linux/drivers/infiniband/hw/hfi1/affinity.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015 - 2020 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47#include <linux/topology.h>
  48#include <linux/cpumask.h>
  49#include <linux/module.h>
  50#include <linux/interrupt.h>
  51#include <linux/numa.h>
  52
  53#include "hfi.h"
  54#include "affinity.h"
  55#include "sdma.h"
  56#include "trace.h"
  57
  58struct hfi1_affinity_node_list node_affinity = {
  59        .list = LIST_HEAD_INIT(node_affinity.list),
  60        .lock = __MUTEX_INITIALIZER(node_affinity.lock)
  61};
  62
  63/* Name of IRQ types, indexed by enum irq_type */
  64static const char * const irq_type_names[] = {
  65        "SDMA",
  66        "RCVCTXT",
  67        "NETDEVCTXT",
  68        "GENERAL",
  69        "OTHER",
  70};
  71
  72/* Per NUMA node count of HFI devices */
  73static unsigned int *hfi1_per_node_cntr;
  74
  75static inline void init_cpu_mask_set(struct cpu_mask_set *set)
  76{
  77        cpumask_clear(&set->mask);
  78        cpumask_clear(&set->used);
  79        set->gen = 0;
  80}
  81
  82/* Increment generation of CPU set if needed */
  83static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
  84{
  85        if (cpumask_equal(&set->mask, &set->used)) {
  86                /*
  87                 * We've used up all the CPUs, bump up the generation
  88                 * and reset the 'used' map
  89                 */
  90                set->gen++;
  91                cpumask_clear(&set->used);
  92        }
  93}
  94
  95static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
  96{
  97        if (cpumask_empty(&set->used) && set->gen) {
  98                set->gen--;
  99                cpumask_copy(&set->used, &set->mask);
 100        }
 101}
 102
 103/* Get the first CPU from the list of unused CPUs in a CPU set data structure */
 104static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
 105{
 106        int cpu;
 107
 108        if (!diff || !set)
 109                return -EINVAL;
 110
 111        _cpu_mask_set_gen_inc(set);
 112
 113        /* Find out CPUs left in CPU mask */
 114        cpumask_andnot(diff, &set->mask, &set->used);
 115
 116        cpu = cpumask_first(diff);
 117        if (cpu >= nr_cpu_ids) /* empty */
 118                cpu = -EINVAL;
 119        else
 120                cpumask_set_cpu(cpu, &set->used);
 121
 122        return cpu;
 123}
 124
 125static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
 126{
 127        if (!set)
 128                return;
 129
 130        cpumask_clear_cpu(cpu, &set->used);
 131        _cpu_mask_set_gen_dec(set);
 132}
 133
 134/* Initialize non-HT cpu cores mask */
 135void init_real_cpu_mask(void)
 136{
 137        int possible, curr_cpu, i, ht;
 138
 139        cpumask_clear(&node_affinity.real_cpu_mask);
 140
 141        /* Start with cpu online mask as the real cpu mask */
 142        cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
 143
 144        /*
 145         * Remove HT cores from the real cpu mask.  Do this in two steps below.
 146         */
 147        possible = cpumask_weight(&node_affinity.real_cpu_mask);
 148        ht = cpumask_weight(topology_sibling_cpumask(
 149                                cpumask_first(&node_affinity.real_cpu_mask)));
 150        /*
 151         * Step 1.  Skip over the first N HT siblings and use them as the
 152         * "real" cores.  Assumes that HT cores are not enumerated in
 153         * succession (except in the single core case).
 154         */
 155        curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
 156        for (i = 0; i < possible / ht; i++)
 157                curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
 158        /*
 159         * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
 160         * skip any gaps.
 161         */
 162        for (; i < possible; i++) {
 163                cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
 164                curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
 165        }
 166}
 167
 168int node_affinity_init(void)
 169{
 170        int node;
 171        struct pci_dev *dev = NULL;
 172        const struct pci_device_id *ids = hfi1_pci_tbl;
 173
 174        cpumask_clear(&node_affinity.proc.used);
 175        cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
 176
 177        node_affinity.proc.gen = 0;
 178        node_affinity.num_core_siblings =
 179                                cpumask_weight(topology_sibling_cpumask(
 180                                        cpumask_first(&node_affinity.proc.mask)
 181                                        ));
 182        node_affinity.num_possible_nodes = num_possible_nodes();
 183        node_affinity.num_online_nodes = num_online_nodes();
 184        node_affinity.num_online_cpus = num_online_cpus();
 185
 186        /*
 187         * The real cpu mask is part of the affinity struct but it has to be
 188         * initialized early. It is needed to calculate the number of user
 189         * contexts in set_up_context_variables().
