linux/drivers/crypto/hisilicon/sec2/sec_crypto.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019 HiSilicon Limited. */
   3
   4#include <crypto/aes.h>
   5#include <crypto/algapi.h>
   6#include <crypto/authenc.h>
   7#include <crypto/des.h>
   8#include <crypto/hash.h>
   9#include <crypto/internal/aead.h>
  10#include <crypto/sha.h>
  11#include <crypto/skcipher.h>
  12#include <crypto/xts.h>
  13#include <linux/crypto.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/idr.h>
  16
  17#include "sec.h"
  18#include "sec_crypto.h"
  19
  20#define SEC_PRIORITY            4001
  21#define SEC_XTS_MIN_KEY_SIZE    (2 * AES_MIN_KEY_SIZE)
  22#define SEC_XTS_MAX_KEY_SIZE    (2 * AES_MAX_KEY_SIZE)
  23#define SEC_DES3_2KEY_SIZE      (2 * DES_KEY_SIZE)
  24#define SEC_DES3_3KEY_SIZE      (3 * DES_KEY_SIZE)
  25
  26/* SEC sqe(bd) bit operational relative MACRO */
  27#define SEC_DE_OFFSET           1
  28#define SEC_CIPHER_OFFSET       4
  29#define SEC_SCENE_OFFSET        3
  30#define SEC_DST_SGL_OFFSET      2
  31#define SEC_SRC_SGL_OFFSET      7
  32#define SEC_CKEY_OFFSET         9
  33#define SEC_CMODE_OFFSET        12
  34#define SEC_AKEY_OFFSET         5
  35#define SEC_AEAD_ALG_OFFSET     11
  36#define SEC_AUTH_OFFSET         6
  37
  38#define SEC_FLAG_OFFSET         7
  39#define SEC_FLAG_MASK           0x0780
  40#define SEC_TYPE_MASK           0x0F
  41#define SEC_DONE_MASK           0x0001
  42
  43#define SEC_TOTAL_IV_SZ         (SEC_IV_SIZE * QM_Q_DEPTH)
  44#define SEC_SGL_SGE_NR          128
  45#define SEC_CTX_DEV(ctx)        (&(ctx)->sec->qm.pdev->dev)
  46#define SEC_CIPHER_AUTH         0xfe
  47#define SEC_AUTH_CIPHER         0x1
  48#define SEC_MAX_MAC_LEN         64
  49#define SEC_MAX_AAD_LEN         65535
  50#define SEC_TOTAL_MAC_SZ        (SEC_MAX_MAC_LEN * QM_Q_DEPTH)
  51
  52#define SEC_PBUF_SZ                     512
  53#define SEC_PBUF_IV_OFFSET              SEC_PBUF_SZ
  54#define SEC_PBUF_MAC_OFFSET             (SEC_PBUF_SZ + SEC_IV_SIZE)
  55#define SEC_PBUF_PKG            (SEC_PBUF_SZ + SEC_IV_SIZE +    \
  56                        SEC_MAX_MAC_LEN * 2)
  57#define SEC_PBUF_NUM            (PAGE_SIZE / SEC_PBUF_PKG)
  58#define SEC_PBUF_PAGE_NUM       (QM_Q_DEPTH / SEC_PBUF_NUM)
  59#define SEC_PBUF_LEFT_SZ        (SEC_PBUF_PKG * (QM_Q_DEPTH -   \
  60                        SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
  61#define SEC_TOTAL_PBUF_SZ       (PAGE_SIZE * SEC_PBUF_PAGE_NUM +        \
  62                        SEC_PBUF_LEFT_SZ)
  63
  64#define SEC_SQE_LEN_RATE        4
  65#define SEC_SQE_CFLAG           2
  66#define SEC_SQE_AEAD_FLAG       3
  67#define SEC_SQE_DONE            0x1
  68
  69/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
  70static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
  71{
  72        if (req->c_req.encrypt)
  73                return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
  74                                 ctx->hlf_q_num;
  75
  76        return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
  77                                 ctx->hlf_q_num;
  78}
  79
  80static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
  81{
  82        if (req->c_req.encrypt)
  83                atomic_dec(&ctx->enc_qcyclic);
  84        else
  85                atomic_dec(&ctx->dec_qcyclic);
  86}
  87
  88static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
  89{
  90        int req_id;
  91
  92        mutex_lock(&qp_ctx->req_lock);
  93
  94        req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
  95                                  0, QM_Q_DEPTH, GFP_ATOMIC);
  96        mutex_unlock(&qp_ctx->req_lock);
  97        if (unlikely(req_id < 0)) {
  98                dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n");
  99                return req_id;
 100        }
 101
 102        req->qp_ctx = qp_ctx;
 103        qp_ctx->req_list[req_id] = req;
 104        return req_id;
 105}
 106
 107static void sec_free_req_id(struct sec_req *req)
 108{
 109        struct sec_qp_ctx *qp_ctx = req->qp_ctx;
 110        int req_id = req->req_id;
 111
 112        if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
 113                dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n");
 114                return;
 115        }
 116
 117        qp_ctx->req_list[req_id] = NULL;
 118        req->qp_ctx = NULL;
 119
 120        mutex_lock(&qp_ctx->req_lock);
 121        idr_remove(&qp_ctx->req_idr, req_id);
 122        mutex_unlock(&qp_ctx->req_lock);
 123}
 124
 125static int sec_aead_verify(struct sec_req *req)
 126{
 127        struct aead_request *aead_req = req->aead_req.aead_req;
 128        struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
 129        size_t authsize = crypto_aead_authsize(tfm);
 130        u8 *mac_out = req->aead_req.out_mac;
 131        u8 *mac = mac_out + SEC_MAX_MAC_LEN;
 132        struct scatterlist *sgl = aead_req->src;
 133        size_t sz;
 134
 135        sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac, authsize,
 136                                aead_req->cryptlen + aead_req->assoclen -
 137                                authsize);
 138        if (unlikely(sz != authsize || memcmp(mac_out, mac, sz))) {
 139                dev_err(SEC_CTX_DEV(req->ctx), "aead verify failure!\n");
 140                return -EBADMSG;
 141        }
 142
 143        return 0;
 144}
 145
 146static void sec_req_cb(struct hisi_qp *qp, void *resp)
 147{
 148        struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
 149        struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
 150        struct sec_sqe *bd = resp;
 151        struct sec_ctx *ctx;
 152        struct sec_req *req;
 153        u16 done, flag;
 154        int err = 0;
 155        u8 type;
 156
 157        type = bd->type_cipher_auth & SEC_TYPE_MASK;
 158        if (unlikely(type != SEC_BD_TYPE2)) {
 159                atomic64_inc(&dfx->err_bd_cnt);
 160                pr_err("err bd type [%d]\n", type);
 161                return;
 162        }
 163
 164        req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
 165        if (unlikely(!req)) {
 166                atomic64_inc(&dfx->invalid_req_cnt);
 167                atomic_inc(&qp->qp_status.used);
 168                return;
 169        }
 170        req->err_type = bd->type2.error_type;
 171        ctx = req->ctx;
 172        done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
 173        flag = (le16_to_cpu(bd->type2.done_flag) &
 174                SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
 175        if (unlikely(req->err_type || done != SEC_SQE_DONE ||
 176            (ctx->alg_type == SEC_SKCIPHER && flag != SEC_SQE_CFLAG) ||
 177            (ctx->alg_type == SEC_AEAD && flag != SEC_SQE_AEAD_FLAG))) {
 178                dev_err(SEC_CTX_DEV(ctx),
 179                        "err_type[%d],done[%d],flag[%d]\n",
 180                        req->err_type, done, flag);
 181                err = -EIO;
 182                atomic64_inc(&dfx->done_flag_cnt);
 183        }
 184
 185        if (ctx->alg_type == SEC_AEAD && !req->c_req.encrypt)
 186                err = sec_aead_verify(req);
 187
 188        atomic64_inc(&dfx->recv_cnt);
 189
 190        ctx->req_op->buf_unmap(ctx, req);
 191
 192        ctx->req_op->callback(ctx, req, err);
 193}
 194
 195static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
 196{
 197        struct sec_qp_ctx *qp_ctx = req->qp_ctx;
 198        int ret;
 199
 200        if (ctx->fake_req_limit <=
 201            atomic_read(&qp_ctx->qp->qp_status.used) &&
