linux/drivers/gpu/drm/vc4/vc4_dsi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 DSI0/DSI1 module
   8 *
   9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  11 * controller.
  12 *
  13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  14 * while the compute module brings both DSI0 and DSI1 out.
  15 *
  16 * This driver has been tested for DSI1 video-mode display only
  17 * currently, with most of the information necessary for DSI0
  18 * hopefully present.
  19 */
  20
  21#include <linux/clk-provider.h>
  22#include <linux/clk.h>
  23#include <linux/completion.h>
  24#include <linux/component.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/dmaengine.h>
  27#include <linux/i2c.h>
  28#include <linux/io.h>
  29#include <linux/of_address.h>
  30#include <linux/of_platform.h>
  31#include <linux/pm_runtime.h>
  32
  33#include <drm/drm_atomic_helper.h>
  34#include <drm/drm_bridge.h>
  35#include <drm/drm_edid.h>
  36#include <drm/drm_mipi_dsi.h>
  37#include <drm/drm_of.h>
  38#include <drm/drm_panel.h>
  39#include <drm/drm_probe_helper.h>
  40#include <drm/drm_simple_kms_helper.h>
  41
  42#include "vc4_drv.h"
  43#include "vc4_regs.h"
  44
  45#define DSI_CMD_FIFO_DEPTH  16
  46#define DSI_PIX_FIFO_DEPTH 256
  47#define DSI_PIX_FIFO_WIDTH   4
  48
  49#define DSI0_CTRL               0x00
  50
  51/* Command packet control. */
  52#define DSI0_TXPKT1C            0x04 /* AKA PKTC */
  53#define DSI1_TXPKT1C            0x04
  54# define DSI_TXPKT1C_TRIG_CMD_MASK      VC4_MASK(31, 24)
  55# define DSI_TXPKT1C_TRIG_CMD_SHIFT     24
  56# define DSI_TXPKT1C_CMD_REPEAT_MASK    VC4_MASK(23, 10)
  57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT   10
  58
  59# define DSI_TXPKT1C_DISPLAY_NO_MASK    VC4_MASK(9, 8)
  60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT   8
  61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  62# define DSI_TXPKT1C_DISPLAY_NO_SHORT           0
  63/* Primary display where cmdfifo provides part of the payload and
  64 * pixelvalve the rest.
  65 */
  66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY         1
  67/* Secondary display where cmdfifo provides part of the payload and
  68 * pixfifo the rest.
  69 */
  70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY       2
  71
  72# define DSI_TXPKT1C_CMD_TX_TIME_MASK   VC4_MASK(7, 6)
  73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT  6
  74
  75# define DSI_TXPKT1C_CMD_CTRL_MASK      VC4_MASK(5, 4)
  76# define DSI_TXPKT1C_CMD_CTRL_SHIFT     4
  77/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  78# define DSI_TXPKT1C_CMD_CTRL_TX        0
  79/* Command with BTA for either ack or read data. */
  80# define DSI_TXPKT1C_CMD_CTRL_RX        1
  81/* Trigger according to TRIG_CMD */
  82# define DSI_TXPKT1C_CMD_CTRL_TRIG      2
  83/* BTA alone for getting error status after a command, or a TE trigger
  84 * without a previous command.
  85 */
  86# define DSI_TXPKT1C_CMD_CTRL_BTA       3
  87
  88# define DSI_TXPKT1C_CMD_MODE_LP        BIT(3)
  89# define DSI_TXPKT1C_CMD_TYPE_LONG      BIT(2)
  90# define DSI_TXPKT1C_CMD_TE_EN          BIT(1)
  91# define DSI_TXPKT1C_CMD_EN             BIT(0)
  92
  93/* Command packet header. */
  94#define DSI0_TXPKT1H            0x08 /* AKA PKTH */
  95#define DSI1_TXPKT1H            0x08
  96# define DSI_TXPKT1H_BC_CMDFIFO_MASK    VC4_MASK(31, 24)
  97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT   24
  98# define DSI_TXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
  99# define DSI_TXPKT1H_BC_PARAM_SHIFT     8
 100# define DSI_TXPKT1H_BC_DT_MASK         VC4_MASK(7, 0)
 101# define DSI_TXPKT1H_BC_DT_SHIFT        0
 102
 103#define DSI0_RXPKT1H            0x0c /* AKA RX1_PKTH */
 104#define DSI1_RXPKT1H            0x14
 105# define DSI_RXPKT1H_CRC_ERR            BIT(31)
 106# define DSI_RXPKT1H_DET_ERR            BIT(30)
 107# define DSI_RXPKT1H_ECC_ERR            BIT(29)
 108# define DSI_RXPKT1H_COR_ERR            BIT(28)
 109# define DSI_RXPKT1H_INCOMP_PKT         BIT(25)
 110# define DSI_RXPKT1H_PKT_TYPE_LONG      BIT(24)
 111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 112# define DSI_RXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
 113# define DSI_RXPKT1H_BC_PARAM_SHIFT     8
 114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 115# define DSI_RXPKT1H_SHORT_1_MASK       VC4_MASK(23, 16)
 116# define DSI_RXPKT1H_SHORT_1_SHIFT      16
 117# define DSI_RXPKT1H_SHORT_0_MASK       VC4_MASK(15, 8)
 118# define DSI_RXPKT1H_SHORT_0_SHIFT      8
 119# define DSI_RXPKT1H_DT_LP_CMD_MASK     VC4_MASK(7, 0)
 120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT    0
 121
 122#define DSI0_RXPKT2H            0x10 /* AKA RX2_PKTH */
 123#define DSI1_RXPKT2H            0x18
 124# define DSI_RXPKT1H_DET_ERR            BIT(30)
 125# define DSI_RXPKT1H_ECC_ERR            BIT(29)
 126# define DSI_RXPKT1H_COR_ERR            BIT(28)
 127# define DSI_RXPKT1H_INCOMP_PKT         BIT(25)
 128# define DSI_RXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
 129# define DSI_RXPKT1H_BC_PARAM_SHIFT     8
 130# define DSI_RXPKT1H_DT_MASK            VC4_MASK(7, 0)
 131# define DSI_RXPKT1H_DT_SHIFT           0
 132
 133#define DSI0_TXPKT_CMD_FIFO     0x14 /* AKA CMD_DATAF */
 134#define DSI1_TXPKT_CMD_FIFO     0x1c
 135
 136#define DSI0_DISP0_CTRL         0x18
 137# define DSI_DISP0_PIX_CLK_DIV_MASK     VC4_MASK(21, 13)
 138# define DSI_DISP0_PIX_CLK_DIV_SHIFT    13
 139# define DSI_DISP0_LP_STOP_CTRL_MASK    VC4_MASK(12, 11)
 140# define DSI_DISP0_LP_STOP_CTRL_SHIFT   11
 141# define DSI_DISP0_LP_STOP_DISABLE      0
 142# define DSI_DISP0_LP_STOP_PERLINE      1
 143# define DSI_DISP0_LP_STOP_PERFRAME     2
 144
 145/* Transmit RGB pixels and null packets only during HACTIVE, instead
 146 * of going to LP-STOP.