 190         */
 191        init_real_cpu_mask();
 192
 193        hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
 194                                     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
 195        if (!hfi1_per_node_cntr)
 196                return -ENOMEM;
 197
 198        while (ids->vendor) {
 199                dev = NULL;
 200                while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
 201                        node = pcibus_to_node(dev->bus);
 202                        if (node < 0)
 203                                goto out;
 204
 205                        hfi1_per_node_cntr[node]++;
 206                }
 207                ids++;
 208        }
 209
 210        return 0;
 211
 212out:
 213        /*
 214         * Invalid PCI NUMA node information found, note it, and populate
 215         * our database 1:1.
 216         */
 217        pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
 218        pr_err("HFI: System BIOS may need to be upgraded\n");
 219        for (node = 0; node < node_affinity.num_possible_nodes; node++)
 220                hfi1_per_node_cntr[node] = 1;
 221
 222        return 0;
 223}
 224
 225static void node_affinity_destroy(struct hfi1_affinity_node *entry)
 226{
 227        free_percpu(entry->comp_vect_affinity);
 228        kfree(entry);
 229}
 230
 231void node_affinity_destroy_all(void)
 232{
 233        struct list_head *pos, *q;
 234        struct hfi1_affinity_node *entry;
 235
 236        mutex_lock(&node_affinity.lock);
 237        list_for_each_safe(pos, q, &node_affinity.list) {
 238                entry = list_entry(pos, struct hfi1_affinity_node,
 239                                   list);
 240                list_del(pos);
 241                node_affinity_destroy(entry);
 242        }
 243        mutex_unlock(&node_affinity.lock);
 244        kfree(hfi1_per_node_cntr);
 245}
 246
 247static struct hfi1_affinity_node *node_affinity_allocate(int node)
 248{
 249        struct hfi1_affinity_node *entry;
 250
 251        entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 252        if (!entry)
 253                return NULL;
 254        entry->node = node;
 255        entry->comp_vect_affinity = alloc_percpu(u16);
 256        INIT_LIST_HEAD(&entry->list);
 257
 258        return entry;
 259}
 260
 261/*
 262 * It appends an entry to the list.
 263 * It *must* be called with node_affinity.lock held.
 264 */
 265static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
 266{
 267        list_add_tail(&entry->list, &node_affinity.list);
 268}
 269
 270/* It must be called with node_affinity.lock held */
 271static struct hfi1_affinity_node *node_affinity_lookup(int node)
 272{
 273        struct list_head *pos;
 274        struct hfi1_affinity_node *entry;
 275
 276        list_for_each(pos, &node_affinity.list) {
 277                entry = list_entry(pos, struct hfi1_affinity_node, list);
 278                if (entry->node == node)
 279                        return entry;
 280        }
 281
 282        return NULL;
 283}
 284
 285static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
 286                                u16 __percpu *comp_vect_affinity)
 287{
 288        int curr_cpu;
 289        u16 cntr;
 290        u16 prev_cntr;
 291        int ret_cpu;
 292
 293        if (!possible_cpumask) {
 294                ret_cpu = -EINVAL;
 295                goto fail;
 296        }
 297
 298        if (!comp_vect_affinity) {
 299                ret_cpu = -EINVAL;
 300                goto fail;
 301        }
 302
 303        ret_cpu = cpumask_first(possible_cpumask);
 304        if (ret_cpu >= nr_cpu_ids) {
 305                ret_cpu = -EINVAL;
 306                goto fail;
 307        }
 308
 309        prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
 310        for_each_cpu(curr_cpu, possible_cpumask) {
 311                cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
 312
 313                if (cntr < prev_cntr) {
 314                        ret_cpu = curr_cpu;
 315                        prev_cntr = cntr;
 316                }
 317        }
 318
 319        *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
 320
 321fail:
 322        return ret_cpu;
 323}
 324
 325static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
 326                                    u16 __percpu *comp_vect_affinity)
 327{
 328        int curr_cpu;
 329        int max_cpu;
 330        u16 cntr;
 331        u16 prev_cntr;
 332
 333        if (!possible_cpumask)
 334                return -EINVAL;
 335
 336        if (!comp_vect_affinity)
 337                return -EINVAL;
 338
 339        max_cpu = cpumask_first(possible_cpumask);
 340        if (max_cpu >= nr_cpu_ids)
 341                return -EINVAL;
 342
 343        prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
 344        for_each_cpu(curr_cpu, possible_cpumask) {
 345                cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
 346
 347                if (cntr > prev_cntr) {
 348                        max_cpu = curr_cpu;
 349                        prev_cntr = cntr;
 350                }
 351        }
 352
 353        *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
 354
 355        return max_cpu;
 356}
 357
 358/*
 359 * Non-interrupt CPUs are used first, then interrupt CPUs.
 360 * Two already allocated cpu masks must be passed.