 202            !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
 203                return -EBUSY;
 204
 205        mutex_lock(&qp_ctx->req_lock);
 206        ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
 207
 208        if (ctx->fake_req_limit <=
 209            atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
 210                list_add_tail(&req->backlog_head, &qp_ctx->backlog);
 211                atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
 212                atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
 213                mutex_unlock(&qp_ctx->req_lock);
 214                return -EBUSY;
 215        }
 216        mutex_unlock(&qp_ctx->req_lock);
 217
 218        if (unlikely(ret == -EBUSY))
 219                return -ENOBUFS;
 220
 221        if (likely(!ret)) {
 222                ret = -EINPROGRESS;
 223                atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
 224        }
 225
 226        return ret;
 227}
 228
 229/* Get DMA memory resources */
 230static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
 231{
 232        int i;
 233
 234        res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
 235                                         &res->c_ivin_dma, GFP_KERNEL);
 236        if (!res->c_ivin)
 237                return -ENOMEM;
 238
 239        for (i = 1; i < QM_Q_DEPTH; i++) {
 240                res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
 241                res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
 242        }
 243
 244        return 0;
 245}
 246
 247static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
 248{
 249        if (res->c_ivin)
 250                dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
 251                                  res->c_ivin, res->c_ivin_dma);
 252}
 253
 254static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
 255{
 256        int i;
 257
 258        res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
 259                                          &res->out_mac_dma, GFP_KERNEL);
 260        if (!res->out_mac)
 261                return -ENOMEM;
 262
 263        for (i = 1; i < QM_Q_DEPTH; i++) {
 264                res[i].out_mac_dma = res->out_mac_dma +
 265                                     i * (SEC_MAX_MAC_LEN << 1);
 266                res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
 267        }
 268
 269        return 0;
 270}
 271
 272static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
 273{
 274        if (res->out_mac)
 275                dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
 276                                  res->out_mac, res->out_mac_dma);
 277}
 278
 279static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
 280{
 281        if (res->pbuf)
 282                dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
 283                                  res->pbuf, res->pbuf_dma);
 284}
 285
 286/*
 287 * To improve performance, pbuffer is used for
 288 * small packets (< 512Bytes) as IOMMU translation using.
 289 */
 290static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
 291{
 292        int pbuf_page_offset;
 293        int i, j, k;
 294
 295        res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
 296                                &res->pbuf_dma, GFP_KERNEL);
 297        if (!res->pbuf)
 298                return -ENOMEM;
 299
 300        /*
 301         * SEC_PBUF_PKG contains data pbuf, iv and
 302         * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
 303         * Every PAGE contains six SEC_PBUF_PKG
 304         * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
 305         * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
 306         * for the SEC_TOTAL_PBUF_SZ
 307         */
 308        for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
 309                pbuf_page_offset = PAGE_SIZE * i;
 310                for (j = 0; j < SEC_PBUF_NUM; j++) {
 311                        k = i * SEC_PBUF_NUM + j;
 312                        if (k == QM_Q_DEPTH)
 313                                break;
 314                        res[k].pbuf = res->pbuf +
 315                                j * SEC_PBUF_PKG + pbuf_page_offset;
 316                        res[k].pbuf_dma = res->pbuf_dma +
 317                                j * SEC_PBUF_PKG + pbuf_page_offset;
 318                }
 319        }
 320        return 0;
 321}
 322
 323static int sec_alg_resource_alloc(struct sec_ctx *ctx,
 324                                  struct sec_qp_ctx *qp_ctx)
 325{
 326        struct device *dev = SEC_CTX_DEV(ctx);
 327        struct sec_alg_res *res = qp_ctx->res;
 328        int ret;
 329
 330        ret = sec_alloc_civ_resource(dev, res);
 331        if (ret)
 332                return ret;
 333
 334        if (ctx->alg_type == SEC_AEAD) {
 335                ret = sec_alloc_mac_resource(dev, res);
 336                if (ret)
 337                        goto alloc_fail;
 338        }
 339        if (ctx->pbuf_supported) {
 340                ret = sec_alloc_pbuf_resource(dev, res);
 341                if (ret) {
 342                        dev_err(dev, "fail to alloc pbuf dma resource!\n");
 343                        goto alloc_pbuf_fail;
 344                }
 345        }
 346
 347        return 0;
 348alloc_pbuf_fail:
 349        if (ctx->alg_type == SEC_AEAD)
 350                sec_free_mac_resource(dev, qp_ctx->res);
 351alloc_fail:
 352        sec_free_civ_resource(dev, res);
 353
 354        return ret;
 355}
 356
 357static void sec_alg_resource_free(struct sec_ctx *ctx,
 358                                  struct sec_qp_ctx *qp_ctx)
 359{
 360        struct device *dev = SEC_CTX_DEV(ctx);
 361
 362        sec_free_civ_resource(dev, qp_ctx->res);
 363
 364        if (ctx->pbuf_supported)
 365                sec_free_pbuf_resource(dev, qp_ctx->res);
 366        if (ctx->alg_type == SEC_AEAD)
 367                sec_free_mac_resource(dev, qp_ctx->res);
 368}
 369
 370static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
 371                             int qp_ctx_id, int alg_type)
 372{
 373        struct device *dev = SEC_CTX_DEV(ctx);
 374        struct sec_qp_ctx *qp_ctx;
 375        struct hisi_qp *qp;
 376        int ret = -ENOMEM;
 377
 378        qp_ctx = &ctx->qp_ctx[qp_ctx_id];
 379        qp = ctx->qps[qp_ctx_id];
 380        qp->req_type = 0;
 381        qp->qp_ctx = qp_ctx;
 382        qp->req_cb = sec_req_cb;
 383        qp_ctx->qp = qp;
 384        qp_ctx->ctx = ctx;
 385
 386        mutex_init(&qp_ctx->req_lock);
 387        idr_init(&qp_ctx->req_idr);
 388        INIT_LIST_HEAD(&qp_ctx->backlog);
 389
 390        qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
 391                                                     SEC_SGL_SGE_NR);
 392        if (IS_ERR(qp_ctx->c_in_pool)) {
 393                dev_err(dev, "fail to create sgl pool for input!\n");
 394                goto err_destroy_idr;
 395        }
 396
 397        qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
 398                                                      SEC_SGL_SGE_NR);
 399        if (IS_ERR(qp_ctx->c_out_pool)) {
 400                dev_err(dev, "fail to create sgl pool for output!\n");
 401                goto err_free_c_in_pool;
 402        }
 403
 404        ret = sec_alg_resource_alloc(ctx, qp_ctx);
 405        if (ret)
 406                goto err_free_c_out_pool;
 407
 408        ret = hisi_qm_start_qp(qp, 0);
 409        if (ret < 0)
 410                goto err_queue_free;
 411
 412        return 0;
 413
 414err_queue_free:
