_fault(intr_info))
5805                        return true;
5806                return vmcs12->exception_bitmap &
5807                                (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5808        case EXIT_REASON_EXTERNAL_INTERRUPT:
5809                return nested_exit_on_intr(vcpu);
5810        case EXIT_REASON_TRIPLE_FAULT:
5811                return true;
5812        case EXIT_REASON_INTERRUPT_WINDOW:
5813                return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5814        case EXIT_REASON_NMI_WINDOW:
5815                return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5816        case EXIT_REASON_TASK_SWITCH:
5817                return true;
5818        case EXIT_REASON_CPUID:
5819                return true;
5820        case EXIT_REASON_HLT:
5821                return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5822        case EXIT_REASON_INVD:
5823                return true;
5824        case EXIT_REASON_INVLPG:
5825                return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5826        case EXIT_REASON_RDPMC:
5827                return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5828        case EXIT_REASON_RDRAND:
5829                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5830        case EXIT_REASON_RDSEED:
5831                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5832        case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5833                return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5834        case EXIT_REASON_VMREAD:
5835                return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5836                        vmcs12->vmread_bitmap);
5837        case EXIT_REASON_VMWRITE:
5838                return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5839                        vmcs12->vmwrite_bitmap);
5840        case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5841        case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5842        case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5843        case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5844        case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5845                /*
5846                 * VMX instructions trap unconditionally. This allows L1 to
5847                 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5848                 */
5849                return true;
5850        case EXIT_REASON_CR_ACCESS:
5851                return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5852        case EXIT_REASON_DR_ACCESS:
5853                return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5854        case EXIT_REASON_IO_INSTRUCTION:
5855                return nested_vmx_exit_handled_io(vcpu, vmcs12);
5856        case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5857                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5858        case EXIT_REASON_MSR_READ:
5859        case EXIT_REASON_MSR_WRITE:
5860                return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5861        case EXIT_REASON_INVALID_STATE:
5862                return true;
5863        case EXIT_REASON_MWAIT_INSTRUCTION:
5864                return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5865        case EXIT_REASON_MONITOR_TRAP_FLAG:
5866                return nested_vmx_exit_handled_mtf(vmcs12);
5867        case EXIT_REASON_MONITOR_INSTRUCTION:
5868                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5869        case EXIT_REASON_PAUSE_INSTRUCTION:
5870                return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5871                        nested_cpu_has2(vmcs12,
5872                                SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5873        case EXIT_REASON_MCE_DURING_VMENTRY:
5874                return true;
5875        case EXIT_REASON_TPR_BELOW_THRESHOLD:
5876                return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5877        case EXIT_REASON_APIC_ACCESS:
5878        case EXIT_REASON_APIC_WRITE:
5879        case EXIT_REASON_EOI_INDUCED:
5880                /*
5881                 * The controls for "virtualize APIC accesses," "APIC-
5882                 * register virtualization," and "virtual-interrupt
5883                 * delivery" only come from vmcs12.
5884                 */
5885                return true;
5886        case EXIT_REASON_INVPCID:
5887                return
5888                        nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5889                        nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5890        case EXIT_REASON_WBINVD:
5891                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5892        case EXIT_REASON_XSETBV:
5893                return true;
5894        case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5895                /*
5896                 * This should never happen, since it is not possible to
5897                 * set XSS to a non-zero value---neither in L1 nor in L2.
5898                 * If if it were, XSS would have to be checked against
5899                 * the XSS exit bitmap in vmcs12.
5900                 */
5901                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5902        case EXIT_REASON_UMWAIT:
5903        case EXIT_REASON_TPAUSE:
5904                return nested_cpu_has2(vmcs12,
5905                        SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5906        default:
5907                return true;
5908        }
5909}
5910
5911/*
5912 * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
5913 * reflected into L1.
5914 */
5915bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
5916{
5917        struct vcpu_vmx *vmx = to_vmx(vcpu);
5918        u32 exit_reason = vmx->exit_reason;
5919        unsigned long exit_qual;
5920        u32 exit_intr_info;
5921
5922        WARN_ON_ONCE(vmx->nested.nested_run_pending);
5923
5924        /*
5925         * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
5926         * has already loaded L2's state.