 147 */
 148# define DSI_DISP_HACTIVE_NULL          BIT(10)
 149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 150# define DSI_DISP_VBLP_CTRL             BIT(9)
 151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 152# define DSI_DISP_HFP_CTRL              BIT(8)
 153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 154# define DSI_DISP_HBP_CTRL              BIT(7)
 155# define DSI_DISP0_CHANNEL_MASK         VC4_MASK(6, 5)
 156# define DSI_DISP0_CHANNEL_SHIFT        5
 157/* Enables end events for HSYNC/VSYNC, not just start events. */
 158# define DSI_DISP0_ST_END               BIT(4)
 159# define DSI_DISP0_PFORMAT_MASK         VC4_MASK(3, 2)
 160# define DSI_DISP0_PFORMAT_SHIFT        2
 161# define DSI_PFORMAT_RGB565             0
 162# define DSI_PFORMAT_RGB666_PACKED      1
 163# define DSI_PFORMAT_RGB666             2
 164# define DSI_PFORMAT_RGB888             3
 165/* Default is VIDEO mode. */
 166# define DSI_DISP0_COMMAND_MODE         BIT(1)
 167# define DSI_DISP0_ENABLE               BIT(0)
 168
 169#define DSI0_DISP1_CTRL         0x1c
 170#define DSI1_DISP1_CTRL         0x2c
 171/* Format of the data written to TXPKT_PIX_FIFO. */
 172# define DSI_DISP1_PFORMAT_MASK         VC4_MASK(2, 1)
 173# define DSI_DISP1_PFORMAT_SHIFT        1
 174# define DSI_DISP1_PFORMAT_16BIT        0
 175# define DSI_DISP1_PFORMAT_24BIT        1
 176# define DSI_DISP1_PFORMAT_32BIT_LE     2
 177# define DSI_DISP1_PFORMAT_32BIT_BE     3
 178
 179/* DISP1 is always command mode. */
 180# define DSI_DISP1_ENABLE               BIT(0)
 181
 182#define DSI0_TXPKT_PIX_FIFO             0x20 /* AKA PIX_FIFO */
 183
 184#define DSI0_INT_STAT           0x24
 185#define DSI0_INT_EN             0x28
 186# define DSI1_INT_PHY_D3_ULPS           BIT(30)
 187# define DSI1_INT_PHY_D3_STOP           BIT(29)
 188# define DSI1_INT_PHY_D2_ULPS           BIT(28)
 189# define DSI1_INT_PHY_D2_STOP           BIT(27)
 190# define DSI1_INT_PHY_D1_ULPS           BIT(26)
 191# define DSI1_INT_PHY_D1_STOP           BIT(25)
 192# define DSI1_INT_PHY_D0_ULPS           BIT(24)
 193# define DSI1_INT_PHY_D0_STOP           BIT(23)
 194# define DSI1_INT_FIFO_ERR              BIT(22)
 195# define DSI1_INT_PHY_DIR_RTF           BIT(21)
 196# define DSI1_INT_PHY_RXLPDT            BIT(20)
 197# define DSI1_INT_PHY_RXTRIG            BIT(19)
 198# define DSI1_INT_PHY_D0_LPDT           BIT(18)
 199# define DSI1_INT_PHY_DIR_FTR           BIT(17)
 200
 201/* Signaled when the clock lane enters the given state. */
 202# define DSI1_INT_PHY_CLOCK_ULPS        BIT(16)
 203# define DSI1_INT_PHY_CLOCK_HS          BIT(15)
 204# define DSI1_INT_PHY_CLOCK_STOP        BIT(14)
 205
 206/* Signaled on timeouts */
 207# define DSI1_INT_PR_TO                 BIT(13)
 208# define DSI1_INT_TA_TO                 BIT(12)
 209# define DSI1_INT_LPRX_TO               BIT(11)
 210# define DSI1_INT_HSTX_TO               BIT(10)
 211
 212/* Contention on a line when trying to drive the line low */
 213# define DSI1_INT_ERR_CONT_LP1          BIT(9)
 214# define DSI1_INT_ERR_CONT_LP0          BIT(8)
 215
 216/* Control error: incorrect line state sequence on data lane 0. */
 217# define DSI1_INT_ERR_CONTROL           BIT(7)
 218/* LPDT synchronization error (bits received not a multiple of 8. */
 219
 220# define DSI1_INT_ERR_SYNC_ESC          BIT(6)
 221/* Signaled after receiving an error packet from the display in
 222 * response to a read.
 223 */
 224# define DSI1_INT_RXPKT2                BIT(5)
 225/* Signaled after receiving a packet.  The header and optional short
 226 * response will be in RXPKT1H, and a long response will be in the
 227 * RXPKT_FIFO.
 228 */
 229# define DSI1_INT_RXPKT1                BIT(4)
 230# define DSI1_INT_TXPKT2_DONE           BIT(3)
 231# define DSI1_INT_TXPKT2_END            BIT(2)
 232/* Signaled after all repeats of TXPKT1 are transferred. */
 233# define DSI1_INT_TXPKT1_DONE           BIT(1)
 234/* Signaled after each TXPKT1 repeat is scheduled. */
 235# define DSI1_INT_TXPKT1_END            BIT(0)
 236
 237#define DSI1_INTERRUPTS_ALWAYS_ENABLED  (DSI1_INT_ERR_SYNC_ESC | \
 238                                         DSI1_INT_ERR_CONTROL |  \
 239                                         DSI1_INT_ERR_CONT_LP0 | \
 240                                         DSI1_INT_ERR_CONT_LP1 | \
 241                                         DSI1_INT_HSTX_TO |      \
 242                                         DSI1_INT_LPRX_TO |      \
 243                                         DSI1_INT_TA_TO |        \
 244                                         DSI1_INT_PR_TO)
 245
 246#define DSI0_STAT               0x2c
 247#define DSI0_HSTX_TO_CNT        0x30
 248#define DSI0_LPRX_TO_CNT        0x34
 249#define DSI0_TA_TO_CNT          0x38
 250#define DSI0_PR_TO_CNT          0x3c
 251#define DSI0_PHYC               0x40
 252# define DSI1_PHYC_ESC_CLK_LPDT_MASK    VC4_MASK(25, 20)
 253# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT   20
 254# define DSI1_PHYC_HS_CLK_CONTINUOUS    BIT(18)
 255# define DSI0_PHYC_ESC_CLK_LPDT_MASK    VC4_MASK(17, 12)
 256# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT   12
 257# define DSI1_PHYC_CLANE_ULPS           BIT(17)
 258# define DSI1_PHYC_CLANE_ENABLE         BIT(16)
 259# define DSI_PHYC_DLANE3_ULPS           BIT(13)
 260# define DSI_PHYC_DLANE3_ENABLE         BIT(12)
 261# define DSI0_PHYC_HS_CLK_CONTINUOUS    BIT(10)
 262# define DSI0_PHYC_CLANE_ULPS           BIT(9)
 263# define DSI_PHYC_DLANE2_ULPS           BIT(9)
 264# define DSI0_PHYC_CLANE_ENABLE         BIT(8)
 265# define DSI_PHYC_DLANE2_ENABLE         BIT(8)
 266# define DSI_PHYC_DLANE1_ULPS           BIT(5)
 267# define DSI_PHYC_DLANE1_ENABLE         BIT(4)
 268# define DSI_PHYC_DLANE0_FORCE_STOP     BIT(2)
 269# define DSI_PHYC_DLANE0_ULPS           BIT(1)
 270# define DSI_PHYC_DLANE0_ENABLE         BIT(0)
 271
 272#define DSI0_HS_CLT0            0x44
 273#define DSI0_HS_CLT1            0x48
 274#define DSI0_HS_CLT2            0x4c
 275#define DSI0_HS_DLT3            0x50
 276#define DSI0_HS_DLT4            0x54
 277#define DSI0_HS_DLT5            0x58
 278#define DSI0_HS_DLT6            0x5c
 279#define DSI0_HS_DLT7            0x60
 280
 281#define DSI0_PHY_AFEC0          0x64
 282# define DSI0_PHY_AFEC0_DDR2CLK_EN              BIT(26)
 283# define DSI0_PHY_AFEC0_DDRCLK_EN               BIT(25)
 284# define DSI0_PHY_AFEC0_LATCH_ULPS              BIT(24)
 285# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK         VC4_MASK(31, 29)
 286# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT        29
 287# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK         VC4_MASK(28, 26)
 288# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT        26
 289# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK         VC4_MASK(27, 23)
 290# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT        23
 291# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK         VC4_MASK(22, 20)
 292# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT        20
 293# define DSI1_PHY_AFEC0_IDR_CLANE_MASK          VC4_MASK(19, 17)
 294# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT         17
 295# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK       VC4_MASK(23, 20)
 296# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT      20
 297# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK       VC4_MASK(19, 16)
 298# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT      16
 299# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK        VC4_MASK(15, 12)
 300# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT       12
 301# define DSI1_PHY_AFEC0_DDR2CLK_EN              BIT(16)
 302# define DSI1_PHY_AFEC0_DDRCLK_EN               BIT(15)
 303# define DSI1_PHY_AFEC0_LATCH_ULPS              BIT(14)
 304# define DSI1_PHY_AFEC0_RESET                   BIT(13)
 305# define DSI1_PHY_AFEC0_PD                      BIT(12)
 306# define DSI0_PHY_AFEC0_RESET                   BIT(11)
 307# define DSI1_PHY_AFEC0_PD_BG                   BIT(11)
 308# define DSI0_PHY_AFEC0_PD                      BIT(10)
 309# define DSI1_PHY_AFEC0_PD_DLANE3               BIT(10)
 310# define DSI0_PHY_AFEC0_PD_BG                   BIT(9)
 311# define DSI1_PHY_AFEC0_PD_DLANE2               BIT(9)
 312# define DSI0_PHY_AFEC0_PD_DLANE1               BIT(8)
 313# define DSI1_PHY_AFEC0_PD_DLANE1               BIT(8)
 314# define DSI_PHY_AFEC0_PTATADJ_MASK             VC4_MASK(7, 4)