 415        sec_alg_resource_free(ctx, qp_ctx);
 416err_free_c_out_pool:
 417        hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
 418err_free_c_in_pool:
 419        hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
 420err_destroy_idr:
 421        idr_destroy(&qp_ctx->req_idr);
 422
 423        return ret;
 424}
 425
 426static void sec_release_qp_ctx(struct sec_ctx *ctx,
 427                               struct sec_qp_ctx *qp_ctx)
 428{
 429        struct device *dev = SEC_CTX_DEV(ctx);
 430
 431        hisi_qm_stop_qp(qp_ctx->qp);
 432        sec_alg_resource_free(ctx, qp_ctx);
 433
 434        hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
 435        hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
 436
 437        idr_destroy(&qp_ctx->req_idr);
 438}
 439
 440static int sec_ctx_base_init(struct sec_ctx *ctx)
 441{
 442        struct sec_dev *sec;
 443        int i, ret;
 444
 445        ctx->qps = sec_create_qps();
 446        if (!ctx->qps) {
 447                pr_err("Can not create sec qps!\n");
 448                return -ENODEV;
 449        }
 450
 451        sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
 452        ctx->sec = sec;
 453        ctx->hlf_q_num = sec->ctx_q_num >> 1;
 454
 455        ctx->pbuf_supported = ctx->sec->iommu_used;
 456
 457        /* Half of queue depth is taken as fake requests limit in the queue. */
 458        ctx->fake_req_limit = QM_Q_DEPTH >> 1;
 459        ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
 460                              GFP_KERNEL);
 461        if (!ctx->qp_ctx) {
 462                ret = -ENOMEM;
 463                goto err_destroy_qps;
 464        }
 465
 466        for (i = 0; i < sec->ctx_q_num; i++) {
 467                ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
 468                if (ret)
 469                        goto err_sec_release_qp_ctx;
 470        }
 471
 472        return 0;
 473
 474err_sec_release_qp_ctx:
 475        for (i = i - 1; i >= 0; i--)
 476                sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
 477
 478        kfree(ctx->qp_ctx);
 479err_destroy_qps:
 480        sec_destroy_qps(ctx->qps, sec->ctx_q_num);
 481
 482        return ret;
 483}
 484
 485static void sec_ctx_base_uninit(struct sec_ctx *ctx)
 486{
 487        int i;
 488
 489        for (i = 0; i < ctx->sec->ctx_q_num; i++)
 490                sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
 491
 492        sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
 493        kfree(ctx->qp_ctx);
 494}
 495
 496static int sec_cipher_init(struct sec_ctx *ctx)
 497{
 498        struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
 499
 500        c_ctx->c_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
 501                                          &c_ctx->c_key_dma, GFP_KERNEL);
 502        if (!c_ctx->c_key)
 503                return -ENOMEM;
 504
 505        return 0;
 506}
 507
 508static void sec_cipher_uninit(struct sec_ctx *ctx)
 509{
 510        struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
 511
 512        memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
 513        dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
 514                          c_ctx->c_key, c_ctx->c_key_dma);
 515}
 516
 517static int sec_auth_init(struct sec_ctx *ctx)
 518{
 519        struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
 520
 521        a_ctx->a_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
 522                                          &a_ctx->a_key_dma, GFP_KERNEL);
 523        if (!a_ctx->a_key)
 524                return -ENOMEM;
 525
 526        return 0;
 527}
 528
 529static void sec_auth_uninit(struct sec_ctx *ctx)
 530{
 531        struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
 532
 533        memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
 534        dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
 535                          a_ctx->a_key, a_ctx->a_key_dma);
 536}
 537
 538static int sec_skcipher_init(struct crypto_skcipher *tfm)
 539{
 540        struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
 541        int ret;
 542
 543        ctx->alg_type = SEC_SKCIPHER;
 544        crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
 545        ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
 546        if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
 547                dev_err(SEC_CTX_DEV(ctx), "get error skcipher iv size!\n");
 548                return -EINVAL;
 549        }
 550
 551        ret = sec_ctx_base_init(ctx);
 552        if (ret)
 553                return ret;
 554
 555        ret = sec_cipher_init(ctx);
 556        if (ret)
 557                goto err_cipher_init;
 558
 559        return 0;
 560err_cipher_init:
 561        sec_ctx_base_uninit(ctx);
 562
 563        return ret;
 564}
 565
 566static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
 567{
 568        struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
 569
 570        sec_cipher_uninit(ctx);
 571        sec_ctx_base_uninit(ctx);
 572}
 573
 574static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
 575                                    const u32 keylen,
 576                                    const enum sec_cmode c_mode)
 577{
 578        switch (keylen) {
 579        case SEC_DES3_2KEY_SIZE:
 580                c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
 581                break;
 582        case SEC_DES3_3KEY_SIZE:
 583                c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
 584                break;
 585        default:
 586                return -EINVAL;
 587        }
 588
 589        return 0;
 590}
 591
 592static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
 593                                       const u32 keylen,
 594                                       const enum sec_cmode c_mode)
 595{
 596        if (c_mode == SEC_CMODE_XTS) {
 597                switch (keylen) {
 598                case SEC_XTS_MIN_KEY_SIZE:
 599                        c_ctx->c_key_len = SEC_CKEY_128BIT;
 600                        break;
 601                case SEC_XTS_MAX_KEY_SIZE:
 602                        c_ctx->c_key_len = SEC_CKEY_256BIT;
 603                        break;
 604                default:
 605                        pr_err("hisi_sec2: xts mode key error!\n");
 606                        return -EINVAL;
 607                }
 608        } else {
 609                switch (keylen) {
 610                case AES_KEYSIZE_128:
 611                        c_ctx->c_key_len = SEC_CKEY_128BIT;
 612                        break;
 613                case AES_KEYSIZE_192:
 614                        c_ctx->c_key_len = SEC_CKEY_192BIT;
 615                        break;
 616                case AES_KEYSIZE_256:
 617                        c_ctx->c_key_len = SEC_CKEY_256BIT;
 618                        break;
 619                default:
 620                        pr_err("hisi_sec2: aes key error!\n");
 621                        return -EINVAL;
 622                }
 623        }
 624
 625        return 0;
 626}
 627
 628static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
 629                               const u32 keylen, const enum sec_calg c_alg,
 630                               const enum sec_cmode c_mode)
 631{
 632        struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
 633        struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
 634        int ret;
 635
 636        if (c_mode == SEC_CMODE_XTS) {
 637                ret = xts_verify_key(tfm, key, keylen);
