linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
  34#include <crypto/aead.h>
  35#include <crypto/authenc.h>
  36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  37#include <linux/key-type.h>
  38#include <keys/user-type.h>
  39#include <keys/encrypted-type.h>
  40
  41#include <linux/device-mapper.h>
  42
  43#define DM_MSG_PREFIX "crypt"
  44
  45/*
  46 * context holding the current state of a multi-part conversion
  47 */
  48struct convert_context {
  49        struct completion restart;
  50        struct bio *bio_in;
  51        struct bio *bio_out;
  52        struct bvec_iter iter_in;
  53        struct bvec_iter iter_out;
  54        u64 cc_sector;
  55        atomic_t cc_pending;
  56        union {
  57                struct skcipher_request *req;
  58                struct aead_request *req_aead;
  59        } r;
  60
  61};
  62
  63/*
  64 * per bio private data
  65 */
  66struct dm_crypt_io {
  67        struct crypt_config *cc;
  68        struct bio *base_bio;
  69        u8 *integrity_metadata;
  70        bool integrity_metadata_from_pool;
  71        struct work_struct work;
  72        struct tasklet_struct tasklet;
  73
  74        struct convert_context ctx;
  75
  76        atomic_t io_pending;
  77        blk_status_t error;
  78        sector_t sector;
  79
  80        struct rb_node rb_node;
  81} CRYPTO_MINALIGN_ATTR;
  82
  83struct dm_crypt_request {
  84        struct convert_context *ctx;
  85        struct scatterlist sg_in[4];
  86        struct scatterlist sg_out[4];
  87        u64 iv_sector;
  88};
  89
  90struct crypt_config;
  91
  92struct crypt_iv_operations {
  93        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  94                   const char *opts);
  95        void (*dtr)(struct crypt_config *cc);
  96        int (*init)(struct crypt_config *cc);
  97        int (*wipe)(struct crypt_config *cc);
  98        int (*generator)(struct crypt_config *cc, u8 *iv,
  99                         struct dm_crypt_request *dmreq);
 100        int (*post)(struct crypt_config *cc, u8 *iv,
 101                    struct dm_crypt_request *dmreq);
 102};
 103
 104struct iv_benbi_private {
 105        int shift;
 106};
 107
 108#define LMK_SEED_SIZE 64 /* hash + 0 */
 109struct iv_lmk_private {
 110        struct crypto_shash *hash_tfm;
 111        u8 *seed;
 112};
 113
 114#define TCW_WHITENING_SIZE 16
 115struct iv_tcw_private {
 116        struct crypto_shash *crc32_tfm;
 117        u8 *iv_seed;
 118        u8 *whitening;
 119};
 120
 121#define ELEPHANT_MAX_KEY_SIZE 32
 122struct iv_elephant_private {
 123        struct crypto_skcipher *tfm;
 124};
 125
 126/*
 127 * Crypt: maps a linear range of a block device
 128 * and encrypts / decrypts at the same time.
 129 */
 130enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 131             DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
 132             DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
 133             DM_CRYPT_WRITE_INLINE };
 134
 135enum cipher_flags {
 136        CRYPT_MODE_INTEGRITY_AEAD,      /* Use authenticated mode for cihper */
 137        CRYPT_IV_LARGE_SECTORS,         /* Calculate IV from sector_size, not 512B sectors */
 138        CRYPT_ENCRYPT_PREPROCESS,       /* Must preprocess data for encryption (elephant) */
 139};
 140
 141/*
 142 * The fields in here must be read only after initialization.
 143 */
 144struct crypt_config {
 145        struct dm_dev *dev;
 146        sector_t start;
 147
 148        struct percpu_counter n_allocated_pages;
 149
 150        struct workqueue_struct *io_queue;
 151        struct workqueue_struct *crypt_queue;
 152
 153        spinlock_t write_thread_lock;
 154        struct task_struct *write_thread;
 155        struct rb_root write_tree;
 156
 157        char *cipher_string;
 158        char *cipher_auth;
 159        char *key_string;
 160
 161        const struct crypt_iv_operations *iv_gen_ops;
 162        union {
 163                struct iv_benbi_private benbi;
 164                struct iv_lmk_private lmk;
 165                struct iv_tcw_private tcw;
 166                struct iv_elephant_private elephant;
 167        } iv_gen_private;
 168        u64 iv_offset;
 169        unsigned int iv_size;
 170        unsigned short int sector_size;
 171        unsigned char sector_shift;
 172
 173        union {
 174                struct crypto_skcipher **tfms;
 175                struct crypto_aead **tfms_aead;
 176        } cipher_tfm;
 177        unsigned tfms_count;
 178        unsigned long cipher_flags;
 179
 180        /*
 181         * Layout of each crypto request:
 182         *
 183         *   struct skcipher_request
 184         *      context
 185         *      padding
 186         *   struct dm_crypt_request
 187         *      padding
 188         *   IV
 189         *
 190         * The padding is added so that dm_crypt_request and the IV are
 191         * correctly aligned.
 192         */
 193        unsigned int dmreq_start;
 194
 195        unsigned int per_bio_data_size;
 196
 197        unsigned long flags;
 198        unsigned int key_size;
 199        unsigned int key_parts;      /* independent parts in key buffer */
 200        unsigned int key_extra_size; /* additional keys length */
 201        unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 202
 203        unsigned int integrity_tag_size;
 204        unsigned int integrity_iv_size;
 205        unsigned int on_disk_tag_size;
 206
 207        /*
 208         * pool for per bio private data, crypto requests,
 209         * encryption requeusts/buffer pages and integrity tags
 210         */
 211        unsigned tag_pool_max_sectors;
 212        mempool_t tag_pool;
 213        mempool_t req_pool;
 214        mempool_t page_pool;
 215
 216        struct bio_set bs;
 217        struct mutex bio_alloc_lock;
 218
 219        u8 *authenc_key; /* space for keys in authenc() format (if used) */
 220        u8 key[];
 221};
 222
 223#define MIN_IOS         64
 224#define MAX_TAG_SIZE    480
 225#define POOL_ENTRY_SIZE 512
 226
 227static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 228static unsigned dm_crypt_clients_n = 0;
 229static volatile unsigned long dm_crypt_pages_per_client;
 230#define DM_CRYPT_MEMORY_PERCENT                 2
 231#define DM_CRYPT_MIN_PAGES_PER_CLIENT           (BIO_MAX_PAGES * 16)
 232
 233static void clone_init(struct dm_crypt_io *, struct bio *);
 234static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 235static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 236                                             struct scatterlist *sg);
 237
 238static bool crypt_integrity_aead(struct crypt_config *cc);
 239
 240/*
 241 * Use this to access cipher attributes that are independent of the key.
 242 */
 243static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 244{
 245        return cc->cipher_tfm.tfms[0];
 246}
 247
 248static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 249{
 250        return cc->cipher_tfm.tfms_aead[0];
 251}
 252
 253/*
 254 * Different IV generation algorithms:
 255 *
 256 * plain: the initial vector is the 32-bit little-endian version of the sector
 257 *        number, padded with zeros if necessary.
 258 *
 259 * plain64: the initial vector is the 64-bit little-endian version of the sector
 260 *        number, padded with zeros if necessary.
 261 *
 262 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 263 *        number, padded with zeros if necessary.
 264 *
 265 * essiv: "encrypted sector|salt initial vector", the sector number is
 266 *        encrypted with the bulk cipher using a salt as key. The salt
 267 *        should be derived from the bulk cipher's key via hashing.
 268 *
 269 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 270 *        (needed for LRW-32-AES and possible other narrow block modes)
 271 *
 272 * null: the initial vector is always zero.  Provides compatibility with
 273 *       obsolete loop_fish2 devices.  Do not use for new devices.
 274 *
 275 * lmk:  Compatible implementation of the block chaining mode used
 276 *       by the Loop-AES block device encryption system
 277 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 278 *       It operates on full 512 byte sectors and uses CBC
 279 *       with an IV derived from the sector number, the data and
 280 *       optionally extra IV seed.
 281 *       This means that after decryption the first block
 282 *       of sector must be tweaked according to decrypted data.
 283 *       Loop-AES can use three encryption schemes:
 284 *         version 1: is plain aes-cbc mode
 285 *         version 2: uses 64 multikey scheme with lmk IV generator
 286 *         version 3: the same as version 2 with additional IV seed
 287 *                   (it uses 65 keys, last key is used as IV seed)
 288 *
 289 * tcw:  Compatible implementation of the block chaining mode used
 290 *       by the TrueCrypt device encryption system (prior to version 4.1).
 291 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 292 *       It operates on full 512 byte sectors and uses CBC
 293 *       with an IV derived from initial key and the sector number.
 294 *       In addition, whitening value is applied on every sector, whitening
 295 *       is calculated from initial key, sector number and mixed using CRC32.
 296 *       Note that this encryption scheme is vulnerable to watermarking attacks
 297 *       and should be used for old compatible containers access only.
 298 *
 299 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 300 *        The IV is encrypted little-endian byte-offset (with the same key
 301 *        and cipher as the volume).
 302 *
 303 * elephant: The extended version of eboiv with additional Elephant diffuser
 304 *           used with Bitlocker CBC mode.
 305 *           This mode was used in older Windows systems
 306 *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
 307 */
 308
 309static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 310                              struct dm_crypt_request *dmreq)
 311{
 312        memset(iv, 0, cc->iv_size);
 313        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 314
 315        return 0;
 316}
 317
 318static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 319                                struct dm_crypt_request *dmreq)
 320{
 321        memset(iv, 0, cc->iv_size);
 322        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 323
 324        return 0;
 325}
 326
 327static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 328                                  struct dm_crypt_request *dmreq)
 329{
 330        memset(iv, 0, cc->iv_size);
 331        /* iv_size is at least of size u64; usually it is 16 bytes */
 332        *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 333
 334        return 0;
 335}
 336
 337static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 338                              struct dm_crypt_request *dmreq)
 339{
 340        /*
 341         * ESSIV encryption of the IV is now handled by the crypto API,
 342         * so just pass the plain sector number here.
