linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h
<<
>>
Prefs
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#ifndef KFD_PRIV_H_INCLUDED
  24#define KFD_PRIV_H_INCLUDED
  25
  26#include <linux/hashtable.h>
  27#include <linux/mmu_notifier.h>
  28#include <linux/mutex.h>
  29#include <linux/types.h>
  30#include <linux/atomic.h>
  31#include <linux/workqueue.h>
  32#include <linux/spinlock.h>
  33#include <linux/kfd_ioctl.h>
  34#include <linux/idr.h>
  35#include <linux/kfifo.h>
  36#include <linux/seq_file.h>
  37#include <linux/kref.h>
  38#include <linux/sysfs.h>
  39#include <linux/device_cgroup.h>
  40#include <drm/drm_file.h>
  41#include <drm/drm_drv.h>
  42#include <drm/drm_device.h>
  43#include <drm/drm_ioctl.h>
  44#include <kgd_kfd_interface.h>
  45#include <linux/swap.h>
  46
  47#include "amd_shared.h"
  48
  49#define KFD_MAX_RING_ENTRY_SIZE 8
  50
  51#define KFD_SYSFS_FILE_MODE 0444
  52
  53/* GPU ID hash width in bits */
  54#define KFD_GPU_ID_HASH_WIDTH 16
  55
  56/* Use upper bits of mmap offset to store KFD driver specific information.
  57 * BITS[63:62] - Encode MMAP type
  58 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
  59 * BITS[45:0]  - MMAP offset value
  60 *
  61 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
  62 *  defines are w.r.t to PAGE_SIZE
  63 */
  64#define KFD_MMAP_TYPE_SHIFT     62
  65#define KFD_MMAP_TYPE_MASK      (0x3ULL << KFD_MMAP_TYPE_SHIFT)
  66#define KFD_MMAP_TYPE_DOORBELL  (0x3ULL << KFD_MMAP_TYPE_SHIFT)
  67#define KFD_MMAP_TYPE_EVENTS    (0x2ULL << KFD_MMAP_TYPE_SHIFT)
  68#define KFD_MMAP_TYPE_RESERVED_MEM      (0x1ULL << KFD_MMAP_TYPE_SHIFT)
  69#define KFD_MMAP_TYPE_MMIO      (0x0ULL << KFD_MMAP_TYPE_SHIFT)
  70
  71#define KFD_MMAP_GPU_ID_SHIFT 46
  72#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
  73                                << KFD_MMAP_GPU_ID_SHIFT)
  74#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
  75                                & KFD_MMAP_GPU_ID_MASK)
  76#define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
  77                                >> KFD_MMAP_GPU_ID_SHIFT)
  78
  79/*
  80 * When working with cp scheduler we should assign the HIQ manually or via
  81 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
  82 * definitions for Kaveri. In Kaveri only the first ME queues participates
  83 * in the cp scheduling taking that in mind we set the HIQ slot in the
  84 * second ME.
  85 */
  86#define KFD_CIK_HIQ_PIPE 4
  87#define KFD_CIK_HIQ_QUEUE 0
  88
  89/* Macro for allocating structures */
  90#define kfd_alloc_struct(ptr_to_struct) \
  91        ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
  92
  93#define KFD_MAX_NUM_OF_PROCESSES 512
  94#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
  95
  96/*
  97 * Size of the per-process TBA+TMA buffer: 2 pages
  98 *
  99 * The first page is the TBA used for the CWSR ISA code. The second
 100 * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
 101 */
 102#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
 103#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
 104
 105#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE                \
 106        (KFD_MAX_NUM_OF_PROCESSES *                     \
 107                        KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
 108
 109#define KFD_KERNEL_QUEUE_SIZE 2048
 110
 111#define KFD_UNMAP_LATENCY_MS    (4000)
 112
 113/*
 114 * 512 = 0x200
 115 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
 116 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
 117 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
 118 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
 119 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
 120 */
 121#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
 122
 123
 124/*
 125 * Kernel module parameter to specify maximum number of supported queues per
 126 * device
 127 */
 128extern int max_num_of_queues_per_device;
 129
 130
 131/* Kernel module parameter to specify the scheduling policy */
 132extern int sched_policy;
 133
 134/*
 135 * Kernel module parameter to specify the maximum process
 136 * number per HW scheduler
 137 */
 138extern int hws_max_conc_proc;
 139
 140extern int cwsr_enable;
 141
 142/*
 143 * Kernel module parameter to specify whether to send sigterm to HSA process on
 144 * unhandled exception
 145 */
 146extern int send_sigterm;
 147
 148/*
 149 * This kernel module is used to simulate large bar machine on non-large bar
 150 * enabled machines.