5927         */
5928        if (unlikely(vmx->fail)) {
5929                trace_kvm_nested_vmenter_failed(
5930                        "hardware VM-instruction error: ",
5931                        vmcs_read32(VM_INSTRUCTION_ERROR));
5932                exit_intr_info = 0;
5933                exit_qual = 0;
5934                goto reflect_vmexit;
5935        }
5936
5937        trace_kvm_nested_vmexit(exit_reason, vcpu, KVM_ISA_VMX);
5938
5939        /* If L0 (KVM) wants the exit, it trumps L1's desires. */
5940        if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
5941                return false;
5942
5943        /* If L1 doesn't want the exit, handle it in L0. */
5944        if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
5945                return false;
5946
5947        /*
5948         * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
5949         * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
5950         * need to be synthesized by querying the in-kernel LAPIC, but external
5951         * interrupts are never reflected to L1 so it's a non-issue.
5952         */
5953        exit_intr_info = vmx_get_intr_info(vcpu);
5954        if (is_exception_with_error_code(exit_intr_info)) {
5955                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5956
5957                vmcs12->vm_exit_intr_error_code =
5958                        vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5959        }
5960        exit_qual = vmx_get_exit_qual(vcpu);
5961
5962reflect_vmexit:
5963        nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, exit_qual);
5964        return true;
5965}
5966
5967static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5968                                struct kvm_nested_state __user *user_kvm_nested_state,
5969                                u32 user_data_size)
5970{
5971        struct vcpu_vmx *vmx;
5972        struct vmcs12 *vmcs12;
5973        struct kvm_nested_state kvm_state = {
5974                .flags = 0,
5975                .format = KVM_STATE_NESTED_FORMAT_VMX,
5976                .size = sizeof(kvm_state),
5977                .hdr.vmx.flags = 0,
5978                .hdr.vmx.vmxon_pa = -1ull,
5979                .hdr.vmx.vmcs12_pa = -1ull,
5980                .hdr.vmx.preemption_timer_deadline = 0,
5981        };
5982        struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5983                &user_kvm_nested_state->data.vmx[0];
5984
5985        if (!vcpu)
5986                return kvm_state.size + sizeof(*user_vmx_nested_state);
5987
5988        vmx = to_vmx(vcpu);
5989        vmcs12 = get_vmcs12(vcpu);
5990
5991        if (nested_vmx_allowed(vcpu) &&
5992            (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5993                kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5994                kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5995
5996                if (vmx_has_valid_vmcs12(vcpu)) {
5997                        kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5998
5999                        if (vmx->nested.hv_evmcs)
6000                                kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6001
6002                        if (is_guest_mode(vcpu) &&
6003                            nested_cpu_has_shadow_vmcs(vmcs12) &&
6004                            vmcs12->vmcs_link_pointer != -1ull)
6005                                kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6006                }
6007
6008                if (vmx->nested.smm.vmxon)
6009                        kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6010
6011                if (vmx->nested.smm.guest_mode)
6012                        kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6013
6014                if (is_guest_mode(vcpu)) {
6015                        kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6016
6017                        if (vmx->nested.nested_run_pending)
6018                                kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6019
6020                        if (vmx->nested.mtf_pending)
6021                                kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6022
6023                        if (nested_cpu_has_preemption_timer(vmcs12) &&
6024                            vmx->nested.has_preemption_timer_deadline) {
6025                                kvm_state.hdr.vmx.flags |=
6026                                        KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6027                                kvm_state.hdr.vmx.preemption_timer_deadline =
6028                                        vmx->nested.preemption_timer_deadline;
6029                        }
6030                }
6031        }
6032
6033        if (user_data_size < kvm_state.size)
6034                goto out;
6035
6036        if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6037                return -EFAULT;
6038
6039        if (!vmx_has_valid_vmcs12(vcpu))
6040                goto out;
6041
6042        /*
6043         * When running L2, the authoritative vmcs12 state is in the
6044         * vmcs02. When running L1, the authoritative vmcs12 state is
6045         * in the shadow or enlightened vmcs linked to vmcs01, unless
6046         * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6047         * vmcs12 state is in the vmcs12 already.