 638                if (ret) {
 639                        dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n");
 640                        return ret;
 641                }
 642        }
 643
 644        c_ctx->c_alg  = c_alg;
 645        c_ctx->c_mode = c_mode;
 646
 647        switch (c_alg) {
 648        case SEC_CALG_3DES:
 649                ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
 650                break;
 651        case SEC_CALG_AES:
 652        case SEC_CALG_SM4:
 653                ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
 654                break;
 655        default:
 656                return -EINVAL;
 657        }
 658
 659        if (ret) {
 660                dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n");
 661                return ret;
 662        }
 663
 664        memcpy(c_ctx->c_key, key, keylen);
 665
 666        return 0;
 667}
 668
 669#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)                        \
 670static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
 671        u32 keylen)                                                     \
 672{                                                                       \
 673        return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);    \
 674}
 675
 676GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
 677GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
 678GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
 679
 680GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
 681GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
 682
 683GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
 684GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
 685
 686static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
 687                        struct scatterlist *src)
 688{
 689        struct aead_request *aead_req = req->aead_req.aead_req;
 690        struct sec_cipher_req *c_req = &req->c_req;
 691        struct sec_qp_ctx *qp_ctx = req->qp_ctx;
 692        struct device *dev = SEC_CTX_DEV(ctx);
 693        int copy_size, pbuf_length;
 694        int req_id = req->req_id;
 695
 696        if (ctx->alg_type == SEC_AEAD)
 697                copy_size = aead_req->cryptlen + aead_req->assoclen;
 698        else
 699                copy_size = c_req->c_len;
 700
 701        pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
 702                                qp_ctx->res[req_id].pbuf,
 703                                copy_size);
 704
 705        if (unlikely(pbuf_length != copy_size)) {
 706                dev_err(dev, "copy src data to pbuf error!\n");
 707                return -EINVAL;
 708        }
 709
 710        c_req->c_in_dma = qp_ctx->res[req_id].pbuf_dma;
 711
 712        if (!c_req->c_in_dma) {
 713                dev_err(dev, "fail to set pbuffer address!\n");
 714                return -ENOMEM;
 715        }
 716
 717        c_req->c_out_dma = c_req->c_in_dma;
 718
 719        return 0;
 720}
 721
 722static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
 723                        struct scatterlist *dst)
 724{
 725        struct aead_request *aead_req = req->aead_req.aead_req;
 726        struct sec_cipher_req *c_req = &req->c_req;
 727        struct sec_qp_ctx *qp_ctx = req->qp_ctx;
 728        struct device *dev = SEC_CTX_DEV(ctx);
 729        int copy_size, pbuf_length;
 730        int req_id = req->req_id;
 731
 732        if (ctx->alg_type == SEC_AEAD)
 733                copy_size = c_req->c_len + aead_req->assoclen;
 734        else
 735                copy_size = c_req->c_len;
 736
 737        pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
 738                                qp_ctx->res[req_id].pbuf,
 739                                copy_size);
 740
 741        if (unlikely(pbuf_length != copy_size))
 742                dev_err(dev, "copy pbuf data to dst error!\n");
 743
 744}
 745
 746static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
 747                          struct scatterlist *src, struct scatterlist *dst)
 748{
 749        struct sec_cipher_req *c_req = &req->c_req;
 750        struct sec_aead_req *a_req = &req->aead_req;
 751        struct sec_qp_ctx *qp_ctx = req->qp_ctx;
 752        struct sec_alg_res *res = &qp_ctx->res[req->req_id];
 753        struct device *dev = SEC_CTX_DEV(ctx);
 754        int ret;
 755
 756        if (req->use_pbuf) {
 757                ret = sec_cipher_pbuf_map(ctx, req, src);
 758                c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
 759                c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
 760                if (ctx->alg_type == SEC_AEAD) {
 761                        a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
 762                        a_req->out_mac_dma = res->pbuf_dma +
 763                                        SEC_PBUF_MAC_OFFSET;
 764                }
 765
 766                return ret;
 767        }
 768        c_req->c_ivin = res->c_ivin;
 769        c_req->c_ivin_dma = res->c_ivin_dma;
 770        if (ctx->alg_type == SEC_AEAD) {
 771                a_req->out_mac = res->out_mac;
 772                a_req->out_mac_dma = res->out_mac_dma;
 773        }
 774
 775        c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
 776                                                    qp_ctx->c_in_pool,
 777                                                    req->req_id,
 778                                                    &c_req->c_in_dma);
 779
 780        if (IS_ERR(c_req->c_in)) {
 781                dev_err(dev, "fail to dma map input sgl buffers!\n");
 782                return PTR_ERR(c_req->c_in);
 783        }
 784
 785        if (dst == src) {
 786                c_req->c_out = c_req->c_in;
 787                c_req->c_out_dma = c_req->c_in_dma;
 788        } else {
 789                c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
 790                                                             qp_ctx->c_out_pool,
 791                                                             req->req_id,
 792                                                             &c_req->c_out_dma);
 793
 794                if (IS_ERR(c_req->c_out)) {
 795                        dev_err(dev, "fail to dma map output sgl buffers!\n");
 796                        hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
 797                        return PTR_ERR(c_req->c_out);
 798                }
 799        }
 800
 801        return 0;
 802}
 803
 804static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
 805                             struct scatterlist *src, struct scatterlist *dst)
 806{
 807        struct sec_cipher_req *c_req = &req->c_req;
 808        struct device *dev = SEC_CTX_DEV(ctx);
 809
 810        if (req->use_pbuf) {
 811                sec_cipher_pbuf_unmap(ctx, req, dst);
 812        } else {
 813                if (dst != src)
 814                        hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
 815
 816                hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
 817        }
 818}
 819
 820static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
 821{
 822        struct skcipher_request *sq = req->c_req.sk_req;
 823
 824        return sec_cipher_map(ctx, req, sq->src, sq->dst);
 825}
 826
 827static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
 828{
 829        struct skcipher_request *sq = req->c_req.sk_req;
 830
 831        sec_cipher_unmap(ctx, req, sq->src, sq->dst);
 832}
 833
 834static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
