1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23#include <linux/mm_types.h>
24#include <linux/slab.h>
25#include <linux/types.h>
26#include <linux/sched/signal.h>
27#include <linux/sched/mm.h>
28#include <linux/uaccess.h>
29#include <linux/mman.h>
30#include <linux/memory.h>
31#include "kfd_priv.h"
32#include "kfd_events.h"
33#include "kfd_iommu.h"
34#include <linux/device.h>
35
36
37
38
39struct kfd_event_waiter {
40 wait_queue_entry_t wait;
41 struct kfd_event *event;
42 bool activated;
43};
44
45
46
47
48
49
50
51
52struct kfd_signal_page {
53 uint64_t *kernel_address;
54 uint64_t __user *user_address;
55 bool need_to_free_pages;
56};
57
58
59static uint64_t *page_slots(struct kfd_signal_page *page)
60{
61 return page->kernel_address;
62}
63
64static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
65{
66 void *backing_store;
67 struct kfd_signal_page *page;
68
69 page = kzalloc(sizeof(*page), GFP_KERNEL);
70 if (!page)
71 return NULL;
72
73 backing_store = (void *) __get_free_pages(GFP_KERNEL,
74 get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
75 if (!backing_store)
76 goto fail_alloc_signal_store;
77
78
79 memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
80 KFD_SIGNAL_EVENT_LIMIT * 8);
81
82 page->kernel_address = backing_store;
83 page->need_to_free_pages = true;
84 pr_debug("Allocated new event signal page at %p, for process %p\n",
85 page, p);
86
87 return page;
88
89fail_alloc_signal_store:
90 kfree(page);
91 return NULL;
92}
93
94static int allocate_event_notification_slot(struct kfd_process *p,
95 struct kfd_event *ev)
96{
97 int id;
98
99 if (!p->signal_page) {
100 p->signal_page = allocate_signal_page(p);
101 if (!p->signal_page)
102 return -ENOMEM;
103
104 p->signal_mapped_size = 256*8;
105 }
106
107
108
109
110
111
112
113 id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
114 GFP_KERNEL);
115 if (id < 0)
116 return id;
117
118 ev->event_id = id;
119 page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
120
121 return 0;
122}
123
124
125
126
127
128static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
129{
130 return idr_find(&p->event_idr, id);
131}
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150static struct kfd_event *lookup_signaled_event_by_partial_id(
151 struct kfd_process *p, uint32_t id, uint32_t bits)
152{
153 struct kfd_event *ev;
154
155 if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
156 return NULL;
157
158
159
160
161 if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
162 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
163 return NULL;
164
165 return idr_find(&p->event_idr, id);
166 }
167
168
169
170
171 for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
172 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
173 continue;
174
175 ev = idr_find(&p->event_idr, id);
176 }
177
178 return ev;
179}
180
181static int create_signal_event(struct file *devkfd,
182 struct kfd_process *p,
183 struct kfd_event *ev)
184{
185 int ret;
186
187 if (p->signal_mapped_size &&
188 p->signal_event_count == p->signal_mapped_size / 8) {
189 if (!p->signal_event_limit_reached) {
190 pr_debug("Signal event wasn't created because limit was reached\n");
191 p->signal_event_limit_reached = true;
192 }
193 return -ENOSPC;
194 }
195
196 ret = allocate_event_notification_slot(p, ev);
197 if (ret) {
198 pr_warn("Signal event wasn't created because out of kernel memory\n");
199 return ret;
200 }
201
202 p->signal_event_count++;
203
204 ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
205 pr_debug("Signal event number %zu created with id %d, address %p\n",
206 p->signal_event_count, ev->event_id,
207 ev->user_signal_address);
208
209 return 0;
210}
211
212static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
213{
214
215
216
217
218
219 int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
220 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