 343         */
 344        memset(iv, 0, cc->iv_size);
 345        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 346
 347        return 0;
 348}
 349
 350static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 351                              const char *opts)
 352{
 353        unsigned bs;
 354        int log;
 355
 356        if (crypt_integrity_aead(cc))
 357                bs = crypto_aead_blocksize(any_tfm_aead(cc));
 358        else
 359                bs = crypto_skcipher_blocksize(any_tfm(cc));
 360        log = ilog2(bs);
 361
 362        /* we need to calculate how far we must shift the sector count
 363         * to get the cipher block count, we use this shift in _gen */
 364
 365        if (1 << log != bs) {
 366                ti->error = "cypher blocksize is not a power of 2";
 367                return -EINVAL;
 368        }
 369
 370        if (log > 9) {
 371                ti->error = "cypher blocksize is > 512";
 372                return -EINVAL;
 373        }
 374
 375        cc->iv_gen_private.benbi.shift = 9 - log;
 376
 377        return 0;
 378}
 379
 380static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 381{
 382}
 383
 384static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 385                              struct dm_crypt_request *dmreq)
 386{
 387        __be64 val;
 388
 389        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 390
 391        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 392        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 393
 394        return 0;
 395}
 396
 397static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 398                             struct dm_crypt_request *dmreq)
 399{
 400        memset(iv, 0, cc->iv_size);
 401
 402        return 0;
 403}
 404
 405static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 406{
 407        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 408
 409        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 410                crypto_free_shash(lmk->hash_tfm);
 411        lmk->hash_tfm = NULL;
 412
 413        kfree_sensitive(lmk->seed);
 414        lmk->seed = NULL;
 415}
 416
 417static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 418                            const char *opts)
 419{
 420        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 421
 422        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 423                ti->error = "Unsupported sector size for LMK";
 424                return -EINVAL;
 425        }
 426
 427        lmk->hash_tfm = crypto_alloc_shash("md5", 0,
 428                                           CRYPTO_ALG_ALLOCATES_MEMORY);
 429        if (IS_ERR(lmk->hash_tfm)) {
 430                ti->error = "Error initializing LMK hash";
 431                return PTR_ERR(lmk->hash_tfm);
 432        }
 433
 434        /* No seed in LMK version 2 */
 435        if (cc->key_parts == cc->tfms_count) {
 436                lmk->seed = NULL;
 437                return 0;
 438        }
 439
 440        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 441        if (!lmk->seed) {
 442                crypt_iv_lmk_dtr(cc);
 443                ti->error = "Error kmallocing seed storage in LMK";
 444                return -ENOMEM;
 445        }
 446
 447        return 0;
 448}
 449
 450static int crypt_iv_lmk_init(struct crypt_config *cc)
 451{
 452        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 453        int subkey_size = cc->key_size / cc->key_parts;
 454
 455        /* LMK seed is on the position of LMK_KEYS + 1 key */
 456        if (lmk->seed)
 457                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 458                       crypto_shash_digestsize(lmk->hash_tfm));
 459
 460        return 0;
 461}
 462
 463static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 464{
 465        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 466
 467        if (lmk->seed)
 468                memset(lmk->seed, 0, LMK_SEED_SIZE);
 469
 470        return 0;
 471}
 472
 473static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 474                            struct dm_crypt_request *dmreq,
 475                            u8 *data)
 476{
 477        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 478        SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 479        struct md5_state md5state;
 480        __le32 buf[4];
 481        int i, r;
 482
 483        desc->tfm = lmk->hash_tfm;
 484
 485        r = crypto_shash_init(desc);
 486        if (r)
 487                return r;
 488
 489        if (lmk->seed) {
 490                r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 491                if (r)
 492                        return r;
 493        }
 494
 495        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 496        r = crypto_shash_update(desc, data + 16, 16 * 31);
 497        if (r)
 498                return r;
 499
 500        /* Sector is cropped to 56 bits here */
 501        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 502        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 503        buf[2] = cpu_to_le32(4024);
 504        buf[3] = 0;
 505        r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 506        if (r)
 507                return r;
 508
 509        /* No MD5 padding here */
 510        r = crypto_shash_export(desc, &md5state);
 511        if (r)
 512                return r;
 513
 514        for (i = 0; i < MD5_HASH_WORDS; i++)
 515                __cpu_to_le32s(&md5state.hash[i]);
 516        memcpy(iv, &md5state.hash, cc->iv_size);
 517
 518        return 0;
 519}
 520
 521static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 522                            struct dm_crypt_request *dmreq)
 523{
 524        struct scatterlist *sg;
 525        u8 *src;
 526        int r = 0;
 527
 528        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 529                sg = crypt_get_sg_data(cc, dmreq->sg_in);
 530                src = kmap_atomic(sg_page(sg));
 531                r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 532                kunmap_atomic(src);
 533        } else
 534                memset(iv, 0, cc->iv_size);
 535
 536        return r;
 537}
 538
 539static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 540                             struct dm_crypt_request *dmreq)
 541{
 542        struct scatterlist *sg;
 543        u8 *dst;
 544        int r;
 545
 546        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 547                return 0;
 548
 549        sg = crypt_get_sg_data(cc, dmreq->sg_out);
 550        dst = kmap_atomic(sg_page(sg));
 551        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 552
 553        /* Tweak the first block of plaintext sector */
 554        if (!r)
 555                crypto_xor(dst + sg->offset, iv, cc->iv_size);
 556
 557        kunmap_atomic(dst);
 558        return r;
 559}
 560
 561static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 562{
 563        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 564
 565        kfree_sensitive(tcw->iv_seed);
 566        tcw->iv_seed = NULL;
 567        kfree_sensitive(tcw->whitening);
 568        tcw->whitening = NULL;
 569
 570        if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 571                crypto_free_shash(tcw->crc32_tfm);
 572        tcw->crc32_tfm = NULL;
 573}
 574
 575static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 576                            const char *opts)
 577{
 578        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 579
 580        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 581                ti->error = "Unsupported sector size for TCW";
 582                return -EINVAL;
 583        }
 584
 585        if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 586                ti->error = "Wrong key size for TCW";
 587                return -EINVAL;
 588        }
 589
 590        tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
 591                                            CRYPTO_ALG_ALLOCATES_MEMORY);
 592        if (IS_ERR(tcw->crc32_tfm)) {
 593                ti->error = "Error initializing CRC32 in TCW";
 594                return PTR_ERR(tcw->crc32_tfm);
 595        }
 596
 597        tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 598        tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 599        if (!tcw->iv_seed || !tcw->whitening) {
 600                crypt_iv_tcw_dtr(cc);
 601                ti->error = "Error allocating seed storage in TCW";
 602                return -ENOMEM;
 603        }
 604
 605        return 0;
 606}
 607
 608static int crypt_iv_tcw_init(struct crypt_config *cc)
 609{
 610        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 611        int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 612
 613        memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 614        memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 615               TCW_WHITENING_SIZE);
 616
 617        return 0;
 618}
 619
 620static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 621{
 622        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 623
 624        memset(tcw->iv_seed, 0, cc->iv_size);
 625        memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 626
 627        return 0;
 628}
 629
 630static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 631                                  struct dm_crypt_request *dmreq,
 632                                  u8 *data)
 633{
 634        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 635        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 636        u8 buf[TCW_WHITENING_SIZE];
 637        SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 638        int i, r;
 639
 640        /* xor whitening with sector number */
 641        crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 642        crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 643
 644        /* calculate crc32 for every 32bit part and xor it */
 645        desc->tfm = tcw->crc32_tfm;
 646        for (i = 0; i < 4; i++) {
 647                r = crypto_shash_init(desc);
 648                if (r)
 649                        goto out;
 650                r = crypto_shash_update(desc, &buf[i * 4], 4);
 651                if (r)
 652                        goto out;
 653                r = crypto_shash_final(desc, &buf[i * 4]);
 654                if (r)
 655                        goto out;
 656        }
 657        crypto_xor(&buf[0], &buf[12], 4);
 658        crypto_xor(&buf[4], &buf[8], 4);
 659
 660        /* apply whitening (8 bytes) to whole sector */
 661        for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 662                crypto_xor(data + i * 8, buf, 8);
 663out:
 664        memzero_explicit(buf, sizeof(buf));
 665        return r;
 666}
 667
 668static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 669                            struct dm_crypt_request *dmreq)
 670{
 671        struct scatterlist *sg;
 672        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 673        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 674        u8 *src;
 675        int r = 0;
 676
 677        /* Remove whitening from ciphertext */
 678        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 679                sg = crypt_get_sg_data(cc, dmreq->sg_in);
 680                src = kmap_atomic(sg_page(sg));
 681                r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 682                kunmap_atomic(src);
 683        }
 684
 685        /* Calculate IV */
 686        crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 687        if (cc->iv_size > 8)
 688                crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 689                               cc->iv_size - 8);
 690
 691        return r;
 692}
 693
 694static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 695                             struct dm_crypt_request *dmreq)
 696{
 697        struct scatterlist *sg;
 698        u8 *dst;
 699        int r;
 700
 701        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 702                return 0;
 703
 704        /* Apply whitening on ciphertext */
 705        sg = crypt_get_sg_data(cc, dmreq->sg_out);
 706        dst = kmap_atomic(sg_page(sg));
 707        r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 708        kunmap_atomic(dst);
 709
 710        return r;
 711}
 712
 713static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 714                                struct dm_crypt_request *dmreq)
 715{
 716        /* Used only for writes, there must be an additional space to store IV */
 717        get_random_bytes(iv, cc->iv_size);
 718        return 0;
 719}
 720
 721static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 722                            const char *opts)
 723{
 724        if (crypt_integrity_aead(cc)) {
 725                ti->error = "AEAD transforms not supported for EBOIV";
 726                return -EINVAL;
 727        }
 728
 729        if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
 730                ti->error = "Block size of EBOIV cipher does "
 731                            "not match IV size of block cipher";
 732                return -EINVAL;
 733        }
 734
 735        return 0;
 736}
 737
 738static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 739                            struct dm_crypt_request *dmreq)
 740{
 741        u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
 742        struct skcipher_request *req;
 743        struct scatterlist src, dst;
 744        DECLARE_CRYPTO_WAIT(wait);
 745        int err;
 746
 747        req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
 748        if (!req)
 749                return -ENOMEM;
 750
 751        memset(buf, 0, cc->iv_size);
 752        *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 753
 754        sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
 755        sg_init_one(&dst, iv, cc->iv_size);
 756        skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
 757        skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 758        err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 759        skcipher_request_free(req);
 760
 761        return err;
 762}
 763
 764static void crypt_iv_elephant_dtr(struct crypt_config *cc)
 765{
 766        struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 767
 768        crypto_free_skcipher(elephant->tfm);
 769        elephant->tfm = NULL;
 770}
 771
 772static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
 773                            const char *opts)
 774{
 775        struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 776        int r;
 777
 778        elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
 779                                              CRYPTO_ALG_ALLOCATES_MEMORY);
 780        if (IS_ERR(elephant->tfm)) {
 781                r = PTR_ERR(elephant->tfm);
 782                elephant->tfm = NULL;
 783                return r;
 784        }
 785
 786        r = crypt_iv_eboiv_ctr(cc, ti, NULL);
 787        if (r)
 788                crypt_iv_elephant_dtr(cc);
 789        return r;
 790}
 791
 792static void diffuser_disk_to_cpu(u32 *d, size_t n)
 793{
 794#ifndef __LITTLE_ENDIAN
 795        int i;
 796
 797        for (i = 0; i < n; i++)
 798                d[i] = le32_to_cpu((__le32)d[i]);
 799#endif
 800}
 801
 802static void diffuser_cpu_to_disk(__le32 *d, size_t n)
 803{
 804#ifndef __LITTLE_ENDIAN
 805        int i;
 806
 807        for (i = 0; i < n; i++)
 808                d[i] = cpu_to_le32((u32)d[i]);
 809#endif
 810}
 811
 812static void diffuser_a_decrypt(u32 *d, size_t n)
 813{
 814        int i, i1, i2, i3;
 815
 816        for (i = 0; i < 5; i++) {
 817                i1 = 0;
 818                i2 = n - 2;
 819                i3 = n - 5;
 820
 821                while (i1 < (n - 1)) {
 822                        d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 823                        i1++; i2++; i3++;
 824
 825                        if (i3 >= n)
 826                                i3 -= n;
 827
 828                        d[i1] += d[i2] ^ d[i3];
 829                        i1++; i2++; i3++;
 830
 831                        if (i2 >= n)
 832                                i2 -= n;
 833
 834                        d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 835                        i1++; i2++; i3++;
 836
 837                        d[i1] += d[i2] ^ d[i3];
 838                        i1++; i2++; i3++;
 839                }
 840        }
 841}
 842
 843static void diffuser_a_encrypt(u32 *d, size_t n)
 844{
 845        int i, i1, i2, i3;
 846
 847        for (i = 0; i < 5; i++) {
 848                i1 = n - 1;
 849                i2 = n - 2 - 1;
 850                i3 = n - 5 - 1;
 851
 852                while (i1 > 0) {
 853                        d[i1] -= d[i2] ^ d[i3];
 854                        i1--; i2--; i3--;
 855
 856                        d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 857                        i1--; i2--; i3--;
 858
 859                        if (i2 < 0)
 860                                i2 += n;
 861
 862                        d[i1] -= d[i2] ^ d[i3];
 863                        i1--; i2--; i3--;
 864
 865                        if (i3 < 0)
 866                                i3 += n;
 867
 868                        d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 869                        i1--; i2--; i3--;
 870                }
 871        }
 872}
 873
 874static void diffuser_b_decrypt(u32 *d, size_t n)
 875{
 876        int i, i1, i2, i3;
 877
 878        for (i = 0; i < 3; i++) {
 879                i1 = 0;
 880                i2 = 2;
 881                i3 = 5;
 882
 883                while (i1 < (n - 1)) {
 884                        d[i1] += d[i2] ^ d[i3];
 885                        i1++; i2++; i3++;
 886
 887                        d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 888                        i1++; i2++; i3++;
 889
 890                        if (i2 >= n)
 891                                i2 -= n;
 892
 893                        d[i1] += d[i2] ^ d[i3];
 894                        i1++; i2++; i3++;
 895
 896                        if (i3 >= n)
 897                                i3 -= n;
 898
 899                        d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 900                        i1++; i2++; i3++;
 901                }
 902        }
 903}
 904
 905static void diffuser_b_encrypt(u32 *d, size_t n)
 906{
 907        int i, i1, i2, i3;
 908
 909        for (i = 0; i < 3; i++) {
 910                i1 = n - 1;
 911                i2 = 2 - 1;
 912                i3 = 5 - 1;
 913
 914                while (i1 > 0) {
 915                        d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 916                        i1--; i2--; i3--;
 917
 918                        if (i3 < 0)
 919                                i3 += n;
 920
 921                        d[i1] -= d[i2] ^ d[i3];
 922                        i1--; i2--; i3--;
 923
 924                        if (i2 < 0)
 925                                i2 += n;
 926
 927                        d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 928                        i1--; i2--; i3--;
 929
 930                        d[i1] -= d[i2] ^ d[i3];
 931                        i1--; i2--; i3--;
 932                }
 933        }
 934}
 935
 936static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 937{
 938        struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 939        u8 *es, *ks, *data, *data2, *data_offset;
 940        struct skcipher_request *req;
 941        struct scatterlist *sg, *sg2, src, dst;
 942        DECLARE_CRYPTO_WAIT(wait);
 943        int i, r;
 944
 945        req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
 946        es = kzalloc(16, GFP_NOIO); /* Key for AES */
 947        ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
 948
 949        if (!req || !es || !ks) {
 950                r = -ENOMEM;
 951                goto out;
 952        }
 953
 954        *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 955