6048         */
6049        if (is_guest_mode(vcpu)) {
6050                sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6051                sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6052        } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6053                if (vmx->nested.hv_evmcs)
6054                        copy_enlightened_to_vmcs12(vmx);
6055                else if (enable_shadow_vmcs)
6056                        copy_shadow_to_vmcs12(vmx);
6057        }
6058
6059        BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6060        BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6061
6062        /*
6063         * Copy over the full allocated size of vmcs12 rather than just the size
6064         * of the struct.
6065         */
6066        if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6067                return -EFAULT;
6068
6069        if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6070            vmcs12->vmcs_link_pointer != -1ull) {
6071                if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6072                                 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6073                        return -EFAULT;
6074        }
6075out:
6076        return kvm_state.size;
6077}
6078
6079/*
6080 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6081 */
6082void vmx_leave_nested(struct kvm_vcpu *vcpu)
6083{
6084        if (is_guest_mode(vcpu)) {
6085                to_vmx(vcpu)->nested.nested_run_pending = 0;
6086                nested_vmx_vmexit(vcpu, -1, 0, 0);
6087        }
6088        free_nested(vcpu);
6089}
6090
6091static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6092                                struct kvm_nested_state __user *user_kvm_nested_state,
6093                                struct kvm_nested_state *kvm_state)
6094{
6095        struct vcpu_vmx *vmx = to_vmx(vcpu);
6096        struct vmcs12 *vmcs12;
6097        enum vm_entry_failure_code ignored;
6098        struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6099                &user_kvm_nested_state->data.vmx[0];
6100        int ret;
6101
6102        if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6103                return -EINVAL;
6104
6105        if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6106                if (kvm_state->hdr.vmx.smm.flags)
6107                        return -EINVAL;
6108
6109                if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6110                        return -EINVAL;
6111
6112                /*
6113                 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6114                 * enable eVMCS capability on vCPU. However, since then
6115                 * code was changed such that flag signals vmcs12 should
6116                 * be copied into eVMCS in guest memory.
6117                 *
6118                 * To preserve backwards compatability, allow user
6119                 * to set this flag even when there is no VMXON region.
6120                 */
6121                if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6122                        return -EINVAL;
6123        } else {
6124                if (!nested_vmx_allowed(vcpu))
6125                        return -EINVAL;
6126
6127                if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6128                        return -EINVAL;
6129        }
6130
6131        if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6132            (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6133                return -EINVAL;
6134
6135        if (kvm_state->hdr.vmx.smm.flags &
6136            ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6137                return -EINVAL;
6138
6139        if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6140                return -EINVAL;
6141
6142        /*
6143         * SMM temporarily disables VMX, so we cannot be in guest mode,
6144         * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6145         * must be zero.
6146         */
6147        if (is_smm(vcpu) ?
6148                (kvm_state->flags &
6149                 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6150                : kvm_state->hdr.vmx.smm.flags)
6151                return -EINVAL;
6152
6153        if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6154            !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6155                return -EINVAL;
6156
6157        if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6158                (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6159                        return -EINVAL;
6160
6161        vmx_leave_nested(vcpu);
6162
6163        if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6164                return 0;
6165
6166        vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6167        ret = enter_vmx_operation(vcpu);
6168        if (ret)
6169                return ret;
6170
6171        /* Empty 'VMXON' state is permitted if no VMCS loaded */
6172        if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6173                /* See vmx_has_valid_vmcs12.  */
6174                if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6175                    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6176                    (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6177                        return -EINVAL;
6178                else
6179                        return 0;
6180        }
6181
6182        if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6183                if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6184                    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6185                        return -EINVAL;
6186
6187                set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6188        } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6189                /*
6190                 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6191                 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6192                 * restored yet. EVMCS will be mapped from
6193                 * nested_get_vmcs12_pages().