221 GFP_KERNEL);
222
223 if (id < 0)
224 return id;
225 ev->event_id = id;
226
227 return 0;
228}
229
230void kfd_event_init_process(struct kfd_process *p)
231{
232 mutex_init(&p->event_mutex);
233 idr_init(&p->event_idr);
234 p->signal_page = NULL;
235 p->signal_event_count = 0;
236}
237
238static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
239{
240 struct kfd_event_waiter *waiter;
241
242
243 list_for_each_entry(waiter, &ev->wq.head, wait.entry)
244 waiter->event = NULL;
245 wake_up_all(&ev->wq);
246
247 if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
248 ev->type == KFD_EVENT_TYPE_DEBUG)
249 p->signal_event_count--;
250
251 idr_remove(&p->event_idr, ev->event_id);
252 kfree(ev);
253}
254
255static void destroy_events(struct kfd_process *p)
256{
257 struct kfd_event *ev;
258 uint32_t id;
259
260 idr_for_each_entry(&p->event_idr, ev, id)
261 destroy_event(p, ev);
262 idr_destroy(&p->event_idr);
263}
264
265
266
267
268
269static void shutdown_signal_page(struct kfd_process *p)
270{
271 struct kfd_signal_page *page = p->signal_page;
272
273 if (page) {
274 if (page->need_to_free_pages)
275 free_pages((unsigned long)page->kernel_address,
276 get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
277 kfree(page);
278 }
279}
280
281void kfd_event_free_process(struct kfd_process *p)
282{
283 destroy_events(p);
284 shutdown_signal_page(p);
285}
286
287static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
288{
289 return ev->type == KFD_EVENT_TYPE_SIGNAL ||
290 ev->type == KFD_EVENT_TYPE_DEBUG;
291}
292
293static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
294{
295 return ev->type == KFD_EVENT_TYPE_SIGNAL;
296}
297
298int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
299 uint64_t size)
300{
301 struct kfd_signal_page *page;
302
303 if (p->signal_page)
304 return -EBUSY;
305
306 page = kzalloc(sizeof(*page), GFP_KERNEL);
307 if (!page)
308 return -ENOMEM;
309
310
311 memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
312 KFD_SIGNAL_EVENT_LIMIT * 8);
313
314 page->kernel_address = kernel_address;
315
316 p->signal_page = page;
317 p->signal_mapped_size = size;
318
319 return 0;
320}
321
322int kfd_event_create(struct file *devkfd, struct kfd_process *p,
323 uint32_t event_type, bool auto_reset, uint32_t node_id,
324 uint32_t *event_id, uint32_t *event_trigger_data,
325 uint64_t *event_page_offset, uint32_t *event_slot_index)
326{
327 int ret = 0;
328 struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
329
330 if (!ev)
331 return -ENOMEM;
332
333 ev->type = event_type;
334 ev->auto_reset = auto_reset;
335 ev->signaled = false;
336
337 init_waitqueue_head(&ev->wq);
338
339 *event_page_offset = 0;
340
341 mutex_lock(&p->event_mutex);
342
343 switch (event_type) {
344 case KFD_EVENT_TYPE_SIGNAL:
345 case KFD_EVENT_TYPE_DEBUG:
346 ret = create_signal_event(devkfd, p, ev);
347 if (!ret) {
348 *event_page_offset = KFD_MMAP_TYPE_EVENTS;
349 *event_slot_index = ev->event_id;
350 }
351 break;
352 default:
353 ret = create_other_event(p, ev);
354 break;
355 }
356
357 if (!ret) {
358 *event_id = ev->event_id;
359 *event_trigger_data = ev->event_id;
360 } else {
361 kfree(ev);
362 }
363
364 mutex_unlock(&p->event_mutex);
365
366 return ret;
367}
368
369
370int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
371{
372 struct kfd_event *ev;
373 int ret = 0;
374
375 mutex_lock(&p->event_mutex);
376
377 ev = lookup_event_by_id(p, event_id);
378
379 if (ev)
380 destroy_event(p, ev);
381 else
382 ret = -EINVAL;
383
384 mutex_unlock(&p->event_mutex);
385 return ret;
386}
387
388static void set_event(struct kfd_event *ev)
389{
390 struct kfd_event_waiter *waiter;
391
392
393
394
395
396
397 ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
398
399 list_for_each_entry(waiter, &ev->wq.head, wait.entry)
400 waiter->activated = true;
401
402 wake_up_all(&ev->wq);
403}
404
405