 151 */
 152extern int debug_largebar;
 153
 154/*
 155 * Ignore CRAT table during KFD initialization, can be used to work around
 156 * broken CRAT tables on some AMD systems
 157 */
 158extern int ignore_crat;
 159
 160/* Set sh_mem_config.retry_disable on GFX v9 */
 161extern int amdgpu_noretry;
 162
 163/* Halt if HWS hang is detected */
 164extern int halt_if_hws_hang;
 165
 166/* Whether MEC FW support GWS barriers */
 167extern bool hws_gws_support;
 168
 169/* Queue preemption timeout in ms */
 170extern int queue_preemption_timeout_ms;
 171
 172/* Enable eviction debug messages */
 173extern bool debug_evictions;
 174
 175enum cache_policy {
 176        cache_policy_coherent,
 177        cache_policy_noncoherent
 178};
 179
 180#define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
 181
 182struct kfd_event_interrupt_class {
 183        bool (*interrupt_isr)(struct kfd_dev *dev,
 184                        const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
 185                        bool *patched_flag);
 186        void (*interrupt_wq)(struct kfd_dev *dev,
 187                        const uint32_t *ih_ring_entry);
 188};
 189
 190struct kfd_device_info {
 191        enum amd_asic_type asic_family;
 192        const char *asic_name;
 193        const struct kfd_event_interrupt_class *event_interrupt_class;
 194        unsigned int max_pasid_bits;
 195        unsigned int max_no_of_hqd;
 196        unsigned int doorbell_size;
 197        size_t ih_ring_entry_size;
 198        uint8_t num_of_watch_points;
 199        uint16_t mqd_size_aligned;
 200        bool supports_cwsr;
 201        bool needs_iommu_device;
 202        bool needs_pci_atomics;
 203        unsigned int num_sdma_engines;
 204        unsigned int num_xgmi_sdma_engines;
 205        unsigned int num_sdma_queues_per_engine;
 206};
 207
 208struct kfd_mem_obj {
 209        uint32_t range_start;
 210        uint32_t range_end;
 211        uint64_t gpu_addr;
 212        uint32_t *cpu_ptr;
 213        void *gtt_mem;
 214};
 215
 216struct kfd_vmid_info {
 217        uint32_t first_vmid_kfd;
 218        uint32_t last_vmid_kfd;
 219        uint32_t vmid_num_kfd;
 220};
 221
 222struct kfd_dev {
 223        struct kgd_dev *kgd;
 224
 225        const struct kfd_device_info *device_info;
 226        struct pci_dev *pdev;
 227        struct drm_device *ddev;
 228
 229        unsigned int id;                /* topology stub index */
 230
 231        phys_addr_t doorbell_base;      /* Start of actual doorbells used by
 232                                         * KFD. It is aligned for mapping
 233                                         * into user mode
 234                                         */
 235        size_t doorbell_base_dw_offset; /* Offset from the start of the PCI
 236                                         * doorbell BAR to the first KFD
 237                                         * doorbell in dwords. GFX reserves
 238                                         * the segment before this offset.
 239                                         */
 240        u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
 241                                           * page used by kernel queue
 242                                           */
 243
 244        struct kgd2kfd_shared_resources shared_resources;
 245        struct kfd_vmid_info vm_info;
 246
 247        const struct kfd2kgd_calls *kfd2kgd;
 248        struct mutex doorbell_mutex;
 249        DECLARE_BITMAP(doorbell_available_index,
 250                        KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
 251
 252        void *gtt_mem;
 253        uint64_t gtt_start_gpu_addr;
 254        void *gtt_start_cpu_ptr;
 255        void *gtt_sa_bitmap;
 256        struct mutex gtt_sa_lock;
 257        unsigned int gtt_sa_chunk_size;
 258        unsigned int gtt_sa_num_of_chunks;
 259
 260        /* Interrupts */
 261        struct kfifo ih_fifo;
 262        struct workqueue_struct *ih_wq;
 263        struct work_struct interrupt_work;
 264        spinlock_t interrupt_lock;
 265
 266        /* QCM Device instance */
 267        struct device_queue_manager *dqm;
 268
 269        bool init_complete;
 270        /*
 271         * Interrupts of interest to KFD are copied
 272         * from the HW ring into a SW ring.