 956        /* E(Ks, e(s)) */
 957        sg_init_one(&src, es, 16);
 958        sg_init_one(&dst, ks, 16);
 959        skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
 960        skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 961        r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 962        if (r)
 963                goto out;
 964
 965        /* E(Ks, e'(s)) */
 966        es[15] = 0x80;
 967        sg_init_one(&dst, &ks[16], 16);
 968        r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 969        if (r)
 970                goto out;
 971
 972        sg = crypt_get_sg_data(cc, dmreq->sg_out);
 973        data = kmap_atomic(sg_page(sg));
 974        data_offset = data + sg->offset;
 975
 976        /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
 977        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 978                sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
 979                data2 = kmap_atomic(sg_page(sg2));
 980                memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
 981                kunmap_atomic(data2);
 982        }
 983
 984        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 985                diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
 986                diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
 987                diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
 988                diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
 989        }
 990
 991        for (i = 0; i < (cc->sector_size / 32); i++)
 992                crypto_xor(data_offset + i * 32, ks, 32);
 993
 994        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 995                diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
 996                diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
 997                diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
 998                diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
 999        }
1000
1001        kunmap_atomic(data);
1002out:
1003        kfree_sensitive(ks);
1004        kfree_sensitive(es);
1005        skcipher_request_free(req);
1006        return r;
1007}
1008
1009static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1010                            struct dm_crypt_request *dmreq)
1011{
1012        int r;
1013
1014        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1015                r = crypt_iv_elephant(cc, dmreq);
1016                if (r)
1017                        return r;
1018        }
1019
1020        return crypt_iv_eboiv_gen(cc, iv, dmreq);
1021}
1022
1023static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1024                                  struct dm_crypt_request *dmreq)
1025{
1026        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1027                return crypt_iv_elephant(cc, dmreq);
1028
1029        return 0;
1030}
1031
1032static int crypt_iv_elephant_init(struct crypt_config *cc)
1033{
1034        struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1035        int key_offset = cc->key_size - cc->key_extra_size;
1036
1037        return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1038}
1039
1040static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1041{
1042        struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1043        u8 key[ELEPHANT_MAX_KEY_SIZE];
1044
1045        memset(key, 0, cc->key_extra_size);
1046        return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1047}
1048
1049static const struct crypt_iv_operations crypt_iv_plain_ops = {
1050        .generator = crypt_iv_plain_gen
1051};
1052
1053static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1054        .generator = crypt_iv_plain64_gen
1055};
1056
1057static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1058        .generator = crypt_iv_plain64be_gen
1059};
1060
1061static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1062        .generator = crypt_iv_essiv_gen
1063};
1064
1065static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1066        .ctr       = crypt_iv_benbi_ctr,
1067        .dtr       = crypt_iv_benbi_dtr,
1068        .generator = crypt_iv_benbi_gen
1069};
1070
1071static const struct crypt_iv_operations crypt_iv_null_ops = {
1072        .generator = crypt_iv_null_gen
1073};
1074
1075static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1076        .ctr       = crypt_iv_lmk_ctr,
1077        .dtr       = crypt_iv_lmk_dtr,
1078        .init      = crypt_iv_lmk_init,
1079        .wipe      = crypt_iv_lmk_wipe,
1080        .generator = crypt_iv_lmk_gen,
1081        .post      = crypt_iv_lmk_post
1082};
1083
1084static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1085        .ctr       = crypt_iv_tcw_ctr,
1086        .dtr       = crypt_iv_tcw_dtr,
1087        .init      = crypt_iv_tcw_init,
1088        .wipe      = crypt_iv_tcw_wipe,
1089        .generator = crypt_iv_tcw_gen,
1090        .post      = crypt_iv_tcw_post
1091};
1092
1093static struct crypt_iv_operations crypt_iv_random_ops = {
1094        .generator = crypt_iv_random_gen
1095};
1096
1097static struct crypt_iv_operations crypt_iv_eboiv_ops = {
1098        .ctr       = crypt_iv_eboiv_ctr,
1099        .generator = crypt_iv_eboiv_gen
1100};
1101
1102static struct crypt_iv_operations crypt_iv_elephant_ops = {
1103        .ctr       = crypt_iv_elephant_ctr,
1104        .dtr       = crypt_iv_elephant_dtr,
1105        .init      = crypt_iv_elephant_init,
1106        .wipe      = crypt_iv_elephant_wipe,
1107        .generator = crypt_iv_elephant_gen,
1108        .post      = crypt_iv_elephant_post
1109};
1110
1111/*
1112 * Integrity extensions
1113 */
1114static bool crypt_integrity_aead(struct crypt_config *cc)
1115{
1116        return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1117}
1118
1119static bool crypt_integrity_hmac(struct crypt_config *cc)
1120{
1121        return crypt_integrity_aead(cc) && cc->key_mac_size;
1122}
1123
1124/* Get sg containing data */
1125static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1126                                             struct scatterlist *sg)
1127{
1128        if (unlikely(crypt_integrity_aead(cc)))
1129                return &sg[2];
1130
1131        return sg;
1132}
1133
1134static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1135{
1136        struct bio_integrity_payload *bip;
1137        unsigned int tag_len;
1138        int ret;
1139
1140        if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1141                return 0;
1142
1143        bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1144        if (IS_ERR(bip))
1145                return PTR_ERR(bip);
1146
1147        tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1148
1149        bip->bip_iter.bi_size = tag_len;
1150        bip->bip_iter.bi_sector = io->cc->start + io->sector;
1151
1152        ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1153                                     tag_len, offset_in_page(io->integrity_metadata));
1154        if (unlikely(ret != tag_len))
1155                return -ENOMEM;
1156
1157        return 0;
1158}
1159
1160static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1161{
1162#ifdef CONFIG_BLK_DEV_INTEGRITY
1163        struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1164        struct mapped_device *md = dm_table_get_md(ti->table);
1165
1166        /* From now we require underlying device with our integrity profile */
1167        if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1168                ti->error = "Integrity profile not supported.";
1169                return -EINVAL;
1170        }
1171
1172        if (bi->tag_size != cc->on_disk_tag_size ||
1173            bi->tuple_size != cc->on_disk_tag_size) {
1174                ti->error = "Integrity profile tag size mismatch.";
1175                return -EINVAL;
1176        }
1177        if (1 << bi->interval_exp != cc->sector_size) {
1178                ti->error = "Integrity profile sector size mismatch.";
1179                return -EINVAL;
1180        }
1181
1182        if (crypt_integrity_aead(cc)) {
1183                cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1184                DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1185                       cc->integrity_tag_size, cc->integrity_iv_size);
1186
1187                if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1188                        ti->error = "Integrity AEAD auth tag size is not supported.";
1189                        return -EINVAL;
1190                }
1191        } else if (cc->integrity_iv_size)
1192                DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1193                       cc->integrity_iv_size);
1194
1195        if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1196                ti->error = "Not enough space for integrity tag in the profile.";
1197                return -EINVAL;
1198        }
1199
1200        return 0;
1201#else
1202        ti->error = "Integrity profile not supported.";
1203        return -EINVAL;
1204#endif
1205}
1206
1207static void crypt_convert_init(struct crypt_config *cc,
1208                               struct convert_context *ctx,
1209                               struct bio *bio_out, struct bio *bio_in,
1210                               sector_t sector)
1211{
1212        ctx->bio_in = bio_in;
1213        ctx->bio_out = bio_out;
1214        if (bio_in)
1215                ctx->iter_in = bio_in->bi_iter;
1216        if (bio_out)
1217                ctx->iter_out = bio_out->bi_iter;
1218        ctx->cc_sector = sector + cc->iv_offset;
1219        init_completion(&ctx->restart);
1220}
1221
1222static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1223                                             void *req)
1224{
1225        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1226}
1227
1228static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1229{
1230        return (void *)((char *)dmreq - cc->dmreq_start);
1231}
1232
1233static u8 *iv_of_dmreq(struct crypt_config *cc,
1234                       struct dm_crypt_request *dmreq)
1235{
1236        if (crypt_integrity_aead(cc))
1237                return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1238                        crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1239        else
1240                return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1241                        crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1242}
1243
1244static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1245                       struct dm_crypt_request *dmreq)
1246{
1247        return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1248}
1249
1250static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1251                       struct dm_crypt_request *dmreq)
1252{
1253        u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1254        return (__le64 *) ptr;
1255}
1256
1257static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1258                       struct dm_crypt_request *dmreq)
1259{
1260        u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1261                  cc->iv_size + sizeof(uint64_t);
1262        return (unsigned int*)ptr;
1263}
1264
1265static void *tag_from_dmreq(struct crypt_config *cc,
1266                                struct dm_crypt_request *dmreq)
1267{
1268        struct convert_context *ctx = dmreq->ctx;
1269        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1270
1271        return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1272                cc->on_disk_tag_size];
1273}
1274
1275static void *iv_tag_from_dmreq(struct crypt_config *cc,
1276                               struct dm_crypt_request *dmreq)
1277{
1278        return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1279}
1280
1281static int crypt_convert_block_aead(struct crypt_config *cc,
1282                                     struct convert_context *ctx,
1283                                     struct aead_request *req,
1284                                     unsigned int tag_offset)
1285{
1286        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1287        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1288        struct dm_crypt_request *dmreq;
1289        u8 *iv, *org_iv, *tag_iv, *tag;
1290        __le64 *sector;
1291        int r = 0;
1292
1293        BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1294
1295        /* Reject unexpected unaligned bio. */
1296        if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1297                return -EIO;
1298
1299        dmreq = dmreq_of_req(cc, req);
1300        dmreq->iv_sector = ctx->cc_sector;
1301        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1302                dmreq->iv_sector >>= cc->sector_shift;
1303        dmreq->ctx = ctx;
1304
1305        *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1306
1307        sector = org_sector_of_dmreq(cc, dmreq);
1308        *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1309
1310        iv = iv_of_dmreq(cc, dmreq);
1311        org_iv = org_iv_of_dmreq(cc, dmreq);
1312        tag = tag_from_dmreq(cc, dmreq);
1313        tag_iv = iv_tag_from_dmreq(cc, dmreq);
1314
1315        /* AEAD request:
1316         *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1317         *  | (authenticated) | (auth+encryption) |              |
1318         *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1319         */
1320        sg_init_table(dmreq->sg_in, 4);
1321        sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1322        sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1323        sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1324        sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1325
1326        sg_init_table(dmreq->sg_out, 4);
1327        sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1328        sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1329        sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1330        sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1331
1332        if (cc->iv_gen_ops) {
1333                /* For READs use IV stored in integrity metadata */
1334                if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1335                        memcpy(org_iv, tag_iv, cc->iv_size);
1336                } else {
1337                        r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1338                        if (r < 0)
1339                                return r;
1340                        /* Store generated IV in integrity metadata */
1341                        if (cc->integrity_iv_size)
1342                                memcpy(tag_iv, org_iv, cc->iv_size);
1343                }
1344                /* Working copy of IV, to be modified in crypto API */
1345                memcpy(iv, org_iv, cc->iv_size);
1346        }
1347
1348        aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1349        if (bio_data_dir(ctx->bio_in) == WRITE) {
1350                aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1351                                       cc->sector_size, iv);
1352                r = crypto_aead_encrypt(req);
1353                if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1354                        memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1355                               cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1356        } else {
1357                aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1358                                       cc->sector_size + cc->integrity_tag_size, iv);
1359                r = crypto_aead_decrypt(req);
1360        }
1361
1362        if (r == -EBADMSG) {
1363                char b[BDEVNAME_SIZE];
1364                DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1365                            (unsigned long long)le64_to_cpu(*sector));
1366        }
1367
1368        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1369                r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1370
1371        bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1372        bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1373
1374        return r;
1375}
1376
1377static int crypt_convert_block_skcipher(struct crypt_config *cc,
1378                                        struct convert_context *ctx,
1379                                        struct skcipher_request *req,
1380                                        unsigned int tag_offset)
1381{
1382        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1383        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1384        struct scatterlist *sg_in, *sg_out;
1385        struct dm_crypt_request *dmreq;
1386        u8 *iv, *org_iv, *tag_iv;
1387        __le64 *sector;
1388        int r = 0;
1389
1390        /* Reject unexpected unaligned bio. */
1391        if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1392                return -EIO;
1393
1394        dmreq = dmreq_of_req(cc, req);
1395        dmreq->iv_sector = ctx->cc_sector;
1396        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1397                dmreq->iv_sector >>= cc->sector_shift;
1398        dmreq->ctx = ctx;
1399
1400        *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1401
1402        iv = iv_of_dmreq(cc, dmreq);
1403        org_iv = org_iv_of_dmreq(cc, dmreq);
1404        tag_iv = iv_tag_from_dmreq(cc, dmreq);
1405
1406        sector = org_sector_of_dmreq(cc, dmreq);
1407        *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1408
1409        /* For skcipher we use only the first sg item */
1410        sg_in  = &dmreq->sg_in[0];
1411        sg_out = &dmreq->sg_out[0];
1412
1413        sg_init_table(sg_in, 1);
1414        sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1415
1416        sg_init_table(sg_out, 1);
1417        sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1418
1419        if (cc->iv_gen_ops) {
1420                /* For READs use IV stored in integrity metadata */
1421                if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1422                        memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1423                } else {
1424                        r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1425                        if (r < 0)
1426                                return r;
1427                        /* Data can be already preprocessed in generator */
1428                        if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1429                                sg_in = sg_out;
1430                        /* Store generated IV in integrity metadata */
1431                        if (cc->integrity_iv_size)
1432                                memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1433                }
1434                /* Working copy of IV, to be modified in crypto API */
1435                memcpy(iv, org_iv, cc->iv_size);
1436        }
1437
1438        skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1439
1440        if (bio_data_dir(ctx->bio_in) == WRITE)
1441                r = crypto_skcipher_encrypt(req);
1442        else
1443                r = crypto_skcipher_decrypt(req);
1444
1445        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1446                r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1447
1448        bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1449        bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1450
1451        return r;
1452}
1453
1454static void kcryptd_async_done(struct crypto_async_request *async_req,
1455                               int error);
1456
1457static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1458                                     struct convert_context *ctx)
1459{
1460        unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1461
1462        if (!ctx->r.req)
1463                ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1464
1465        skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1466
1467        /*
1468         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1469         * requests if driver request queue is full.
