linux/drivers/md/dm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/blkpg.h>
  18#include <linux/bio.h>
  19#include <linux/mempool.h>
  20#include <linux/dax.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/uio.h>
  24#include <linux/hdreg.h>
  25#include <linux/delay.h>
  26#include <linux/wait.h>
  27#include <linux/pr.h>
  28#include <linux/refcount.h>
  29#include <linux/part_stat.h>
  30#include <linux/blk-crypto.h>
  31
  32#define DM_MSG_PREFIX "core"
  33
  34/*
  35 * Cookies are numeric values sent with CHANGE and REMOVE
  36 * uevents while resuming, removing or renaming the device.
  37 */
  38#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  39#define DM_COOKIE_LENGTH 24
  40
  41static const char *_name = DM_NAME;
  42
  43static unsigned int major = 0;
  44static unsigned int _major = 0;
  45
  46static DEFINE_IDR(_minor_idr);
  47
  48static DEFINE_SPINLOCK(_minor_lock);
  49
  50static void do_deferred_remove(struct work_struct *w);
  51
  52static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  53
  54static struct workqueue_struct *deferred_remove_workqueue;
  55
  56atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  57DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  58
  59void dm_issue_global_event(void)
  60{
  61        atomic_inc(&dm_global_event_nr);
  62        wake_up(&dm_global_eventq);
  63}
  64
  65/*
  66 * One of these is allocated (on-stack) per original bio.
  67 */
  68struct clone_info {
  69        struct dm_table *map;
  70        struct bio *bio;
  71        struct dm_io *io;
  72        sector_t sector;
  73        unsigned sector_count;
  74};
  75
  76/*
  77 * One of these is allocated per clone bio.
  78 */
  79#define DM_TIO_MAGIC 7282014
  80struct dm_target_io {
  81        unsigned magic;
  82        struct dm_io *io;
  83        struct dm_target *ti;
  84        unsigned target_bio_nr;
  85        unsigned *len_ptr;
  86        bool inside_dm_io;
  87        struct bio clone;
  88};
  89
  90/*
  91 * One of these is allocated per original bio.
  92 * It contains the first clone used for that original.
  93 */
  94#define DM_IO_MAGIC 5191977
  95struct dm_io {
  96        unsigned magic;
  97        struct mapped_device *md;
  98        blk_status_t status;
  99        atomic_t io_count;
 100        struct bio *orig_bio;
 101        unsigned long start_time;
 102        spinlock_t endio_lock;
 103        struct dm_stats_aux stats_aux;
 104        /* last member of dm_target_io is 'struct bio' */
 105        struct dm_target_io tio;
 106};
 107
 108void *dm_per_bio_data(struct bio *bio, size_t data_size)
 109{
 110        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 111        if (!tio->inside_dm_io)
 112                return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 113        return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 114}
 115EXPORT_SYMBOL_GPL(dm_per_bio_data);
 116
 117struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 118{
 119        struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 120        if (io->magic == DM_IO_MAGIC)
 121                return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 122        BUG_ON(io->magic != DM_TIO_MAGIC);
 123        return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 124}
 125EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 126
 127unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 128{
 129        return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 130}
 131EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 132
 133#define MINOR_ALLOCED ((void *)-1)
 134
 135/*
 136 * Bits for the md->flags field.
 137 */
 138#define DMF_BLOCK_IO_FOR_SUSPEND 0
 139#define DMF_SUSPENDED 1
 140#define DMF_FROZEN 2
 141#define DMF_FREEING 3
 142#define DMF_DELETING 4
 143#define DMF_NOFLUSH_SUSPENDING 5
 144#define DMF_DEFERRED_REMOVE 6
 145#define DMF_SUSPENDED_INTERNALLY 7
 146#define DMF_POST_SUSPENDING 8
 147
 148#define DM_NUMA_NODE NUMA_NO_NODE
 149static int dm_numa_node = DM_NUMA_NODE;
 150
 151/*
 152 * For mempools pre-allocation at the table loading time.
 153 */
 154struct dm_md_mempools {
 155        struct bio_set bs;
 156        struct bio_set io_bs;
 157};
 158
 159struct table_device {
 160        struct list_head list;
 161        refcount_t count;
 162        struct dm_dev dm_dev;
 163};
 164
 165/*
 166 * Bio-based DM's mempools' reserved IOs set by the user.