 361 */
 362static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
 363                                  struct hfi1_affinity_node *entry,
 364                                  cpumask_var_t non_intr_cpus,
 365                                  cpumask_var_t available_cpus)
 366        __must_hold(&node_affinity.lock)
 367{
 368        int cpu;
 369        struct cpu_mask_set *set = dd->comp_vect;
 370
 371        lockdep_assert_held(&node_affinity.lock);
 372        if (!non_intr_cpus) {
 373                cpu = -1;
 374                goto fail;
 375        }
 376
 377        if (!available_cpus) {
 378                cpu = -1;
 379                goto fail;
 380        }
 381
 382        /* Available CPUs for pinning completion vectors */
 383        _cpu_mask_set_gen_inc(set);
 384        cpumask_andnot(available_cpus, &set->mask, &set->used);
 385
 386        /* Available CPUs without SDMA engine interrupts */
 387        cpumask_andnot(non_intr_cpus, available_cpus,
 388                       &entry->def_intr.used);
 389
 390        /* If there are non-interrupt CPUs available, use them first */
 391        if (!cpumask_empty(non_intr_cpus))
 392                cpu = cpumask_first(non_intr_cpus);
 393        else /* Otherwise, use interrupt CPUs */
 394                cpu = cpumask_first(available_cpus);
 395
 396        if (cpu >= nr_cpu_ids) { /* empty */
 397                cpu = -1;
 398                goto fail;
 399        }
 400        cpumask_set_cpu(cpu, &set->used);
 401
 402fail:
 403        return cpu;
 404}
 405
 406static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
 407{
 408        struct cpu_mask_set *set = dd->comp_vect;
 409
 410        if (cpu < 0)
 411                return;
 412
 413        cpu_mask_set_put(set, cpu);
 414}
 415
 416/* _dev_comp_vect_mappings_destroy() is reentrant */
 417static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
 418{
 419        int i, cpu;
 420
 421        if (!dd->comp_vect_mappings)
 422                return;
 423
 424        for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
 425                cpu = dd->comp_vect_mappings[i];
 426                _dev_comp_vect_cpu_put(dd, cpu);
 427                dd->comp_vect_mappings[i] = -1;
 428                hfi1_cdbg(AFFINITY,
 429                          "[%s] Release CPU %d from completion vector %d",
 430                          rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
 431        }
 432
 433        kfree(dd->comp_vect_mappings);
 434        dd->comp_vect_mappings = NULL;
 435}
 436
 437/*
 438 * This function creates the table for looking up CPUs for completion vectors.
 439 * num_comp_vectors needs to have been initilized before calling this function.
 440 */
 441static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
 442                                          struct hfi1_affinity_node *entry)
 443        __must_hold(&node_affinity.lock)
 444{
 445        int i, cpu, ret;
 446        cpumask_var_t non_intr_cpus;
 447        cpumask_var_t available_cpus;
 448
 449        lockdep_assert_held(&node_affinity.lock);
 450
 451        if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
 452                return -ENOMEM;
 453
 454        if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
 455                free_cpumask_var(non_intr_cpus);
 456                return -ENOMEM;
 457        }
 458
 459        dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
 460                                         sizeof(*dd->comp_vect_mappings),
 461                                         GFP_KERNEL);
 462        if (!dd->comp_vect_mappings) {
 463                ret = -ENOMEM;
 464                goto fail;
 465        }
 466        for (i = 0; i < dd->comp_vect_possible_cpus; i++)
 467                dd->comp_vect_mappings[i] = -1;
 468
 469        for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
 470                cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
 471                                             available_cpus);
 472                if (cpu < 0) {
 473                        ret = -EINVAL;
 474                        goto fail;
 475                }
 476
 477                dd->comp_vect_mappings[i] = cpu;
 478                hfi1_cdbg(AFFINITY,
 479                          "[%s] Completion Vector %d -> CPU %d",
 480                          rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
 481        }
 482
 483        free_cpumask_var(available_cpus);
 484        free_cpumask_var(non_intr_cpus);
 485        return 0;
 486
 487fail:
 488        free_cpumask_var(available_cpus);
 489        free_cpumask_var(non_intr_cpus);
 490        _dev_comp_vect_mappings_destroy(dd);
 491
 492        return ret;
 493}
 494
 495int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
 496{
 497        int ret;
 498        struct hfi1_affinity_node *entry;
 499
 500        mutex_lock(&node_affinity.lock);
 501        entry = node_affinity_lookup(dd->node);
 502        if (!entry) {
 503                ret = -EINVAL;
 504                goto unlock;
 505        }
 506        ret = _dev_comp_vect_mappings_create(dd, entry);
 507unlock:
 508        mutex_unlock(&node_affinity.lock);
 509
 510        return ret;
 511}
 512
 513void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
 514{
 515        _dev_comp_vect_mappings_destroy(dd);
 516}
 517
 518int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
 519{
 520        struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
 521        struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
 522
 523        if (!dd->comp_vect_mappings)
 524                return -EINVAL;
 525        if (comp_vect >= dd->comp_vect_possible_cpus)
 526                return -EINVAL;
 527
 528        return dd->comp_vect_mappings[comp_vect];
 529}
 530
 531/*
 532 * It assumes dd->comp_vect_possible_cpus is available.