 835                                struct crypto_authenc_keys *keys)
 836{
 837        switch (keys->enckeylen) {
 838        case AES_KEYSIZE_128:
 839                c_ctx->c_key_len = SEC_CKEY_128BIT;
 840                break;
 841        case AES_KEYSIZE_192:
 842                c_ctx->c_key_len = SEC_CKEY_192BIT;
 843                break;
 844        case AES_KEYSIZE_256:
 845                c_ctx->c_key_len = SEC_CKEY_256BIT;
 846                break;
 847        default:
 848                pr_err("hisi_sec2: aead aes key error!\n");
 849                return -EINVAL;
 850        }
 851        memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
 852
 853        return 0;
 854}
 855
 856static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
 857                                 struct crypto_authenc_keys *keys)
 858{
 859        struct crypto_shash *hash_tfm = ctx->hash_tfm;
 860        int blocksize, ret;
 861
 862        if (!keys->authkeylen) {
 863                pr_err("hisi_sec2: aead auth key error!\n");
 864                return -EINVAL;
 865        }
 866
 867        blocksize = crypto_shash_blocksize(hash_tfm);
 868        if (keys->authkeylen > blocksize) {
 869                ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
 870                                              keys->authkeylen, ctx->a_key);
 871                if (ret) {
 872                        pr_err("hisi_sec2: aead auth digest error!\n");
 873                        return -EINVAL;
 874                }
 875                ctx->a_key_len = blocksize;
 876        } else {
 877                memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
 878                ctx->a_key_len = keys->authkeylen;
 879        }
 880
 881        return 0;
 882}
 883
 884static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 885                           const u32 keylen, const enum sec_hash_alg a_alg,
 886                           const enum sec_calg c_alg,
 887                           const enum sec_mac_len mac_len,
 888                           const enum sec_cmode c_mode)
 889{
 890        struct sec_ctx *ctx = crypto_aead_ctx(tfm);
 891        struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
 892        struct crypto_authenc_keys keys;
 893        int ret;
 894
 895        ctx->a_ctx.a_alg = a_alg;
 896        ctx->c_ctx.c_alg = c_alg;
 897        ctx->a_ctx.mac_len = mac_len;
 898        c_ctx->c_mode = c_mode;
 899
 900        if (crypto_authenc_extractkeys(&keys, key, keylen))
 901                goto bad_key;
 902
 903        ret = sec_aead_aes_set_key(c_ctx, &keys);
 904        if (ret) {
 905                dev_err(SEC_CTX_DEV(ctx), "set sec cipher key err!\n");
 906                goto bad_key;
 907        }
 908
 909        ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
 910        if (ret) {
 911                dev_err(SEC_CTX_DEV(ctx), "set sec auth key err!\n");
 912                goto bad_key;
 913        }
 914
 915        return 0;
 916bad_key:
 917        memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
 918
 919        return -EINVAL;
 920}
 921
 922
 923#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)       \
 924static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,    \
 925        u32 keylen)                                                     \
 926{                                                                       \
 927        return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
 928}
 929
 930GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
 931                         SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
 932GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
 933                         SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
 934GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
 935                         SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
 936
 937static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
 938{
 939        struct aead_request *aq = req->aead_req.aead_req;
 940
 941        return sec_cipher_map(ctx, req, aq->src, aq->dst);
 942}
 943
 944static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
 945{
 946        struct aead_request *aq = req->aead_req.aead_req;
 947
 948        sec_cipher_unmap(ctx, req, aq->src, aq->dst);
 949}
 950
 951static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
 952{
 953        int ret;
 954
 955        ret = ctx->req_op->buf_map(ctx, req);
 956        if (unlikely(ret))
 957                return ret;
 958
 959        ctx->req_op->do_transfer(ctx, req);
 960
 961        ret = ctx->req_op->bd_fill(ctx, req);
 962        if (unlikely(ret))
 963                goto unmap_req_buf;
 964
 965        return ret;
 966
 967unmap_req_buf:
 968        ctx->req_op->buf_unmap(ctx, req);
 969
 970        return ret;
 971}
 972
 973static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
 974{
 975        ctx->req_op->buf_unmap(ctx, req);
 976}
 977
 978static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
 979{
 980        struct skcipher_request *sk_req = req->c_req.sk_req;
 981        struct sec_cipher_req *c_req = &req->c_req;
 982
 983        memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
 984}
 985
 986static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
 987{
 988        struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
 989        struct sec_cipher_req *c_req = &req->c_req;
 990        struct sec_sqe *sec_sqe = &req->sec_sqe;
 991        u8 scene, sa_type, da_type;
 992        u8 bd_type, cipher;
 993        u8 de = 0;
 994
 995        memset(sec_sqe, 0, sizeof(struct sec_sqe));
 996
 997        sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
 998        sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
 999        sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
1000        sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1001
1002        sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1003                                                SEC_CMODE_OFFSET);
1004        sec_sqe->type2.c_alg = c_ctx->c_alg;
1005        sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1006                                                SEC_CKEY_OFFSET);
1007
1008        bd_type = SEC_BD_TYPE2;
1009        if (c_req->encrypt)
1010                cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1011        else
1012                cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1013        sec_sqe->type_cipher_auth = bd_type | cipher;
1014
1015        if (req->use_pbuf)
1016                sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1017        else
1018                sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1019        scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1020        if (c_req->c_in_dma != c_req->c_out_dma)
1021                de = 0x1 << SEC_DE_OFFSET;
1022
1023        sec_sqe->sds_sa_type = (de | scene | sa_type);
1024
1025        /* Just set DST address type */
1026        if (req->use_pbuf)
1027                da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1028        else
1029                da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1030        sec_sqe->sdm_addr_type |= da_type;
1031
1032        sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1033        sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1034
1035        return 0;
1036}
1037
1038static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1039{
1040        struct aead_request *aead_req = req->aead_req.aead_req;
1041        struct skcipher_request *sk_req = req->c_req.sk_req;