 315# define DSI_PHY_AFEC0_PTATADJ_SHIFT            4
 316# define DSI_PHY_AFEC0_CTATADJ_MASK             VC4_MASK(3, 0)
 317# define DSI_PHY_AFEC0_CTATADJ_SHIFT            0
 318
 319#define DSI0_PHY_AFEC1          0x68
 320# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK         VC4_MASK(10, 8)
 321# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT        8
 322# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK         VC4_MASK(6, 4)
 323# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT        4
 324# define DSI0_PHY_AFEC1_IDR_CLANE_MASK          VC4_MASK(2, 0)
 325# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT         0
 326
 327#define DSI0_TST_SEL            0x6c
 328#define DSI0_TST_MON            0x70
 329#define DSI0_ID                 0x74
 330# define DSI_ID_VALUE           0x00647369
 331
 332#define DSI1_CTRL               0x00
 333# define DSI_CTRL_HS_CLKC_MASK          VC4_MASK(15, 14)
 334# define DSI_CTRL_HS_CLKC_SHIFT         14
 335# define DSI_CTRL_HS_CLKC_BYTE          0
 336# define DSI_CTRL_HS_CLKC_DDR2          1
 337# define DSI_CTRL_HS_CLKC_DDR           2
 338
 339# define DSI_CTRL_RX_LPDT_EOT_DISABLE   BIT(13)
 340# define DSI_CTRL_LPDT_EOT_DISABLE      BIT(12)
 341# define DSI_CTRL_HSDT_EOT_DISABLE      BIT(11)
 342# define DSI_CTRL_SOFT_RESET_CFG        BIT(10)
 343# define DSI_CTRL_CAL_BYTE              BIT(9)
 344# define DSI_CTRL_INV_BYTE              BIT(8)
 345# define DSI_CTRL_CLR_LDF               BIT(7)
 346# define DSI0_CTRL_CLR_PBCF             BIT(6)
 347# define DSI1_CTRL_CLR_RXF              BIT(6)
 348# define DSI0_CTRL_CLR_CPBCF            BIT(5)
 349# define DSI1_CTRL_CLR_PDF              BIT(5)
 350# define DSI0_CTRL_CLR_PDF              BIT(4)
 351# define DSI1_CTRL_CLR_CDF              BIT(4)
 352# define DSI0_CTRL_CLR_CDF              BIT(3)
 353# define DSI0_CTRL_CTRL2                BIT(2)
 354# define DSI1_CTRL_DISABLE_DISP_CRCC    BIT(2)
 355# define DSI0_CTRL_CTRL1                BIT(1)
 356# define DSI1_CTRL_DISABLE_DISP_ECCC    BIT(1)
 357# define DSI0_CTRL_CTRL0                BIT(0)
 358# define DSI1_CTRL_EN                   BIT(0)
 359# define DSI0_CTRL_RESET_FIFOS          (DSI_CTRL_CLR_LDF | \
 360                                         DSI0_CTRL_CLR_PBCF | \
 361                                         DSI0_CTRL_CLR_CPBCF |  \
 362                                         DSI0_CTRL_CLR_PDF | \
 363                                         DSI0_CTRL_CLR_CDF)
 364# define DSI1_CTRL_RESET_FIFOS          (DSI_CTRL_CLR_LDF | \
 365                                         DSI1_CTRL_CLR_RXF | \
 366                                         DSI1_CTRL_CLR_PDF | \
 367                                         DSI1_CTRL_CLR_CDF)
 368
 369#define DSI1_TXPKT2C            0x0c
 370#define DSI1_TXPKT2H            0x10
 371#define DSI1_TXPKT_PIX_FIFO     0x20
 372#define DSI1_RXPKT_FIFO         0x24
 373#define DSI1_DISP0_CTRL         0x28
 374#define DSI1_INT_STAT           0x30
 375#define DSI1_INT_EN             0x34
 376/* State reporting bits.  These mostly behave like INT_STAT, where
 377 * writing a 1 clears the bit.
 378 */
 379#define DSI1_STAT               0x38
 380# define DSI1_STAT_PHY_D3_ULPS          BIT(31)
 381# define DSI1_STAT_PHY_D3_STOP          BIT(30)
 382# define DSI1_STAT_PHY_D2_ULPS          BIT(29)
 383# define DSI1_STAT_PHY_D2_STOP          BIT(28)
 384# define DSI1_STAT_PHY_D1_ULPS          BIT(27)
 385# define DSI1_STAT_PHY_D1_STOP          BIT(26)
 386# define DSI1_STAT_PHY_D0_ULPS          BIT(25)
 387# define DSI1_STAT_PHY_D0_STOP          BIT(24)
 388# define DSI1_STAT_FIFO_ERR             BIT(23)
 389# define DSI1_STAT_PHY_RXLPDT           BIT(22)
 390# define DSI1_STAT_PHY_RXTRIG           BIT(21)
 391# define DSI1_STAT_PHY_D0_LPDT          BIT(20)
 392/* Set when in forward direction */
 393# define DSI1_STAT_PHY_DIR              BIT(19)
 394# define DSI1_STAT_PHY_CLOCK_ULPS       BIT(18)
 395# define DSI1_STAT_PHY_CLOCK_HS         BIT(17)
 396# define DSI1_STAT_PHY_CLOCK_STOP       BIT(16)
 397# define DSI1_STAT_PR_TO                BIT(15)
 398# define DSI1_STAT_TA_TO                BIT(14)
 399# define DSI1_STAT_LPRX_TO              BIT(13)
 400# define DSI1_STAT_HSTX_TO              BIT(12)
 401# define DSI1_STAT_ERR_CONT_LP1         BIT(11)
 402# define DSI1_STAT_ERR_CONT_LP0         BIT(10)
 403# define DSI1_STAT_ERR_CONTROL          BIT(9)
 404# define DSI1_STAT_ERR_SYNC_ESC         BIT(8)
 405# define DSI1_STAT_RXPKT2               BIT(7)
 406# define DSI1_STAT_RXPKT1               BIT(6)
 407# define DSI1_STAT_TXPKT2_BUSY          BIT(5)
 408# define DSI1_STAT_TXPKT2_DONE          BIT(4)
 409# define DSI1_STAT_TXPKT2_END           BIT(3)
 410# define DSI1_STAT_TXPKT1_BUSY          BIT(2)
 411# define DSI1_STAT_TXPKT1_DONE          BIT(1)
 412# define DSI1_STAT_TXPKT1_END           BIT(0)
 413
 414#define DSI1_HSTX_TO_CNT        0x3c
 415#define DSI1_LPRX_TO_CNT        0x40
 416#define DSI1_TA_TO_CNT          0x44
 417#define DSI1_PR_TO_CNT          0x48
 418#define DSI1_PHYC               0x4c
 419
 420#define DSI1_HS_CLT0            0x50
 421# define DSI_HS_CLT0_CZERO_MASK         VC4_MASK(26, 18)
 422# define DSI_HS_CLT0_CZERO_SHIFT        18
 423# define DSI_HS_CLT0_CPRE_MASK          VC4_MASK(17, 9)
 424# define DSI_HS_CLT0_CPRE_SHIFT         9
 425# define DSI_HS_CLT0_CPREP_MASK         VC4_MASK(8, 0)
 426# define DSI_HS_CLT0_CPREP_SHIFT        0
 427
 428#define DSI1_HS_CLT1            0x54
 429# define DSI_HS_CLT1_CTRAIL_MASK        VC4_MASK(17, 9)
 430# define DSI_HS_CLT1_CTRAIL_SHIFT       9
 431# define DSI_HS_CLT1_CPOST_MASK         VC4_MASK(8, 0)
 432# define DSI_HS_CLT1_CPOST_SHIFT        0
 433
 434#define DSI1_HS_CLT2            0x58
 435# define DSI_HS_CLT2_WUP_MASK           VC4_MASK(23, 0)
 436# define DSI_HS_CLT2_WUP_SHIFT          0
 437
 438#define DSI1_HS_DLT3            0x5c
 439# define DSI_HS_DLT3_EXIT_MASK          VC4_MASK(26, 18)
 440# define DSI_HS_DLT3_EXIT_SHIFT         18
 441# define DSI_HS_DLT3_ZERO_MASK          VC4_MASK(17, 9)
 442# define DSI_HS_DLT3_ZERO_SHIFT         9
 443# define DSI_HS_DLT3_PRE_MASK           VC4_MASK(8, 0)
 444# define DSI_HS_DLT3_PRE_SHIFT          0
 445
 446#define DSI1_HS_DLT4            0x60
 447# define DSI_HS_DLT4_ANLAT_MASK         VC4_MASK(22, 18)
 448# define DSI_HS_DLT4_ANLAT_SHIFT        18
 449# define DSI_HS_DLT4_TRAIL_MASK         VC4_MASK(17, 9)
 450# define DSI_HS_DLT4_TRAIL_SHIFT        9
 451# define DSI_HS_DLT4_LPX_MASK           VC4_MASK(8, 0)
 452# define DSI_HS_DLT4_LPX_SHIFT          0
 453
 454#define DSI1_HS_DLT5            0x64
 455# define DSI_HS_DLT5_INIT_MASK          VC4_MASK(23, 0)
 456# define DSI_HS_DLT5_INIT_SHIFT         0
 457
 458#define DSI1_HS_DLT6            0x68
 459# define DSI_HS_DLT6_TA_GET_MASK        VC4_MASK(31, 24)
 460# define DSI_HS_DLT6_TA_GET_SHIFT       24
 461# define DSI_HS_DLT6_TA_SURE_MASK       VC4_MASK(23, 16)
 462# define DSI_HS_DLT6_TA_SURE_SHIFT      16
 463# define DSI_HS_DLT6_TA_GO_MASK         VC4_MASK(15, 8)
 464# define DSI_HS_DLT6_TA_GO_SHIFT        8
 465# define DSI_HS_DLT6_LP_LPX_MASK        VC4_MASK(7, 0)
 466# define DSI_HS_DLT6_LP_LPX_SHIFT       0
 467
 468#define DSI1_HS_DLT7            0x6c
 469# define DSI_HS_DLT7_LP_WUP_MASK        VC4_MASK(23, 0)
 470# define DSI_HS_DLT7_LP_WUP_SHIFT       0
 471
 472#define DSI1_PHY_AFEC0          0x70
 473
 474#define DSI1_PHY_AFEC1          0x74
 475# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK       VC4_MASK(19, 16)
 476# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT      16
 477# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK       VC4_MASK(15, 12)
 478# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT      12
 479# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK       VC4_MASK(11, 8)
 480# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT      8
 481# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK       VC4_MASK(7, 4)
 482# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT      4
 483# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK        VC4_MASK(3, 0)
 484# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT       0
 485
 486#define DSI1_TST_SEL            0x78
 487#define DSI1_TST_MON            0x7c
 488#define DSI1_PHY_TST1           0x80
 489#define DSI1_PHY_TST2           0x84
 490#define DSI1_PHY_FIFO_STAT      0x88
 491/* Actually, all registers in the range that aren't otherwise claimed
 492 * will return the ID.