 167 */
 168#define RESERVED_BIO_BASED_IOS          16
 169static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 170
 171static int __dm_get_module_param_int(int *module_param, int min, int max)
 172{
 173        int param = READ_ONCE(*module_param);
 174        int modified_param = 0;
 175        bool modified = true;
 176
 177        if (param < min)
 178                modified_param = min;
 179        else if (param > max)
 180                modified_param = max;
 181        else
 182                modified = false;
 183
 184        if (modified) {
 185                (void)cmpxchg(module_param, param, modified_param);
 186                param = modified_param;
 187        }
 188
 189        return param;
 190}
 191
 192unsigned __dm_get_module_param(unsigned *module_param,
 193                               unsigned def, unsigned max)
 194{
 195        unsigned param = READ_ONCE(*module_param);
 196        unsigned modified_param = 0;
 197
 198        if (!param)
 199                modified_param = def;
 200        else if (param > max)
 201                modified_param = max;
 202
 203        if (modified_param) {
 204                (void)cmpxchg(module_param, param, modified_param);
 205                param = modified_param;
 206        }
 207
 208        return param;
 209}
 210
 211unsigned dm_get_reserved_bio_based_ios(void)
 212{
 213        return __dm_get_module_param(&reserved_bio_based_ios,
 214                                     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 215}
 216EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 217
 218static unsigned dm_get_numa_node(void)
 219{
 220        return __dm_get_module_param_int(&dm_numa_node,
 221                                         DM_NUMA_NODE, num_online_nodes() - 1);
 222}
 223
 224static int __init local_init(void)
 225{
 226        int r;
 227
 228        r = dm_uevent_init();
 229        if (r)
 230                return r;
 231
 232        deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 233        if (!deferred_remove_workqueue) {
 234                r = -ENOMEM;
 235                goto out_uevent_exit;
 236        }
 237
 238        _major = major;
 239        r = register_blkdev(_major, _name);
 240        if (r < 0)
 241                goto out_free_workqueue;
 242
 243        if (!_major)
 244                _major = r;
 245
 246        return 0;
 247
 248out_free_workqueue:
 249        destroy_workqueue(deferred_remove_workqueue);
 250out_uevent_exit:
 251        dm_uevent_exit();
 252
 253        return r;
 254}
 255
 256static void local_exit(void)
 257{
 258        flush_scheduled_work();
 259        destroy_workqueue(deferred_remove_workqueue);
 260
 261        unregister_blkdev(_major, _name);
 262        dm_uevent_exit();
 263
 264        _major = 0;
 265
 266        DMINFO("cleaned up");
 267}
 268
 269static int (*_inits[])(void) __initdata = {
 270        local_init,
 271        dm_target_init,
 272        dm_linear_init,
 273        dm_stripe_init,
 274        dm_io_init,
 275        dm_kcopyd_init,
 276        dm_interface_init,
 277        dm_statistics_init,
 278};
 279
 280static void (*_exits[])(void) = {
 281        local_exit,
 282        dm_target_exit,
 283        dm_linear_exit,
 284        dm_stripe_exit,
 285        dm_io_exit,
 286        dm_kcopyd_exit,
 287        dm_interface_exit,
 288        dm_statistics_exit,
 289};
 290
 291static int __init dm_init(void)
 292{
 293        const int count = ARRAY_SIZE(_inits);
 294
 295        int r, i;
 296
 297        for (i = 0; i < count; i++) {
 298                r = _inits[i]();
 299                if (r)
 300                        goto bad;
 301        }
 302
 303        return 0;
 304
 305      bad:
 306        while (i--)
 307                _exits[i]();
 308
 309        return r;
 310}
 311
 312static void __exit dm_exit(void)
 313{
 314        int i = ARRAY_SIZE(_exits);
 315
 316        while (i--)
 317                _exits[i]();
 318
 319        /*
 320         * Should be empty by this point.
 321         */
 322        idr_destroy(&_minor_idr);
 323}
 324
 325/*
 326 * Block device functions
 327 */
 328int dm_deleting_md(struct mapped_device *md)
 329{
 330        return test_bit(DMF_DELETING, &md->flags);
 331}
 332
 333static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 334{
 335        struct mapped_device *md;
 336
 337        spin_lock(&_minor_lock);
 338
 339        md = bdev->bd_disk->private_data;
 340        if (!md)
 341                goto out;
 342
 343        if (test_bit(DMF_FREEING, &md->flags) ||
 344            dm_deleting_md(md)) {
 345                md = NULL;
 346                goto out;
 347        }
 348
 349        dm_get(md);
 350        atomic_inc(&md->open_count);
 351out:
 352        spin_unlock(&_minor_lock);
 353
 354        return md ? 0 : -ENXIO;
 355}
 356
 357static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 358{
 359        struct mapped_device *md;
 360
 361        spin_lock(&_minor_lock);
 362
 363        md = disk->private_data;
 364        if (WARN_ON(!md))
 365                goto out;
 366
 367        if (atomic_dec_and_test(&md->open_count) &&
 368            (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 369                queue_work(deferred_remove_workqueue, &deferred_remove_work);
 370
 371        dm_put(md);
 372out:
 373        spin_unlock(&_minor_lock);
 374}
 375
 376int dm_open_count(struct mapped_device *md)
 377{
 378        return atomic_read(&md->open_count);
 379}
 380
 381/*
 382 * Guarantees nothing is using the device before it's deleted.
 383 */
 384int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 385{
 386        int r = 0;
 387
 388        spin_lock(&_minor_lock);
 389
 390        if (dm_open_count(md)) {
 391                r = -EBUSY;
 392                if (mark_deferred)
 393                        set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394        } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 395                r = -EEXIST;
 396        else
 397                set_bit(DMF_DELETING, &md->flags);
 398
 399        spin_unlock(&_minor_lock);
 400
 401        return r;
 402}
 403
 404int dm_cancel_deferred_remove(struct mapped_device *md)
 405{
 406        int r = 0;
 407
 408        spin_lock(&_minor_lock);
 409
 410        if (test_bit(DMF_DELETING, &md->flags))
 411                r = -EBUSY;
 412        else
 413                clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 414
 415        spin_unlock(&_minor_lock);
 416
 417        return r;
 418}
 419
 420static void do_deferred_remove(struct work_struct *w)
 421{
 422        dm_deferred_remove();
 423}
 424
 425static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 426{
 427        struct mapped_device *md = bdev->bd_disk->private_data;
 428
 429        return dm_get_geometry(md, geo);
 430}
 431
 432#ifdef CONFIG_BLK_DEV_ZONED
 433int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
 434{
 435        struct dm_report_zones_args *args = data;
 436        sector_t sector_diff = args->tgt->begin - args->start;
 437
 438        /*
 439         * Ignore zones beyond the target range.
 440         */
 441        if (zone->start >= args->start + args->tgt->len)
 442                return 0;
 443
 444        /*
 445         * Remap the start sector and write pointer position of the zone
 446         * to match its position in the target range.