1042        u32 iv_size = req->ctx->c_ctx.ivsize;
1043        struct scatterlist *sgl;
1044        unsigned int cryptlen;
1045        size_t sz;
1046        u8 *iv;
1047
1048        if (req->c_req.encrypt)
1049                sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1050        else
1051                sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1052
1053        if (alg_type == SEC_SKCIPHER) {
1054                iv = sk_req->iv;
1055                cryptlen = sk_req->cryptlen;
1056        } else {
1057                iv = aead_req->iv;
1058                cryptlen = aead_req->cryptlen;
1059        }
1060
1061        sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1062                                cryptlen - iv_size);
1063        if (unlikely(sz != iv_size))
1064                dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
1065}
1066
1067static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1068                                struct sec_qp_ctx *qp_ctx)
1069{
1070        struct sec_req *backlog_req = NULL;
1071
1072        mutex_lock(&qp_ctx->req_lock);
1073        if (ctx->fake_req_limit >=
1074            atomic_read(&qp_ctx->qp->qp_status.used) &&
1075            !list_empty(&qp_ctx->backlog)) {
1076                backlog_req = list_first_entry(&qp_ctx->backlog,
1077                                typeof(*backlog_req), backlog_head);
1078                list_del(&backlog_req->backlog_head);
1079        }
1080        mutex_unlock(&qp_ctx->req_lock);
1081
1082        return backlog_req;
1083}
1084
1085static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1086                                  int err)
1087{
1088        struct skcipher_request *sk_req = req->c_req.sk_req;
1089        struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1090        struct skcipher_request *backlog_sk_req;
1091        struct sec_req *backlog_req;
1092
1093        sec_free_req_id(req);
1094
1095        /* IV output at encrypto of CBC mode */
1096        if (!err && ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
1097                sec_update_iv(req, SEC_SKCIPHER);
1098
1099        while (1) {
1100                backlog_req = sec_back_req_clear(ctx, qp_ctx);
1101                if (!backlog_req)
1102                        break;
1103
1104                backlog_sk_req = backlog_req->c_req.sk_req;
1105                backlog_sk_req->base.complete(&backlog_sk_req->base,
1106                                                -EINPROGRESS);
1107                atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1108        }
1109
1110
1111        sk_req->base.complete(&sk_req->base, err);
1112}
1113
1114static void sec_aead_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1115{
1116        struct aead_request *aead_req = req->aead_req.aead_req;
1117        struct sec_cipher_req *c_req = &req->c_req;
1118
1119        memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1120}
1121
1122static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1123                               struct sec_req *req, struct sec_sqe *sec_sqe)
1124{
1125        struct sec_aead_req *a_req = &req->aead_req;
1126        struct sec_cipher_req *c_req = &req->c_req;
1127        struct aead_request *aq = a_req->aead_req;
1128
1129        sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1130
1131        sec_sqe->type2.mac_key_alg =
1132                        cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1133
1134        sec_sqe->type2.mac_key_alg |=
1135                        cpu_to_le32((u32)((ctx->a_key_len) /
1136                        SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1137
1138        sec_sqe->type2.mac_key_alg |=
1139                        cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1140
1141        sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1142
1143        if (dir)
1144                sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1145        else
1146                sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1147
1148        sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1149
1150        sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1151
1152        sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1153}
1154
1155static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1156{
1157        struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1158        struct sec_sqe *sec_sqe = &req->sec_sqe;
1159        int ret;
1160
1161        ret = sec_skcipher_bd_fill(ctx, req);
1162        if (unlikely(ret)) {
1163                dev_err(SEC_CTX_DEV(ctx), "skcipher bd fill is error!\n");
1164                return ret;
1165        }
1166
1167        sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1168
1169        return 0;
1170}
1171
1172static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1173{
1174        struct aead_request *a_req = req->aead_req.aead_req;
1175        struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1176        struct sec_aead_req *aead_req = &req->aead_req;
1177        struct sec_cipher_req *c_req = &req->c_req;
1178        size_t authsize = crypto_aead_authsize(tfm);
1179        struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1180        struct aead_request *backlog_aead_req;
1181        struct sec_req *backlog_req;
1182        size_t sz;
1183
1184        if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1185                sec_update_iv(req, SEC_AEAD);
1186
1187        /* Copy output mac */
1188        if (!err && c_req->encrypt) {
1189                struct scatterlist *sgl = a_req->dst;
1190
1191                sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1192                                          aead_req->out_mac,
1193                                          authsize, a_req->cryptlen +
1194                                          a_req->assoclen);
1195
1196                if (unlikely(sz != authsize)) {
1197                        dev_err(SEC_CTX_DEV(req->ctx), "copy out mac err!\n");
1198                        err = -EINVAL;
1199                }
1200        }
1201
1202        sec_free_req_id(req);
1203
1204        while (1) {
1205                backlog_req = sec_back_req_clear(c, qp_ctx);
1206                if (!backlog_req)
1207                        break;
1208
1209                backlog_aead_req = backlog_req->aead_req.aead_req;
1210                backlog_aead_req->base.complete(&backlog_aead_req->base,
1211                                                -EINPROGRESS);
1212                atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1213        }
1214
1215        a_req->base.complete(&a_req->base, err);
1216}
1217
1218static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1219{
1220        sec_free_req_id(req);
1221        sec_free_queue_id(ctx, req);
1222}
1223
1224static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1225{
1226        struct sec_qp_ctx *qp_ctx;
1227        int queue_id;
1228
1229        /* To load balance */
1230        queue_id = sec_alloc_queue_id(ctx, req);
1231        qp_ctx = &ctx->qp_ctx[queue_id];
1232
1233        req->req_id = sec_alloc_req_id(req, qp_ctx);
1234        if (unlikely(req->req_id < 0)) {
1235                sec_free_queue_id(ctx, req);
1236                return req->req_id;
1237        }
1238
1239        return 0;
1240}
1241
1242static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1243{
1244        struct sec_cipher_req *c_req = &req->c_req;
1245        int ret;
1246
1247        ret = sec_request_init(ctx, req);
1248        if (unlikely(ret))