 273         */
 274        bool interrupts_active;
 275
 276        /* Debug manager */
 277        struct kfd_dbgmgr *dbgmgr;
 278
 279        /* Firmware versions */
 280        uint16_t mec_fw_version;
 281        uint16_t mec2_fw_version;
 282        uint16_t sdma_fw_version;
 283
 284        /* Maximum process number mapped to HW scheduler */
 285        unsigned int max_proc_per_quantum;
 286
 287        /* CWSR */
 288        bool cwsr_enabled;
 289        const void *cwsr_isa;
 290        unsigned int cwsr_isa_size;
 291
 292        /* xGMI */
 293        uint64_t hive_id;
 294
 295        /* UUID */
 296        uint64_t unique_id;
 297
 298        bool pci_atomic_requested;
 299
 300        /* Use IOMMU v2 flag */
 301        bool use_iommu_v2;
 302
 303        /* SRAM ECC flag */
 304        atomic_t sram_ecc_flag;
 305
 306        /* Compute Profile ref. count */
 307        atomic_t compute_profile;
 308
 309        /* Global GWS resource shared between processes */
 310        void *gws;
 311
 312        /* Clients watching SMI events */
 313        struct list_head smi_clients;
 314        spinlock_t smi_lock;
 315
 316        uint32_t reset_seq_num;
 317
 318        struct ida doorbell_ida;
 319        unsigned int max_doorbell_slices;
 320
 321        int noretry;
 322};
 323
 324enum kfd_mempool {
 325        KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
 326        KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
 327        KFD_MEMPOOL_FRAMEBUFFER = 3,
 328};
 329
 330/* Character device interface */
 331int kfd_chardev_init(void);
 332void kfd_chardev_exit(void);
 333struct device *kfd_chardev(void);
 334
 335/**
 336 * enum kfd_unmap_queues_filter - Enum for queue filters.
 337 *
 338 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
 339 *
 340 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
 341 *                                              running queues list.
 342 *
 343 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
 344 *                                              specific process.
 345 *
 346 */
 347enum kfd_unmap_queues_filter {
 348        KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
 349        KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
 350        KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
 351        KFD_UNMAP_QUEUES_FILTER_BY_PASID
 352};
 353
 354/**
 355 * enum kfd_queue_type - Enum for various queue types.
 356 *
 357 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
 358 *
 359 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
 360 *
 361 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
 362 *
 363 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
 364 *
 365 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
 366 */
 367enum kfd_queue_type  {
 368        KFD_QUEUE_TYPE_COMPUTE,
 369        KFD_QUEUE_TYPE_SDMA,
 370        KFD_QUEUE_TYPE_HIQ,
 371        KFD_QUEUE_TYPE_DIQ,
 372        KFD_QUEUE_TYPE_SDMA_XGMI
 373};
 374
 375enum kfd_queue_format {
 376        KFD_QUEUE_FORMAT_PM4,
 377        KFD_QUEUE_FORMAT_AQL
 378};
 379
 380enum KFD_QUEUE_PRIORITY {
 381        KFD_QUEUE_PRIORITY_MINIMUM = 0,
 382        KFD_QUEUE_PRIORITY_MAXIMUM = 15
 383};
 384
 385/**
 386 * struct queue_properties
 387 *
 388 * @type: The queue type.
 389 *
 390 * @queue_id: Queue identifier.
 391 *
 392 * @queue_address: Queue ring buffer address.
 393 *
 394 * @queue_size: Queue ring buffer size.
 395 *
 396 * @priority: Defines the queue priority relative to other queues in the
 397 * process.
 398 * This is just an indication and HW scheduling may override the priority as
 399 * necessary while keeping the relative prioritization.
 400 * the priority granularity is from 0 to f which f is the highest priority.
 401 * currently all queues are initialized with the highest priority.
 402 *
 403 * @queue_percent: This field is partially implemented and currently a zero in
 404 * this field defines that the queue is non active.
 405 *
 406 * @read_ptr: User space address which points to the number of dwords the
 407 * cp read from the ring buffer. This field updates automatically by the H/W.
 408 *
 409 * @write_ptr: Defines the number of dwords written to the ring buffer.
 410 *
 411 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
 412 * buffer. This field should be similar to write_ptr and the user should
 413 * update this field after updating the write_ptr.
 414 *
 415 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
 416 *
 417 * @is_interop: Defines if this is a interop queue. Interop queue means that
 418 * the queue can access both graphics and compute resources.
 419 *
 420 * @is_evicted: Defines if the queue is evicted. Only active queues
 421 * are evicted, rendering them inactive.
 422 *
 423 * @is_active: Defines if the queue is active or not. @is_active and
 424 * @is_evicted are protected by the DQM lock.
 425 *
 426 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
 427 * @is_gws should be protected by the DQM lock, since changing it can yield the
 428 * possibility of updating DQM state on number of GWS queues.
 429 *
 430 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
 431 * of the queue.
 432 *
 433 * This structure represents the queue properties for each queue no matter if
 434 * it's user mode or kernel mode queue.