 533 */
 534static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
 535                                        struct hfi1_affinity_node *entry,
 536                                        bool first_dev_init)
 537        __must_hold(&node_affinity.lock)
 538{
 539        int i, j, curr_cpu;
 540        int possible_cpus_comp_vect = 0;
 541        struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
 542
 543        lockdep_assert_held(&node_affinity.lock);
 544        /*
 545         * If there's only one CPU available for completion vectors, then
 546         * there will only be one completion vector available. Othewise,
 547         * the number of completion vector available will be the number of
 548         * available CPUs divide it by the number of devices in the
 549         * local NUMA node.
 550         */
 551        if (cpumask_weight(&entry->comp_vect_mask) == 1) {
 552                possible_cpus_comp_vect = 1;
 553                dd_dev_warn(dd,
 554                            "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
 555        } else {
 556                possible_cpus_comp_vect +=
 557                        cpumask_weight(&entry->comp_vect_mask) /
 558                                       hfi1_per_node_cntr[dd->node];
 559
 560                /*
 561                 * If the completion vector CPUs available doesn't divide
 562                 * evenly among devices, then the first device device to be
 563                 * initialized gets an extra CPU.
 564                 */
 565                if (first_dev_init &&
 566                    cpumask_weight(&entry->comp_vect_mask) %
 567                    hfi1_per_node_cntr[dd->node] != 0)
 568                        possible_cpus_comp_vect++;
 569        }
 570
 571        dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
 572
 573        /* Reserving CPUs for device completion vector */
 574        for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
 575                curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
 576                                                entry->comp_vect_affinity);
 577                if (curr_cpu < 0)
 578                        goto fail;
 579
 580                cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
 581        }
 582
 583        hfi1_cdbg(AFFINITY,
 584                  "[%s] Completion vector affinity CPU set(s) %*pbl",
 585                  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
 586                  cpumask_pr_args(dev_comp_vect_mask));
 587
 588        return 0;
 589
 590fail:
 591        for (j = 0; j < i; j++)
 592                per_cpu_affinity_put_max(&entry->comp_vect_mask,
 593                                         entry->comp_vect_affinity);
 594
 595        return curr_cpu;
 596}
 597
 598/*
 599 * It assumes dd->comp_vect_possible_cpus is available.
 600 */
 601static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
 602                                             struct hfi1_affinity_node *entry)
 603        __must_hold(&node_affinity.lock)
 604{
 605        int i, cpu;
 606
 607        lockdep_assert_held(&node_affinity.lock);
 608        if (!dd->comp_vect_possible_cpus)
 609                return;
 610
 611        for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
 612                cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
 613                                               entry->comp_vect_affinity);
 614                /* Clearing CPU in device completion vector cpu mask */
 615                if (cpu >= 0)
 616                        cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
 617        }
 618
 619        dd->comp_vect_possible_cpus = 0;
 620}
 621
 622/*
 623 * Interrupt affinity.
 624 *
 625 * non-rcv avail gets a default mask that
 626 * starts as possible cpus with threads reset
 627 * and each rcv avail reset.
 628 *
 629 * rcv avail gets node relative 1 wrapping back
 630 * to the node relative 1 as necessary.
 631 *
 632 */
 633int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
 634{
 635        int node = pcibus_to_node(dd->pcidev->bus);
 636        struct hfi1_affinity_node *entry;
 637        const struct cpumask *local_mask;
 638        int curr_cpu, possible, i, ret;
 639        bool new_entry = false;
 640
 641        /*
 642         * If the BIOS does not have the NUMA node information set, select
 643         * NUMA 0 so we get consistent performance.
 644         */
 645        if (node < 0) {
 646                dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
 647                node = 0;
 648        }
 649        dd->node = node;
 650
 651        local_mask = cpumask_of_node(dd->node);
 652        if (cpumask_first(local_mask) >= nr_cpu_ids)
 653                local_mask = topology_core_cpumask(0);
 654
 655        mutex_lock(&node_affinity.lock);
 656        entry = node_affinity_lookup(dd->node);
 657
 658        /*
 659         * If this is the first time this NUMA node's affinity is used,
 660         * create an entry in the global affinity structure and initialize it.
 661         */
 662        if (!entry) {
 663                entry = node_affinity_allocate(node);
 664                if (!entry) {
 665                        dd_dev_err(dd,
 666                                   "Unable to allocate global affinity node\n");
 667                        ret = -ENOMEM;
 668                        goto fail;
 669                }
 670                new_entry = true;
 671
 672                init_cpu_mask_set(&entry->def_intr);
 673                init_cpu_mask_set(&entry->rcv_intr);
 674                cpumask_clear(&entry->comp_vect_mask);
 675                cpumask_clear(&entry->general_intr_mask);
 676                /* Use the "real" cpu mask of this node as the default */
 677                cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
 678                            local_mask);
 679
 680                /* fill in the receive list */
 681                possible = cpumask_weight(&entry->def_intr.mask);
 682                curr_cpu = cpumask_first(&entry->def_intr.mask);
 683
 684                if (possible == 1) {
 685                        /* only one CPU, everyone will use it */
 686                        cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
 687                        cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
 688                } else {
 689                        /*
 690                         * The general/control context will be the first CPU in
 691                         * the default list, so it is removed from the default
 692                         * list and added to the general interrupt list.