1249                return ret;
1250
1251        ret = sec_request_transfer(ctx, req);
1252        if (unlikely(ret))
1253                goto err_uninit_req;
1254
1255        /* Output IV as decrypto */
1256        if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
1257                sec_update_iv(req, ctx->alg_type);
1258
1259        ret = ctx->req_op->bd_send(ctx, req);
1260        if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1261                (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1262                dev_err_ratelimited(SEC_CTX_DEV(ctx), "send sec request failed!\n");
1263                goto err_send_req;
1264        }
1265
1266        return ret;
1267
1268err_send_req:
1269        /* As failing, restore the IV from user */
1270        if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1271                if (ctx->alg_type == SEC_SKCIPHER)
1272                        memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1273                               ctx->c_ctx.ivsize);
1274                else
1275                        memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1276                               ctx->c_ctx.ivsize);
1277        }
1278
1279        sec_request_untransfer(ctx, req);
1280err_uninit_req:
1281        sec_request_uninit(ctx, req);
1282
1283        return ret;
1284}
1285
1286static const struct sec_req_op sec_skcipher_req_ops = {
1287        .buf_map        = sec_skcipher_sgl_map,
1288        .buf_unmap      = sec_skcipher_sgl_unmap,
1289        .do_transfer    = sec_skcipher_copy_iv,
1290        .bd_fill        = sec_skcipher_bd_fill,
1291        .bd_send        = sec_bd_send,
1292        .callback       = sec_skcipher_callback,
1293        .process        = sec_process,
1294};
1295
1296static const struct sec_req_op sec_aead_req_ops = {
1297        .buf_map        = sec_aead_sgl_map,
1298        .buf_unmap      = sec_aead_sgl_unmap,
1299        .do_transfer    = sec_aead_copy_iv,
1300        .bd_fill        = sec_aead_bd_fill,
1301        .bd_send        = sec_bd_send,
1302        .callback       = sec_aead_callback,
1303        .process        = sec_process,
1304};
1305
1306static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1307{
1308        struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1309
1310        ctx->req_op = &sec_skcipher_req_ops;
1311
1312        return sec_skcipher_init(tfm);
1313}
1314
1315static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1316{
1317        sec_skcipher_uninit(tfm);
1318}
1319
1320static int sec_aead_init(struct crypto_aead *tfm)
1321{
1322        struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1323        int ret;
1324
1325        crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1326        ctx->alg_type = SEC_AEAD;
1327        ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1328        if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1329                dev_err(SEC_CTX_DEV(ctx), "get error aead iv size!\n");
1330                return -EINVAL;
1331        }
1332
1333        ctx->req_op = &sec_aead_req_ops;
1334        ret = sec_ctx_base_init(ctx);
1335        if (ret)
1336                return ret;
1337
1338        ret = sec_auth_init(ctx);
1339        if (ret)
1340                goto err_auth_init;
1341
1342        ret = sec_cipher_init(ctx);
1343        if (ret)
1344                goto err_cipher_init;
1345
1346        return ret;
1347
1348err_cipher_init:
1349        sec_auth_uninit(ctx);
1350err_auth_init:
1351        sec_ctx_base_uninit(ctx);
1352
1353        return ret;
1354}
1355
1356static void sec_aead_exit(struct crypto_aead *tfm)
1357{
1358        struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1359
1360        sec_cipher_uninit(ctx);
1361        sec_auth_uninit(ctx);
1362        sec_ctx_base_uninit(ctx);
1363}
1364
1365static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1366{
1367        struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1368        struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1369        int ret;
1370
1371        ret = sec_aead_init(tfm);
1372        if (ret) {
1373                pr_err("hisi_sec2: aead init error!\n");
1374                return ret;
1375        }
1376
1377        auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1378        if (IS_ERR(auth_ctx->hash_tfm)) {
1379                dev_err(SEC_CTX_DEV(ctx), "aead alloc shash error!\n");
1380                sec_aead_exit(tfm);
1381                return PTR_ERR(auth_ctx->hash_tfm);
1382        }
1383
1384        return 0;
1385}
1386
1387static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1388{
1389        struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1390
1391        crypto_free_shash(ctx->a_ctx.hash_tfm);
1392        sec_aead_exit(tfm);
1393}
1394
1395static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1396{
1397        return sec_aead_ctx_init(tfm, "sha1");
1398}
1399
1400static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
1401{
1402        return sec_aead_ctx_init(tfm, "sha256");
1403}
1404
1405static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
1406{
1407        return sec_aead_ctx_init(tfm, "sha512");
1408}
1409
1410static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1411{
1412        struct skcipher_request *sk_req = sreq->c_req.sk_req;
1413        struct device *dev = SEC_CTX_DEV(ctx);
1414        u8 c_alg = ctx->c_ctx.c_alg;
1415
1416        if (unlikely(!sk_req->src || !sk_req->dst)) {
1417                dev_err(dev, "skcipher input param error!\n");
1418                return -EINVAL;
1419        }
1420        sreq->c_req.c_len = sk_req->cryptlen;
1421
1422        if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
1423                sreq->use_pbuf = true;
1424        else
1425                sreq->use_pbuf = false;
1426
1427        if (c_alg == SEC_CALG_3DES) {
1428                if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
1429                        dev_err(dev, "skcipher 3des input length error!\n");
1430                        return -EINVAL;
1431                }
1432                return 0;
1433        } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
1434                if (unlikely(sk_req->cryptlen & (AES_BLOCK_SIZE - 1))) {
1435                        dev_err(dev, "skcipher aes input length error!\n");
1436                        return -EINVAL;
1437                }
1438                return 0;
1439        }
1440
1441        dev_err(dev, "skcipher algorithm error!\n");
1442        return -EINVAL;
1443}
1444
1445static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
1446{
1447        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
1448        struct sec_req *req = skcipher_request_ctx(sk_req);
1449        struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1450        int ret;
1451
1452        if (!sk_req->cryptlen)
1453                return 0;
1454
1455        req->flag = sk_req->base.flags;
1456        req->c_req.sk_req = sk_req;
1457        req->c_req.encrypt = encrypt;
1458        req->ctx = ctx;
1459
1460        ret = sec_skcipher_param_check(ctx, req);
1461        if (unlikely(ret))
1462                return -EINVAL;
1463
1464        return ctx->req_op->process(ctx, req);
1465}
1466
1467static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
1468{
1469        return sec_skcipher_crypto(sk_req, true);
1470}
1471
1472static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
1473{
1474        return sec_skcipher_crypto(sk_req, false);
1475}
1476
1477#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