 493 */
 494#define DSI1_ID                 0x8c
 495
 496/* General DSI hardware state. */
 497struct vc4_dsi {
 498        struct platform_device *pdev;
 499
 500        struct mipi_dsi_host dsi_host;
 501        struct drm_encoder *encoder;
 502        struct drm_bridge *bridge;
 503        struct list_head bridge_chain;
 504
 505        void __iomem *regs;
 506
 507        struct dma_chan *reg_dma_chan;
 508        dma_addr_t reg_dma_paddr;
 509        u32 *reg_dma_mem;
 510        dma_addr_t reg_paddr;
 511
 512        /* Whether we're on bcm2835's DSI0 or DSI1. */
 513        int port;
 514
 515        /* DSI channel for the panel we're connected to. */
 516        u32 channel;
 517        u32 lanes;
 518        u32 format;
 519        u32 divider;
 520        u32 mode_flags;
 521
 522        /* Input clock from CPRMAN to the digital PHY, for the DSI
 523         * escape clock.
 524         */
 525        struct clk *escape_clock;
 526
 527        /* Input clock to the analog PHY, used to generate the DSI bit
 528         * clock.
 529         */
 530        struct clk *pll_phy_clock;
 531
 532        /* HS Clocks generated within the DSI analog PHY. */
 533        struct clk_fixed_factor phy_clocks[3];
 534
 535        struct clk_hw_onecell_data *clk_onecell;
 536
 537        /* Pixel clock output to the pixelvalve, generated from the HS
 538         * clock.
 539         */
 540        struct clk *pixel_clock;
 541
 542        struct completion xfer_completion;
 543        int xfer_result;
 544
 545        struct debugfs_regset32 regset;
 546};
 547
 548#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
 549
 550static inline void
 551dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 552{
 553        struct dma_chan *chan = dsi->reg_dma_chan;
 554        struct dma_async_tx_descriptor *tx;
 555        dma_cookie_t cookie;
 556        int ret;
 557
 558        /* DSI0 should be able to write normally. */
 559        if (!chan) {
 560                writel(val, dsi->regs + offset);
 561                return;
 562        }
 563
 564        *dsi->reg_dma_mem = val;
 565
 566        tx = chan->device->device_prep_dma_memcpy(chan,
 567                                                  dsi->reg_paddr + offset,
 568                                                  dsi->reg_dma_paddr,
 569                                                  4, 0);
 570        if (!tx) {
 571                DRM_ERROR("Failed to set up DMA register write\n");
 572                return;
 573        }
 574
 575        cookie = tx->tx_submit(tx);
 576        ret = dma_submit_error(cookie);
 577        if (ret) {
 578                DRM_ERROR("Failed to submit DMA: %d\n", ret);
 579                return;
 580        }
 581        ret = dma_sync_wait(chan, cookie);
 582        if (ret)
 583                DRM_ERROR("Failed to wait for DMA: %d\n", ret);
 584}
 585
 586#define DSI_READ(offset) readl(dsi->regs + (offset))
 587#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 588#define DSI_PORT_READ(offset) \
 589        DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
 590#define DSI_PORT_WRITE(offset, val) \
 591        DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
 592#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
 593
 594/* VC4 DSI encoder KMS struct */
 595struct vc4_dsi_encoder {
 596        struct vc4_encoder base;
 597        struct vc4_dsi *dsi;
 598};
 599
 600static inline struct vc4_dsi_encoder *
 601to_vc4_dsi_encoder(struct drm_encoder *encoder)
 602{
 603        return container_of(encoder, struct vc4_dsi_encoder, base.base);
 604}
 605
 606static const struct debugfs_reg32 dsi0_regs[] = {
 607        VC4_REG32(DSI0_CTRL),
 608        VC4_REG32(DSI0_STAT),
 609        VC4_REG32(DSI0_HSTX_TO_CNT),
 610        VC4_REG32(DSI0_LPRX_TO_CNT),
 611        VC4_REG32(DSI0_TA_TO_CNT),
 612        VC4_REG32(DSI0_PR_TO_CNT),
 613        VC4_REG32(DSI0_DISP0_CTRL),
 614        VC4_REG32(DSI0_DISP1_CTRL),
 615        VC4_REG32(DSI0_INT_STAT),
 616        VC4_REG32(DSI0_INT_EN),
 617        VC4_REG32(DSI0_PHYC),
 618        VC4_REG32(DSI0_HS_CLT0),
 619        VC4_REG32(DSI0_HS_CLT1),
 620        VC4_REG32(DSI0_HS_CLT2),
 621        VC4_REG32(DSI0_HS_DLT3),
 622        VC4_REG32(DSI0_HS_DLT4),
 623        VC4_REG32(DSI0_HS_DLT5),
 624        VC4_REG32(DSI0_HS_DLT6),
 625        VC4_REG32(DSI0_HS_DLT7),
 626        VC4_REG32(DSI0_PHY_AFEC0),
 627        VC4_REG32(DSI0_PHY_AFEC1),
 628        VC4_REG32(DSI0_ID),
 629};
 630
 631static const struct debugfs_reg32 dsi1_regs[] = {
 632        VC4_REG32(DSI1_CTRL),
 633        VC4_REG32(DSI1_STAT),
 634        VC4_REG32(DSI1_HSTX_TO_CNT),
 635        VC4_REG32(DSI1_LPRX_TO_CNT),
 636        VC4_REG32(DSI1_TA_TO_CNT),
 637        VC4_REG32(DSI1_PR_TO_CNT),
 638        VC4_REG32(DSI1_DISP0_CTRL),
 639        VC4_REG32(DSI1_DISP1_CTRL),
 640        VC4_REG32(DSI1_INT_STAT),
 641        VC4_REG32(DSI1_INT_EN),
 642        VC4_REG32(DSI1_PHYC),
 643        VC4_REG32(DSI1_HS_CLT0),
 644        VC4_REG32(DSI1_HS_CLT1),
 645        VC4_REG32(DSI1_HS_CLT2),
 646        VC4_REG32(DSI1_HS_DLT3),
 647        VC4_REG32(DSI1_HS_DLT4),
 648        VC4_REG32(DSI1_HS_DLT5),
 649        VC4_REG32(DSI1_HS_DLT6),
 650        VC4_REG32(DSI1_HS_DLT7),
 651        VC4_REG32(DSI1_PHY_AFEC0),
 652        VC4_REG32(DSI1_PHY_AFEC1),
 653        VC4_REG32(DSI1_ID),
 654};
 655
 656static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 657{
 658        u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 659
 660        if (latch)
 661                afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 662        else
 663                afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 664
 665        DSI_PORT_WRITE(PHY_AFEC0, afec0);
 666}
 667
 668/* Enters or exits Ultra Low Power State. */
 669static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 670{
 671        bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 672        u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 673                         DSI_PHYC_DLANE0_ULPS |
 674                         (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 675                         (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 676                         (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 677        u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 678                         DSI1_STAT_PHY_D0_ULPS |
 679                         (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 680                         (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 681                         (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 682        u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 683                         DSI1_STAT_PHY_D0_STOP |
 684                         (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 685                         (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 686                         (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 687        int ret;
 688        bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
 689                                       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
 690
 691        if (ulps == ulps_currently_enabled)
 692                return;
 693
 694        DSI_PORT_WRITE(STAT, stat_ulps);
 695        DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 696        ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 697        if (ret) {
 698                dev_warn(&dsi->pdev->dev,
 699                         "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 700                         DSI_PORT_READ(STAT));
 701                DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 702                vc4_dsi_latch_ulps(dsi, false);
 703                return;
 704        }
 705
 706        /* The DSI module can't be disabled while the module is
 707         * generating ULPS state.  So, to be able to disable the
 708         * module, we have the AFE latch the ULPS state and continue
 709         * on to having the module enter STOP.