406int kfd_set_event(struct kfd_process *p, uint32_t event_id)
407{
408 int ret = 0;
409 struct kfd_event *ev;
410
411 mutex_lock(&p->event_mutex);
412
413 ev = lookup_event_by_id(p, event_id);
414
415 if (ev && event_can_be_cpu_signaled(ev))
416 set_event(ev);
417 else
418 ret = -EINVAL;
419
420 mutex_unlock(&p->event_mutex);
421 return ret;
422}
423
424static void reset_event(struct kfd_event *ev)
425{
426 ev->signaled = false;
427}
428
429
430int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
431{
432 int ret = 0;
433 struct kfd_event *ev;
434
435 mutex_lock(&p->event_mutex);
436
437 ev = lookup_event_by_id(p, event_id);
438
439 if (ev && event_can_be_cpu_signaled(ev))
440 reset_event(ev);
441 else
442 ret = -EINVAL;
443
444 mutex_unlock(&p->event_mutex);
445 return ret;
446
447}
448
449static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
450{
451 page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT;
452}
453
454static void set_event_from_interrupt(struct kfd_process *p,
455 struct kfd_event *ev)
456{
457 if (ev && event_can_be_gpu_signaled(ev)) {
458 acknowledge_signal(p, ev);
459 set_event(ev);
460 }
461}
462
463void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
464 uint32_t valid_id_bits)
465{
466 struct kfd_event *ev = NULL;
467
468
469
470
471
472
473 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
474
475 if (!p)
476 return;
477
478 mutex_lock(&p->event_mutex);
479
480 if (valid_id_bits)
481 ev = lookup_signaled_event_by_partial_id(p, partial_id,
482 valid_id_bits);
483 if (ev) {
484 set_event_from_interrupt(p, ev);
485 } else if (p->signal_page) {
486
487
488
489
490
491 uint64_t *slots = page_slots(p->signal_page);
492 uint32_t id;
493
494 if (valid_id_bits)
495 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
496 partial_id, valid_id_bits);
497
498 if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
499
500
501
502 idr_for_each_entry(&p->event_idr, ev, id) {
503 if (id >= KFD_SIGNAL_EVENT_LIMIT)
504 break;
505
506 if (slots[id] != UNSIGNALED_EVENT_SLOT)
507 set_event_from_interrupt(p, ev);
508 }
509 } else {
510
511
512
513
514 for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++)
515 if (slots[id] != UNSIGNALED_EVENT_SLOT) {
516 ev = lookup_event_by_id(p, id);
517 set_event_from_interrupt(p, ev);
518 }
519 }
520 }
521
522 mutex_unlock(&p->event_mutex);
523 kfd_unref_process(p);
524}
525
526static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
527{
528 struct kfd_event_waiter *event_waiters;
529 uint32_t i;
530
531 event_waiters = kmalloc_array(num_events,
532 sizeof(struct kfd_event_waiter),
533 GFP_KERNEL);
534
535 for (i = 0; (event_waiters) && (i < num_events) ; i++) {
536 init_wait(&event_waiters[i].wait);
537 event_waiters[i].activated = false;
538 }
539
540 return event_waiters;
541}
542
543static int init_event_waiter_get_status(struct kfd_process *p,
544 struct kfd_event_waiter *waiter,
545 uint32_t event_id)
546{
547 struct kfd_event *ev = lookup_event_by_id(p, event_id);
548
549 if (!ev)
550 return -EINVAL;
551
552 waiter->event = ev;
553 waiter->activated = ev->signaled;
554 ev->signaled = ev->signaled && !ev->auto_reset;
555
556 return 0;
557}
558
559static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter)
560{
561 struct kfd_event *ev = waiter->event;
562
563
564
565
566 if (!waiter->activated)
567 add_wait_queue(&ev->wq, &waiter->wait);
568}
569
570
571
572
573
574
575
576
577
578
579
580static uint32_t test_event_condition(bool all, uint32_t num_events,
581 struct kfd_event_waiter *event_waiters)
582{
583 uint32_t i;
584 uint32_t activated_count = 0;
585
586 for (i = 0; i < num_events; i++) {
587 if (!event_waiters[i].event)
588 return KFD_IOC_WAIT_RESULT_FAIL;
589
590 if (event_waiters[i].activated) {
591 if (!all)
592 return KFD_IOC_WAIT_RESULT_COMPLETE;
593
594 activated_count++;
595 }
596 }
597
598 return activated_count == num_events ?