 693                         */
 694                        cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
 695                        cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
 696                        curr_cpu = cpumask_next(curr_cpu,
 697                                                &entry->def_intr.mask);
 698
 699                        /*
 700                         * Remove the remaining kernel receive queues from
 701                         * the default list and add them to the receive list.
 702                         */
 703                        for (i = 0;
 704                             i < (dd->n_krcv_queues - 1) *
 705                                  hfi1_per_node_cntr[dd->node];
 706                             i++) {
 707                                cpumask_clear_cpu(curr_cpu,
 708                                                  &entry->def_intr.mask);
 709                                cpumask_set_cpu(curr_cpu,
 710                                                &entry->rcv_intr.mask);
 711                                curr_cpu = cpumask_next(curr_cpu,
 712                                                        &entry->def_intr.mask);
 713                                if (curr_cpu >= nr_cpu_ids)
 714                                        break;
 715                        }
 716
 717                        /*
 718                         * If there ends up being 0 CPU cores leftover for SDMA
 719                         * engines, use the same CPU cores as general/control
 720                         * context.
 721                         */
 722                        if (cpumask_weight(&entry->def_intr.mask) == 0)
 723                                cpumask_copy(&entry->def_intr.mask,
 724                                             &entry->general_intr_mask);
 725                }
 726
 727                /* Determine completion vector CPUs for the entire node */
 728                cpumask_and(&entry->comp_vect_mask,
 729                            &node_affinity.real_cpu_mask, local_mask);
 730                cpumask_andnot(&entry->comp_vect_mask,
 731                               &entry->comp_vect_mask,
 732                               &entry->rcv_intr.mask);
 733                cpumask_andnot(&entry->comp_vect_mask,
 734                               &entry->comp_vect_mask,
 735                               &entry->general_intr_mask);
 736
 737                /*
 738                 * If there ends up being 0 CPU cores leftover for completion
 739                 * vectors, use the same CPU core as the general/control
 740                 * context.
 741                 */
 742                if (cpumask_weight(&entry->comp_vect_mask) == 0)
 743                        cpumask_copy(&entry->comp_vect_mask,
 744                                     &entry->general_intr_mask);
 745        }
 746
 747        ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
 748        if (ret < 0)
 749                goto fail;
 750
 751        if (new_entry)
 752                node_affinity_add_tail(entry);
 753
 754        mutex_unlock(&node_affinity.lock);
 755
 756        return 0;
 757
 758fail:
 759        if (new_entry)
 760                node_affinity_destroy(entry);
 761        mutex_unlock(&node_affinity.lock);
 762        return ret;
 763}
 764
 765void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
 766{
 767        struct hfi1_affinity_node *entry;
 768
 769        if (dd->node < 0)
 770                return;
 771
 772        mutex_lock(&node_affinity.lock);
 773        entry = node_affinity_lookup(dd->node);
 774        if (!entry)
 775                goto unlock;
 776
 777        /*
 778         * Free device completion vector CPUs to be used by future
 779         * completion vectors
 780         */
 781        _dev_comp_vect_cpu_mask_clean_up(dd, entry);
 782unlock:
 783        mutex_unlock(&node_affinity.lock);
 784        dd->node = NUMA_NO_NODE;
 785}
 786
 787/*
 788 * Function updates the irq affinity hint for msix after it has been changed
 789 * by the user using the /proc/irq interface. This function only accepts
 790 * one cpu in the mask.