 435 *
 436 */
 437struct queue_properties {
 438        enum kfd_queue_type type;
 439        enum kfd_queue_format format;
 440        unsigned int queue_id;
 441        uint64_t queue_address;
 442        uint64_t  queue_size;
 443        uint32_t priority;
 444        uint32_t queue_percent;
 445        uint32_t *read_ptr;
 446        uint32_t *write_ptr;
 447        void __iomem *doorbell_ptr;
 448        uint32_t doorbell_off;
 449        bool is_interop;
 450        bool is_evicted;
 451        bool is_active;
 452        bool is_gws;
 453        /* Not relevant for user mode queues in cp scheduling */
 454        unsigned int vmid;
 455        /* Relevant only for sdma queues*/
 456        uint32_t sdma_engine_id;
 457        uint32_t sdma_queue_id;
 458        uint32_t sdma_vm_addr;
 459        /* Relevant only for VI */
 460        uint64_t eop_ring_buffer_address;
 461        uint32_t eop_ring_buffer_size;
 462        uint64_t ctx_save_restore_area_address;
 463        uint32_t ctx_save_restore_area_size;
 464        uint32_t ctl_stack_size;
 465        uint64_t tba_addr;
 466        uint64_t tma_addr;
 467        /* Relevant for CU */
 468        uint32_t cu_mask_count; /* Must be a multiple of 32 */
 469        uint32_t *cu_mask;
 470};
 471
 472#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&       \
 473                            (q).queue_address != 0 &&   \
 474                            (q).queue_percent > 0 &&    \
 475                            !(q).is_evicted)
 476
 477/**
 478 * struct queue
 479 *
 480 * @list: Queue linked list.
 481 *
 482 * @mqd: The queue MQD (memory queue descriptor).
 483 *
 484 * @mqd_mem_obj: The MQD local gpu memory object.
 485 *
 486 * @gart_mqd_addr: The MQD gart mc address.
 487 *
 488 * @properties: The queue properties.
 489 *
 490 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
 491 *       that the queue should be executed on.
 492 *
 493 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
 494 *        id.
 495 *
 496 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
 497 *
 498 * @process: The kfd process that created this queue.
 499 *
 500 * @device: The kfd device that created this queue.
 501 *
 502 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
 503 * otherwise.
 504 *
 505 * This structure represents user mode compute queues.
 506 * It contains all the necessary data to handle such queues.
 507 *
 508 */
 509
 510struct queue {
 511        struct list_head list;
 512        void *mqd;
 513        struct kfd_mem_obj *mqd_mem_obj;
 514        uint64_t gart_mqd_addr;
 515        struct queue_properties properties;
 516
 517        uint32_t mec;
 518        uint32_t pipe;
 519        uint32_t queue;
 520
 521        unsigned int sdma_id;
 522        unsigned int doorbell_id;
 523
 524        struct kfd_process      *process;
 525        struct kfd_dev          *device;
 526        void *gws;
 527
 528        /* procfs */
 529        struct kobject kobj;
 530};
 531
 532enum KFD_MQD_TYPE {
 533        KFD_MQD_TYPE_HIQ = 0,           /* for hiq */
 534        KFD_MQD_TYPE_CP,                /* for cp queues and diq */
 535        KFD_MQD_TYPE_SDMA,              /* for sdma queues */
 536        KFD_MQD_TYPE_DIQ,               /* for diq */
 537        KFD_MQD_TYPE_MAX
 538};
 539
 540enum KFD_PIPE_PRIORITY {
 541        KFD_PIPE_PRIORITY_CS_LOW = 0,
 542        KFD_PIPE_PRIORITY_CS_MEDIUM,
 543        KFD_PIPE_PRIORITY_CS_HIGH
 544};
 545
 546struct scheduling_resources {
 547        unsigned int vmid_mask;
 548        enum kfd_queue_type type;
 549        uint64_t queue_mask;
 550        uint64_t gws_mask;
 551        uint32_t oac_mask;
 552        uint32_t gds_heap_base;
 553        uint32_t gds_heap_size;
 554};
 555
 556struct process_queue_manager {
 557        /* data */
 558        struct kfd_process      *process;
 559        struct list_head        queues;
 560        unsigned long           *queue_slot_bitmap;
 561};
 562
 563struct qcm_process_device {
 564        /* The Device Queue Manager that owns this data */
 565        struct device_queue_manager *dqm;
 566        struct process_queue_manager *pqm;
 567        /* Queues list */
 568        struct list_head queues_list;
 569        struct list_head priv_queue_list;
 570
 571        unsigned int queue_count;
 572        unsigned int vmid;
 573        bool is_debug;
 574        unsigned int evicted; /* eviction counter, 0=active */
 575
 576        /* This flag tells if we should reset all wavefronts on
 577         * process termination
 578         */
 579        bool reset_wavefronts;
 580
 581        /* This flag tells us if this process has a GWS-capable
 582         * queue that will be mapped into the runlist. It's
 583         * possible to request a GWS BO, but not have the queue
 584         * currently mapped, and this changes how the MAP_PROCESS
 585         * PM4 packet is configured.