1470         */
1471        skcipher_request_set_callback(ctx->r.req,
1472            CRYPTO_TFM_REQ_MAY_BACKLOG,
1473            kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1474}
1475
1476static void crypt_alloc_req_aead(struct crypt_config *cc,
1477                                 struct convert_context *ctx)
1478{
1479        if (!ctx->r.req_aead)
1480                ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1481
1482        aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1483
1484        /*
1485         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1486         * requests if driver request queue is full.
1487         */
1488        aead_request_set_callback(ctx->r.req_aead,
1489            CRYPTO_TFM_REQ_MAY_BACKLOG,
1490            kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1491}
1492
1493static void crypt_alloc_req(struct crypt_config *cc,
1494                            struct convert_context *ctx)
1495{
1496        if (crypt_integrity_aead(cc))
1497                crypt_alloc_req_aead(cc, ctx);
1498        else
1499                crypt_alloc_req_skcipher(cc, ctx);
1500}
1501
1502static void crypt_free_req_skcipher(struct crypt_config *cc,
1503                                    struct skcipher_request *req, struct bio *base_bio)
1504{
1505        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1506
1507        if ((struct skcipher_request *)(io + 1) != req)
1508                mempool_free(req, &cc->req_pool);
1509}
1510
1511static void crypt_free_req_aead(struct crypt_config *cc,
1512                                struct aead_request *req, struct bio *base_bio)
1513{
1514        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1515
1516        if ((struct aead_request *)(io + 1) != req)
1517                mempool_free(req, &cc->req_pool);
1518}
1519
1520static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1521{
1522        if (crypt_integrity_aead(cc))
1523                crypt_free_req_aead(cc, req, base_bio);
1524        else
1525                crypt_free_req_skcipher(cc, req, base_bio);
1526}
1527
1528/*
1529 * Encrypt / decrypt data from one bio to another one (can be the same one)
1530 */
1531static blk_status_t crypt_convert(struct crypt_config *cc,
1532                         struct convert_context *ctx, bool atomic)
1533{
1534        unsigned int tag_offset = 0;
1535        unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1536        int r;
1537
1538        atomic_set(&ctx->cc_pending, 1);
1539
1540        while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1541
1542                crypt_alloc_req(cc, ctx);
1543                atomic_inc(&ctx->cc_pending);
1544
1545                if (crypt_integrity_aead(cc))
1546                        r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1547                else
1548                        r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1549
1550                switch (r) {
1551                /*
1552                 * The request was queued by a crypto driver
1553                 * but the driver request queue is full, let's wait.
1554                 */
1555                case -EBUSY:
1556                        wait_for_completion(&ctx->restart);
1557                        reinit_completion(&ctx->restart);
1558                        fallthrough;
1559                /*
1560                 * The request is queued and processed asynchronously,
1561                 * completion function kcryptd_async_done() will be called.
1562                 */
1563                case -EINPROGRESS:
1564                        ctx->r.req = NULL;
1565                        ctx->cc_sector += sector_step;
1566                        tag_offset++;
1567                        continue;
1568                /*
1569                 * The request was already processed (synchronously).
1570                 */
1571                case 0:
1572                        atomic_dec(&ctx->cc_pending);
1573                        ctx->cc_sector += sector_step;
1574                        tag_offset++;
1575                        if (!atomic)
1576                                cond_resched();
1577                        continue;
1578                /*
1579                 * There was a data integrity error.
1580                 */
1581                case -EBADMSG:
1582                        atomic_dec(&ctx->cc_pending);
1583                        return BLK_STS_PROTECTION;
1584                /*
1585                 * There was an error while processing the request.
1586                 */
1587                default:
1588                        atomic_dec(&ctx->cc_pending);
1589                        return BLK_STS_IOERR;
1590                }
1591        }
1592
1593        return 0;
1594}
1595
1596static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1597
1598/*
1599 * Generate a new unfragmented bio with the given size
1600 * This should never violate the device limitations (but only because
1601 * max_segment_size is being constrained to PAGE_SIZE).
1602 *
1603 * This function may be called concurrently. If we allocate from the mempool
1604 * concurrently, there is a possibility of deadlock. For example, if we have
1605 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1606 * the mempool concurrently, it may deadlock in a situation where both processes
1607 * have allocated 128 pages and the mempool is exhausted.
1608 *
1609 * In order to avoid this scenario we allocate the pages under a mutex.
1610 *
1611 * In order to not degrade performance with excessive locking, we try
1612 * non-blocking allocations without a mutex first but on failure we fallback
1613 * to blocking allocations with a mutex.
1614 */
1615static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1616{
1617        struct crypt_config *cc = io->cc;
1618        struct bio *clone;
1619        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1620        gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1621        unsigned i, len, remaining_size;
1622        struct page *page;
1623
1624retry:
1625        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1626                mutex_lock(&cc->bio_alloc_lock);
1627
1628        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1629        if (!clone)
1630                goto out;
1631
1632        clone_init(io, clone);
1633
1634        remaining_size = size;
1635
1636        for (i = 0; i < nr_iovecs; i++) {
1637                page = mempool_alloc(&cc->page_pool, gfp_mask);
1638                if (!page) {
1639                        crypt_free_buffer_pages(cc, clone);
1640                        bio_put(clone);
1641                        gfp_mask |= __GFP_DIRECT_RECLAIM;
1642                        goto retry;
1643                }
1644
1645                len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1646
1647                bio_add_page(clone, page, len, 0);
1648
1649                remaining_size -= len;
1650        }
1651
1652        /* Allocate space for integrity tags */
1653        if (dm_crypt_integrity_io_alloc(io, clone)) {
1654                crypt_free_buffer_pages(cc, clone);
1655                bio_put(clone);
1656                clone = NULL;
1657        }
1658out:
1659        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1660                mutex_unlock(&cc->bio_alloc_lock);
1661
1662        return clone;
1663}
1664
1665static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1666{
1667        struct bio_vec *bv;
1668        struct bvec_iter_all iter_all;
1669
1670        bio_for_each_segment_all(bv, clone, iter_all) {
1671                BUG_ON(!bv->bv_page);
1672                mempool_free(bv->bv_page, &cc->page_pool);
1673        }
1674}
1675
1676static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1677                          struct bio *bio, sector_t sector)
1678{
1679        io->cc = cc;
1680        io->base_bio = bio;
1681        io->sector = sector;
1682        io->error = 0;
1683        io->ctx.r.req = NULL;
1684        io->integrity_metadata = NULL;
1685        io->integrity_metadata_from_pool = false;
1686        atomic_set(&io->io_pending, 0);
1687}
1688
1689static void crypt_inc_pending(struct dm_crypt_io *io)
1690{
1691        atomic_inc(&io->io_pending);
1692}
1693
1694/*
1695 * One of the bios was finished. Check for completion of
1696 * the whole request and correctly clean up the buffer.
1697 */
1698static void crypt_dec_pending(struct dm_crypt_io *io)
1699{
1700        struct crypt_config *cc = io->cc;
1701        struct bio *base_bio = io->base_bio;
1702        blk_status_t error = io->error;
1703
1704        if (!atomic_dec_and_test(&io->io_pending))
1705                return;
1706
1707        if (io->ctx.r.req)
1708                crypt_free_req(cc, io->ctx.r.req, base_bio);
1709
1710        if (unlikely(io->integrity_metadata_from_pool))
1711                mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1712        else
1713                kfree(io->integrity_metadata);
1714
1715        base_bio->bi_status = error;
1716        bio_endio(base_bio);
1717}
1718
1719/*
1720 * kcryptd/kcryptd_io:
1721 *
1722 * Needed because it would be very unwise to do decryption in an
1723 * interrupt context.
1724 *
1725 * kcryptd performs the actual encryption or decryption.
1726 *
1727 * kcryptd_io performs the IO submission.
1728 *
1729 * They must be separated as otherwise the final stages could be
1730 * starved by new requests which can block in the first stages due
1731 * to memory allocation.
1732 *
1733 * The work is done per CPU global for all dm-crypt instances.
1734 * They should not depend on each other and do not block.
1735 */
1736static void crypt_endio(struct bio *clone)
1737{
1738        struct dm_crypt_io *io = clone->bi_private;
1739        struct crypt_config *cc = io->cc;
1740        unsigned rw = bio_data_dir(clone);
1741        blk_status_t error;
1742
1743        /*
1744         * free the processed pages
1745         */
1746        if (rw == WRITE)
1747                crypt_free_buffer_pages(cc, clone);
1748
1749        error = clone->bi_status;
1750        bio_put(clone);
1751
1752        if (rw == READ && !error) {
1753                kcryptd_queue_crypt(io);
1754                return;
1755        }
1756
1757        if (unlikely(error))
1758                io->error = error;
1759
1760        crypt_dec_pending(io);
1761}
1762
1763static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1764{
1765        struct crypt_config *cc = io->cc;
1766
1767        clone->bi_private = io;
1768        clone->bi_end_io  = crypt_endio;
1769        bio_set_dev(clone, cc->dev->bdev);
1770        clone->bi_opf     = io->base_bio->bi_opf;
1771}
1772
1773static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1774{
1775        struct crypt_config *cc = io->cc;
1776        struct bio *clone;
1777
1778        /*
1779         * We need the original biovec array in order to decrypt
1780         * the whole bio data *afterwards* -- thanks to immutable
1781         * biovecs we don't need to worry about the block layer
1782         * modifying the biovec array; so leverage bio_clone_fast().