6194                 */
6195                kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6196        } else {
6197                return -EINVAL;
6198        }
6199
6200        if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6201                vmx->nested.smm.vmxon = true;
6202                vmx->nested.vmxon = false;
6203
6204                if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6205                        vmx->nested.smm.guest_mode = true;
6206        }
6207
6208        vmcs12 = get_vmcs12(vcpu);
6209        if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6210                return -EFAULT;
6211
6212        if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6213                return -EINVAL;
6214
6215        if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6216                return 0;
6217
6218        vmx->nested.nested_run_pending =
6219                !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6220
6221        vmx->nested.mtf_pending =
6222                !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6223
6224        ret = -EINVAL;
6225        if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6226            vmcs12->vmcs_link_pointer != -1ull) {
6227                struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6228
6229                if (kvm_state->size <
6230                    sizeof(*kvm_state) +
6231                    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6232                        goto error_guest_mode;
6233
6234                if (copy_from_user(shadow_vmcs12,
6235                                   user_vmx_nested_state->shadow_vmcs12,
6236                                   sizeof(*shadow_vmcs12))) {
6237                        ret = -EFAULT;
6238                        goto error_guest_mode;
6239                }
6240
6241                if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6242                    !shadow_vmcs12->hdr.shadow_vmcs)
6243                        goto error_guest_mode;
6244        }
6245
6246        vmx->nested.has_preemption_timer_deadline = false;
6247        if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6248                vmx->nested.has_preemption_timer_deadline = true;
6249                vmx->nested.preemption_timer_deadline =
6250                        kvm_state->hdr.vmx.preemption_timer_deadline;
6251        }
6252
6253        if (nested_vmx_check_controls(vcpu, vmcs12) ||
6254            nested_vmx_check_host_state(vcpu, vmcs12) ||
6255            nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6256                goto error_guest_mode;
6257
6258        vmx->nested.dirty_vmcs12 = true;
6259        ret = nested_vmx_enter_non_root_mode(vcpu, false);
6260        if (ret)
6261                goto error_guest_mode;
6262
6263        return 0;
6264
6265error_guest_mode:
6266        vmx->nested.nested_run_pending = 0;
6267        return ret;
6268}
6269
6270void nested_vmx_set_vmcs_shadowing_bitmap(void)
6271{
6272        if (enable_shadow_vmcs) {
6273                vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6274                vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6275        }
6276}
6277
6278/*
6279 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6280 * returned for the various VMX controls MSRs when nested VMX is enabled.
6281 * The same values should also be used to verify that vmcs12 control fields are
6282 * valid during nested entry from L1 to L2.
6283 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6284 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6285 * bit in the high half is on if the corresponding bit in the control field
6286 * may be on. See also vmx_control_verify().
6287 */
6288void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6289{
6290        /*
6291         * Note that as a general rule, the high half of the MSRs (bits in
6292         * the control fields which may be 1) should be initialized by the
6293         * intersection of the underlying hardware's MSR (i.e., features which
6294         * can be supported) and the list of features we want to expose -
6295         * because they are known to be properly supported in our code.
6296         * Also, usually, the low half of the MSRs (bits which must be 1) can
6297         * be set to 0, meaning that L1 may turn off any of these bits. The
6298         * reason is that if one of these bits is necessary, it will appear
6299         * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6300         * fields of vmcs01 and vmcs02, will turn these bits off - and
6301         * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6302         * These rules have exceptions below.