 447         */
 448        zone->start += sector_diff;
 449        if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
 450                if (zone->cond == BLK_ZONE_COND_FULL)
 451                        zone->wp = zone->start + zone->len;
 452                else if (zone->cond == BLK_ZONE_COND_EMPTY)
 453                        zone->wp = zone->start;
 454                else
 455                        zone->wp += sector_diff;
 456        }
 457
 458        args->next_sector = zone->start + zone->len;
 459        return args->orig_cb(zone, args->zone_idx++, args->orig_data);
 460}
 461EXPORT_SYMBOL_GPL(dm_report_zones_cb);
 462
 463static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 464                unsigned int nr_zones, report_zones_cb cb, void *data)
 465{
 466        struct mapped_device *md = disk->private_data;
 467        struct dm_table *map;
 468        int srcu_idx, ret;
 469        struct dm_report_zones_args args = {
 470                .next_sector = sector,
 471                .orig_data = data,
 472                .orig_cb = cb,
 473        };
 474
 475        if (dm_suspended_md(md))
 476                return -EAGAIN;
 477
 478        map = dm_get_live_table(md, &srcu_idx);
 479        if (!map) {
 480                ret = -EIO;
 481                goto out;
 482        }
 483
 484        do {
 485                struct dm_target *tgt;
 486
 487                tgt = dm_table_find_target(map, args.next_sector);
 488                if (WARN_ON_ONCE(!tgt->type->report_zones)) {
 489                        ret = -EIO;
 490                        goto out;
 491                }
 492
 493                args.tgt = tgt;
 494                ret = tgt->type->report_zones(tgt, &args,
 495                                              nr_zones - args.zone_idx);
 496                if (ret < 0)
 497                        goto out;
 498        } while (args.zone_idx < nr_zones &&
 499                 args.next_sector < get_capacity(disk));
 500
 501        ret = args.zone_idx;
 502out:
 503        dm_put_live_table(md, srcu_idx);
 504        return ret;
 505}
 506#else
 507#define dm_blk_report_zones             NULL
 508#endif /* CONFIG_BLK_DEV_ZONED */
 509
 510static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 511                            struct block_device **bdev)
 512{
 513        struct dm_target *tgt;
 514        struct dm_table *map;
 515        int r;
 516
 517retry:
 518        r = -ENOTTY;
 519        map = dm_get_live_table(md, srcu_idx);
 520        if (!map || !dm_table_get_size(map))
 521                return r;
 522
 523        /* We only support devices that have a single target */
 524        if (dm_table_get_num_targets(map) != 1)
 525                return r;
 526
 527        tgt = dm_table_get_target(map, 0);
 528        if (!tgt->type->prepare_ioctl)
 529                return r;
 530
 531        if (dm_suspended_md(md))
 532                return -EAGAIN;
 533
 534        r = tgt->type->prepare_ioctl(tgt, bdev);
 535        if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 536                dm_put_live_table(md, *srcu_idx);
 537                msleep(10);
 538                goto retry;
 539        }
 540
 541        return r;
 542}
 543
 544static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 545{
 546        dm_put_live_table(md, srcu_idx);
 547}
 548
 549static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 550                        unsigned int cmd, unsigned long arg)
 551{
 552        struct mapped_device *md = bdev->bd_disk->private_data;
 553        int r, srcu_idx;
 554
 555        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 556        if (r < 0)
 557                goto out;
 558
 559        if (r > 0) {
 560                /*
 561                 * Target determined this ioctl is being issued against a
 562                 * subset of the parent bdev; require extra privileges.
 563                 */
 564                if (!capable(CAP_SYS_RAWIO)) {
 565                        DMWARN_LIMIT(
 566        "%s: sending ioctl %x to DM device without required privilege.",
 567                                current->comm, cmd);
 568                        r = -ENOIOCTLCMD;
 569                        goto out;
 570                }
 571        }
 572
 573        r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 574out:
 575        dm_unprepare_ioctl(md, srcu_idx);
 576        return r;
 577}
 578
 579u64 dm_start_time_ns_from_clone(struct bio *bio)
 580{
 581        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 582        struct dm_io *io = tio->io;
 583
 584        return jiffies_to_nsecs(io->start_time);
 585}
 586EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 587
 588static void start_io_acct(struct dm_io *io)
 589{
 590        struct mapped_device *md = io->md;
 591        struct bio *bio = io->orig_bio;
 592
 593        io->start_time = bio_start_io_acct(bio);
 594        if (unlikely(dm_stats_used(&md->stats)))
 595                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 596                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 597                                    false, 0, &io->stats_aux);
 598}
 599
 600static void end_io_acct(struct dm_io *io)
 601{
 602        struct mapped_device *md = io->md;
 603        struct bio *bio = io->orig_bio;
 604        unsigned long duration = jiffies - io->start_time;
 605
 606        bio_end_io_acct(bio, io->start_time);
 607
 608        if (unlikely(dm_stats_used(&md->stats)))
 609                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 610                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 611                                    true, duration, &io->stats_aux);
 612
 613        /* nudge anyone waiting on suspend queue */
 614        if (unlikely(wq_has_sleeper(&md->wait)))
 615                wake_up(&md->wait);
 616}
 617
 618static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 619{
 620        struct dm_io *io;
 621        struct dm_target_io *tio;
 622        struct bio *clone;
 623
 624        clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 625        if (!clone)
 626                return NULL;
 627
 628        tio = container_of(clone, struct dm_target_io, clone);
 629        tio->inside_dm_io = true;
 630        tio->io = NULL;
 631
 632        io = container_of(tio, struct dm_io, tio);
 633        io->magic = DM_IO_MAGIC;
 634        io->status = 0;
 635        atomic_set(&io->io_count, 1);
 636        io->orig_bio = bio;
 637        io->md = md;
 638        spin_lock_init(&io->endio_lock);
 639
 640        start_io_acct(io);
 641
 642        return io;
 643}
 644
 645static void free_io(struct mapped_device *md, struct dm_io *io)
 646{
 647        bio_put(&io->tio.clone);
 648}
 649
 650static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 651                                      unsigned target_bio_nr, gfp_t gfp_mask)
 652{
 653        struct dm_target_io *tio;
 654
 655        if (!ci->io->tio.io) {
 656                /* the dm_target_io embedded in ci->io is available */
 657                tio = &ci->io->tio;
 658        } else {
 659                struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 660                if (!clone)
 661                        return NULL;
 662
 663                tio = container_of(clone, struct dm_target_io, clone);
 664                tio->inside_dm_io = false;
 665        }
 666
 667        tio->magic = DM_TIO_MAGIC;
 668        tio->io = ci->io;
 669        tio->ti = ti;
 670        tio->target_bio_nr = target_bio_nr;
 671
 672        return tio;
 673}
 674
 675static void free_tio(struct dm_target_io *tio)
 676{
 677        if (tio->inside_dm_io)
 678                return;
 679        bio_put(&tio->clone);
 680}
 681
 682/*
 683 * Add the bio to the list of deferred io.