1783         */
1784        clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1785        if (!clone)
1786                return 1;
1787
1788        crypt_inc_pending(io);
1789
1790        clone_init(io, clone);
1791        clone->bi_iter.bi_sector = cc->start + io->sector;
1792
1793        if (dm_crypt_integrity_io_alloc(io, clone)) {
1794                crypt_dec_pending(io);
1795                bio_put(clone);
1796                return 1;
1797        }
1798
1799        submit_bio_noacct(clone);
1800        return 0;
1801}
1802
1803static void kcryptd_io_read_work(struct work_struct *work)
1804{
1805        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1806
1807        crypt_inc_pending(io);
1808        if (kcryptd_io_read(io, GFP_NOIO))
1809                io->error = BLK_STS_RESOURCE;
1810        crypt_dec_pending(io);
1811}
1812
1813static void kcryptd_queue_read(struct dm_crypt_io *io)
1814{
1815        struct crypt_config *cc = io->cc;
1816
1817        INIT_WORK(&io->work, kcryptd_io_read_work);
1818        queue_work(cc->io_queue, &io->work);
1819}
1820
1821static void kcryptd_io_write(struct dm_crypt_io *io)
1822{
1823        struct bio *clone = io->ctx.bio_out;
1824
1825        submit_bio_noacct(clone);
1826}
1827
1828#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1829
1830static int dmcrypt_write(void *data)
1831{
1832        struct crypt_config *cc = data;
1833        struct dm_crypt_io *io;
1834
1835        while (1) {
1836                struct rb_root write_tree;
1837                struct blk_plug plug;
1838
1839                spin_lock_irq(&cc->write_thread_lock);
1840continue_locked:
1841
1842                if (!RB_EMPTY_ROOT(&cc->write_tree))
1843                        goto pop_from_list;
1844
1845                set_current_state(TASK_INTERRUPTIBLE);
1846
1847                spin_unlock_irq(&cc->write_thread_lock);
1848
1849                if (unlikely(kthread_should_stop())) {
1850                        set_current_state(TASK_RUNNING);
1851                        break;
1852                }
1853
1854                schedule();
1855
1856                set_current_state(TASK_RUNNING);
1857                spin_lock_irq(&cc->write_thread_lock);
1858                goto continue_locked;
1859
1860pop_from_list:
1861                write_tree = cc->write_tree;
1862                cc->write_tree = RB_ROOT;
1863                spin_unlock_irq(&cc->write_thread_lock);
1864
1865                BUG_ON(rb_parent(write_tree.rb_node));
1866
1867                /*
1868                 * Note: we cannot walk the tree here with rb_next because
1869                 * the structures may be freed when kcryptd_io_write is called.
1870                 */
1871                blk_start_plug(&plug);
1872                do {
1873                        io = crypt_io_from_node(rb_first(&write_tree));
1874                        rb_erase(&io->rb_node, &write_tree);
1875                        kcryptd_io_write(io);
1876                } while (!RB_EMPTY_ROOT(&write_tree));
1877                blk_finish_plug(&plug);
1878        }
1879        return 0;
1880}
1881
1882static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1883{
1884        struct bio *clone = io->ctx.bio_out;
1885        struct crypt_config *cc = io->cc;
1886        unsigned long flags;
1887        sector_t sector;
1888        struct rb_node **rbp, *parent;
1889
1890        if (unlikely(io->error)) {
1891                crypt_free_buffer_pages(cc, clone);
1892                bio_put(clone);
1893                crypt_dec_pending(io);
1894                return;
1895        }
1896
1897        /* crypt_convert should have filled the clone bio */
1898        BUG_ON(io->ctx.iter_out.bi_size);
1899
1900        clone->bi_iter.bi_sector = cc->start + io->sector;
1901
1902        if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1903            test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1904                submit_bio_noacct(clone);
1905                return;
1906        }
1907
1908        spin_lock_irqsave(&cc->write_thread_lock, flags);
1909        if (RB_EMPTY_ROOT(&cc->write_tree))
1910                wake_up_process(cc->write_thread);
1911        rbp = &cc->write_tree.rb_node;
1912        parent = NULL;
1913        sector = io->sector;
1914        while (*rbp) {
1915                parent = *rbp;
1916                if (sector < crypt_io_from_node(parent)->sector)
1917                        rbp = &(*rbp)->rb_left;
1918                else
1919                        rbp = &(*rbp)->rb_right;
1920        }
1921        rb_link_node(&io->rb_node, parent, rbp);
1922        rb_insert_color(&io->rb_node, &cc->write_tree);
1923        spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1924}
1925
1926static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
1927                                       struct convert_context *ctx)
1928
1929{
1930        if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
1931                return false;
1932
1933        /*
1934         * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
1935         * constraints so they do not need to be issued inline by
1936         * kcryptd_crypt_write_convert().
1937         */
1938        switch (bio_op(ctx->bio_in)) {
1939        case REQ_OP_WRITE:
1940        case REQ_OP_WRITE_SAME:
1941        case REQ_OP_WRITE_ZEROES:
1942                return true;
1943        default:
1944                return false;
1945        }
1946}
1947
1948static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1949{
1950        struct crypt_config *cc = io->cc;
1951        struct convert_context *ctx = &io->ctx;
1952        struct bio *clone;
1953        int crypt_finished;
1954        sector_t sector = io->sector;
1955        blk_status_t r;
1956
1957        /*
1958         * Prevent io from disappearing until this function completes.
1959         */
1960        crypt_inc_pending(io);
1961        crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
1962
1963        clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1964        if (unlikely(!clone)) {
1965                io->error = BLK_STS_IOERR;
1966                goto dec;
1967        }
1968
1969        io->ctx.bio_out = clone;
1970        io->ctx.iter_out = clone->bi_iter;
1971
1972        sector += bio_sectors(clone);
1973
1974        crypt_inc_pending(io);
1975        r = crypt_convert(cc, ctx,
1976                          test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags));
1977        if (r)
1978                io->error = r;
1979        crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
1980        if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
1981                /* Wait for completion signaled by kcryptd_async_done() */
1982                wait_for_completion(&ctx->restart);
1983                crypt_finished = 1;
1984        }
1985
1986        /* Encryption was already finished, submit io now */
1987        if (crypt_finished) {
1988                kcryptd_crypt_write_io_submit(io, 0);
1989                io->sector = sector;
1990        }
1991
1992dec:
1993        crypt_dec_pending(io);
1994}
1995
1996static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1997{
1998        crypt_dec_pending(io);
1999}
2000
2001static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2002{
2003        struct crypt_config *cc = io->cc;
2004        blk_status_t r;
2005
2006        crypt_inc_pending(io);
2007
2008        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2009                           io->sector);
2010
2011        r = crypt_convert(cc, &io->ctx,
2012                          test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags));
2013        if (r)
2014                io->error = r;
2015
2016        if (atomic_dec_and_test(&io->ctx.cc_pending))
2017                kcryptd_crypt_read_done(io);
2018
2019        crypt_dec_pending(io);
2020}
2021
2022static void kcryptd_async_done(struct crypto_async_request *async_req,
2023                               int error)
2024{
2025        struct dm_crypt_request *dmreq = async_req->data;
2026        struct convert_context *ctx = dmreq->ctx;
2027        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2028        struct crypt_config *cc = io->cc;
2029
2030        /*
2031         * A request from crypto driver backlog is going to be processed now,
2032         * finish the completion and continue in crypt_convert().
2033         * (Callback will be called for the second time for this request.)
2034         */
2035        if (error == -EINPROGRESS) {
2036                complete(&ctx->restart);
2037                return;
2038        }
2039
2040        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2041                error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2042
2043        if (error == -EBADMSG) {
2044                char b[BDEVNAME_SIZE];
2045                DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
2046                            (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
2047                io->error = BLK_STS_PROTECTION;
2048        } else if (error < 0)
2049                io->error = BLK_STS_IOERR;
2050
2051        crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2052
2053        if (!atomic_dec_and_test(&ctx->cc_pending))
2054                return;
2055
2056        /*
2057         * The request is fully completed: for inline writes, let
2058         * kcryptd_crypt_write_convert() do the IO submission.
2059         */
2060        if (bio_data_dir(io->base_bio) == READ) {
2061                kcryptd_crypt_read_done(io);
2062                return;
2063        }
2064
2065        if (kcryptd_crypt_write_inline(cc, ctx)) {
2066                complete(&ctx->restart);
2067                return;
2068        }
2069
2070        kcryptd_crypt_write_io_submit(io, 1);
2071}
2072
2073static void kcryptd_crypt(struct work_struct *work)
2074{
2075        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2076
2077        if (bio_data_dir(io->base_bio) == READ)
2078                kcryptd_crypt_read_convert(io);
2079        else
2080                kcryptd_crypt_write_convert(io);
2081}
2082
2083static void kcryptd_crypt_tasklet(unsigned long work)
2084{
2085        kcryptd_crypt((struct work_struct *)work);
2086}
2087
2088static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2089{
2090        struct crypt_config *cc = io->cc;
2091
2092        if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2093            (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2094                if (in_irq()) {
2095                        /* Crypto API's "skcipher_walk_first() refuses to work in hard IRQ context */
2096                        tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2097                        tasklet_schedule(&io->tasklet);
2098                        return;
2099                }
2100
2101                kcryptd_crypt(&io->work);
2102                return;
2103        }
2104
2105        INIT_WORK(&io->work, kcryptd_crypt);
2106        queue_work(cc->crypt_queue, &io->work);
2107}
2108
2109static void crypt_free_tfms_aead(struct crypt_config *cc)
2110{
2111        if (!cc->cipher_tfm.tfms_aead)
2112                return;
2113
2114        if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2115                crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2116                cc->cipher_tfm.tfms_aead[0] = NULL;
2117        }
2118
2119        kfree(cc->cipher_tfm.tfms_aead);
2120        cc->cipher_tfm.tfms_aead = NULL;
2121}
2122
2123static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2124{
2125        unsigned i;
2126
2127        if (!cc->cipher_tfm.tfms)
2128                return;
2129
2130        for (i = 0; i < cc->tfms_count; i++)
2131                if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2132                        crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2133                        cc->cipher_tfm.tfms[i] = NULL;
2134                }
2135
2136        kfree(cc->cipher_tfm.tfms);
2137        cc->cipher_tfm.tfms = NULL;
2138}
2139
2140static void crypt_free_tfms(struct crypt_config *cc)
2141{
2142        if (crypt_integrity_aead(cc))
2143                crypt_free_tfms_aead(cc);
2144        else
2145                crypt_free_tfms_skcipher(cc);
2146}
2147
2148static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2149{
2150        unsigned i;
2151        int err;
2152
2153        cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2154                                      sizeof(struct crypto_skcipher *),
2155                                      GFP_KERNEL);
2156        if (!cc->cipher_tfm.tfms)
2157                return -ENOMEM;
2158
2159        for (i = 0; i < cc->tfms_count; i++) {
2160                cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2161                                                CRYPTO_ALG_ALLOCATES_MEMORY);
2162                if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2163                        err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2164                        crypt_free_tfms(cc);
2165                        return err;
2166                }
2167        }
2168
2169        /*
2170         * dm-crypt performance can vary greatly depending on which crypto
2171         * algorithm implementation is used.  Help people debug performance
2172         * problems by logging the ->cra_driver_name.
2173         */
2174        DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2175               crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2176        return 0;
2177}
2178
2179static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2180{
2181        int err;
2182
2183        cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2184        if (!cc->cipher_tfm.tfms)
2185                return -ENOMEM;
2186
2187        cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2188                                                CRYPTO_ALG_ALLOCATES_MEMORY);
2189        if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2190                err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2191                crypt_free_tfms(cc);
2192                return err;
2193        }
2194
2195        DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2196               crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2197        return 0;
2198}
2199
2200static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2201{
2202        if (crypt_integrity_aead(cc))
2203                return crypt_alloc_tfms_aead(cc, ciphermode);
2204        else
2205                return crypt_alloc_tfms_skcipher(cc, ciphermode);
2206}
2207
2208static unsigned crypt_subkey_size(struct crypt_config *cc)
2209{
2210        return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2211}
2212
2213static unsigned crypt_authenckey_size(struct crypt_config *cc)
2214{
2215        return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2216}
2217
2218/*
2219 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2220 * the key must be for some reason in special format.