 791 */
 792static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
 793{
 794        struct sdma_engine *sde = msix->arg;
 795        struct hfi1_devdata *dd = sde->dd;
 796        struct hfi1_affinity_node *entry;
 797        struct cpu_mask_set *set;
 798        int i, old_cpu;
 799
 800        if (cpu > num_online_cpus() || cpu == sde->cpu)
 801                return;
 802
 803        mutex_lock(&node_affinity.lock);
 804        entry = node_affinity_lookup(dd->node);
 805        if (!entry)
 806                goto unlock;
 807
 808        old_cpu = sde->cpu;
 809        sde->cpu = cpu;
 810        cpumask_clear(&msix->mask);
 811        cpumask_set_cpu(cpu, &msix->mask);
 812        dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
 813                   msix->irq, irq_type_names[msix->type],
 814                   sde->this_idx, cpu);
 815        irq_set_affinity_hint(msix->irq, &msix->mask);
 816
 817        /*
 818         * Set the new cpu in the hfi1_affinity_node and clean
 819         * the old cpu if it is not used by any other IRQ
 820         */
 821        set = &entry->def_intr;
 822        cpumask_set_cpu(cpu, &set->mask);
 823        cpumask_set_cpu(cpu, &set->used);
 824        for (i = 0; i < dd->msix_info.max_requested; i++) {
 825                struct hfi1_msix_entry *other_msix;
 826
 827                other_msix = &dd->msix_info.msix_entries[i];
 828                if (other_msix->type != IRQ_SDMA || other_msix == msix)
 829                        continue;
 830
 831                if (cpumask_test_cpu(old_cpu, &other_msix->mask))
 832                        goto unlock;
 833        }
 834        cpumask_clear_cpu(old_cpu, &set->mask);
 835        cpumask_clear_cpu(old_cpu, &set->used);
 836unlock:
 837        mutex_unlock(&node_affinity.lock);
 838}
 839
 840static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
 841                                     const cpumask_t *mask)
 842{
 843        int cpu = cpumask_first(mask);
 844        struct hfi1_msix_entry *msix = container_of(notify,
 845                                                    struct hfi1_msix_entry,
 846                                                    notify);
 847
 848        /* Only one CPU configuration supported currently */
 849        hfi1_update_sdma_affinity(msix, cpu);
 850}
 851
 852static void hfi1_irq_notifier_release(struct kref *ref)
 853{
 854        /*
 855         * This is required by affinity notifier. We don't have anything to
 856         * free here.
 857         */
 858}
 859
 860static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
 861{
 862        struct irq_affinity_notify *notify = &msix->notify;
 863
 864        notify->irq = msix->irq;
 865        notify->notify = hfi1_irq_notifier_notify;
 866        notify->release = hfi1_irq_notifier_release;
 867
 868        if (irq_set_affinity_notifier(notify->irq, notify))
 869                pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
 870                       notify->irq);
 871}
 872
 873static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
 874{
 875        struct irq_affinity_notify *notify = &msix->notify;
 876
 877        if (irq_set_affinity_notifier(notify->irq, NULL))
 878                pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
 879                       notify->irq);
 880}
 881
 882/*
 883 * Function sets the irq affinity for msix.
 884 * It *must* be called with node_affinity.lock held.
 885 */
 886static int get_irq_affinity(struct hfi1_devdata *dd,
 887                            struct hfi1_msix_entry *msix)
 888{
 889        cpumask_var_t diff;
 890        struct hfi1_affinity_node *entry;
 891        struct cpu_mask_set *set = NULL;
 892        struct sdma_engine *sde = NULL;
 893        struct hfi1_ctxtdata *rcd = NULL;
 894        char extra[64];
 895        int cpu = -1;
 896
 897        extra[0] = '\0';
 898        cpumask_clear(&msix->mask);
 899
 900        entry = node_affinity_lookup(dd->node);
 901
 902        switch (msix->type) {
 903        case IRQ_SDMA:
 904                sde = (struct sdma_engine *)msix->arg;
 905                scnprintf(extra, 64, "engine %u", sde->this_idx);
 906                set = &entry->def_intr;
 907                break;
 908        case IRQ_GENERAL:
 909                cpu = cpumask_first(&entry->general_intr_mask);
 910                break;
 911        case IRQ_RCVCTXT:
 912                rcd = (struct hfi1_ctxtdata *)msix->arg;
 913                if (rcd->ctxt == HFI1_CTRL_CTXT)
 914                        cpu = cpumask_first(&entry->general_intr_mask);
 915                else
 916                        set = &entry->rcv_intr;
 917                scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
 918                break;
 919        case IRQ_NETDEVCTXT:
 920                rcd = (struct hfi1_ctxtdata *)msix->arg;
 921                set = &entry->def_intr;
 922                scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
 923                break;
 924        default:
 925                dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
 926                return -EINVAL;
 927        }
 928
 929        /*
 930         * The general and control contexts are placed on a particular
 931         * CPU, which is set above. Skip accounting for it. Everything else
 932         * finds its CPU here.