 684 */
 685static void queue_io(struct mapped_device *md, struct bio *bio)
 686{
 687        unsigned long flags;
 688
 689        spin_lock_irqsave(&md->deferred_lock, flags);
 690        bio_list_add(&md->deferred, bio);
 691        spin_unlock_irqrestore(&md->deferred_lock, flags);
 692        queue_work(md->wq, &md->work);
 693}
 694
 695/*
 696 * Everyone (including functions in this file), should use this
 697 * function to access the md->map field, and make sure they call
 698 * dm_put_live_table() when finished.
 699 */
 700struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 701{
 702        *srcu_idx = srcu_read_lock(&md->io_barrier);
 703
 704        return srcu_dereference(md->map, &md->io_barrier);
 705}
 706
 707void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 708{
 709        srcu_read_unlock(&md->io_barrier, srcu_idx);
 710}
 711
 712void dm_sync_table(struct mapped_device *md)
 713{
 714        synchronize_srcu(&md->io_barrier);
 715        synchronize_rcu_expedited();
 716}
 717
 718/*
 719 * A fast alternative to dm_get_live_table/dm_put_live_table.
 720 * The caller must not block between these two functions.
 721 */
 722static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 723{
 724        rcu_read_lock();
 725        return rcu_dereference(md->map);
 726}
 727
 728static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 729{
 730        rcu_read_unlock();
 731}
 732
 733static char *_dm_claim_ptr = "I belong to device-mapper";
 734
 735/*
 736 * Open a table device so we can use it as a map destination.
 737 */
 738static int open_table_device(struct table_device *td, dev_t dev,
 739                             struct mapped_device *md)
 740{
 741        struct block_device *bdev;
 742
 743        int r;
 744
 745        BUG_ON(td->dm_dev.bdev);
 746
 747        bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 748        if (IS_ERR(bdev))
 749                return PTR_ERR(bdev);
 750
 751        r = bd_link_disk_holder(bdev, dm_disk(md));
 752        if (r) {
 753                blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 754                return r;
 755        }
 756
 757        td->dm_dev.bdev = bdev;
 758        td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 759        return 0;
 760}
 761
 762/*
 763 * Close a table device that we've been using.
 764 */
 765static void close_table_device(struct table_device *td, struct mapped_device *md)
 766{
 767        if (!td->dm_dev.bdev)
 768                return;
 769
 770        bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 771        blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 772        put_dax(td->dm_dev.dax_dev);
 773        td->dm_dev.bdev = NULL;
 774        td->dm_dev.dax_dev = NULL;
 775}
 776
 777static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 778                                              fmode_t mode)
 779{
 780        struct table_device *td;
 781
 782        list_for_each_entry(td, l, list)
 783                if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 784                        return td;
 785
 786        return NULL;
 787}
 788
 789int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 790                        struct dm_dev **result)
 791{
 792        int r;
 793        struct table_device *td;
 794
 795        mutex_lock(&md->table_devices_lock);
 796        td = find_table_device(&md->table_devices, dev, mode);
 797        if (!td) {
 798                td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 799                if (!td) {
 800                        mutex_unlock(&md->table_devices_lock);
 801                        return -ENOMEM;
 802                }
 803
 804                td->dm_dev.mode = mode;
 805                td->dm_dev.bdev = NULL;
 806
 807                if ((r = open_table_device(td, dev, md))) {
 808                        mutex_unlock(&md->table_devices_lock);
 809                        kfree(td);
 810                        return r;
 811                }
 812
 813                format_dev_t(td->dm_dev.name, dev);
 814
 815                refcount_set(&td->count, 1);
 816                list_add(&td->list, &md->table_devices);
 817        } else {
 818                refcount_inc(&td->count);
 819        }
 820        mutex_unlock(&md->table_devices_lock);
 821
 822        *result = &td->dm_dev;
 823        return 0;
 824}
 825EXPORT_SYMBOL_GPL(dm_get_table_device);
 826
 827void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 828{
 829        struct table_device *td = container_of(d, struct table_device, dm_dev);
 830
 831        mutex_lock(&md->table_devices_lock);
 832        if (refcount_dec_and_test(&td->count)) {
 833                close_table_device(td, md);
 834                list_del(&td->list);
 835                kfree(td);
 836        }
 837        mutex_unlock(&md->table_devices_lock);
 838}
 839EXPORT_SYMBOL(dm_put_table_device);
 840
 841static void free_table_devices(struct list_head *devices)
 842{
 843        struct list_head *tmp, *next;
 844
 845        list_for_each_safe(tmp, next, devices) {
 846                struct table_device *td = list_entry(tmp, struct table_device, list);
 847
 848                DMWARN("dm_destroy: %s still exists with %d references",
 849                       td->dm_dev.name, refcount_read(&td->count));
 850                kfree(td);
 851        }
 852}
 853
 854/*
 855 * Get the geometry associated with a dm device
 856 */
 857int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 858{
 859        *geo = md->geometry;
 860
 861        return 0;
 862}
 863
 864/*
 865 * Set the geometry of a device.
 866 */
 867int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 868{
 869        sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 870
 871        if (geo->start > sz) {
 872                DMWARN("Start sector is beyond the geometry limits.");
 873                return -EINVAL;
 874        }
 875
 876        md->geometry = *geo;
 877
 878        return 0;
 879}
 880
 881static int __noflush_suspending(struct mapped_device *md)
 882{
 883        return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 884}
 885
 886/*
 887 * Decrements the number of outstanding ios that a bio has been
 888 * cloned into, completing the original io if necc.