6303         */
6304
6305        /* pin-based controls */
6306        rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6307                msrs->pinbased_ctls_low,
6308                msrs->pinbased_ctls_high);
6309        msrs->pinbased_ctls_low |=
6310                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6311        msrs->pinbased_ctls_high &=
6312                PIN_BASED_EXT_INTR_MASK |
6313                PIN_BASED_NMI_EXITING |
6314                PIN_BASED_VIRTUAL_NMIS |
6315                (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6316        msrs->pinbased_ctls_high |=
6317                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6318                PIN_BASED_VMX_PREEMPTION_TIMER;
6319
6320        /* exit controls */
6321        rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6322                msrs->exit_ctls_low,
6323                msrs->exit_ctls_high);
6324        msrs->exit_ctls_low =
6325                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6326
6327        msrs->exit_ctls_high &=
6328#ifdef CONFIG_X86_64
6329                VM_EXIT_HOST_ADDR_SPACE_SIZE |
6330#endif
6331                VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6332                VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6333        msrs->exit_ctls_high |=
6334                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6335                VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6336                VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6337
6338        /* We support free control of debug control saving. */
6339        msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6340
6341        /* entry controls */
6342        rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6343                msrs->entry_ctls_low,
6344                msrs->entry_ctls_high);
6345        msrs->entry_ctls_low =
6346                VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6347        msrs->entry_ctls_high &=
6348#ifdef CONFIG_X86_64
6349                VM_ENTRY_IA32E_MODE |
6350#endif
6351                VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6352                VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6353        msrs->entry_ctls_high |=
6354                (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6355
6356        /* We support free control of debug control loading. */
6357        msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6358
6359        /* cpu-based controls */
6360        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6361                msrs->procbased_ctls_low,
6362                msrs->procbased_ctls_high);
6363        msrs->procbased_ctls_low =
6364                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6365        msrs->procbased_ctls_high &=
6366                CPU_BASED_INTR_WINDOW_EXITING |
6367                CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6368                CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6369                CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6370                CPU_BASED_CR3_STORE_EXITING |
6371#ifdef CONFIG_X86_64
6372                CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6373#endif
6374                CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6375                CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6376                CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6377                CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6378                CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6379        /*
6380         * We can allow some features even when not supported by the
6381         * hardware. For example, L1 can specify an MSR bitmap - and we
6382         * can use it to avoid exits to L1 - even when L0 runs L2
6383         * without MSR bitmaps.
6384         */
6385        msrs->procbased_ctls_high |=
6386                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6387                CPU_BASED_USE_MSR_BITMAPS;
6388
6389        /* We support free control of CR3 access interception. */
6390        msrs->procbased_ctls_low &=
6391                ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6392
6393        /*
6394         * secondary cpu-based controls.  Do not include those that
6395         * depend on CPUID bits, they are added later by
6396         * vmx_vcpu_after_set_cpuid.
6397         */
6398        if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6399                rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6400                      msrs->secondary_ctls_low,
6401                      msrs->secondary_ctls_high);
6402
6403        msrs->secondary_ctls_low = 0;
6404        msrs->secondary_ctls_high &=
6405                SECONDARY_EXEC_DESC |
6406                SECONDARY_EXEC_ENABLE_RDTSCP |
6407                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6408                SECONDARY_EXEC_WBINVD_EXITING |
6409                SECONDARY_EXEC_APIC_REGISTER_VIRT |
6410                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6411                SECONDARY_EXEC_RDRAND_EXITING |
6412                SECONDARY_EXEC_ENABLE_INVPCID |
6413                SECONDARY_EXEC_RDSEED_EXITING |
6414                SECONDARY_EXEC_XSAVES;
6415
6416        /*
6417         * We can emulate "VMCS shadowing," even if the hardware
6418         * doesn't support it.
6419         */
6420        msrs->secondary_ctls_high |=
6421                SECONDARY_EXEC_SHADOW_VMCS;
6422
6423        if (enable_ept) {
6424                /* nested EPT: emulate EPT also to L1 */
6425                msrs->secondary_ctls_high |=
6426                        SECONDARY_EXEC_ENABLE_EPT;
6427                msrs->ept_caps =
6428                        VMX_EPT_PAGE_WALK_4_BIT |
6429                        VMX_EPT_PAGE_WALK_5_BIT |
6430                        VMX_EPTP_WB_BIT |
6431                        VMX_EPT_INVEPT_BIT |
6432                        VMX_EPT_EXECUTE_ONLY_BIT;
6433
6434                msrs->ept_caps &= ept_caps;
6435                msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6436                        VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6437                        VMX_EPT_1GB_PAGE_BIT;
6438                if (enable_ept_ad_bits) {
6439                        msrs->secondary_ctls_high |=
6440                                SECONDARY_EXEC_ENABLE_PML;
6441                        msrs->ept_caps |= VMX_EPT_AD_BIT;
6442                }
6443        }
6444
6445        if (cpu_has_vmx_vmfunc()) {
6446                msrs->secondary_ctls_high |=
6447                        SECONDARY_EXEC_ENABLE_VMFUNC;
6448                /*
6449                 * Advertise EPTP switching unconditionally
6450                 * since we emulate it
6451                 */
6452                if (enable_ept)
6453                        msrs->vmfunc_controls =
6454                                VMX_VMFUNC_EPTP_SWITCHING;
6455        }
6456
6457        /*
6458         * Old versions of KVM use the single-context version without
6459         * checking for support, so declare that it is supported even
6460         * though it is treated as global context.  The alternative is
6461         * not failing the single-context invvpid, and it is worse.