 933         */
 934        if (cpu == -1 && set) {
 935                if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
 936                        return -ENOMEM;
 937
 938                cpu = cpu_mask_set_get_first(set, diff);
 939                if (cpu < 0) {
 940                        free_cpumask_var(diff);
 941                        dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
 942                        return cpu;
 943                }
 944
 945                free_cpumask_var(diff);
 946        }
 947
 948        cpumask_set_cpu(cpu, &msix->mask);
 949        dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
 950                    msix->irq, irq_type_names[msix->type],
 951                    extra, cpu);
 952        irq_set_affinity_hint(msix->irq, &msix->mask);
 953
 954        if (msix->type == IRQ_SDMA) {
 955                sde->cpu = cpu;
 956                hfi1_setup_sdma_notifier(msix);
 957        }
 958
 959        return 0;
 960}
 961
 962int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
 963{
 964        int ret;
 965
 966        mutex_lock(&node_affinity.lock);
 967        ret = get_irq_affinity(dd, msix);
 968        mutex_unlock(&node_affinity.lock);
 969        return ret;
 970}
 971
 972void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
 973                           struct hfi1_msix_entry *msix)
 974{
 975        struct cpu_mask_set *set = NULL;
 976        struct hfi1_ctxtdata *rcd;
 977        struct hfi1_affinity_node *entry;
 978
 979        mutex_lock(&node_affinity.lock);
 980        entry = node_affinity_lookup(dd->node);
 981
 982        switch (msix->type) {
 983        case IRQ_SDMA:
 984                set = &entry->def_intr;
 985                hfi1_cleanup_sdma_notifier(msix);
 986                break;
 987        case IRQ_GENERAL:
 988                /* Don't do accounting for general contexts */
 989                break;
 990        case IRQ_RCVCTXT:
 991                rcd = (struct hfi1_ctxtdata *)msix->arg;
 992                /* Don't do accounting for control contexts */
 993                if (rcd->ctxt != HFI1_CTRL_CTXT)
 994                        set = &entry->rcv_intr;
 995                break;
 996        case IRQ_NETDEVCTXT:
 997                rcd = (struct hfi1_ctxtdata *)msix->arg;
 998                set = &entry->def_intr;
 999                break;
1000        default:
1001                mutex_unlock(&node_affinity.lock);
1002                return;
1003        }
1004
1005        if (set) {
1006                cpumask_andnot(&set->used, &set->used, &msix->mask);
1007                _cpu_mask_set_gen_dec(set);
1008        }
1009
1010        irq_set_affinity_hint(msix->irq, NULL);
1011        cpumask_clear(&msix->mask);
1012        mutex_unlock(&node_affinity.lock);
1013}
1014
1015/* This should be called with node_affinity.lock held */
1016static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
1017                                struct hfi1_affinity_node_list *affinity)
1018{
1019        int possible, curr_cpu, i;
1020        uint num_cores_per_socket = node_affinity.num_online_cpus /
1021                                        affinity->num_core_siblings /
1022                                                node_affinity.num_online_nodes;
1023
1024        cpumask_copy(hw_thread_mask, &affinity->proc.mask);
1025        if (affinity->num_core_siblings > 0) {
1026                /* Removing other siblings not needed for now */
1027                possible = cpumask_weight(hw_thread_mask);
1028                curr_cpu = cpumask_first(hw_thread_mask);
1029                for (i = 0;
1030                     i < num_cores_per_socket * node_affinity.num_online_nodes;
1031                     i++)
1032                        curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1033
1034                for (; i < possible; i++) {
1035                        cpumask_clear_cpu(curr_cpu, hw_thread_mask);
1036                        curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1037                }
1038
1039                /* Identifying correct HW threads within physical cores */
1040                cpumask_shift_left(hw_thread_mask, hw_thread_mask,
1041                                   num_cores_per_socket *
1042                                   node_affinity.num_online_nodes *
1043                                   hw_thread_no);
1044        }
1045}
1046
1047int hfi1_get_proc_affinity(int node)
1048{
1049        int cpu = -1, ret, i;
1050        struct hfi1_affinity_node *entry;
1051        cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
1052        const struct cpumask *node_mask,
1053                *proc_mask = current->cpus_ptr;
1054        struct hfi1_affinity_node_list *affinity = &node_affinity;
1055        struct cpu_mask_set *set = &affinity->proc;
1056
1057        /*
1058         * check whether process/context affinity has already
1059         * been set
1060         */
1061        if (current->nr_cpus_allowed == 1) {
1062                hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1063                          current->pid, current->comm,
1064                          cpumask_pr_args(proc_mask));
1065                /*
1066                 * Mark the pre-set CPU as used. This is atomic so we don't
1067                 * need the lock
1068                 */
1069                cpu = cpumask_first(proc_mask);
1070                cpumask_set_cpu(cpu, &set->used);
1071                goto done;
1072        } else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
1073                hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1074                          current->pid, current->comm,
1075                          cpumask_pr_args(proc_mask));
1076                goto done;
1077        }
1078
1079        /*
1080         * The process does not have a preset CPU affinity so find one to
1081         * recommend using the following algorithm:
1082         *
1083         * For each user process that is opening a context on HFI Y:
1084         *  a) If all cores are filled, reinitialize the bitmask
1085         *  b) Fill real cores first, then HT cores (First set of HT
1086         *     cores on all physical cores, then second set of HT core,
1087         *     and, so on) in the following order:
1088         *
1089         *     1. Same NUMA node as HFI Y and not running an IRQ
1090         *        handler
1091         *     2. Same NUMA node as HFI Y and running an IRQ handler
1092         *     3. Different NUMA node to HFI Y and not running an IRQ
1093         *        handler
1094         *     4. Different NUMA node to HFI Y and running an IRQ
1095         *        handler
1096         *  c) Mark core as filled in the bitmask. As user processes are
1097         *     done, clear cores from the bitmask.