 889 */
 890static void dec_pending(struct dm_io *io, blk_status_t error)
 891{
 892        unsigned long flags;
 893        blk_status_t io_error;
 894        struct bio *bio;
 895        struct mapped_device *md = io->md;
 896
 897        /* Push-back supersedes any I/O errors */
 898        if (unlikely(error)) {
 899                spin_lock_irqsave(&io->endio_lock, flags);
 900                if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 901                        io->status = error;
 902                spin_unlock_irqrestore(&io->endio_lock, flags);
 903        }
 904
 905        if (atomic_dec_and_test(&io->io_count)) {
 906                if (io->status == BLK_STS_DM_REQUEUE) {
 907                        /*
 908                         * Target requested pushing back the I/O.
 909                         */
 910                        spin_lock_irqsave(&md->deferred_lock, flags);
 911                        if (__noflush_suspending(md))
 912                                /* NOTE early return due to BLK_STS_DM_REQUEUE below */
 913                                bio_list_add_head(&md->deferred, io->orig_bio);
 914                        else
 915                                /* noflush suspend was interrupted. */
 916                                io->status = BLK_STS_IOERR;
 917                        spin_unlock_irqrestore(&md->deferred_lock, flags);
 918                }
 919
 920                io_error = io->status;
 921                bio = io->orig_bio;
 922                end_io_acct(io);
 923                free_io(md, io);
 924
 925                if (io_error == BLK_STS_DM_REQUEUE)
 926                        return;
 927
 928                if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 929                        /*
 930                         * Preflush done for flush with data, reissue
 931                         * without REQ_PREFLUSH.
 932                         */
 933                        bio->bi_opf &= ~REQ_PREFLUSH;
 934                        queue_io(md, bio);
 935                } else {
 936                        /* done with normal IO or empty flush */
 937                        if (io_error)
 938                                bio->bi_status = io_error;
 939                        bio_endio(bio);
 940                }
 941        }
 942}
 943
 944void disable_discard(struct mapped_device *md)
 945{
 946        struct queue_limits *limits = dm_get_queue_limits(md);
 947
 948        /* device doesn't really support DISCARD, disable it */
 949        limits->max_discard_sectors = 0;
 950        blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 951}
 952
 953void disable_write_same(struct mapped_device *md)
 954{
 955        struct queue_limits *limits = dm_get_queue_limits(md);
 956
 957        /* device doesn't really support WRITE SAME, disable it */
 958        limits->max_write_same_sectors = 0;
 959}
 960
 961void disable_write_zeroes(struct mapped_device *md)
 962{
 963        struct queue_limits *limits = dm_get_queue_limits(md);
 964
 965        /* device doesn't really support WRITE ZEROES, disable it */
 966        limits->max_write_zeroes_sectors = 0;
 967}
 968
 969static void clone_endio(struct bio *bio)
 970{
 971        blk_status_t error = bio->bi_status;
 972        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 973        struct dm_io *io = tio->io;
 974        struct mapped_device *md = tio->io->md;
 975        dm_endio_fn endio = tio->ti->type->end_io;
 976        struct bio *orig_bio = io->orig_bio;
 977
 978        if (unlikely(error == BLK_STS_TARGET)) {
 979                if (bio_op(bio) == REQ_OP_DISCARD &&
 980                    !bio->bi_disk->queue->limits.max_discard_sectors)
 981                        disable_discard(md);
 982                else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 983                         !bio->bi_disk->queue->limits.max_write_same_sectors)
 984                        disable_write_same(md);
 985                else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 986                         !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 987                        disable_write_zeroes(md);
 988        }
 989
 990        /*
 991         * For zone-append bios get offset in zone of the written
 992         * sector and add that to the original bio sector pos.
 993         */
 994        if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
 995                sector_t written_sector = bio->bi_iter.bi_sector;
 996                struct request_queue *q = orig_bio->bi_disk->queue;
 997                u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
 998
 999                orig_bio->bi_iter.bi_sector += written_sector & mask;
1000        }
1001
1002        if (endio) {
1003                int r = endio(tio->ti, bio, &error);
1004                switch (r) {
1005                case DM_ENDIO_REQUEUE:
1006                        error = BLK_STS_DM_REQUEUE;
1007                        fallthrough;
1008                case DM_ENDIO_DONE:
1009                        break;
1010                case DM_ENDIO_INCOMPLETE:
1011                        /* The target will handle the io */
1012                        return;
1013                default:
1014                        DMWARN("unimplemented target endio return value: %d", r);
1015                        BUG();
1016                }
1017        }
1018
1019        free_tio(tio);
1020        dec_pending(io, error);
1021}
1022
1023/*
1024 * Return maximum size of I/O possible at the supplied sector up to the current
1025 * target boundary.
1026 */
1027static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1028                                                  sector_t target_offset)
1029{
1030        return ti->len - target_offset;
1031}
1032
1033static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1034{
1035        sector_t target_offset = dm_target_offset(ti, sector);
1036        sector_t len = max_io_len_target_boundary(ti, target_offset);
1037        sector_t max_len;
1038
1039        /*
1040         * Does the target need to split IO even further?
1041         * - varied (per target) IO splitting is a tenet of DM; this
1042         *   explains why stacked chunk_sectors based splitting via
1043         *   blk_max_size_offset() isn't possible here. So pass in
1044         *   ti->max_io_len to override stacked chunk_sectors.