1478        sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
1479{\
1480        .base = {\
1481                .cra_name = sec_cra_name,\
1482                .cra_driver_name = "hisi_sec_"sec_cra_name,\
1483                .cra_priority = SEC_PRIORITY,\
1484                .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,\
1485                .cra_blocksize = blk_size,\
1486                .cra_ctxsize = sizeof(struct sec_ctx),\
1487                .cra_module = THIS_MODULE,\
1488        },\
1489        .init = ctx_init,\
1490        .exit = ctx_exit,\
1491        .setkey = sec_set_key,\
1492        .decrypt = sec_skcipher_decrypt,\
1493        .encrypt = sec_skcipher_encrypt,\
1494        .min_keysize = sec_min_key_size,\
1495        .max_keysize = sec_max_key_size,\
1496        .ivsize = iv_size,\
1497},
1498
1499#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
1500        max_key_size, blk_size, iv_size) \
1501        SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
1502        sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
1503
1504static struct skcipher_alg sec_skciphers[] = {
1505        SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
1506                         AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
1507                         AES_BLOCK_SIZE, 0)
1508
1509        SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
1510                         AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
1511                         AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1512
1513        SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
1514                         SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
1515                         AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1516
1517        SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
1518                         SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
1519                         DES3_EDE_BLOCK_SIZE, 0)
1520
1521        SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
1522                         SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
1523                         DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)
1524
1525        SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
1526                         SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
1527                         AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1528
1529        SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
1530                         AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
1531                         AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1532};
1533
1534static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1535{
1536        u8 c_alg = ctx->c_ctx.c_alg;
1537        struct aead_request *req = sreq->aead_req.aead_req;
1538        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1539        size_t authsize = crypto_aead_authsize(tfm);
1540
1541        if (unlikely(!req->src || !req->dst || !req->cryptlen ||
1542                req->assoclen > SEC_MAX_AAD_LEN)) {
1543                dev_err(SEC_CTX_DEV(ctx), "aead input param error!\n");
1544                return -EINVAL;
1545        }
1546
1547        if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
1548                SEC_PBUF_SZ)
1549                sreq->use_pbuf = true;
1550        else
1551                sreq->use_pbuf = false;
1552
1553        /* Support AES only */
1554        if (unlikely(c_alg != SEC_CALG_AES)) {
1555                dev_err(SEC_CTX_DEV(ctx), "aead crypto alg error!\n");
1556                return -EINVAL;
1557
1558        }
1559        if (sreq->c_req.encrypt)
1560                sreq->c_req.c_len = req->cryptlen;
1561        else
1562                sreq->c_req.c_len = req->cryptlen - authsize;
1563
1564        if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
1565                dev_err(SEC_CTX_DEV(ctx), "aead crypto length error!\n");
1566                return -EINVAL;
1567        }
1568
1569        return 0;
1570}
1571
1572static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
1573{
1574        struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1575        struct sec_req *req = aead_request_ctx(a_req);
1576        struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1577        int ret;
1578
1579        req->flag = a_req->base.flags;
1580        req->aead_req.aead_req = a_req;
1581        req->c_req.encrypt = encrypt;
1582        req->ctx = ctx;
1583
1584        ret = sec_aead_param_check(ctx, req);
1585        if (unlikely(ret))
1586                return -EINVAL;
1587
1588        return ctx->req_op->process(ctx, req);
1589}
1590
1591static int sec_aead_encrypt(struct aead_request *a_req)
1592{
1593        return sec_aead_crypto(a_req, true);
1594}
1595
1596static int sec_aead_decrypt(struct aead_request *a_req)
1597{
1598        return sec_aead_crypto(a_req, false);
1599}
1600
1601#define SEC_AEAD_GEN_ALG(sec_cra_name, sec_set_key, ctx_init,\
1602                         ctx_exit, blk_size, iv_size, max_authsize)\
1603{\
1604        .base = {\
1605                .cra_name = sec_cra_name,\
1606                .cra_driver_name = "hisi_sec_"sec_cra_name,\
1607                .cra_priority = SEC_PRIORITY,\
1608                .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,\
1609                .cra_blocksize = blk_size,\
1610                .cra_ctxsize = sizeof(struct sec_ctx),\
1611                .cra_module = THIS_MODULE,\
1612        },\
1613        .init = ctx_init,\
1614        .exit = ctx_exit,\
1615        .setkey = sec_set_key,\
1616        .decrypt = sec_aead_decrypt,\
1617        .encrypt = sec_aead_encrypt,\
1618        .ivsize = iv_size,\
1619        .maxauthsize = max_authsize,\
1620}
1621
1622#define SEC_AEAD_ALG(algname, keyfunc, aead_init, blksize, ivsize, authsize)\
1623        SEC_AEAD_GEN_ALG(algname, keyfunc, aead_init,\
1624                        sec_aead_ctx_exit, blksize, ivsize, authsize)
1625
1626static struct aead_alg sec_aeads[] = {
1627        SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
1628                     sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
1629                     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
1630
1631        SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
1632                     sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
1633                     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
1634
1635        SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
1636                     sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
1637                     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
1638};
1639
1640int sec_register_to_crypto(void)
1641{
1642        int ret;
1643
1644        /* To avoid repeat register */
1645        ret = crypto_register_skciphers(sec_skciphers,
1646                                        ARRAY_SIZE(sec_skciphers));
1647        if (ret)
1648                return ret;
1649
1650        ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
1651        if (ret)
1652                crypto_unregister_skciphers(sec_skciphers,
1653                                            ARRAY_SIZE(sec_skciphers));
1654        return ret;
1655}
1656
1657void sec_unregister_from_crypto(void)
1658{
1659        crypto_unregister_skciphers(sec_skciphers,
1660                                    ARRAY_SIZE(sec_skciphers));
1661        crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
1662}
1663