 586         */
 587        bool mapped_gws_queue;
 588
 589        /* All the memory management data should be here too */
 590        uint64_t gds_context_area;
 591        /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
 592        uint64_t page_table_base;
 593        uint32_t sh_mem_config;
 594        uint32_t sh_mem_bases;
 595        uint32_t sh_mem_ape1_base;
 596        uint32_t sh_mem_ape1_limit;
 597        uint32_t gds_size;
 598        uint32_t num_gws;
 599        uint32_t num_oac;
 600        uint32_t sh_hidden_private_base;
 601
 602        /* CWSR memory */
 603        void *cwsr_kaddr;
 604        uint64_t cwsr_base;
 605        uint64_t tba_addr;
 606        uint64_t tma_addr;
 607
 608        /* IB memory */
 609        uint64_t ib_base;
 610        void *ib_kaddr;
 611
 612        /* doorbell resources per process per device */
 613        unsigned long *doorbell_bitmap;
 614};
 615
 616/* KFD Memory Eviction */
 617
 618/* Approx. wait time before attempting to restore evicted BOs */
 619#define PROCESS_RESTORE_TIME_MS 100
 620/* Approx. back off time if restore fails due to lack of memory */
 621#define PROCESS_BACK_OFF_TIME_MS 100
 622/* Approx. time before evicting the process again */
 623#define PROCESS_ACTIVE_TIME_MS 10
 624
 625/* 8 byte handle containing GPU ID in the most significant 4 bytes and
 626 * idr_handle in the least significant 4 bytes
 627 */
 628#define MAKE_HANDLE(gpu_id, idr_handle) \
 629        (((uint64_t)(gpu_id) << 32) + idr_handle)
 630#define GET_GPU_ID(handle) (handle >> 32)
 631#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
 632
 633enum kfd_pdd_bound {
 634        PDD_UNBOUND = 0,
 635        PDD_BOUND,
 636        PDD_BOUND_SUSPENDED,
 637};
 638
 639#define MAX_SYSFS_FILENAME_LEN 15
 640
 641/*
 642 * SDMA counter runs at 100MHz frequency.
 643 * We display SDMA activity in microsecond granularity in sysfs.
 644 * As a result, the divisor is 100.
 645 */
 646#define SDMA_ACTIVITY_DIVISOR  100
 647
 648/* Data that is per-process-per device. */
 649struct kfd_process_device {
 650        /*
 651         * List of all per-device data for a process.
 652         * Starts from kfd_process.per_device_data.
 653         */
 654        struct list_head per_device_list;
 655
 656        /* The device that owns this data. */
 657        struct kfd_dev *dev;
 658
 659        /* The process that owns this kfd_process_device. */
 660        struct kfd_process *process;
 661
 662        /* per-process-per device QCM data structure */
 663        struct qcm_process_device qpd;
 664
 665        /*Apertures*/
 666        uint64_t lds_base;
 667        uint64_t lds_limit;
 668        uint64_t gpuvm_base;
 669        uint64_t gpuvm_limit;
 670        uint64_t scratch_base;
 671        uint64_t scratch_limit;
 672
 673        /* VM context for GPUVM allocations */
 674        struct file *drm_file;
 675        void *vm;
 676
 677        /* GPUVM allocations storage */
 678        struct idr alloc_idr;
 679
 680        /* Flag used to tell the pdd has dequeued from the dqm.
 681         * This is used to prevent dev->dqm->ops.process_termination() from
 682         * being called twice when it is already called in IOMMU callback
 683         * function.
 684         */
 685        bool already_dequeued;
 686        bool runtime_inuse;
 687
 688        /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
 689        enum kfd_pdd_bound bound;
 690
 691        /* VRAM usage */
 692        uint64_t vram_usage;
 693        struct attribute attr_vram;
 694        char vram_filename[MAX_SYSFS_FILENAME_LEN];
 695
 696        /* SDMA activity tracking */
 697        uint64_t sdma_past_activity_counter;
 698        struct attribute attr_sdma;
 699        char sdma_filename[MAX_SYSFS_FILENAME_LEN];
 700
 701        /* Eviction activity tracking */
 702        uint64_t last_evict_timestamp;
 703        atomic64_t evict_duration_counter;
 704        struct attribute attr_evict;
 705
 706        struct kobject *kobj_stats;
 707        unsigned int doorbell_index;
 708
 709        /*
 710         * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
 711         * that is associated with device encoded by "this" struct instance. The
 712         * value reflects CU usage by all of the waves launched by this process
 713         * on this device. A very important property of occupancy parameter is
 714         * that its value is a snapshot of current use.
 715         *
 716         * Following is to be noted regarding how this parameter is reported:
 717         *
 718         *  The number of waves that a CU can launch is limited by couple of
 719         *  parameters. These are encoded by struct amdgpu_cu_info instance
 720         *  that is part of every device definition. For GFX9 devices this
 721         *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
 722         *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
 723         *  when they do use scratch memory. This could change for future
 724         *  devices and therefore this example should be considered as a guide.