1045         */
1046        if (ti->max_io_len) {
1047                max_len = blk_max_size_offset(ti->table->md->queue,
1048                                              target_offset, ti->max_io_len);
1049                if (len > max_len)
1050                        len = max_len;
1051        }
1052
1053        return len;
1054}
1055
1056int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1057{
1058        if (len > UINT_MAX) {
1059                DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1060                      (unsigned long long)len, UINT_MAX);
1061                ti->error = "Maximum size of target IO is too large";
1062                return -EINVAL;
1063        }
1064
1065        ti->max_io_len = (uint32_t) len;
1066
1067        return 0;
1068}
1069EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1070
1071static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1072                                                sector_t sector, int *srcu_idx)
1073        __acquires(md->io_barrier)
1074{
1075        struct dm_table *map;
1076        struct dm_target *ti;
1077
1078        map = dm_get_live_table(md, srcu_idx);
1079        if (!map)
1080                return NULL;
1081
1082        ti = dm_table_find_target(map, sector);
1083        if (!ti)
1084                return NULL;
1085
1086        return ti;
1087}
1088
1089static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1090                                 long nr_pages, void **kaddr, pfn_t *pfn)
1091{
1092        struct mapped_device *md = dax_get_private(dax_dev);
1093        sector_t sector = pgoff * PAGE_SECTORS;
1094        struct dm_target *ti;
1095        long len, ret = -EIO;
1096        int srcu_idx;
1097
1098        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1099
1100        if (!ti)
1101                goto out;
1102        if (!ti->type->direct_access)
1103                goto out;
1104        len = max_io_len(ti, sector) / PAGE_SECTORS;
1105        if (len < 1)
1106                goto out;
1107        nr_pages = min(len, nr_pages);
1108        ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1109
1110 out:
1111        dm_put_live_table(md, srcu_idx);
1112
1113        return ret;
1114}
1115
1116static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1117                int blocksize, sector_t start, sector_t len)
1118{
1119        struct mapped_device *md = dax_get_private(dax_dev);
1120        struct dm_table *map;
1121        bool ret = false;
1122        int srcu_idx;
1123
1124        map = dm_get_live_table(md, &srcu_idx);
1125        if (!map)
1126                goto out;
1127
1128        ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1129
1130out:
1131        dm_put_live_table(md, srcu_idx);
1132
1133        return ret;
1134}
1135
1136static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1137                                    void *addr, size_t bytes, struct iov_iter *i)
1138{
1139        struct mapped_device *md = dax_get_private(dax_dev);
1140        sector_t sector = pgoff * PAGE_SECTORS;
1141        struct dm_target *ti;
1142        long ret = 0;
1143        int srcu_idx;
1144
1145        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1146
1147        if (!ti)
1148                goto out;
1149        if (!ti->type->dax_copy_from_iter) {
1150                ret = copy_from_iter(addr, bytes, i);
1151                goto out;
1152        }
1153        ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1154 out:
1155        dm_put_live_table(md, srcu_idx);
1156
1157        return ret;
1158}
1159
1160static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1161                void *addr, size_t bytes, struct iov_iter *i)
1162{
1163        struct mapped_device *md = dax_get_private(dax_dev);
1164        sector_t sector = pgoff * PAGE_SECTORS;
1165        struct dm_target *ti;
1166        long ret = 0;
1167        int srcu_idx;
1168
1169        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1170
1171        if (!ti)
1172                goto out;
1173        if (!ti->type->dax_copy_to_iter) {
1174                ret = copy_to_iter(addr, bytes, i);
1175                goto out;
1176        }
1177        ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1178 out:
1179        dm_put_live_table(md, srcu_idx);
1180
1181        return ret;
1182}
1183
1184static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1185                                  size_t nr_pages)
1186{
1187        struct mapped_device *md = dax_get_private(dax_dev);
1188        sector_t sector = pgoff * PAGE_SECTORS;
1189        struct dm_target *ti;
1190        int ret = -EIO;
1191        int srcu_idx;
1192
1193        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1194
1195        if (!ti)
1196                goto out;
1197        if (WARN_ON(!ti->type->dax_zero_page_range)) {
1198                /*
1199                 * ->zero_page_range() is mandatory dax operation. If we are
1200                 *  here, something is wrong.
1201                 */
1202                goto out;
1203        }
1204        ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1205 out:
1206        dm_put_live_table(md, srcu_idx);
1207
1208        return ret;
1209}
1210
1211/*
1212 * A target may call dm_accept_partial_bio only from the map routine.  It is
1213 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1214 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1215 *
1216 * dm_accept_partial_bio informs the dm that the target only wants to process
1217 * additional n_sectors sectors of the bio and the rest of the data should be
1218 * sent in a next bio.
1219 *
1220 * A diagram that explains the arithmetics:
1221 * +--------------------+---------------+-------+
1222 * |         1          |       2       |   3   |
1223 * +--------------------+---------------+-------+
1224 *
1225 * <-------------- *tio->len_ptr --------------->
1226 *                      <------- bi_size ------->
1227 *                      <-- n_sectors -->
1228 *
1229 * Region 1 was already iterated over with bio_advance or similar function.
1230 *      (it may be empty if the target doesn't use bio_advance)
1231 * Region 2 is the remaining bio size that the target wants to process.
1232 *      (it may be empty if region 1 is non-empty, although there is no reason
1233 *       to make it empty)
1234 * The target requires that region 3 is to be sent in the next bio.
1235 *
1236 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1237 * the partially processed part (the sum of regions 1+2) must be the same for all
1238 * copies of the bio.
1239 */
1240void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1241{
1242        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1243        unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1244        BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1245        BUG_ON(bi_size > *tio->len_ptr);
1246        BUG_ON(n_sectors > bi_size);
1247        *tio->len_ptr -= bi_size - n_sectors;
1248        bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1249}
1250EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1251
1252static blk_qc_t __map_bio(struct dm_target_io *tio)
1253{
1254        int r;
1255        sector_t sector;
1256        struct bio *clone = &tio->clone;
1257        struct dm_io *io = tio->io;
1258        struct dm_target *ti = tio->ti;
1259        blk_qc_t ret = BLK_QC_T_NONE;
1260
1261        clone->bi_end_io = clone_endio;
1262
1263        /*
1264         * Map the clone.  If r == 0 we don't need to do
1265         * anything, the target has assumed ownership of
1266         * this io.
1267         */
1268        atomic_inc(&io->io_count);
1269        sector = clone->bi_iter.bi_sector;
1270
1271        r = ti->type->map(ti, clone);
1272        switch (r) {
1273        case DM_MAPIO_SUBMITTED:
1274                break;
1275        case DM_MAPIO_REMAPPED:
1276                /* the bio has been remapped so dispatch it */
1277                trace_block_bio_remap(clone->bi_disk->queue, clone,
1278                                      bio_dev(io->orig_bio), sector);
1279                ret = submit_bio_noacct(clone);
1280                break;
1281        case DM_MAPIO_KILL:
1282                free_tio(tio);
1283                dec_pending(io, BLK_STS_IOERR);
1284                break;
1285        case DM_MAPIO_REQUEUE:
1286                free_tio(tio);
1287                dec_pending(io, BLK_STS_DM_REQUEUE);
1288                break;
1289        default:
1290                DMWARN("unimplemented target map return value: %d", r);
1291                BUG();
1292        }
1293
1294        return ret;
1295}
1296
1297static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1298{
1299        bio->bi_iter.bi_sector = sector;
1300        bio->bi_iter.bi_size = to_bytes(len);
1301}
1302
1303/*
1304 * Creates a bio that consists of range of complete bvecs.