599 KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
600}
601
602
603
604
605
606static int copy_signaled_event_data(uint32_t num_events,
607 struct kfd_event_waiter *event_waiters,
608 struct kfd_event_data __user *data)
609{
610 struct kfd_hsa_memory_exception_data *src;
611 struct kfd_hsa_memory_exception_data __user *dst;
612 struct kfd_event_waiter *waiter;
613 struct kfd_event *event;
614 uint32_t i;
615
616 for (i = 0; i < num_events; i++) {
617 waiter = &event_waiters[i];
618 event = waiter->event;
619 if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
620 dst = &data[i].memory_exception_data;
621 src = &event->memory_exception_data;
622 if (copy_to_user(dst, src,
623 sizeof(struct kfd_hsa_memory_exception_data)))
624 return -EFAULT;
625 }
626 }
627
628 return 0;
629
630}
631
632
633
634static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
635{
636 if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
637 return 0;
638
639 if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
640 return MAX_SCHEDULE_TIMEOUT;
641
642
643
644
645
646
647 user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
648
649 return msecs_to_jiffies(user_timeout_ms) + 1;
650}
651
652static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
653{
654 uint32_t i;
655
656 for (i = 0; i < num_events; i++)
657 if (waiters[i].event)
658 remove_wait_queue(&waiters[i].event->wq,
659 &waiters[i].wait);
660
661 kfree(waiters);
662}
663
664int kfd_wait_on_events(struct kfd_process *p,
665 uint32_t num_events, void __user *data,
666 bool all, uint32_t user_timeout_ms,
667 uint32_t *wait_result)
668{
669 struct kfd_event_data __user *events =
670 (struct kfd_event_data __user *) data;
671 uint32_t i;
672 int ret = 0;
673
674 struct kfd_event_waiter *event_waiters = NULL;
675 long timeout = user_timeout_to_jiffies(user_timeout_ms);
676
677 event_waiters = alloc_event_waiters(num_events);
678 if (!event_waiters) {
679 ret = -ENOMEM;
680 goto out;
681 }
682
683 mutex_lock(&p->event_mutex);
684
685 for (i = 0; i < num_events; i++) {
686 struct kfd_event_data event_data;
687
688 if (copy_from_user(&event_data, &events[i],
689 sizeof(struct kfd_event_data))) {
690 ret = -EFAULT;
691 goto out_unlock;
692 }
693
694 ret = init_event_waiter_get_status(p, &event_waiters[i],
695 event_data.event_id);
696 if (ret)
697 goto out_unlock;
698 }
699
700
701 *wait_result = test_event_condition(all, num_events, event_waiters);
702 if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
703 ret = copy_signaled_event_data(num_events,
704 event_waiters, events);
705 goto out_unlock;
706 } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
707
708
709
710 goto out_unlock;
711 }
712
713
714 for (i = 0; i < num_events; i++)
715 init_event_waiter_add_to_waitlist(&event_waiters[i]);
716
717 mutex_unlock(&p->event_mutex);
718
719 while (true) {
720 if (fatal_signal_pending(current)) {
721 ret = -EINTR;
722 break;
723 }
724
725 if (signal_pending(current)) {
726
727
728
729
730
731
732
733
734 ret = -ERESTARTSYS;
735 break;
736 }
737
738
739
740
741
742
743
744
745
746
747 set_current_state(TASK_INTERRUPTIBLE);
748
749 *wait_result = test_event_condition(all, num_events,
750 event_waiters);
751 if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
752 break;
753
754 if (timeout <= 0)
755 break;
756
757 timeout = schedule_timeout(timeout);
758 }
759 __set_current_state(TASK_RUNNING);
760
761
762
763
764 if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
765 ret = copy_signaled_event_data(num_events,
766 event_waiters, events);
767
768 mutex_lock(&p->event_mutex);
769out_unlock:
770 free_waiters(num_events, event_waiters);
771 mutex_unlock(&p->event_mutex);
772out:
773 if (ret)
774 *wait_result = KFD_IOC_WAIT_RESULT_FAIL;