 710         */
 711        vc4_dsi_latch_ulps(dsi, ulps);
 712
 713        DSI_PORT_WRITE(STAT, stat_stop);
 714        DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 715        ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 716        if (ret) {
 717                dev_warn(&dsi->pdev->dev,
 718                         "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 719                         DSI_PORT_READ(STAT));
 720                DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 721                return;
 722        }
 723}
 724
 725static u32
 726dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 727{
 728        /* The HS timings have to be rounded up to a multiple of 8
 729         * because we're using the byte clock.
 730         */
 731        return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 732}
 733
 734/* ESC always runs at 100Mhz. */
 735#define ESC_TIME_NS 10
 736
 737static u32
 738dsi_esc_timing(u32 ns)
 739{
 740        return DIV_ROUND_UP(ns, ESC_TIME_NS);
 741}
 742
 743static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
 744{
 745        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 746        struct vc4_dsi *dsi = vc4_encoder->dsi;
 747        struct device *dev = &dsi->pdev->dev;
 748        struct drm_bridge *iter;
 749
 750        list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
 751                if (iter->funcs->disable)
 752                        iter->funcs->disable(iter);
 753        }
 754
 755        vc4_dsi_ulps(dsi, true);
 756
 757        list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
 758                if (iter->funcs->post_disable)
 759                        iter->funcs->post_disable(iter);
 760        }
 761
 762        clk_disable_unprepare(dsi->pll_phy_clock);
 763        clk_disable_unprepare(dsi->escape_clock);
 764        clk_disable_unprepare(dsi->pixel_clock);
 765
 766        pm_runtime_put(dev);
 767}
 768
 769/* Extends the mode's blank intervals to handle BCM2835's integer-only
 770 * DSI PLL divider.
 771 *
 772 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 773 * driver since most peripherals are hanging off of the PLLD_PER
 774 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 775 * the pixel clock), only has an integer divider off of DSI.
 776 *
 777 * To get our panel mode to refresh at the expected 60Hz, we need to
 778 * extend the horizontal blank time.  This means we drive a
 779 * higher-than-expected clock rate to the panel, but that's what the
 780 * firmware does too.
 781 */
 782static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
 783                                       const struct drm_display_mode *mode,
 784                                       struct drm_display_mode *adjusted_mode)
 785{
 786        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 787        struct vc4_dsi *dsi = vc4_encoder->dsi;
 788        struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 789        unsigned long parent_rate = clk_get_rate(phy_parent);
 790        unsigned long pixel_clock_hz = mode->clock * 1000;
 791        unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 792        int divider;
 793
 794        /* Find what divider gets us a faster clock than the requested
 795         * pixel clock.
 796         */
 797        for (divider = 1; divider < 8; divider++) {
 798                if (parent_rate / divider < pll_clock) {
 799                        divider--;
 800                        break;
 801                }
 802        }
 803
 804        /* Now that we've picked a PLL divider, calculate back to its
 805         * pixel clock.
 806         */
 807        pll_clock = parent_rate / divider;
 808        pixel_clock_hz = pll_clock / dsi->divider;
 809
 810        adjusted_mode->clock = pixel_clock_hz / 1000;
 811
 812        /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 813        adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 814                                mode->clock;
 815        adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 816        adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 817
 818        return true;
 819}
 820
 821static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
 822{
 823        struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
 824        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 825        struct vc4_dsi *dsi = vc4_encoder->dsi;
 826        struct device *dev = &dsi->pdev->dev;
 827        bool debug_dump_regs = false;
 828        struct drm_bridge *iter;
 829        unsigned long hs_clock;
 830        u32 ui_ns;
 831        /* Minimum LP state duration in escape clock cycles. */
 832        u32 lpx = dsi_esc_timing(60);
 833        unsigned long pixel_clock_hz = mode->clock * 1000;
 834        unsigned long dsip_clock;
 835        unsigned long phy_clock;
 836        int ret;
 837
 838        ret = pm_runtime_get_sync(dev);
 839        if (ret) {
 840                DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
 841                return;
 842        }
 843
 844        if (debug_dump_regs) {
 845                struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
 846                dev_info(&dsi->pdev->dev, "DSI regs before:\n");
 847                drm_print_regset32(&p, &dsi->regset);
 848        }
 849
 850        /* Round up the clk_set_rate() request slightly, since
 851         * PLLD_DSI1 is an integer divider and its rate selection will
 852         * never round up.
 853         */
 854        phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 855        ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 856        if (ret) {
 857                dev_err(&dsi->pdev->dev,
 858                        "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 859        }
 860
 861        /* Reset the DSI and all its fifos. */
 862        DSI_PORT_WRITE(CTRL,
 863                       DSI_CTRL_SOFT_RESET_CFG |
 864                       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 865
 866        DSI_PORT_WRITE(CTRL,
 867                       DSI_CTRL_HSDT_EOT_DISABLE |
 868                       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 869
 870        /* Clear all stat bits so we see what has happened during enable. */
 871        DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 872
 873        /* Set AFE CTR00/CTR1 to release powerdown of analog. */
 874        if (dsi->port == 0) {
 875                u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 876                             VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 877
 878                if (dsi->lanes < 2)
 879                        afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 880
 881                if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 882                        afec0 |= DSI0_PHY_AFEC0_RESET;
 883
 884                DSI_PORT_WRITE(PHY_AFEC0, afec0);
 885
 886                DSI_PORT_WRITE(PHY_AFEC1,
 887                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 888                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 889                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 890        } else {
 891                u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 892                             VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 893                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 894                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 895                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 896                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 897                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 898
 899                if (dsi->lanes < 4)
 900                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 901                if (dsi->lanes < 3)
 902                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 903                if (dsi->lanes < 2)
 904                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 905
 906                afec0 |= DSI1_PHY_AFEC0_RESET;
 907
 908                DSI_PORT_WRITE(PHY_AFEC0, afec0);
 909
 910                DSI_PORT_WRITE(PHY_AFEC1, 0);
 911
 912                /* AFEC reset hold time */
 913                mdelay(1);
 914        }
 915
 916        ret = clk_prepare_enable(dsi->escape_clock);
 917        if (ret) {
 918                DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
 919                return;
 920        }
 921
 922        ret = clk_prepare_enable(dsi->pll_phy_clock);
 923        if (ret) {
 924                DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
 925                return;
 926        }
 927
 928        hs_clock = clk_get_rate(dsi->pll_phy_clock);
 929
 930        /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
 931         * not the pixel clock rate.  DSIxP take from the APHY's byte,
 932         * DDR2, or DDR4 clock (we use byte) and feed into the PV at
 933         * that rate.  Separately, a value derived from PIX_CLK_DIV
 934         * and HS_CLKC is fed into the PV to divide down to the actual
 935         * pixel clock for pushing pixels into DSI.