 725         *
 726         *  All CU's of a device are available for the process. This may not be true
 727         *  under certain conditions - e.g. CU masking.
 728         *
 729         *  Finally number of CU's that are occupied by a process is affected by both
 730         *  number of CU's a device has along with number of other competing processes
 731         */
 732        struct attribute attr_cu_occupancy;
 733};
 734
 735#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
 736
 737/* Process data */
 738struct kfd_process {
 739        /*
 740         * kfd_process are stored in an mm_struct*->kfd_process*
 741         * hash table (kfd_processes in kfd_process.c)
 742         */
 743        struct hlist_node kfd_processes;
 744
 745        /*
 746         * Opaque pointer to mm_struct. We don't hold a reference to
 747         * it so it should never be dereferenced from here. This is
 748         * only used for looking up processes by their mm.
 749         */
 750        void *mm;
 751
 752        struct kref ref;
 753        struct work_struct release_work;
 754
 755        struct mutex mutex;
 756
 757        /*
 758         * In any process, the thread that started main() is the lead
 759         * thread and outlives the rest.
 760         * It is here because amd_iommu_bind_pasid wants a task_struct.
 761         * It can also be used for safely getting a reference to the
 762         * mm_struct of the process.
 763         */
 764        struct task_struct *lead_thread;
 765
 766        /* We want to receive a notification when the mm_struct is destroyed */
 767        struct mmu_notifier mmu_notifier;
 768
 769        u32 pasid;
 770
 771        /*
 772         * List of kfd_process_device structures,
 773         * one for each device the process is using.
 774         */
 775        struct list_head per_device_data;
 776
 777        struct process_queue_manager pqm;
 778
 779        /*Is the user space process 32 bit?*/
 780        bool is_32bit_user_mode;
 781
 782        /* Event-related data */
 783        struct mutex event_mutex;
 784        /* Event ID allocator and lookup */
 785        struct idr event_idr;
 786        /* Event page */
 787        struct kfd_signal_page *signal_page;
 788        size_t signal_mapped_size;
 789        size_t signal_event_count;
 790        bool signal_event_limit_reached;
 791
 792        /* Information used for memory eviction */
 793        void *kgd_process_info;
 794        /* Eviction fence that is attached to all the BOs of this process. The
 795         * fence will be triggered during eviction and new one will be created
 796         * during restore
 797         */
 798        struct dma_fence *ef;
 799
 800        /* Work items for evicting and restoring BOs */
 801        struct delayed_work eviction_work;
 802        struct delayed_work restore_work;
 803        /* seqno of the last scheduled eviction */
 804        unsigned int last_eviction_seqno;
 805        /* Approx. the last timestamp (in jiffies) when the process was
 806         * restored after an eviction
 807         */
 808        unsigned long last_restore_timestamp;
 809
 810        /* Kobj for our procfs */
 811        struct kobject *kobj;
 812        struct kobject *kobj_queues;
 813        struct attribute attr_pasid;
 814};
 815
 816#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
 817extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
 818extern struct srcu_struct kfd_processes_srcu;
 819
 820/**
 821 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
 822 *
 823 * @filep: pointer to file structure.
 824 * @p: amdkfd process pointer.
 825 * @data: pointer to arg that was copied from user.
 826 *
 827 * Return: returns ioctl completion code.
 828 */
 829typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
 830                                void *data);
 831
 832struct amdkfd_ioctl_desc {
 833        unsigned int cmd;
 834        int flags;
 835        amdkfd_ioctl_t *func;
 836        unsigned int cmd_drv;
 837        const char *name;
 838};
 839bool kfd_dev_is_large_bar(struct kfd_dev *dev);
 840
 841int kfd_process_create_wq(void);
 842void kfd_process_destroy_wq(void);
 843struct kfd_process *kfd_create_process(struct file *filep);
 844struct kfd_process *kfd_get_process(const struct task_struct *);
 845struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
 846struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
 847void kfd_unref_process(struct kfd_process *p);
 848int kfd_process_evict_queues(struct kfd_process *p);
 849int kfd_process_restore_queues(struct kfd_process *p);
 850void kfd_suspend_all_processes(void);
 851int kfd_resume_all_processes(void);
 852
 853int kfd_process_device_init_vm(struct kfd_process_device *pdd,
 854                               struct file *drm_file);
 855struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
 856                                                struct kfd_process *p);
 857struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
 858                                                        struct kfd_process *p);
 859struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
 860                                                        struct kfd_process *p);
 861
 862int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
 863                          struct vm_area_struct *vma);
 864
 865/* KFD process API for creating and translating handles */
 866int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
 867                                        void *mem);
 868void *kfd_process_device_translate_handle(struct kfd_process_device *p,
 869                                        int handle);
 870void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
 871                                        int handle);
 872
 873/* Process device data iterator */
 874struct kfd_process_device *kfd_get_first_process_device_data(
 875                                                        struct kfd_process *p);
 876struct kfd_process_device *kfd_get_next_process_device_data(
 877                                                struct kfd_process *p,
 878                                                struct kfd_process_device *pdd);
 879bool kfd_has_process_device_data(struct kfd_process *p);
 880
 881/* PASIDs */