775 else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
776 ret = -EIO;
777
778 return ret;
779}
780
781int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
782{
783 unsigned long pfn;
784 struct kfd_signal_page *page;
785 int ret;
786
787
788 if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
789 get_order(vma->vm_end - vma->vm_start)) {
790 pr_err("Event page mmap requested illegal size\n");
791 return -EINVAL;
792 }
793
794 page = p->signal_page;
795 if (!page) {
796
797 pr_debug("Signal page could not be found\n");
798 return -EINVAL;
799 }
800
801 pfn = __pa(page->kernel_address);
802 pfn >>= PAGE_SHIFT;
803
804 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
805 | VM_DONTDUMP | VM_PFNMAP;
806
807 pr_debug("Mapping signal page\n");
808 pr_debug(" start user address == 0x%08lx\n", vma->vm_start);
809 pr_debug(" end user address == 0x%08lx\n", vma->vm_end);
810 pr_debug(" pfn == 0x%016lX\n", pfn);
811 pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags);
812 pr_debug(" size == 0x%08lX\n",
813 vma->vm_end - vma->vm_start);
814
815 page->user_address = (uint64_t __user *)vma->vm_start;
816
817
818 ret = remap_pfn_range(vma, vma->vm_start, pfn,
819 vma->vm_end - vma->vm_start, vma->vm_page_prot);
820 if (!ret)
821 p->signal_mapped_size = vma->vm_end - vma->vm_start;
822
823 return ret;
824}
825
826
827
828
829
830static void lookup_events_by_type_and_signal(struct kfd_process *p,
831 int type, void *event_data)
832{
833 struct kfd_hsa_memory_exception_data *ev_data;
834 struct kfd_event *ev;
835 uint32_t id;
836 bool send_signal = true;
837
838 ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
839
840 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
841 idr_for_each_entry_continue(&p->event_idr, ev, id)
842 if (ev->type == type) {
843 send_signal = false;
844 dev_dbg(kfd_device,
845 "Event found: id %X type %d",
846 ev->event_id, ev->type);
847 set_event(ev);
848 if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
849 ev->memory_exception_data = *ev_data;
850 }
851
852 if (type == KFD_EVENT_TYPE_MEMORY) {
853 dev_warn(kfd_device,
854 "Sending SIGSEGV to process %d (pasid 0x%x)",
855 p->lead_thread->pid, p->pasid);
856 send_sig(SIGSEGV, p->lead_thread, 0);
857 }
858
859
860 if (send_signal) {
861 if (send_sigterm) {
862 dev_warn(kfd_device,
863 "Sending SIGTERM to process %d (pasid 0x%x)",
864 p->lead_thread->pid, p->pasid);
865 send_sig(SIGTERM, p->lead_thread, 0);
866 } else {
867 dev_err(kfd_device,
868 "Process %d (pasid 0x%x) got unhandled exception",
869 p->lead_thread->pid, p->pasid);
870 }
871 }
872}
873
874#ifdef KFD_SUPPORT_IOMMU_V2
875void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid,
876 unsigned long address, bool is_write_requested,
877 bool is_execute_requested)
878{
879 struct kfd_hsa_memory_exception_data memory_exception_data;
880 struct vm_area_struct *vma;
881
882
883
884
885
886
887 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
888 struct mm_struct *mm;
889
890 if (!p)
891 return;
892
893
894
895
896 mm = get_task_mm(p->lead_thread);
897 if (!mm) {
898 kfd_unref_process(p);
899 return;
900 }
901
902 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
903
904 mmap_read_lock(mm);
905 vma = find_vma(mm, address);
906
907 memory_exception_data.gpu_id = dev->id;
908 memory_exception_data.va = address;
909
910 memory_exception_data.failure.NotPresent = 1;
911 memory_exception_data.failure.NoExecute = 0;
912 memory_exception_data.failure.ReadOnly = 0;
913 if (vma && address >= vma->vm_start) {
914 memory_exception_data.failure.NotPresent = 0;
915
916 if (is_write_requested && !(vma->vm_flags & VM_WRITE))
917 memory_exception_data.failure.ReadOnly = 1;
918 else
919 memory_exception_data.failure.ReadOnly = 0;
920
921 if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