2221 * This funcion converts cc->key to this special format.
2222 */
2223static void crypt_copy_authenckey(char *p, const void *key,
2224                                  unsigned enckeylen, unsigned authkeylen)
2225{
2226        struct crypto_authenc_key_param *param;
2227        struct rtattr *rta;
2228
2229        rta = (struct rtattr *)p;
2230        param = RTA_DATA(rta);
2231        param->enckeylen = cpu_to_be32(enckeylen);
2232        rta->rta_len = RTA_LENGTH(sizeof(*param));
2233        rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2234        p += RTA_SPACE(sizeof(*param));
2235        memcpy(p, key + enckeylen, authkeylen);
2236        p += authkeylen;
2237        memcpy(p, key, enckeylen);
2238}
2239
2240static int crypt_setkey(struct crypt_config *cc)
2241{
2242        unsigned subkey_size;
2243        int err = 0, i, r;
2244
2245        /* Ignore extra keys (which are used for IV etc) */
2246        subkey_size = crypt_subkey_size(cc);
2247
2248        if (crypt_integrity_hmac(cc)) {
2249                if (subkey_size < cc->key_mac_size)
2250                        return -EINVAL;
2251
2252                crypt_copy_authenckey(cc->authenc_key, cc->key,
2253                                      subkey_size - cc->key_mac_size,
2254                                      cc->key_mac_size);
2255        }
2256
2257        for (i = 0; i < cc->tfms_count; i++) {
2258                if (crypt_integrity_hmac(cc))
2259                        r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2260                                cc->authenc_key, crypt_authenckey_size(cc));
2261                else if (crypt_integrity_aead(cc))
2262                        r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2263                                               cc->key + (i * subkey_size),
2264                                               subkey_size);
2265                else
2266                        r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2267                                                   cc->key + (i * subkey_size),
2268                                                   subkey_size);
2269                if (r)
2270                        err = r;
2271        }
2272
2273        if (crypt_integrity_hmac(cc))
2274                memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2275
2276        return err;
2277}
2278
2279#ifdef CONFIG_KEYS
2280
2281static bool contains_whitespace(const char *str)
2282{
2283        while (*str)
2284                if (isspace(*str++))
2285                        return true;
2286        return false;
2287}
2288
2289static int set_key_user(struct crypt_config *cc, struct key *key)
2290{
2291        const struct user_key_payload *ukp;
2292
2293        ukp = user_key_payload_locked(key);
2294        if (!ukp)
2295                return -EKEYREVOKED;
2296
2297        if (cc->key_size != ukp->datalen)
2298                return -EINVAL;
2299
2300        memcpy(cc->key, ukp->data, cc->key_size);
2301
2302        return 0;
2303}
2304
2305#if defined(CONFIG_ENCRYPTED_KEYS) || defined(CONFIG_ENCRYPTED_KEYS_MODULE)
2306static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2307{
2308        const struct encrypted_key_payload *ekp;
2309
2310        ekp = key->payload.data[0];
2311        if (!ekp)
2312                return -EKEYREVOKED;
2313
2314        if (cc->key_size != ekp->decrypted_datalen)
2315                return -EINVAL;
2316
2317        memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2318
2319        return 0;
2320}
2321#endif /* CONFIG_ENCRYPTED_KEYS */
2322
2323static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2324{
2325        char *new_key_string, *key_desc;
2326        int ret;
2327        struct key_type *type;
2328        struct key *key;
2329        int (*set_key)(struct crypt_config *cc, struct key *key);
2330
2331        /*
2332         * Reject key_string with whitespace. dm core currently lacks code for
2333         * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2334         */
2335        if (contains_whitespace(key_string)) {
2336                DMERR("whitespace chars not allowed in key string");
2337                return -EINVAL;
2338        }
2339
2340        /* look for next ':' separating key_type from key_description */
2341        key_desc = strpbrk(key_string, ":");
2342        if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2343                return -EINVAL;
2344
2345        if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2346                type = &key_type_logon;
2347                set_key = set_key_user;
2348        } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2349                type = &key_type_user;
2350                set_key = set_key_user;
2351#if defined(CONFIG_ENCRYPTED_KEYS) || defined(CONFIG_ENCRYPTED_KEYS_MODULE)
2352        } else if (!strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2353                type = &key_type_encrypted;
2354                set_key = set_key_encrypted;
2355#endif
2356        } else {
2357                return -EINVAL;
2358        }
2359
2360        new_key_string = kstrdup(key_string, GFP_KERNEL);
2361        if (!new_key_string)
2362                return -ENOMEM;
2363
2364        key = request_key(type, key_desc + 1, NULL);
2365        if (IS_ERR(key)) {
2366                kfree_sensitive(new_key_string);
2367                return PTR_ERR(key);
2368        }
2369
2370        down_read(&key->sem);
2371
2372        ret = set_key(cc, key);
2373        if (ret < 0) {
2374                up_read(&key->sem);
2375                key_put(key);
2376                kfree_sensitive(new_key_string);
2377                return ret;
2378        }
2379
2380        up_read(&key->sem);
2381        key_put(key);
2382
2383        /* clear the flag since following operations may invalidate previously valid key */
2384        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2385
2386        ret = crypt_setkey(cc);
2387
2388        if (!ret) {
2389                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2390                kfree_sensitive(cc->key_string);
2391                cc->key_string = new_key_string;
2392        } else
2393                kfree_sensitive(new_key_string);
2394
2395        return ret;
2396}
2397
2398static int get_key_size(char **key_string)
2399{
2400        char *colon, dummy;
2401        int ret;
2402
2403        if (*key_string[0] != ':')
2404                return strlen(*key_string) >> 1;
2405
2406        /* look for next ':' in key string */
2407        colon = strpbrk(*key_string + 1, ":");
2408        if (!colon)
2409                return -EINVAL;
2410
2411        if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2412                return -EINVAL;
2413
2414        *key_string = colon;
2415
2416        /* remaining key string should be :<logon|user>:<key_desc> */
2417
2418        return ret;
2419}
2420
2421#else
2422
2423static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2424{
2425        return -EINVAL;
2426}
2427
2428static int get_key_size(char **key_string)
2429{
2430        return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2431}
2432
2433#endif /* CONFIG_KEYS */
2434
2435static int crypt_set_key(struct crypt_config *cc, char *key)
2436{
2437        int r = -EINVAL;
2438        int key_string_len = strlen(key);
2439
2440        /* Hyphen (which gives a key_size of zero) means there is no key. */
2441        if (!cc->key_size && strcmp(key, "-"))
2442                goto out;
2443
2444        /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2445        if (key[0] == ':') {
2446                r = crypt_set_keyring_key(cc, key + 1);
2447                goto out;
2448        }
2449
2450        /* clear the flag since following operations may invalidate previously valid key */
2451        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2452
2453        /* wipe references to any kernel keyring key */
2454        kfree_sensitive(cc->key_string);
2455        cc->key_string = NULL;
2456
2457        /* Decode key from its hex representation. */
2458        if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2459                goto out;
2460
2461        r = crypt_setkey(cc);
2462        if (!r)
2463                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2464
2465out:
2466        /* Hex key string not needed after here, so wipe it. */
2467        memset(key, '0', key_string_len);
2468
2469        return r;
2470}
2471
2472static int crypt_wipe_key(struct crypt_config *cc)
2473{
2474        int r;
2475
2476        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2477        get_random_bytes(&cc->key, cc->key_size);
2478
2479        /* Wipe IV private keys */
2480        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2481                r = cc->iv_gen_ops->wipe(cc);
2482                if (r)
2483                        return r;
2484        }
2485
2486        kfree_sensitive(cc->key_string);
2487        cc->key_string = NULL;
2488        r = crypt_setkey(cc);
2489        memset(&cc->key, 0, cc->key_size * sizeof(u8));
2490
2491        return r;
2492}
2493
2494static void crypt_calculate_pages_per_client(void)
2495{
2496        unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2497
2498        if (!dm_crypt_clients_n)
2499                return;
2500
2501        pages /= dm_crypt_clients_n;
2502        if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2503                pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2504        dm_crypt_pages_per_client = pages;
2505}
2506
2507static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2508{
2509        struct crypt_config *cc = pool_data;
2510        struct page *page;
2511
2512        if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2513            likely(gfp_mask & __GFP_NORETRY))
2514                return NULL;
2515
2516        page = alloc_page(gfp_mask);
2517        if (likely(page != NULL))
2518                percpu_counter_add(&cc->n_allocated_pages, 1);
2519
2520        return page;
2521}
2522
2523static void crypt_page_free(void *page, void *pool_data)
2524{
2525        struct crypt_config *cc = pool_data;
2526
2527        __free_page(page);
2528        percpu_counter_sub(&cc->n_allocated_pages, 1);
2529}
2530
2531static void crypt_dtr(struct dm_target *ti)
2532{
2533        struct crypt_config *cc = ti->private;
2534
2535        ti->private = NULL;
2536
2537        if (!cc)
2538                return;
2539
2540        if (cc->write_thread)
2541                kthread_stop(cc->write_thread);
2542
2543        if (cc->io_queue)
2544                destroy_workqueue(cc->io_queue);
2545        if (cc->crypt_queue)
2546                destroy_workqueue(cc->crypt_queue);
2547
2548        crypt_free_tfms(cc);
2549
2550        bioset_exit(&cc->bs);
2551
2552        mempool_exit(&cc->page_pool);
2553        mempool_exit(&cc->req_pool);
2554        mempool_exit(&cc->tag_pool);
2555
2556        WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2557        percpu_counter_destroy(&cc->n_allocated_pages);
2558
2559        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2560                cc->iv_gen_ops->dtr(cc);
2561
2562        if (cc->dev)
2563                dm_put_device(ti, cc->dev);
2564
2565        kfree_sensitive(cc->cipher_string);
2566        kfree_sensitive(cc->key_string);
2567        kfree_sensitive(cc->cipher_auth);
2568        kfree_sensitive(cc->authenc_key);
2569
2570        mutex_destroy(&cc->bio_alloc_lock);
2571
2572        /* Must zero key material before freeing */
2573        kfree_sensitive(cc);
2574
2575        spin_lock(&dm_crypt_clients_lock);
2576        WARN_ON(!dm_crypt_clients_n);
2577        dm_crypt_clients_n--;
2578        crypt_calculate_pages_per_client();
2579        spin_unlock(&dm_crypt_clients_lock);
2580}
2581
2582static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2583{
2584        struct crypt_config *cc = ti->private;
2585
2586        if (crypt_integrity_aead(cc))
2587                cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2588        else
2589                cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2590
2591        if (cc->iv_size)
2592                /* at least a 64 bit sector number should fit in our buffer */
2593                cc->iv_size = max(cc->iv_size,
2594                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
2595        else if (ivmode) {
2596                DMWARN("Selected cipher does not support IVs");
2597                ivmode = NULL;
2598        }
2599
2600        /* Choose ivmode, see comments at iv code. */
2601        if (ivmode == NULL)
2602                cc->iv_gen_ops = NULL;
2603        else if (strcmp(ivmode, "plain") == 0)
2604                cc->iv_gen_ops = &crypt_iv_plain_ops;
2605        else if (strcmp(ivmode, "plain64") == 0)
2606                cc->iv_gen_ops = &crypt_iv_plain64_ops;
2607        else if (strcmp(ivmode, "plain64be") == 0)
2608                cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2609        else if (strcmp(ivmode, "essiv") == 0)
2610                cc->iv_gen_ops = &crypt_iv_essiv_ops;
2611        else if (strcmp(ivmode, "benbi") == 0)
2612                cc->iv_gen_ops = &crypt_iv_benbi_ops;
2613        else if (strcmp(ivmode, "null") == 0)
2614                cc->iv_gen_ops = &crypt_iv_null_ops;
2615        else if (strcmp(ivmode, "eboiv") == 0)
2616                cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2617        else if (strcmp(ivmode, "elephant") == 0) {
2618                cc->iv_gen_ops = &crypt_iv_elephant_ops;
2619                cc->key_parts = 2;
2620                cc->key_extra_size = cc->key_size / 2;
2621                if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2622                        return -EINVAL;
2623                set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2624        } else if (strcmp(ivmode, "lmk") == 0) {
2625                cc->iv_gen_ops = &crypt_iv_lmk_ops;
2626                /*
2627                 * Version 2 and 3 is recognised according
2628                 * to length of provided multi-key string.