1305 */
1306static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1307                     sector_t sector, unsigned len)
1308{
1309        struct bio *clone = &tio->clone;
1310        int r;
1311
1312        __bio_clone_fast(clone, bio);
1313
1314        r = bio_crypt_clone(clone, bio, GFP_NOIO);
1315        if (r < 0)
1316                return r;
1317
1318        if (bio_integrity(bio)) {
1319                if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1320                             !dm_target_passes_integrity(tio->ti->type))) {
1321                        DMWARN("%s: the target %s doesn't support integrity data.",
1322                                dm_device_name(tio->io->md),
1323                                tio->ti->type->name);
1324                        return -EIO;
1325                }
1326
1327                r = bio_integrity_clone(clone, bio, GFP_NOIO);
1328                if (r < 0)
1329                        return r;
1330        }
1331
1332        bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1333        clone->bi_iter.bi_size = to_bytes(len);
1334
1335        if (bio_integrity(bio))
1336                bio_integrity_trim(clone);
1337
1338        return 0;
1339}
1340
1341static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1342                                struct dm_target *ti, unsigned num_bios)
1343{
1344        struct dm_target_io *tio;
1345        int try;
1346
1347        if (!num_bios)
1348                return;
1349
1350        if (num_bios == 1) {
1351                tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1352                bio_list_add(blist, &tio->clone);
1353                return;
1354        }
1355
1356        for (try = 0; try < 2; try++) {
1357                int bio_nr;
1358                struct bio *bio;
1359
1360                if (try)
1361                        mutex_lock(&ci->io->md->table_devices_lock);
1362                for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1363                        tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1364                        if (!tio)
1365                                break;
1366
1367                        bio_list_add(blist, &tio->clone);
1368                }
1369                if (try)
1370                        mutex_unlock(&ci->io->md->table_devices_lock);
1371                if (bio_nr == num_bios)
1372                        return;
1373
1374                while ((bio = bio_list_pop(blist))) {
1375                        tio = container_of(bio, struct dm_target_io, clone);
1376                        free_tio(tio);
1377                }
1378        }
1379}
1380
1381static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1382                                           struct dm_target_io *tio, unsigned *len)
1383{
1384        struct bio *clone = &tio->clone;
1385
1386        tio->len_ptr = len;
1387
1388        __bio_clone_fast(clone, ci->bio);
1389        if (len)
1390                bio_setup_sector(clone, ci->sector, *len);
1391
1392        return __map_bio(tio);
1393}
1394
1395static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1396                                  unsigned num_bios, unsigned *len)
1397{
1398        struct bio_list blist = BIO_EMPTY_LIST;
1399        struct bio *bio;
1400        struct dm_target_io *tio;
1401
1402        alloc_multiple_bios(&blist, ci, ti, num_bios);
1403
1404        while ((bio = bio_list_pop(&blist))) {
1405                tio = container_of(bio, struct dm_target_io, clone);
1406                (void) __clone_and_map_simple_bio(ci, tio, len);
1407        }
1408}
1409
1410static int __send_empty_flush(struct clone_info *ci)
1411{
1412        unsigned target_nr = 0;
1413        struct dm_target *ti;
1414        struct bio flush_bio;
1415
1416        /*
1417         * Use an on-stack bio for this, it's safe since we don't
1418         * need to reference it after submit. It's just used as
1419         * the basis for the clone(s).
1420         */
1421        bio_init(&flush_bio, NULL, 0);
1422        flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1423        ci->bio = &flush_bio;
1424        ci->sector_count = 0;
1425
1426        /*
1427         * Empty flush uses a statically initialized bio, as the base for
1428         * cloning.  However, blkg association requires that a bdev is
1429         * associated with a gendisk, which doesn't happen until the bdev is
1430         * opened.  So, blkg association is done at issue time of the flush
1431         * rather than when the device is created in alloc_dev().
1432         */
1433        bio_set_dev(ci->bio, ci->io->md->bdev);
1434
1435        BUG_ON(bio_has_data(ci->bio));
1436        while ((ti = dm_table_get_target(ci->map, target_nr++)))
1437                __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1438
1439        bio_uninit(ci->bio);
1440        return 0;
1441}
1442
1443static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1444                                    sector_t sector, unsigned *len)
1445{
1446        struct bio *bio = ci->bio;
1447        struct dm_target_io *tio;
1448        int r;
1449
1450        tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1451        tio->len_ptr = len;
1452        r = clone_bio(tio, bio, sector, *len);
1453        if (r < 0) {
1454                free_tio(tio);
1455                return r;
1456        }
1457        (void) __map_bio(tio);
1458
1459        return 0;
1460}
1461
1462static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1463                                       unsigned num_bios)
1464{
1465        unsigned len;
1466
1467        /*
1468         * Even though the device advertised support for this type of
1469         * request, that does not mean every target supports it, and
1470         * reconfiguration might also have changed that since the
1471         * check was performed.