 882int kfd_pasid_init(void);
 883void kfd_pasid_exit(void);
 884bool kfd_set_pasid_limit(unsigned int new_limit);
 885unsigned int kfd_get_pasid_limit(void);
 886u32 kfd_pasid_alloc(void);
 887void kfd_pasid_free(u32 pasid);
 888
 889/* Doorbells */
 890size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
 891int kfd_doorbell_init(struct kfd_dev *kfd);
 892void kfd_doorbell_fini(struct kfd_dev *kfd);
 893int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
 894                      struct vm_area_struct *vma);
 895void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
 896                                        unsigned int *doorbell_off);
 897void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
 898u32 read_kernel_doorbell(u32 __iomem *db);
 899void write_kernel_doorbell(void __iomem *db, u32 value);
 900void write_kernel_doorbell64(void __iomem *db, u64 value);
 901unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
 902                                        struct kfd_process_device *pdd,
 903                                        unsigned int doorbell_id);
 904phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
 905int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
 906                                unsigned int *doorbell_index);
 907void kfd_free_process_doorbells(struct kfd_dev *kfd,
 908                                unsigned int doorbell_index);
 909/* GTT Sub-Allocator */
 910
 911int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
 912                        struct kfd_mem_obj **mem_obj);
 913
 914int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
 915
 916extern struct device *kfd_device;
 917
 918/* KFD's procfs */
 919void kfd_procfs_init(void);
 920void kfd_procfs_shutdown(void);
 921int kfd_procfs_add_queue(struct queue *q);
 922void kfd_procfs_del_queue(struct queue *q);
 923
 924/* Topology */
 925int kfd_topology_init(void);
 926void kfd_topology_shutdown(void);
 927int kfd_topology_add_device(struct kfd_dev *gpu);
 928int kfd_topology_remove_device(struct kfd_dev *gpu);
 929struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
 930                                                uint32_t proximity_domain);
 931struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
 932struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
 933struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
 934struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
 935int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
 936int kfd_numa_node_to_apic_id(int numa_node_id);
 937void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
 938
 939/* Interrupts */
 940int kfd_interrupt_init(struct kfd_dev *dev);
 941void kfd_interrupt_exit(struct kfd_dev *dev);
 942bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
 943bool interrupt_is_wanted(struct kfd_dev *dev,
 944                                const uint32_t *ih_ring_entry,
 945                                uint32_t *patched_ihre, bool *flag);
 946
 947/* amdkfd Apertures */
 948int kfd_init_apertures(struct kfd_process *process);
 949
 950/* Queue Context Management */
 951int init_queue(struct queue **q, const struct queue_properties *properties);
 952void uninit_queue(struct queue *q);
 953void print_queue_properties(struct queue_properties *q);
 954void print_queue(struct queue *q);
 955
 956struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
 957                struct kfd_dev *dev);
 958struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
 959                struct kfd_dev *dev);
 960struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
 961                struct kfd_dev *dev);
 962struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
 963                struct kfd_dev *dev);
 964struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
 965                struct kfd_dev *dev);
 966struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
 967                struct kfd_dev *dev);
 968struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
 969void device_queue_manager_uninit(struct device_queue_manager *dqm);
 970struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
 971                                        enum kfd_queue_type type);
 972void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
 973int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid);
 974
 975/* Process Queue Manager */
 976struct process_queue_node {
 977        struct queue *q;
 978        struct kernel_queue *kq;
 979        struct list_head process_queue_list;
 980};
 981
 982void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
 983void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
 984int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
 985void pqm_uninit(struct process_queue_manager *pqm);
 986int pqm_create_queue(struct process_queue_manager *pqm,
 987                            struct kfd_dev *dev,
 988                            struct file *f,
 989                            struct queue_properties *properties,
 990                            unsigned int *qid,
 991                            uint32_t *p_doorbell_offset_in_process);
 992int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
 993int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
 994                        struct queue_properties *p);
 995int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
 996                        struct queue_properties *p);
 997int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
 998                        void *gws);
 999struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1000                                                unsigned int qid);
1001struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1002                                                unsigned int qid);
1003int pqm_get_wave_state(struct process_queue_manager *pqm,
1004                       unsigned int qid,
1005                       void __user *ctl_stack,
1006                       u32 *ctl_stack_used_size,
1007                       u32 *save_area_used_size);
1008
1009int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1010                              unsigned int fence_value,
1011                              unsigned int timeout_ms);
1012
1013/* Packet Manager */
1014
1015#define KFD_FENCE_COMPLETED (100)