1098         */
1099
1100        ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1101        if (!ret)
1102                goto done;
1103        ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1104        if (!ret)
1105                goto free_diff;
1106        ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1107        if (!ret)
1108                goto free_hw_thread_mask;
1109        ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1110        if (!ret)
1111                goto free_available_mask;
1112
1113        mutex_lock(&affinity->lock);
1114        /*
1115         * If we've used all available HW threads, clear the mask and start
1116         * overloading.
1117         */
1118        _cpu_mask_set_gen_inc(set);
1119
1120        /*
1121         * If NUMA node has CPUs used by interrupt handlers, include them in the
1122         * interrupt handler mask.
1123         */
1124        entry = node_affinity_lookup(node);
1125        if (entry) {
1126                cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1127                                          &entry->def_intr.mask :
1128                                          &entry->def_intr.used));
1129                cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1130                                                    &entry->rcv_intr.mask :
1131                                                    &entry->rcv_intr.used));
1132                cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1133        }
1134        hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1135                  cpumask_pr_args(intrs_mask));
1136
1137        cpumask_copy(hw_thread_mask, &set->mask);
1138
1139        /*
1140         * If HT cores are enabled, identify which HW threads within the
1141         * physical cores should be used.
1142         */
1143        if (affinity->num_core_siblings > 0) {
1144                for (i = 0; i < affinity->num_core_siblings; i++) {
1145                        find_hw_thread_mask(i, hw_thread_mask, affinity);
1146
1147                        /*
1148                         * If there's at least one available core for this HW
1149                         * thread number, stop looking for a core.
1150                         *
1151                         * diff will always be not empty at least once in this
1152                         * loop as the used mask gets reset when
1153                         * (set->mask == set->used) before this loop.
1154                         */
1155                        cpumask_andnot(diff, hw_thread_mask, &set->used);
1156                        if (!cpumask_empty(diff))
1157                                break;
1158                }
1159        }
1160        hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1161                  cpumask_pr_args(hw_thread_mask));
1162
1163        node_mask = cpumask_of_node(node);
1164        hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1165                  cpumask_pr_args(node_mask));
1166
1167        /* Get cpumask of available CPUs on preferred NUMA */
1168        cpumask_and(available_mask, hw_thread_mask, node_mask);
1169        cpumask_andnot(available_mask, available_mask, &set->used);
1170        hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1171                  cpumask_pr_args(available_mask));
1172
1173        /*
1174         * At first, we don't want to place processes on the same
1175         * CPUs as interrupt handlers. Then, CPUs running interrupt
1176         * handlers are used.
1177         *
1178         * 1) If diff is not empty, then there are CPUs not running
1179         *    non-interrupt handlers available, so diff gets copied
1180         *    over to available_mask.
1181         * 2) If diff is empty, then all CPUs not running interrupt
1182         *    handlers are taken, so available_mask contains all
1183         *    available CPUs running interrupt handlers.
1184         * 3) If available_mask is empty, then all CPUs on the
1185         *    preferred NUMA node are taken, so other NUMA nodes are
1186         *    used for process assignments using the same method as
1187         *    the preferred NUMA node.
1188         */
1189        cpumask_andnot(diff, available_mask, intrs_mask);
1190        if (!cpumask_empty(diff))
1191                cpumask_copy(available_mask, diff);
1192
1193        /* If we don't have CPUs on the preferred node, use other NUMA nodes */
1194        if (cpumask_empty(available_mask)) {
1195                cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1196                /* Excluding preferred NUMA cores */
1197                cpumask_andnot(available_mask, available_mask, node_mask);
1198                hfi1_cdbg(PROC,
1199                          "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1200                          cpumask_pr_args(available_mask));
1201
1202                /*
1203                 * At first, we don't want to place processes on the same
1204                 * CPUs as interrupt handlers.
1205                 */
1206                cpumask_andnot(diff, available_mask, intrs_mask);
1207                if (!cpumask_empty(diff))
1208                        cpumask_copy(available_mask, diff);
1209        }
1210        hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1211                  cpumask_pr_args(available_mask));
1212
1213        cpu = cpumask_first(available_mask);
1214        if (cpu >= nr_cpu_ids) /* empty */
1215                cpu = -1;
1216        else
1217                cpumask_set_cpu(cpu, &set->used);
1218
1219        mutex_unlock(&affinity->lock);
1220        hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1221
1222        free_cpumask_var(intrs_mask);
1223free_available_mask:
1224        free_cpumask_var(available_mask);
1225free_hw_thread_mask:
1226        free_cpumask_var(hw_thread_mask);
1227free_diff:
1228        free_cpumask_var(diff);
1229done:
1230        return cpu;
1231}
1232
1233void hfi1_put_proc_affinity(int cpu)
1234{
1235        struct hfi1_affinity_node_list *affinity = &node_affinity;
1236        struct cpu_mask_set *set = &affinity->proc;
1237
1238        if (cpu < 0)
1239                return;
1240
1241        mutex_lock(&affinity->lock);
1242        cpu_mask_set_put(set, cpu);
1243        hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1244        mutex_unlock(&affinity->lock);
1245}
1246