922 memory_exception_data.failure.NoExecute = 1;
923 else
924 memory_exception_data.failure.NoExecute = 0;
925 }
926
927 mmap_read_unlock(mm);
928 mmput(mm);
929
930 pr_debug("notpresent %d, noexecute %d, readonly %d\n",
931 memory_exception_data.failure.NotPresent,
932 memory_exception_data.failure.NoExecute,
933 memory_exception_data.failure.ReadOnly);
934
935
936
937
938 if (dev->device_info->asic_family != CHIP_RAVEN &&
939 dev->device_info->asic_family != CHIP_RENOIR) {
940 mutex_lock(&p->event_mutex);
941
942
943 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
944 &memory_exception_data);
945
946 mutex_unlock(&p->event_mutex);
947 }
948
949 kfd_unref_process(p);
950}
951#endif
952
953void kfd_signal_hw_exception_event(u32 pasid)
954{
955
956
957
958
959
960 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
961
962 if (!p)
963 return;
964
965 mutex_lock(&p->event_mutex);
966
967
968 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
969
970 mutex_unlock(&p->event_mutex);
971 kfd_unref_process(p);
972}
973
974void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
975 struct kfd_vm_fault_info *info)
976{
977 struct kfd_event *ev;
978 uint32_t id;
979 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
980 struct kfd_hsa_memory_exception_data memory_exception_data;
981
982 if (!p)
983 return;
984 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
985 memory_exception_data.gpu_id = dev->id;
986 memory_exception_data.failure.imprecise = true;
987
988 if (info) {
989 memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
990 memory_exception_data.failure.NotPresent =
991 info->prot_valid ? 1 : 0;
992 memory_exception_data.failure.NoExecute =
993 info->prot_exec ? 1 : 0;
994 memory_exception_data.failure.ReadOnly =
995 info->prot_write ? 1 : 0;
996 memory_exception_data.failure.imprecise = 0;
997 }
998 mutex_lock(&p->event_mutex);
999
1000 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1001 idr_for_each_entry_continue(&p->event_idr, ev, id)
1002 if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1003 ev->memory_exception_data = memory_exception_data;
1004 set_event(ev);
1005 }
1006
1007 mutex_unlock(&p->event_mutex);
1008 kfd_unref_process(p);
1009}
1010
1011void kfd_signal_reset_event(struct kfd_dev *dev)
1012{
1013 struct kfd_hsa_hw_exception_data hw_exception_data;
1014 struct kfd_hsa_memory_exception_data memory_exception_data;
1015 struct kfd_process *p;
1016 struct kfd_event *ev;
1017 unsigned int temp;
1018 uint32_t id, idx;
1019 int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1020 KFD_HW_EXCEPTION_ECC :
1021 KFD_HW_EXCEPTION_GPU_HANG;
1022
1023
1024 memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1025 hw_exception_data.gpu_id = dev->id;
1026 hw_exception_data.memory_lost = 1;
1027 hw_exception_data.reset_cause = reset_cause;
1028
1029 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1030 memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1031 memory_exception_data.gpu_id = dev->id;
1032 memory_exception_data.failure.imprecise = true;
1033
1034 idx = srcu_read_lock(&kfd_processes_srcu);
1035 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1036 mutex_lock(&p->event_mutex);
1037 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1038 idr_for_each_entry_continue(&p->event_idr, ev, id) {
1039 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1040 ev->hw_exception_data = hw_exception_data;
1041 set_event(ev);
1042 }
1043 if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1044 reset_cause == KFD_HW_EXCEPTION_ECC) {
1045 ev->memory_exception_data = memory_exception_data;
1046 set_event(ev);
1047 }
1048 }
1049 mutex_unlock(&p->event_mutex);
1050 }
1051 srcu_read_unlock(&kfd_processes_srcu, idx);
1052}
1053