linux/drivers/gpu/drm/i915/gt/intel_engine.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: MIT */
   2#ifndef _INTEL_RINGBUFFER_H_
   3#define _INTEL_RINGBUFFER_H_
   4
   5#include <drm/drm_util.h>
   6
   7#include <linux/hashtable.h>
   8#include <linux/irq_work.h>
   9#include <linux/random.h>
  10#include <linux/seqlock.h>
  11
  12#include "i915_pmu.h"
  13#include "i915_reg.h"
  14#include "i915_request.h"
  15#include "i915_selftest.h"
  16#include "gt/intel_timeline.h"
  17#include "intel_engine_types.h"
  18#include "intel_gpu_commands.h"
  19#include "intel_workarounds.h"
  20
  21struct drm_printer;
  22struct intel_gt;
  23
  24/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  25 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  26 * to give some inclination as to some of the magic values used in the various
  27 * workarounds!
  28 */
  29#define CACHELINE_BYTES 64
  30#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32))
  31
  32#define ENGINE_TRACE(e, fmt, ...) do {                                  \
  33        const struct intel_engine_cs *e__ __maybe_unused = (e);         \
  34        GEM_TRACE("%s %s: " fmt,                                        \
  35                  dev_name(e__->i915->drm.dev), e__->name,              \
  36                  ##__VA_ARGS__);                                       \
  37} while (0)
  38
  39/*
  40 * The register defines to be used with the following macros need to accept a
  41 * base param, e.g:
  42 *
  43 * REG_FOO(base) _MMIO((base) + <relative offset>)
  44 * ENGINE_READ(engine, REG_FOO);
  45 *
  46 * register arrays are to be defined and accessed as follows:
  47 *
  48 * REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>)
  49 * ENGINE_READ_IDX(engine, REG_BAR, i)
  50 */
  51
  52#define __ENGINE_REG_OP(op__, engine__, ...) \
  53        intel_uncore_##op__((engine__)->uncore, __VA_ARGS__)
  54
  55#define __ENGINE_READ_OP(op__, engine__, reg__) \
  56        __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base))
  57
  58#define ENGINE_READ16(...)      __ENGINE_READ_OP(read16, __VA_ARGS__)
  59#define ENGINE_READ(...)        __ENGINE_READ_OP(read, __VA_ARGS__)
  60#define ENGINE_READ_FW(...)     __ENGINE_READ_OP(read_fw, __VA_ARGS__)
  61#define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read_fw, __VA_ARGS__)
  62#define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__)
  63
  64#define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \
  65        __ENGINE_REG_OP(read64_2x32, (engine__), \
  66                        lower_reg__((engine__)->mmio_base), \
  67                        upper_reg__((engine__)->mmio_base))
  68
  69#define ENGINE_READ_IDX(engine__, reg__, idx__) \
  70        __ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__)))
  71
  72#define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \
  73        __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__))
  74
  75#define ENGINE_WRITE16(...)     __ENGINE_WRITE_OP(write16, __VA_ARGS__)
  76#define ENGINE_WRITE(...)       __ENGINE_WRITE_OP(write, __VA_ARGS__)
  77#define ENGINE_WRITE_FW(...)    __ENGINE_WRITE_OP(write_fw, __VA_ARGS__)
  78
  79#define GEN6_RING_FAULT_REG_READ(engine__) \
  80        intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__))
  81
  82#define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \
  83        intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__))
  84
  85#define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \
  86({ \
  87        u32 __val; \
  88\
  89        __val = intel_uncore_read((engine__)->uncore, \
  90                                  RING_FAULT_REG(engine__)); \
  91        __val &= ~(clear__); \
  92        __val |= (set__); \
  93        intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \
  94                           __val); \
  95})
  96
  97/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  98 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  99 */
 100
 101static inline unsigned int
 102execlists_num_ports(const struct intel_engine_execlists * const execlists)
 103{
 104        return execlists->port_mask + 1;
 105}
 106
 107static inline struct i915_request *
 108execlists_active(const struct intel_engine_execlists *execlists)
 109{
 110        struct i915_request * const *cur, * const *old, *active;
 111
 112        cur = READ_ONCE(execlists->active);
 113        smp_rmb(); /* pairs with overwrite protection in process_csb() */
 114        do {
 115                old = cur;
 116
 117                active = READ_ONCE(*cur);
 118                cur = READ_ONCE(execlists->active);
 119
 120                smp_rmb(); /* and complete the seqlock retry */
 121        } while (unlikely(cur != old));
 122
 123        return active;
 124}
 125
 126static inline void
 127execlists_active_lock_bh(struct intel_engine_execlists *execlists)
 128{
 129        local_bh_disable(); /* prevent local softirq and lock recursion */
 130        tasklet_lock(&execlists->tasklet);
 131}
 132
 133static inline void
 134execlists_active_unlock_bh(struct intel_engine_execlists *execlists)
 135{
 136        tasklet_unlock(&execlists->tasklet);
 137        local_bh_enable(); /* restore softirq, and kick ksoftirqd! */
 138}
 139
 140struct i915_request *
 141execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
 142
 143static inline u32
 144intel_read_status_page(const struct intel_engine_cs *engine, int reg)
 145{
 146        /* Ensure that the compiler doesn't optimize away the load. */
 147        return READ_ONCE(engine->status_page.addr[reg]);
 148}
 149
 150static inline void
 151intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
 152{
 153        /* Writing into the status page should be done sparingly. Since
 154         * we do when we are uncertain of the device state, we take a bit
 155         * of extra paranoia to try and ensure that the HWS takes the value
 156         * we give and that it doesn't end up trapped inside the CPU!