 936         */
 937        dsip_clock = phy_clock / 8;
 938        ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
 939        if (ret) {
 940                dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
 941                        dsip_clock, ret);
 942        }
 943
 944        ret = clk_prepare_enable(dsi->pixel_clock);
 945        if (ret) {
 946                DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
 947                return;
 948        }
 949
 950        /* How many ns one DSI unit interval is.  Note that the clock
 951         * is DDR, so there's an extra divide by 2.
 952         */
 953        ui_ns = DIV_ROUND_UP(500000000, hs_clock);
 954
 955        DSI_PORT_WRITE(HS_CLT0,
 956                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
 957                                     DSI_HS_CLT0_CZERO) |
 958                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
 959                                     DSI_HS_CLT0_CPRE) |
 960                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
 961                                     DSI_HS_CLT0_CPREP));
 962
 963        DSI_PORT_WRITE(HS_CLT1,
 964                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
 965                                     DSI_HS_CLT1_CTRAIL) |
 966                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
 967                                     DSI_HS_CLT1_CPOST));
 968
 969        DSI_PORT_WRITE(HS_CLT2,
 970                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
 971                                     DSI_HS_CLT2_WUP));
 972
 973        DSI_PORT_WRITE(HS_DLT3,
 974                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
 975                                     DSI_HS_DLT3_EXIT) |
 976                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
 977                                     DSI_HS_DLT3_ZERO) |
 978                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
 979                                     DSI_HS_DLT3_PRE));
 980
 981        DSI_PORT_WRITE(HS_DLT4,
 982                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
 983                                     DSI_HS_DLT4_LPX) |
 984                       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
 985                                         dsi_hs_timing(ui_ns, 60, 4)),
 986                                     DSI_HS_DLT4_TRAIL) |
 987                       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
 988
 989        /* T_INIT is how long STOP is driven after power-up to
 990         * indicate to the slave (also coming out of power-up) that
 991         * master init is complete, and should be greater than the
 992         * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
 993         * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
 994         * T_INIT,SLAVE, while allowing protocols on top of it to give
 995         * greater minimums.  The vc4 firmware uses an extremely
 996         * conservative 5ms, and we maintain that here.
 997         */
 998        DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
 999                                                            5 * 1000 * 1000, 0),
1000                                              DSI_HS_DLT5_INIT));
1001
1002        DSI_PORT_WRITE(HS_DLT6,
1003                       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1004                       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1005                       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1006                       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1007
1008        DSI_PORT_WRITE(HS_DLT7,
1009                       VC4_SET_FIELD(dsi_esc_timing(1000000),
1010                                     DSI_HS_DLT7_LP_WUP));
1011
1012        DSI_PORT_WRITE(PHYC,
1013                       DSI_PHYC_DLANE0_ENABLE |
1014                       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1015                       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1016                       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1017                       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1018                       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1019                        0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1020                       (dsi->port == 0 ?
1021                        VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1022                        VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1023
1024        DSI_PORT_WRITE(CTRL,
1025                       DSI_PORT_READ(CTRL) |
1026                       DSI_CTRL_CAL_BYTE);
1027
1028        /* HS timeout in HS clock cycles: disabled. */
1029        DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1030        /* LP receive timeout in HS clocks. */
1031        DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1032        /* Bus turnaround timeout */
1033        DSI_PORT_WRITE(TA_TO_CNT, 100000);
1034        /* Display reset sequence timeout */
1035        DSI_PORT_WRITE(PR_TO_CNT, 100000);
1036
1037        /* Set up DISP1 for transferring long command payloads through
1038         * the pixfifo.
1039         */
1040        DSI_PORT_WRITE(DISP1_CTRL,
1041                       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1042                                     DSI_DISP1_PFORMAT) |
1043                       DSI_DISP1_ENABLE);
1044
1045        /* Ungate the block. */
1046        if (dsi->port == 0)
1047                DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1048        else
1049                DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1050
1051        /* Bring AFE out of reset. */
1052        if (dsi->port == 0) {
1053        } else {
1054                DSI_PORT_WRITE(PHY_AFEC0,
1055                               DSI_PORT_READ(PHY_AFEC0) &
1056                               ~DSI1_PHY_AFEC0_RESET);
1057        }
1058
1059        vc4_dsi_ulps(dsi, false);
1060
1061        list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1062                if (iter->funcs->pre_enable)
1063                        iter->funcs->pre_enable(iter);
1064        }
1065
1066        if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1067                DSI_PORT_WRITE(DISP0_CTRL,
1068                               VC4_SET_FIELD(dsi->divider,
1069                                             DSI_DISP0_PIX_CLK_DIV) |
1070                               VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1071                               VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1072                                             DSI_DISP0_LP_STOP_CTRL) |
1073                               DSI_DISP0_ST_END |
1074                               DSI_DISP0_ENABLE);
1075        } else {
1076                DSI_PORT_WRITE(DISP0_CTRL,
1077                               DSI_DISP0_COMMAND_MODE |
1078                               DSI_DISP0_ENABLE);
1079        }
1080
1081        list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1082                if (iter->funcs->enable)
1083                        iter->funcs->enable(iter);
1084        }
1085
1086        if (debug_dump_regs) {
1087                struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1088                dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1089                drm_print_regset32(&p, &dsi->regset);
1090        }
1091}
1092
1093static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1094                                     const struct mipi_dsi_msg *msg)
1095{
1096        struct vc4_dsi *dsi = host_to_dsi(host);
1097        struct mipi_dsi_packet packet;
1098        u32 pkth = 0, pktc = 0;
1099        int i, ret;
1100        bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1101        u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1102
1103        mipi_dsi_create_packet(&packet, msg);
1104
1105        pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1106        pkth |= VC4_SET_FIELD(packet.header[1] |
1107                              (packet.header[2] << 8),
1108                              DSI_TXPKT1H_BC_PARAM);
1109        if (is_long) {
1110                /* Divide data across the various FIFOs we have available.
1111                 * The command FIFO takes byte-oriented data, but is of
1112                 * limited size. The pixel FIFO (never actually used for
1113                 * pixel data in reality) is word oriented, and substantially
1114                 * larger. So, we use the pixel FIFO for most of the data,
1115                 * sending the residual bytes in the command FIFO at the start.
1116                 *
1117                 * With this arrangement, the command FIFO will never get full.
1118                 */
1119                if (packet.payload_length <= 16) {
1120                        cmd_fifo_len = packet.payload_length;
1121                        pix_fifo_len = 0;
1122                } else {
1123                        cmd_fifo_len = (packet.payload_length %
1124                                        DSI_PIX_FIFO_WIDTH);
1125                        pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1126                                        DSI_PIX_FIFO_WIDTH);
1127                }
1128
1129                WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1130
1131                pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1132        }
1133
1134        if (msg->rx_len) {
1135                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1136                                      DSI_TXPKT1C_CMD_CTRL);
1137        } else {
1138                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1139                                      DSI_TXPKT1C_CMD_CTRL);
1140        }
1141
1142        for (i = 0; i < cmd_fifo_len; i++)
1143                DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1144        for (i = 0; i < pix_fifo_len; i++) {
1145                const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1146
1147                DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1148                               pix[0] |
1149                               pix[1] << 8 |
1150                               pix[2] << 16 |
1151                               pix[3] << 24);
1152        }
1153
1154        if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1155                pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1156        if (is_long)
1157                pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1158
1159        /* Send one copy of the packet.  Larger repeats are used for pixel
1160         * data in command mode.