2629                 * If present (version 3), last key is used as IV seed.
2630                 * All keys (including IV seed) are always the same size.
2631                 */
2632                if (cc->key_size % cc->key_parts) {
2633                        cc->key_parts++;
2634                        cc->key_extra_size = cc->key_size / cc->key_parts;
2635                }
2636        } else if (strcmp(ivmode, "tcw") == 0) {
2637                cc->iv_gen_ops = &crypt_iv_tcw_ops;
2638                cc->key_parts += 2; /* IV + whitening */
2639                cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2640        } else if (strcmp(ivmode, "random") == 0) {
2641                cc->iv_gen_ops = &crypt_iv_random_ops;
2642                /* Need storage space in integrity fields. */
2643                cc->integrity_iv_size = cc->iv_size;
2644        } else {
2645                ti->error = "Invalid IV mode";
2646                return -EINVAL;
2647        }
2648
2649        return 0;
2650}
2651
2652/*
2653 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2654 * The HMAC is needed to calculate tag size (HMAC digest size).
2655 * This should be probably done by crypto-api calls (once available...)
2656 */
2657static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2658{
2659        char *start, *end, *mac_alg = NULL;
2660        struct crypto_ahash *mac;
2661
2662        if (!strstarts(cipher_api, "authenc("))
2663                return 0;
2664
2665        start = strchr(cipher_api, '(');
2666        end = strchr(cipher_api, ',');
2667        if (!start || !end || ++start > end)
2668                return -EINVAL;
2669
2670        mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2671        if (!mac_alg)
2672                return -ENOMEM;
2673        strncpy(mac_alg, start, end - start);
2674
2675        mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2676        kfree(mac_alg);
2677
2678        if (IS_ERR(mac))
2679                return PTR_ERR(mac);
2680
2681        cc->key_mac_size = crypto_ahash_digestsize(mac);
2682        crypto_free_ahash(mac);
2683
2684        cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2685        if (!cc->authenc_key)
2686                return -ENOMEM;
2687
2688        return 0;
2689}
2690
2691static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2692                                char **ivmode, char **ivopts)
2693{
2694        struct crypt_config *cc = ti->private;
2695        char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2696        int ret = -EINVAL;
2697
2698        cc->tfms_count = 1;
2699
2700        /*
2701         * New format (capi: prefix)
2702         * capi:cipher_api_spec-iv:ivopts
2703         */
2704        tmp = &cipher_in[strlen("capi:")];
2705
2706        /* Separate IV options if present, it can contain another '-' in hash name */
2707        *ivopts = strrchr(tmp, ':');
2708        if (*ivopts) {
2709                **ivopts = '\0';
2710                (*ivopts)++;
2711        }
2712        /* Parse IV mode */
2713        *ivmode = strrchr(tmp, '-');
2714        if (*ivmode) {
2715                **ivmode = '\0';
2716                (*ivmode)++;
2717        }
2718        /* The rest is crypto API spec */
2719        cipher_api = tmp;
2720
2721        /* Alloc AEAD, can be used only in new format. */
2722        if (crypt_integrity_aead(cc)) {
2723                ret = crypt_ctr_auth_cipher(cc, cipher_api);
2724                if (ret < 0) {
2725                        ti->error = "Invalid AEAD cipher spec";
2726                        return -ENOMEM;
2727                }
2728        }
2729
2730        if (*ivmode && !strcmp(*ivmode, "lmk"))
2731                cc->tfms_count = 64;
2732
2733        if (*ivmode && !strcmp(*ivmode, "essiv")) {
2734                if (!*ivopts) {
2735                        ti->error = "Digest algorithm missing for ESSIV mode";
2736                        return -EINVAL;
2737                }
2738                ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2739                               cipher_api, *ivopts);
2740                if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2741                        ti->error = "Cannot allocate cipher string";
2742                        return -ENOMEM;
2743                }
2744                cipher_api = buf;
2745        }
2746
2747        cc->key_parts = cc->tfms_count;
2748
2749        /* Allocate cipher */
2750        ret = crypt_alloc_tfms(cc, cipher_api);
2751        if (ret < 0) {
2752                ti->error = "Error allocating crypto tfm";
2753                return ret;
2754        }
2755
2756        if (crypt_integrity_aead(cc))
2757                cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2758        else
2759                cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2760
2761        return 0;
2762}
2763
2764static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2765                                char **ivmode, char **ivopts)
2766{
2767        struct crypt_config *cc = ti->private;
2768        char *tmp, *cipher, *chainmode, *keycount;
2769        char *cipher_api = NULL;
2770        int ret = -EINVAL;
2771        char dummy;
2772
2773        if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2774                ti->error = "Bad cipher specification";
2775                return -EINVAL;
2776        }
2777
2778        /*
2779         * Legacy dm-crypt cipher specification
2780         * cipher[:keycount]-mode-iv:ivopts
2781         */
2782        tmp = cipher_in;
2783        keycount = strsep(&tmp, "-");
2784        cipher = strsep(&keycount, ":");
2785
2786        if (!keycount)
2787                cc->tfms_count = 1;
2788        else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2789                 !is_power_of_2(cc->tfms_count)) {
2790                ti->error = "Bad cipher key count specification";
2791                return -EINVAL;
2792        }
2793        cc->key_parts = cc->tfms_count;
2794
2795        chainmode = strsep(&tmp, "-");
2796        *ivmode = strsep(&tmp, ":");
2797        *ivopts = tmp;
2798
2799        /*
2800         * For compatibility with the original dm-crypt mapping format, if
2801         * only the cipher name is supplied, use cbc-plain.
2802         */
2803        if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2804                chainmode = "cbc";
2805                *ivmode = "plain";
2806        }
2807
2808        if (strcmp(chainmode, "ecb") && !*ivmode) {
2809                ti->error = "IV mechanism required";
2810                return -EINVAL;
2811        }
2812
2813        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2814        if (!cipher_api)
2815                goto bad_mem;
2816
2817        if (*ivmode && !strcmp(*ivmode, "essiv")) {
2818                if (!*ivopts) {
2819                        ti->error = "Digest algorithm missing for ESSIV mode";
2820                        kfree(cipher_api);
2821                        return -EINVAL;
2822                }
2823                ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2824                               "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2825        } else {
2826                ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2827                               "%s(%s)", chainmode, cipher);
2828        }
2829        if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2830                kfree(cipher_api);
2831                goto bad_mem;
2832        }
2833
2834        /* Allocate cipher */
2835        ret = crypt_alloc_tfms(cc, cipher_api);
2836        if (ret < 0) {
2837                ti->error = "Error allocating crypto tfm";
2838                kfree(cipher_api);
2839                return ret;
2840        }
2841        kfree(cipher_api);
2842
2843        return 0;
2844bad_mem:
2845        ti->error = "Cannot allocate cipher strings";
2846        return -ENOMEM;
2847}
2848
2849static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2850{
2851        struct crypt_config *cc = ti->private;
2852        char *ivmode = NULL, *ivopts = NULL;
2853        int ret;
2854
2855        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2856        if (!cc->cipher_string) {
2857                ti->error = "Cannot allocate cipher strings";
2858                return -ENOMEM;
2859        }
2860
2861        if (strstarts(cipher_in, "capi:"))
2862                ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2863        else
2864                ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2865        if (ret)
2866                return ret;
2867
2868        /* Initialize IV */
2869        ret = crypt_ctr_ivmode(ti, ivmode);
2870        if (ret < 0)
2871                return ret;
2872
2873        /* Initialize and set key */
2874        ret = crypt_set_key(cc, key);
2875        if (ret < 0) {
2876                ti->error = "Error decoding and setting key";
2877                return ret;
2878        }
2879
2880        /* Allocate IV */
2881        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2882                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2883                if (ret < 0) {
2884                        ti->error = "Error creating IV";
2885                        return ret;
2886                }
2887        }
2888
2889        /* Initialize IV (set keys for ESSIV etc) */
2890        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2891                ret = cc->iv_gen_ops->init(cc);
2892                if (ret < 0) {
2893                        ti->error = "Error initialising IV";
2894                        return ret;
2895                }
2896        }
2897
2898        /* wipe the kernel key payload copy */
2899        if (cc->key_string)
2900                memset(cc->key, 0, cc->key_size * sizeof(u8));
2901
2902        return ret;
2903}
2904
2905static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2906{
2907        struct crypt_config *cc = ti->private;
2908        struct dm_arg_set as;
2909        static const struct dm_arg _args[] = {
2910                {0, 8, "Invalid number of feature args"},
2911        };
2912        unsigned int opt_params, val;
2913        const char *opt_string, *sval;
2914        char dummy;
2915        int ret;
2916
2917        /* Optional parameters */
2918        as.argc = argc;
2919        as.argv = argv;
2920
2921        ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2922        if (ret)
2923                return ret;
2924
2925        while (opt_params--) {
2926                opt_string = dm_shift_arg(&as);
2927                if (!opt_string) {
2928                        ti->error = "Not enough feature arguments";
2929                        return -EINVAL;
2930                }
2931
2932                if (!strcasecmp(opt_string, "allow_discards"))
2933                        ti->num_discard_bios = 1;
2934
2935                else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2936                        set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2937
2938                else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2939                        set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2940                else if (!strcasecmp(opt_string, "no_read_workqueue"))
2941                        set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
2942                else if (!strcasecmp(opt_string, "no_write_workqueue"))
2943                        set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
2944                else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2945                        if (val == 0 || val > MAX_TAG_SIZE) {
2946                                ti->error = "Invalid integrity arguments";
2947                                return -EINVAL;
2948                        }
2949                        cc->on_disk_tag_size = val;
2950                        sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2951                        if (!strcasecmp(sval, "aead")) {
2952                                set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2953                        } else  if (strcasecmp(sval, "none")) {
2954                                ti->error = "Unknown integrity profile";
2955                                return -EINVAL;
2956                        }
2957
2958                        cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2959                        if (!cc->cipher_auth)
2960                                return -ENOMEM;
2961                } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2962                        if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2963                            cc->sector_size > 4096 ||
2964                            (cc->sector_size & (cc->sector_size - 1))) {
2965                                ti->error = "Invalid feature value for sector_size";
2966                                return -EINVAL;
2967                        }
2968                        if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2969                                ti->error = "Device size is not multiple of sector_size feature";
2970                                return -EINVAL;
2971                        }
2972                        cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2973                } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2974                        set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2975                else {
2976                        ti->error = "Invalid feature arguments";
2977                        return -EINVAL;
2978                }
2979        }
2980
2981        return 0;
2982}
2983
2984#ifdef CONFIG_BLK_DEV_ZONED
2985
2986static int crypt_report_zones(struct dm_target *ti,
2987                struct dm_report_zones_args *args, unsigned int nr_zones)
2988{
2989        struct crypt_config *cc = ti->private;
2990        sector_t sector = cc->start + dm_target_offset(ti, args->next_sector);
2991
2992        args->start = cc->start;
2993        return blkdev_report_zones(cc->dev->bdev, sector, nr_zones,
2994                                   dm_report_zones_cb, args);
2995}
2996
2997#endif
2998
2999/*
3000 * Construct an encryption mapping:
3001 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3002 */
3003static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3004{
3005        struct crypt_config *cc;
3006        const char *devname = dm_table_device_name(ti->table);
3007        int key_size;
3008        unsigned int align_mask;
3009        unsigned long long tmpll;
3010        int ret;
3011        size_t iv_size_padding, additional_req_size;
3012        char dummy;
3013
3014        if (argc < 5) {
3015                ti->error = "Not enough arguments";
3016                return -EINVAL;
3017        }
3018
3019        key_size = get_key_size(&argv[1]);
3020        if (key_size < 0) {
3021                ti->error = "Cannot parse key size";
3022                return -EINVAL;
3023        }
3024
3025        cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3026        if (!cc) {
3027                ti->error = "Cannot allocate encryption context";
3028                return -ENOMEM;
3029        }
3030        cc->key_size = key_size;
3031        cc->sector_size = (1 << SECTOR_SHIFT);
3032        cc->sector_shift = 0;
3033
3034        ti->private = cc;
3035
3036        spin_lock(&dm_crypt_clients_lock);
3037        dm_crypt_clients_n++;
3038        crypt_calculate_pages_per_client();
3039        spin_unlock(&dm_crypt_clients_lock);
3040
3041        ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3042        if (ret < 0)
3043                goto bad;
3044
3045        /* Optional parameters need to be read before cipher constructor */
3046        if (argc > 5) {
3047                ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3048                if (ret)
3049                        goto bad;
3050        }
3051
3052        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3053        if (ret < 0)
3054                goto bad;
3055
3056        if (crypt_integrity_aead(cc)) {
3057                cc->dmreq_start = sizeof(struct aead_request);
3058                cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3059                align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3060        } else {
3061                cc->dmreq_start = sizeof(struct skcipher_request);
3062                cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3063                align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3064        }
3065        cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3066
3067        if (align_mask < CRYPTO_MINALIGN) {
3068                /* Allocate the padding exactly */
3069                iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3070                                & align_mask;
3071        } else {
3072                /*
3073                 * If the cipher requires greater alignment than kmalloc
3074                 * alignment, we don't know the exact position of the
3075                 * initialization vector. We must assume worst case.