 157         */
 158        if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
 159                mb();
 160                clflush(&engine->status_page.addr[reg]);
 161                engine->status_page.addr[reg] = value;
 162                clflush(&engine->status_page.addr[reg]);
 163                mb();
 164        } else {
 165                WRITE_ONCE(engine->status_page.addr[reg], value);
 166        }
 167}
 168
 169/*
 170 * Reads a dword out of the status page, which is written to from the command
 171 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 172 * MI_STORE_DATA_IMM.
 173 *
 174 * The following dwords have a reserved meaning:
 175 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 176 * 0x04: ring 0 head pointer
 177 * 0x05: ring 1 head pointer (915-class)
 178 * 0x06: ring 2 head pointer (915-class)
 179 * 0x10-0x1b: Context status DWords (GM45)
 180 * 0x1f: Last written status offset. (GM45)
 181 * 0x20-0x2f: Reserved (Gen6+)
 182 *
 183 * The area from dword 0x30 to 0x3ff is available for driver usage.
 184 */
 185#define I915_GEM_HWS_PREEMPT            0x32
 186#define I915_GEM_HWS_PREEMPT_ADDR       (I915_GEM_HWS_PREEMPT * sizeof(u32))
 187#define I915_GEM_HWS_SEQNO              0x40
 188#define I915_GEM_HWS_SEQNO_ADDR         (I915_GEM_HWS_SEQNO * sizeof(u32))
 189#define I915_GEM_HWS_SCRATCH            0x80
 190
 191#define I915_HWS_CSB_BUF0_INDEX         0x10
 192#define I915_HWS_CSB_WRITE_INDEX        0x1f
 193#define CNL_HWS_CSB_WRITE_INDEX         0x2f
 194
 195void intel_engine_stop(struct intel_engine_cs *engine);
 196void intel_engine_cleanup(struct intel_engine_cs *engine);
 197
 198int intel_engines_init_mmio(struct intel_gt *gt);
 199int intel_engines_init(struct intel_gt *gt);
 200
 201void intel_engine_free_request_pool(struct intel_engine_cs *engine);
 202
 203void intel_engines_release(struct intel_gt *gt);
 204void intel_engines_free(struct intel_gt *gt);
 205
 206int intel_engine_init_common(struct intel_engine_cs *engine);
 207void intel_engine_cleanup_common(struct intel_engine_cs *engine);
 208
 209int intel_engine_resume(struct intel_engine_cs *engine);
 210
 211int intel_ring_submission_setup(struct intel_engine_cs *engine);
 212
 213int intel_engine_stop_cs(struct intel_engine_cs *engine);
 214void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
 215
 216void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask);
 217
 218u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
 219u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
 220
 221void intel_engine_get_instdone(const struct intel_engine_cs *engine,
 222                               struct intel_instdone *instdone);
 223
 224void intel_engine_init_execlists(struct intel_engine_cs *engine);
 225
 226static inline u32 *__gen8_emit_pipe_control(u32 *batch, u32 flags0, u32 flags1, u32 offset)
 227{
 228        memset(batch, 0, 6 * sizeof(u32));
 229
 230        batch[0] = GFX_OP_PIPE_CONTROL(6) | flags0;
 231        batch[1] = flags1;
 232        batch[2] = offset;
 233
 234        return batch + 6;
 235}
 236
 237static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
 238{
 239        return __gen8_emit_pipe_control(batch, 0, flags, offset);
 240}
 241
 242static inline u32 *gen12_emit_pipe_control(u32 *batch, u32 flags0, u32 flags1, u32 offset)
 243{
 244        return __gen8_emit_pipe_control(batch, flags0, flags1, offset);
 245}
 246
 247static inline u32 *
 248__gen8_emit_write_rcs(u32 *cs, u32 value, u32 offset, u32 flags0, u32 flags1)
 249{
 250        *cs++ = GFX_OP_PIPE_CONTROL(6) | flags0;
 251        *cs++ = flags1 | PIPE_CONTROL_QW_WRITE;
 252        *cs++ = offset;
 253        *cs++ = 0;
 254        *cs++ = value;
 255        *cs++ = 0; /* We're thrashing one extra dword. */
 256
 257        return cs;
 258}
 259
 260static inline u32*