1161         */
1162        pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1163
1164        pktc |= DSI_TXPKT1C_CMD_EN;
1165        if (pix_fifo_len) {
1166                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1167                                      DSI_TXPKT1C_DISPLAY_NO);
1168        } else {
1169                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1170                                      DSI_TXPKT1C_DISPLAY_NO);
1171        }
1172
1173        /* Enable the appropriate interrupt for the transfer completion. */
1174        dsi->xfer_result = 0;
1175        reinit_completion(&dsi->xfer_completion);
1176        DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1177        if (msg->rx_len) {
1178                DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1179                                        DSI1_INT_PHY_DIR_RTF));
1180        } else {
1181                DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1182                                        DSI1_INT_TXPKT1_DONE));
1183        }
1184
1185        /* Send the packet. */
1186        DSI_PORT_WRITE(TXPKT1H, pkth);
1187        DSI_PORT_WRITE(TXPKT1C, pktc);
1188
1189        if (!wait_for_completion_timeout(&dsi->xfer_completion,
1190                                         msecs_to_jiffies(1000))) {
1191                dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1192                dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1193                        DSI_PORT_READ(INT_STAT));
1194                ret = -ETIMEDOUT;
1195        } else {
1196                ret = dsi->xfer_result;
1197        }
1198
1199        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1200
1201        if (ret)
1202                goto reset_fifo_and_return;
1203
1204        if (ret == 0 && msg->rx_len) {
1205                u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1206                u8 *msg_rx = msg->rx_buf;
1207
1208                if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1209                        u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1210                                                  DSI_RXPKT1H_BC_PARAM);
1211
1212                        if (rxlen != msg->rx_len) {
1213                                DRM_ERROR("DSI returned %db, expecting %db\n",
1214                                          rxlen, (int)msg->rx_len);
1215                                ret = -ENXIO;
1216                                goto reset_fifo_and_return;
1217                        }
1218
1219                        for (i = 0; i < msg->rx_len; i++)
1220                                msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1221                } else {
1222                        /* FINISHME: Handle AWER */
1223
1224                        msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1225                                                  DSI_RXPKT1H_SHORT_0);
1226                        if (msg->rx_len > 1) {
1227                                msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1228                                                          DSI_RXPKT1H_SHORT_1);
1229                        }
1230                }
1231        }
1232
1233        return ret;
1234
1235reset_fifo_and_return:
1236        DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1237
1238        DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1239        udelay(1);
1240        DSI_PORT_WRITE(CTRL,
1241                       DSI_PORT_READ(CTRL) |
1242                       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1243
1244        DSI_PORT_WRITE(TXPKT1C, 0);
1245        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1246        return ret;
1247}
1248
1249static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1250                               struct mipi_dsi_device *device)
1251{
1252        struct vc4_dsi *dsi = host_to_dsi(host);
1253
1254        dsi->lanes = device->lanes;
1255        dsi->channel = device->channel;
1256        dsi->mode_flags = device->mode_flags;
1257
1258        switch (device->format) {
1259        case MIPI_DSI_FMT_RGB888:
1260                dsi->format = DSI_PFORMAT_RGB888;
1261                dsi->divider = 24 / dsi->lanes;
1262                break;
1263        case MIPI_DSI_FMT_RGB666:
1264                dsi->format = DSI_PFORMAT_RGB666;
1265                dsi->divider = 24 / dsi->lanes;
1266                break;
1267        case MIPI_DSI_FMT_RGB666_PACKED:
1268                dsi->format = DSI_PFORMAT_RGB666_PACKED;
1269                dsi->divider = 18 / dsi->lanes;
1270                break;
1271        case MIPI_DSI_FMT_RGB565:
1272                dsi->format = DSI_PFORMAT_RGB565;
1273                dsi->divider = 16 / dsi->lanes;
1274                break;
1275        default:
1276                dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1277                        dsi->format);
1278                return 0;
1279        }
1280
1281        if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1282                dev_err(&dsi->pdev->dev,
1283                        "Only VIDEO mode panels supported currently.\n");
1284                return 0;
1285        }
1286
1287        return 0;
1288}
1289
1290static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1291                               struct mipi_dsi_device *device)
1292{
1293        return 0;
1294}
1295
1296static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1297        .attach = vc4_dsi_host_attach,
1298        .detach = vc4_dsi_host_detach,
1299        .transfer = vc4_dsi_host_transfer,
1300};
1301
1302static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1303        .disable = vc4_dsi_encoder_disable,
1304        .enable = vc4_dsi_encoder_enable,
1305        .mode_fixup = vc4_dsi_encoder_mode_fixup,
1306};
1307
1308static const struct of_device_id vc4_dsi_dt_match[] = {
1309        { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1310        {}
1311};
1312
1313static void dsi_handle_error(struct vc4_dsi *dsi,
1314                             irqreturn_t *ret, u32 stat, u32 bit,
1315                             const char *type)
1316{
1317        if (!(stat & bit))
1318                return;
1319
1320        DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1321        *ret = IRQ_HANDLED;
1322}
1323
1324/*
1325 * Initial handler for port 1 where we need the reg_dma workaround.
1326 * The register DMA writes sleep, so we can't do it in the top half.
1327 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1328 * parent interrupt contrller until our interrupt thread is done.
1329 */
1330static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1331{
1332        struct vc4_dsi *dsi = data;
1333        u32 stat = DSI_PORT_READ(INT_STAT);
1334
1335        if (!stat)
1336                return IRQ_NONE;
1337
1338        return IRQ_WAKE_THREAD;
1339}
1340
1341/*
1342 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1343 * 1 where we need the reg_dma workaround.
1344 */
1345static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1346{
1347        struct vc4_dsi *dsi = data;
1348        u32 stat = DSI_PORT_READ(INT_STAT);
1349        irqreturn_t ret = IRQ_NONE;
1350
1351        DSI_PORT_WRITE(INT_STAT, stat);
1352
1353        dsi_handle_error(dsi, &ret, stat,
1354                         DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1355        dsi_handle_error(dsi, &ret, stat,
1356                         DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1357        dsi_handle_error(dsi, &ret, stat,
1358                         DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1359        dsi_handle_error(dsi, &ret, stat,
1360                         DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1361        dsi_handle_error(dsi, &ret, stat,
1362                         DSI1_INT_HSTX_TO, "HSTX timeout");
1363        dsi_handle_error(dsi, &ret, stat,
1364                         DSI1_INT_LPRX_TO, "LPRX timeout");
1365        dsi_handle_error(dsi, &ret, stat,
1366                         DSI1_INT_TA_TO, "turnaround timeout");
1367        dsi_handle_error(dsi, &ret, stat,
1368                         DSI1_INT_PR_TO, "peripheral reset timeout");
1369
1370        if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1371                complete(&dsi->xfer_completion);
1372                ret = IRQ_HANDLED;
1373        } else if (stat & DSI1_INT_HSTX_TO) {
1374                complete(&dsi->xfer_completion);
1375                dsi->xfer_result = -ETIMEDOUT;
1376                ret = IRQ_HANDLED;
1377        }
1378
1379        return ret;
1380}
1381
1382/**
1383 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1384 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1385 * @dsi: DSI encoder
1386 */
1387static int
1388vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1389{
1390        struct device *dev = &dsi->pdev->dev;
1391        const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1392        static const struct {
1393                const char *dsi0_name, *dsi1_name;
1394                int div;
1395        } phy_clocks[] = {
1396                { "dsi0_byte", "dsi1_byte", 8 },
1397                { "dsi0_ddr2", "dsi1_ddr2", 4 },
1398                { "dsi0_ddr", "dsi1_ddr", 2 },
1399        };
1400        int i;
1401
1402        dsi->clk_onecell = devm_kzalloc(dev,
1403                                        sizeof(*dsi->clk_onecell) +
1404                                        ARRAY_SIZE(phy_clocks) *
1405                                        sizeof(struct clk_hw *),
1406                                        GFP_KERNEL);
1407        if (!dsi->clk_onecell)
1408                return -ENOMEM;
1409        dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1410
1411        for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1412                struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1413                struct clk_init_data init;
1414                int ret;
1415
1416                /* We just use core fixed factor clock ops for the PHY
1417                 * clocks.  The clocks are actually gated by the
1418                 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1419                 * setting if we use the DDR/DDR2 clocks.  However,
1420                 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1421                 * setting both our parent DSI PLL's rate and this
1422                 * clock's rate, so it knows if DDR/DDR2 are going to
1423                 * be used and could enable the gates itself.