3076                 */
3077                iv_size_padding = align_mask;
3078        }
3079
3080        /*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3081        additional_req_size = sizeof(struct dm_crypt_request) +
3082                iv_size_padding + cc->iv_size +
3083                cc->iv_size +
3084                sizeof(uint64_t) +
3085                sizeof(unsigned int);
3086
3087        ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3088        if (ret) {
3089                ti->error = "Cannot allocate crypt request mempool";
3090                goto bad;
3091        }
3092
3093        cc->per_bio_data_size = ti->per_io_data_size =
3094                ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3095                      ARCH_KMALLOC_MINALIGN);
3096
3097        ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
3098        if (ret) {
3099                ti->error = "Cannot allocate page mempool";
3100                goto bad;
3101        }
3102
3103        ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3104        if (ret) {
3105                ti->error = "Cannot allocate crypt bioset";
3106                goto bad;
3107        }
3108
3109        mutex_init(&cc->bio_alloc_lock);
3110
3111        ret = -EINVAL;
3112        if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3113            (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3114                ti->error = "Invalid iv_offset sector";
3115                goto bad;
3116        }
3117        cc->iv_offset = tmpll;
3118
3119        ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3120        if (ret) {
3121                ti->error = "Device lookup failed";
3122                goto bad;
3123        }
3124
3125        ret = -EINVAL;
3126        if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3127                ti->error = "Invalid device sector";
3128                goto bad;
3129        }
3130        cc->start = tmpll;
3131
3132        /*
3133         * For zoned block devices, we need to preserve the issuer write
3134         * ordering. To do so, disable write workqueues and force inline
3135         * encryption completion.
3136         */
3137        if (bdev_is_zoned(cc->dev->bdev)) {
3138                set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3139                set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3140        }
3141
3142        if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3143                ret = crypt_integrity_ctr(cc, ti);
3144                if (ret)
3145                        goto bad;
3146
3147                cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3148                if (!cc->tag_pool_max_sectors)
3149                        cc->tag_pool_max_sectors = 1;
3150
3151                ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3152                        cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3153                if (ret) {
3154                        ti->error = "Cannot allocate integrity tags mempool";
3155                        goto bad;
3156                }
3157
3158                cc->tag_pool_max_sectors <<= cc->sector_shift;
3159        }
3160
3161        ret = -ENOMEM;
3162        cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3163        if (!cc->io_queue) {
3164                ti->error = "Couldn't create kcryptd io queue";
3165                goto bad;
3166        }
3167
3168        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3169                cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3170                                                  1, devname);
3171        else
3172                cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3173                                                  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3174                                                  num_online_cpus(), devname);
3175        if (!cc->crypt_queue) {
3176                ti->error = "Couldn't create kcryptd queue";
3177                goto bad;
3178        }
3179
3180        spin_lock_init(&cc->write_thread_lock);
3181        cc->write_tree = RB_ROOT;
3182
3183        cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3184        if (IS_ERR(cc->write_thread)) {
3185                ret = PTR_ERR(cc->write_thread);
3186                cc->write_thread = NULL;
3187                ti->error = "Couldn't spawn write thread";
3188                goto bad;
3189        }
3190        wake_up_process(cc->write_thread);
3191
3192        ti->num_flush_bios = 1;
3193
3194        return 0;
3195
3196bad:
3197        crypt_dtr(ti);
3198        return ret;
3199}
3200
3201static int crypt_map(struct dm_target *ti, struct bio *bio)
3202{
3203        struct dm_crypt_io *io;
3204        struct crypt_config *cc = ti->private;
3205
3206        /*
3207         * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3208         * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3209         * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3210         */
3211        if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3212            bio_op(bio) == REQ_OP_DISCARD)) {
3213                bio_set_dev(bio, cc->dev->bdev);
3214                if (bio_sectors(bio))
3215                        bio->bi_iter.bi_sector = cc->start +
3216                                dm_target_offset(ti, bio->bi_iter.bi_sector);
3217                return DM_MAPIO_REMAPPED;
3218        }
3219
3220        /*
3221         * Check if bio is too large, split as needed.
3222         */
3223        if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
3224            (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3225                dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
3226
3227        /*
3228         * Ensure that bio is a multiple of internal sector encryption size
3229         * and is aligned to this size as defined in IO hints.
3230         */
3231        if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3232                return DM_MAPIO_KILL;
3233
3234        if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3235                return DM_MAPIO_KILL;
3236
3237        io = dm_per_bio_data(bio, cc->per_bio_data_size);
3238        crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3239
3240        if (cc->on_disk_tag_size) {
3241                unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3242
3243                if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3244                    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3245                                GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3246                        if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3247                                dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3248                        io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3249                        io->integrity_metadata_from_pool = true;
3250                }
3251        }
3252
3253        if (crypt_integrity_aead(cc))
3254                io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3255        else
3256                io->ctx.r.req = (struct skcipher_request *)(io + 1);
3257
3258        if (bio_data_dir(io->base_bio) == READ) {
3259                if (kcryptd_io_read(io, GFP_NOWAIT))
3260                        kcryptd_queue_read(io);
3261        } else
3262                kcryptd_queue_crypt(io);
3263
3264        return DM_MAPIO_SUBMITTED;
3265}
3266
3267static void crypt_status(struct dm_target *ti, status_type_t type,
3268                         unsigned status_flags, char *result, unsigned maxlen)
3269{
3270        struct crypt_config *cc = ti->private;
3271        unsigned i, sz = 0;
3272        int num_feature_args = 0;
3273
3274        switch (type) {
3275        case STATUSTYPE_INFO:
3276                result[0] = '\0';
3277                break;
3278
3279        case STATUSTYPE_TABLE:
3280                DMEMIT("%s ", cc->cipher_string);
3281
3282                if (cc->key_size > 0) {
3283                        if (cc->key_string)
3284                                DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3285                        else
3286                                for (i = 0; i < cc->key_size; i++)
3287                                        DMEMIT("%02x", cc->key[i]);
3288                } else
3289                        DMEMIT("-");
3290
3291                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3292                                cc->dev->name, (unsigned long long)cc->start);
3293
3294                num_feature_args += !!ti->num_discard_bios;
3295                num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3296                num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3297                num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3298                num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3299                num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3300                num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3301                if (cc->on_disk_tag_size)
3302                        num_feature_args++;
3303                if (num_feature_args) {
3304                        DMEMIT(" %d", num_feature_args);
3305                        if (ti->num_discard_bios)
3306                                DMEMIT(" allow_discards");
3307                        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3308                                DMEMIT(" same_cpu_crypt");
3309                        if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3310                                DMEMIT(" submit_from_crypt_cpus");
3311                        if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3312                                DMEMIT(" no_read_workqueue");
3313                        if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3314                                DMEMIT(" no_write_workqueue");
3315                        if (cc->on_disk_tag_size)
3316                                DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3317                        if (cc->sector_size != (1 << SECTOR_SHIFT))
3318                                DMEMIT(" sector_size:%d", cc->sector_size);
3319                        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3320                                DMEMIT(" iv_large_sectors");
3321                }
3322
3323                break;
3324        }
3325}
3326
3327static void crypt_postsuspend(struct dm_target *ti)
3328{
3329        struct crypt_config *cc = ti->private;
3330
3331        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3332}
3333
3334static int crypt_preresume(struct dm_target *ti)
3335{
3336        struct crypt_config *cc = ti->private;
3337
3338        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3339                DMERR("aborting resume - crypt key is not set.");
3340                return -EAGAIN;
3341        }
3342
3343        return 0;
3344}
3345
3346static void crypt_resume(struct dm_target *ti)
3347{
3348        struct crypt_config *cc = ti->private;
3349
3350        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3351}
3352
3353/* Message interface
3354 *      key set <key>
3355 *      key wipe
3356 */
3357static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3358                         char *result, unsigned maxlen)
3359{
3360        struct crypt_config *cc = ti->private;
3361        int key_size, ret = -EINVAL;
3362
3363        if (argc < 2)
3364                goto error;
3365
3366        if (!strcasecmp(argv[0], "key")) {
3367                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3368                        DMWARN("not suspended during key manipulation.");
3369                        return -EINVAL;
3370                }
3371                if (argc == 3 && !strcasecmp(argv[1], "set")) {
3372                        /* The key size may not be changed. */
3373                        key_size = get_key_size(&argv[2]);
3374                        if (key_size < 0 || cc->key_size != key_size) {
3375                                memset(argv[2], '0', strlen(argv[2]));
3376                                return -EINVAL;
3377                        }
3378
3379                        ret = crypt_set_key(cc, argv[2]);
3380                        if (ret)
3381                                return ret;
3382                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3383                                ret = cc->iv_gen_ops->init(cc);
3384                        /* wipe the kernel key payload copy */
3385                        if (cc->key_string)
3386                                memset(cc->key, 0, cc->key_size * sizeof(u8));
3387                        return ret;
3388                }
3389                if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3390                        return crypt_wipe_key(cc);
3391        }
3392
3393error:
3394        DMWARN("unrecognised message received.");
3395        return -EINVAL;
3396}
3397
3398static int crypt_iterate_devices(struct dm_target *ti,
3399                                 iterate_devices_callout_fn fn, void *data)
3400{
3401        struct crypt_config *cc = ti->private;
3402
3403        return fn(ti, cc->dev, cc->start, ti->len, data);
3404}
3405
3406static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3407{
3408        struct crypt_config *cc = ti->private;
3409
3410        /*
3411         * Unfortunate constraint that is required to avoid the potential
3412         * for exceeding underlying device's max_segments limits -- due to
3413         * crypt_alloc_buffer() possibly allocating pages for the encryption
3414         * bio that are not as physically contiguous as the original bio.
3415         */
3416        limits->max_segment_size = PAGE_SIZE;
3417
3418        limits->logical_block_size =
3419                max_t(unsigned, limits->logical_block_size, cc->sector_size);
3420        limits->physical_block_size =
3421                max_t(unsigned, limits->physical_block_size, cc->sector_size);
3422        limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3423}
3424
3425static struct target_type crypt_target = {
3426        .name   = "crypt",
3427        .version = {1, 22, 0},
3428        .module = THIS_MODULE,
3429        .ctr    = crypt_ctr,
3430        .dtr    = crypt_dtr,
3431#ifdef CONFIG_BLK_DEV_ZONED
3432        .features = DM_TARGET_ZONED_HM,
3433        .report_zones = crypt_report_zones,
3434#endif
3435        .map    = crypt_map,
3436        .status = crypt_status,
3437        .postsuspend = crypt_postsuspend,
3438        .preresume = crypt_preresume,
3439        .resume = crypt_resume,
3440        .message = crypt_message,
3441        .iterate_devices = crypt_iterate_devices,
3442        .io_hints = crypt_io_hints,
3443};
3444
3445static int __init dm_crypt_init(void)
3446{
3447        int r;
3448
3449        r = dm_register_target(&crypt_target);
3450        if (r < 0)
3451                DMERR("register failed %d", r);
3452
3453        return r;
3454}
3455
3456static void __exit dm_crypt_exit(void)
3457{
3458        dm_unregister_target(&crypt_target);
3459}
3460
3461module_init(dm_crypt_init);
3462module_exit(dm_crypt_exit);
3463
3464MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3465MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3466MODULE_LICENSE("GPL");
3467