 261gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
 262{
 263        /* We're using qword write, offset should be aligned to 8 bytes. */
 264        GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
 265
 266        return __gen8_emit_write_rcs(cs,
 267                                     value,
 268                                     gtt_offset,
 269                                     0,
 270                                     flags | PIPE_CONTROL_GLOBAL_GTT_IVB);
 271}
 272
 273static inline u32*
 274gen12_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags0, u32 flags1)
 275{
 276        /* We're using qword write, offset should be aligned to 8 bytes. */
 277        GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
 278
 279        return __gen8_emit_write_rcs(cs,
 280                                     value,
 281                                     gtt_offset,
 282                                     flags0,
 283                                     flags1 | PIPE_CONTROL_GLOBAL_GTT_IVB);
 284}
 285
 286static inline u32 *
 287__gen8_emit_flush_dw(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
 288{
 289        *cs++ = (MI_FLUSH_DW + 1) | flags;
 290        *cs++ = gtt_offset;
 291        *cs++ = 0;
 292        *cs++ = value;
 293
 294        return cs;
 295}
 296
 297static inline u32 *
 298gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
 299{
 300        /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
 301        GEM_BUG_ON(gtt_offset & (1 << 5));
 302        /* Offset should be aligned to 8 bytes for both (QW/DW) write types */
 303        GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
 304
 305        return __gen8_emit_flush_dw(cs,
 306                                    value,
 307                                    gtt_offset | MI_FLUSH_DW_USE_GTT,
 308                                    flags | MI_FLUSH_DW_OP_STOREDW);
 309}
 310
 311static inline void __intel_engine_reset(struct intel_engine_cs *engine,
 312                                        bool stalled)
 313{
 314        if (engine->reset.rewind)
 315                engine->reset.rewind(engine, stalled);
 316        engine->serial++; /* contexts lost */
 317}
 318
 319bool intel_engines_are_idle(struct intel_gt *gt);
 320bool intel_engine_is_idle(struct intel_engine_cs *engine);
 321void intel_engine_flush_submission(struct intel_engine_cs *engine);
 322
 323void intel_engines_reset_default_submission(struct intel_gt *gt);
 324
 325bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
 326
 327__printf(3, 4)
 328void intel_engine_dump(struct intel_engine_cs *engine,
 329                       struct drm_printer *m,
 330                       const char *header, ...);
 331
 332ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine,
 333                                   ktime_t *now);
 334
 335struct i915_request *
 336intel_engine_find_active_request(struct intel_engine_cs *engine);
 337
 338u32 intel_engine_context_size(struct intel_gt *gt, u8 class);
 339
 340void intel_engine_init_active(struct intel_engine_cs *engine,
 341                              unsigned int subclass);
 342#define ENGINE_PHYSICAL 0
 343#define ENGINE_MOCK     1
 344#define ENGINE_VIRTUAL  2
 345
 346static inline bool
 347intel_engine_has_preempt_reset(const struct intel_engine_cs *engine)
 348{
 349        if (!IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT))
 350                return false;
 351
 352        return intel_engine_has_preemption(engine);
 353}
 354
 355static inline bool
 356intel_engine_has_heartbeat(const struct intel_engine_cs *engine)
 357{
 358        if (!IS_ACTIVE(CONFIG_DRM_I915_HEARTBEAT_INTERVAL))
 359                return false;
 360
 361        return READ_ONCE(engine->props.heartbeat_interval_ms);
 362}
 363
 364#endif /* _INTEL_RINGBUFFER_H_ */
 365