1424                 */
1425                fix->mult = 1;
1426                fix->div = phy_clocks[i].div;
1427                fix->hw.init = &init;
1428
1429                memset(&init, 0, sizeof(init));
1430                init.parent_names = &parent_name;
1431                init.num_parents = 1;
1432                if (dsi->port == 1)
1433                        init.name = phy_clocks[i].dsi1_name;
1434                else
1435                        init.name = phy_clocks[i].dsi0_name;
1436                init.ops = &clk_fixed_factor_ops;
1437
1438                ret = devm_clk_hw_register(dev, &fix->hw);
1439                if (ret)
1440                        return ret;
1441
1442                dsi->clk_onecell->hws[i] = &fix->hw;
1443        }
1444
1445        return of_clk_add_hw_provider(dev->of_node,
1446                                      of_clk_hw_onecell_get,
1447                                      dsi->clk_onecell);
1448}
1449
1450static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1451{
1452        struct platform_device *pdev = to_platform_device(dev);
1453        struct drm_device *drm = dev_get_drvdata(master);
1454        struct vc4_dev *vc4 = to_vc4_dev(drm);
1455        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1456        struct vc4_dsi_encoder *vc4_dsi_encoder;
1457        struct drm_panel *panel;
1458        const struct of_device_id *match;
1459        dma_cap_mask_t dma_mask;
1460        int ret;
1461
1462        match = of_match_device(vc4_dsi_dt_match, dev);
1463        if (!match)
1464                return -ENODEV;
1465
1466        dsi->port = (uintptr_t)match->data;
1467
1468        vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1469                                       GFP_KERNEL);
1470        if (!vc4_dsi_encoder)
1471                return -ENOMEM;
1472
1473        INIT_LIST_HEAD(&dsi->bridge_chain);
1474        vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1475        vc4_dsi_encoder->dsi = dsi;
1476        dsi->encoder = &vc4_dsi_encoder->base.base;
1477
1478        dsi->regs = vc4_ioremap_regs(pdev, 0);
1479        if (IS_ERR(dsi->regs))
1480                return PTR_ERR(dsi->regs);
1481
1482        dsi->regset.base = dsi->regs;
1483        if (dsi->port == 0) {
1484                dsi->regset.regs = dsi0_regs;
1485                dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1486        } else {
1487                dsi->regset.regs = dsi1_regs;
1488                dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1489        }
1490
1491        if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1492                dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1493                        DSI_PORT_READ(ID), DSI_ID_VALUE);
1494                return -ENODEV;
1495        }
1496
1497        /* DSI1 has a broken AXI slave that doesn't respond to writes
1498         * from the ARM.  It does handle writes from the DMA engine,
1499         * so set up a channel for talking to it.
1500         */
1501        if (dsi->port == 1) {
1502                dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1503                                                      &dsi->reg_dma_paddr,
1504                                                      GFP_KERNEL);
1505                if (!dsi->reg_dma_mem) {
1506                        DRM_ERROR("Failed to get DMA memory\n");
1507                        return -ENOMEM;
1508                }
1509
1510                dma_cap_zero(dma_mask);
1511                dma_cap_set(DMA_MEMCPY, dma_mask);
1512                dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1513                if (IS_ERR(dsi->reg_dma_chan)) {
1514                        ret = PTR_ERR(dsi->reg_dma_chan);
1515                        if (ret != -EPROBE_DEFER)
1516                                DRM_ERROR("Failed to get DMA channel: %d\n",
1517                                          ret);
1518                        return ret;
1519                }
1520
1521                /* Get the physical address of the device's registers.  The
1522                 * struct resource for the regs gives us the bus address
1523                 * instead.
1524                 */
1525                dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1526                                                             0, NULL, NULL));
1527        }
1528
1529        init_completion(&dsi->xfer_completion);
1530        /* At startup enable error-reporting interrupts and nothing else. */
1531        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1532        /* Clear any existing interrupt state. */
1533        DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1534
1535        if (dsi->reg_dma_mem)
1536                ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1537                                                vc4_dsi_irq_defer_to_thread_handler,
1538                                                vc4_dsi_irq_handler,
1539                                                IRQF_ONESHOT,
1540                                                "vc4 dsi", dsi);
1541        else
1542                ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1543                                       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1544        if (ret) {
1545                if (ret != -EPROBE_DEFER)
1546                        dev_err(dev, "Failed to get interrupt: %d\n", ret);
1547                return ret;
1548        }
1549
1550        dsi->escape_clock = devm_clk_get(dev, "escape");
1551        if (IS_ERR(dsi->escape_clock)) {
1552                ret = PTR_ERR(dsi->escape_clock);
1553                if (ret != -EPROBE_DEFER)
1554                        dev_err(dev, "Failed to get escape clock: %d\n", ret);
1555                return ret;
1556        }
1557
1558        dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1559        if (IS_ERR(dsi->pll_phy_clock)) {
1560                ret = PTR_ERR(dsi->pll_phy_clock);
1561                if (ret != -EPROBE_DEFER)
1562                        dev_err(dev, "Failed to get phy clock: %d\n", ret);
1563                return ret;
1564        }
1565
1566        dsi->pixel_clock = devm_clk_get(dev, "pixel");
1567        if (IS_ERR(dsi->pixel_clock)) {
1568                ret = PTR_ERR(dsi->pixel_clock);
1569                if (ret != -EPROBE_DEFER)
1570                        dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1571                return ret;
1572        }
1573
1574        ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1575                                          &panel, &dsi->bridge);
1576        if (ret) {
1577                /* If the bridge or panel pointed by dev->of_node is not
1578                 * enabled, just return 0 here so that we don't prevent the DRM
1579                 * dev from being registered. Of course that means the DSI
1580                 * encoder won't be exposed, but that's not a problem since
1581                 * nothing is connected to it.
1582                 */
1583                if (ret == -ENODEV)
1584                        return 0;
1585
1586                return ret;
1587        }
1588
1589        if (panel) {
1590                dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel,
1591                                                              DRM_MODE_CONNECTOR_DSI);
1592                if (IS_ERR(dsi->bridge))
1593                        return PTR_ERR(dsi->bridge);
1594        }
1595
1596        /* The esc clock rate is supposed to always be 100Mhz. */
1597        ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1598        if (ret) {
1599                dev_err(dev, "Failed to set esc clock: %d\n", ret);
1600                return ret;
1601        }
1602
1603        ret = vc4_dsi_init_phy_clocks(dsi);
1604        if (ret)
1605                return ret;
1606
1607        if (dsi->port == 1)
1608                vc4->dsi1 = dsi;
1609
1610        drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI);
1611        drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1612
1613        ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
1614        if (ret) {
1615                dev_err(dev, "bridge attach failed: %d\n", ret);
1616                return ret;
1617        }
1618        /* Disable the atomic helper calls into the bridge.  We
1619         * manually call the bridge pre_enable / enable / etc. calls
1620         * from our driver, since we need to sequence them within the
1621         * encoder's enable/disable paths.
1622         */
1623        list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
1624
1625        if (dsi->port == 0)
1626                vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1627        else
1628                vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1629
1630        pm_runtime_enable(dev);
1631
1632        return 0;
1633}
1634
1635static void vc4_dsi_unbind(struct device *dev, struct device *master,
1636                           void *data)
1637{
1638        struct drm_device *drm = dev_get_drvdata(master);
1639        struct vc4_dev *vc4 = to_vc4_dev(drm);
1640        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1641
1642        if (dsi->bridge)
1643                pm_runtime_disable(dev);
1644
1645        /*
1646         * Restore the bridge_chain so the bridge detach procedure can happen
1647         * normally.
1648         */
1649        list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
1650        drm_encoder_cleanup(dsi->encoder);
1651
1652        if (dsi->port == 1)
1653                vc4->dsi1 = NULL;
1654}
1655
1656static const struct component_ops vc4_dsi_ops = {
1657        .bind   = vc4_dsi_bind,
1658        .unbind = vc4_dsi_unbind,
1659};
1660
1661static int vc4_dsi_dev_probe(struct platform_device *pdev)
1662{
1663        struct device *dev = &pdev->dev;
1664        struct vc4_dsi *dsi;
1665        int ret;
1666
1667        dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1668        if (!dsi)
1669                return -ENOMEM;
1670        dev_set_drvdata(dev, dsi);
1671
1672        dsi->pdev = pdev;
1673
1674        /* Note, the initialization sequence for DSI and panels is
1675         * tricky.  The component bind above won't get past its
1676         * -EPROBE_DEFER until the panel/bridge probes.  The
1677         * panel/bridge will return -EPROBE_DEFER until it has a
1678         * mipi_dsi_host to register its device to.  So, we register
1679         * the host during pdev probe time, so vc4 as a whole can then
1680         * -EPROBE_DEFER its component bind process until the panel
1681         * successfully attaches.
1682         */
1683        dsi->dsi_host.ops = &vc4_dsi_host_ops;
1684        dsi->dsi_host.dev = dev;
1685        mipi_dsi_host_register(&dsi->dsi_host);
1686
1687        ret = component_add(&pdev->dev, &vc4_dsi_ops);
1688        if (ret) {
1689                mipi_dsi_host_unregister(&dsi->dsi_host);
1690                return ret;
1691        }
1692
1693        return 0;
1694}
1695
1696static int vc4_dsi_dev_remove(struct platform_device *pdev)
1697{
1698        struct device *dev = &pdev->dev;
1699        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1700
1701        component_del(&pdev->dev, &vc4_dsi_ops);
1702        mipi_dsi_host_unregister(&dsi->dsi_host);
1703
1704        return 0;
1705}
1706
1707struct platform_driver vc4_dsi_driver = {
1708        .probe = vc4_dsi_dev_probe,
1709        .remove = vc4_dsi_dev_remove,
1710        .driver = {
1711                .name = "vc4_dsi",
1712                .of_match_table = vc4_dsi_dt_match,
1713        },
1714};
1715