1016#define KFD_FENCE_INIT   (10)
1017
1018struct packet_manager {
1019        struct device_queue_manager *dqm;
1020        struct kernel_queue *priv_queue;
1021        struct mutex lock;
1022        bool allocated;
1023        struct kfd_mem_obj *ib_buffer_obj;
1024        unsigned int ib_size_bytes;
1025        bool is_over_subscription;
1026
1027        const struct packet_manager_funcs *pmf;
1028};
1029
1030struct packet_manager_funcs {
1031        /* Support ASIC-specific packet formats for PM4 packets */
1032        int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1033                        struct qcm_process_device *qpd);
1034        int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1035                        uint64_t ib, size_t ib_size_in_dwords, bool chain);
1036        int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1037                        struct scheduling_resources *res);
1038        int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1039                        struct queue *q, bool is_static);
1040        int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1041                        enum kfd_queue_type type,
1042                        enum kfd_unmap_queues_filter mode,
1043                        uint32_t filter_param, bool reset,
1044                        unsigned int sdma_engine);
1045        int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1046                        uint64_t fence_address, uint32_t fence_value);
1047        int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1048
1049        /* Packet sizes */
1050        int map_process_size;
1051        int runlist_size;
1052        int set_resources_size;
1053        int map_queues_size;
1054        int unmap_queues_size;
1055        int query_status_size;
1056        int release_mem_size;
1057};
1058
1059extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1060extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1061
1062int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1063void pm_uninit(struct packet_manager *pm, bool hanging);
1064int pm_send_set_resources(struct packet_manager *pm,
1065                                struct scheduling_resources *res);
1066int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1067int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1068                                uint32_t fence_value);
1069
1070int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1071                        enum kfd_unmap_queues_filter mode,
1072                        uint32_t filter_param, bool reset,
1073                        unsigned int sdma_engine);
1074
1075void pm_release_ib(struct packet_manager *pm);
1076
1077/* Following PM funcs can be shared among VI and AI */
1078unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1079
1080uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1081
1082/* Events */
1083extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1084extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1085
1086extern const struct kfd_device_global_init_class device_global_init_class_cik;
1087
1088void kfd_event_init_process(struct kfd_process *p);
1089void kfd_event_free_process(struct kfd_process *p);
1090int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1091int kfd_wait_on_events(struct kfd_process *p,
1092                       uint32_t num_events, void __user *data,
1093                       bool all, uint32_t user_timeout_ms,
1094                       uint32_t *wait_result);
1095void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1096                                uint32_t valid_id_bits);
1097void kfd_signal_iommu_event(struct kfd_dev *dev,
1098                            u32 pasid, unsigned long address,
1099                            bool is_write_requested, bool is_execute_requested);
1100void kfd_signal_hw_exception_event(u32 pasid);
1101int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1102int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1103int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1104                       uint64_t size);
1105int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1106                     uint32_t event_type, bool auto_reset, uint32_t node_id,
1107                     uint32_t *event_id, uint32_t *event_trigger_data,
1108                     uint64_t *event_page_offset, uint32_t *event_slot_index);
1109int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1110
1111void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1112                                struct kfd_vm_fault_info *info);
1113
1114void kfd_signal_reset_event(struct kfd_dev *dev);
1115
1116void kfd_flush_tlb(struct kfd_process_device *pdd);
1117
1118int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1119
1120bool kfd_is_locked(void);
1121
1122/* Compute profile */
1123void kfd_inc_compute_active(struct kfd_dev *dev);
1124void kfd_dec_compute_active(struct kfd_dev *dev);
1125
1126/* Cgroup Support */
1127/* Check with device cgroup if @kfd device is accessible */
1128static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1129{
1130#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1131        struct drm_device *ddev = kfd->ddev;
1132
1133        return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1134                                          ddev->render->index,
1135                                          DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1136#else
1137        return 0;
1138#endif
1139}
1140
1141/* Debugfs */
1142#if defined(CONFIG_DEBUG_FS)
1143
1144void kfd_debugfs_init(void);
1145void kfd_debugfs_fini(void);
1146int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1147int pqm_debugfs_mqds(struct seq_file *m, void *data);
1148int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1149int dqm_debugfs_hqds(struct seq_file *m, void *data);
1150int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1151int pm_debugfs_runlist(struct seq_file *m, void *data);
1152
1153int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1154int pm_debugfs_hang_hws(struct packet_manager *pm);
1155int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1156
1157#else
1158
1159static inline void kfd_debugfs_init(void) {}
1160static inline void kfd_debugfs_fini(void) {}
1161
1162#endif
1163
1164#endif
1165