6462         */
6463        if (enable_vpid) {
6464                msrs->secondary_ctls_high |=
6465                        SECONDARY_EXEC_ENABLE_VPID;
6466                msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6467                        VMX_VPID_EXTENT_SUPPORTED_MASK;
6468        }
6469
6470        if (enable_unrestricted_guest)
6471                msrs->secondary_ctls_high |=
6472                        SECONDARY_EXEC_UNRESTRICTED_GUEST;
6473
6474        if (flexpriority_enabled)
6475                msrs->secondary_ctls_high |=
6476                        SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6477
6478        /* miscellaneous data */
6479        rdmsr(MSR_IA32_VMX_MISC,
6480                msrs->misc_low,
6481                msrs->misc_high);
6482        msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6483        msrs->misc_low |=
6484                MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6485                VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6486                VMX_MISC_ACTIVITY_HLT;
6487        msrs->misc_high = 0;
6488
6489        /*
6490         * This MSR reports some information about VMX support. We
6491         * should return information about the VMX we emulate for the
6492         * guest, and the VMCS structure we give it - not about the
6493         * VMX support of the underlying hardware.
6494         */
6495        msrs->basic =
6496                VMCS12_REVISION |
6497                VMX_BASIC_TRUE_CTLS |
6498                ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6499                (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6500
6501        if (cpu_has_vmx_basic_inout())
6502                msrs->basic |= VMX_BASIC_INOUT;
6503
6504        /*
6505         * These MSRs specify bits which the guest must keep fixed on
6506         * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6507         * We picked the standard core2 setting.
6508         */
6509#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6510#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6511        msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6512        msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6513
6514        /* These MSRs specify bits which the guest must keep fixed off. */
6515        rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6516        rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6517
6518        /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6519        msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6520}
6521
6522void nested_vmx_hardware_unsetup(void)
6523{
6524        int i;
6525
6526        if (enable_shadow_vmcs) {
6527                for (i = 0; i < VMX_BITMAP_NR; i++)
6528                        free_page((unsigned long)vmx_bitmap[i]);
6529        }
6530}
6531
6532__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6533{
6534        int i;
6535
6536        if (!cpu_has_vmx_shadow_vmcs())
6537                enable_shadow_vmcs = 0;
6538        if (enable_shadow_vmcs) {
6539                for (i = 0; i < VMX_BITMAP_NR; i++) {
6540                        /*
6541                         * The vmx_bitmap is not tied to a VM and so should
6542                         * not be charged to a memcg.
6543                         */
6544                        vmx_bitmap[i] = (unsigned long *)
6545                                __get_free_page(GFP_KERNEL);
6546                        if (!vmx_bitmap[i]) {
6547                                nested_vmx_hardware_unsetup();
6548                                return -ENOMEM;
6549                        }
6550                }
6551
6552                init_vmcs_shadow_fields();
6553        }
6554
6555        exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6556        exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6557        exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6558        exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6559        exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6560        exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6561        exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6562        exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6563        exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6564        exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6565        exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6566        exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6567
6568        return 0;
6569}
6570
6571struct kvm_x86_nested_ops vmx_nested_ops = {
6572        .check_events = vmx_check_nested_events,
6573        .hv_timer_pending = nested_vmx_preemption_timer_pending,
6574        .get_state = vmx_get_nested_state,
6575        .set_state = vmx_set_nested_state,
6576        .get_nested_state_pages = nested_get_vmcs12_pages,
6577        .write_log_dirty = nested_vmx_write_pml_buffer,
6578        .enable_evmcs = nested_enable_evmcs,
6579        .get_evmcs_version = nested_get_evmcs_version,
6580};
6581