1472         */
1473        if (!num_bios)
1474                return -EOPNOTSUPP;
1475
1476        len = min_t(sector_t, ci->sector_count,
1477                    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1478
1479        __send_duplicate_bios(ci, ti, num_bios, &len);
1480
1481        ci->sector += len;
1482        ci->sector_count -= len;
1483
1484        return 0;
1485}
1486
1487static bool is_abnormal_io(struct bio *bio)
1488{
1489        bool r = false;
1490
1491        switch (bio_op(bio)) {
1492        case REQ_OP_DISCARD:
1493        case REQ_OP_SECURE_ERASE:
1494        case REQ_OP_WRITE_SAME:
1495        case REQ_OP_WRITE_ZEROES:
1496                r = true;
1497                break;
1498        }
1499
1500        return r;
1501}
1502
1503static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1504                                  int *result)
1505{
1506        struct bio *bio = ci->bio;
1507        unsigned num_bios = 0;
1508
1509        switch (bio_op(bio)) {
1510        case REQ_OP_DISCARD:
1511                num_bios = ti->num_discard_bios;
1512                break;
1513        case REQ_OP_SECURE_ERASE:
1514                num_bios = ti->num_secure_erase_bios;
1515                break;
1516        case REQ_OP_WRITE_SAME:
1517                num_bios = ti->num_write_same_bios;
1518                break;
1519        case REQ_OP_WRITE_ZEROES:
1520                num_bios = ti->num_write_zeroes_bios;
1521                break;
1522        default:
1523                return false;
1524        }
1525
1526        *result = __send_changing_extent_only(ci, ti, num_bios);
1527        return true;
1528}
1529
1530/*
1531 * Select the correct strategy for processing a non-flush bio.
1532 */
1533static int __split_and_process_non_flush(struct clone_info *ci)
1534{
1535        struct dm_target *ti;
1536        unsigned len;
1537        int r;
1538
1539        ti = dm_table_find_target(ci->map, ci->sector);
1540        if (!ti)
1541                return -EIO;
1542
1543        if (__process_abnormal_io(ci, ti, &r))
1544                return r;
1545
1546        len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1547
1548        r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1549        if (r < 0)
1550                return r;
1551
1552        ci->sector += len;
1553        ci->sector_count -= len;
1554
1555        return 0;
1556}
1557
1558static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1559                            struct dm_table *map, struct bio *bio)
1560{
1561        ci->map = map;
1562        ci->io = alloc_io(md, bio);
1563        ci->sector = bio->bi_iter.bi_sector;
1564}
1565
1566#define __dm_part_stat_sub(part, field, subnd)  \
1567        (part_stat_get(part, field) -= (subnd))
1568
1569/*
1570 * Entry point to split a bio into clones and submit them to the targets.
1571 */
1572static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1573                                        struct dm_table *map, struct bio *bio)
1574{
1575        struct clone_info ci;
1576        blk_qc_t ret = BLK_QC_T_NONE;
1577        int error = 0;
1578
1579        init_clone_info(&ci, md, map, bio);
1580
1581        if (bio->bi_opf & REQ_PREFLUSH) {
1582                error = __send_empty_flush(&ci);
1583                /* dec_pending submits any data associated with flush */
1584        } else if (op_is_zone_mgmt(bio_op(bio))) {
1585                ci.bio = bio;
1586                ci.sector_count = 0;
1587                error = __split_and_process_non_flush(&ci);
1588        } else {
1589                ci.bio = bio;
1590                ci.sector_count = bio_sectors(bio);
1591                while (ci.sector_count && !error) {
1592                        error = __split_and_process_non_flush(&ci);
1593                        if (current->bio_list && ci.sector_count && !error) {
1594                                /*
1595                                 * Remainder must be passed to submit_bio_noacct()
1596                                 * so that it gets handled *after* bios already submitted
1597                                 * have been completely processed.
1598                                 * We take a clone of the original to store in
1599                                 * ci.io->orig_bio to be used by end_io_acct() and
1600                                 * for dec_pending to use for completion handling.
1601                                 */
1602                                struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1603                                                          GFP_NOIO, &md->queue->bio_split);
1604                                ci.io->orig_bio = b;
1605
1606                                /*
1607                                 * Adjust IO stats for each split, otherwise upon queue
1608                                 * reentry there will be redundant IO accounting.
1609                                 * NOTE: this is a stop-gap fix, a proper fix involves
1610                                 * significant refactoring of DM core's bio splitting
1611                                 * (by eliminating DM's splitting and just using bio_split)
1612                                 */
1613                                part_stat_lock();
1614                                __dm_part_stat_sub(&dm_disk(md)->part0,
1615                                                   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1616                                part_stat_unlock();
1617
1618                                bio_chain(b, bio);
1619                                trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1620                                ret = submit_bio_noacct(bio);
1621                                break;
1622                        }
1623                }
1624        }
1625
1626        /* drop the extra reference count */
1627        dec_pending(ci.io, errno_to_blk_status(error));
1628        return ret;
1629}
1630
1631static blk_qc_t dm_submit_bio(struct bio *bio)
1632{
1633        struct mapped_device *md = bio->bi_disk->private_data;
1634        blk_qc_t ret = BLK_QC_T_NONE;
1635        int srcu_idx;
1636        struct dm_table *map;
1637
1638        map = dm_get_live_table(md, &srcu_idx);
1639        if (unlikely(!map)) {
1640                DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1641                            dm_device_name(md));
1642                bio_io_error(bio);
1643                goto out;
1644        }
1645
1646        /* If suspended, queue this IO for later */
1647        if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1648                if (bio->bi_opf & REQ_NOWAIT)
1649                        bio_wouldblock_error(bio);
1650                else if (bio->bi_opf & REQ_RAHEAD)
1651                        bio_io_error(bio);
1652                else
1653                        queue_io(md, bio);
1654                goto out;
1655        }
1656
1657        /*
1658         * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1659         * otherwise associated queue_limits won't be imposed.
1660         */
1661        if (is_abnormal_io(bio))
1662                blk_queue_split(&bio);
1663
1664        ret = __split_and_process_bio(md, map, bio);
1665out:
1666        dm_put_live_table(md, srcu_idx);
1667        return ret;
1668}
1669
1670/*-----------------------------------------------------------------
1671 * An IDR is used to keep track of allocated minor numbers.
1672 *---------------------------------------------------------------*/
1673static void free_minor(int minor)
1674{
1675        spin_lock(&_minor_lock);
1676        idr_remove(&_minor_idr, minor);
1677        spin_unlock(&_minor_lock);
1678}
1679
1680/*
1681 * See if the device with a specific minor # is free.
1682 */
1683static int specific_minor(int minor)
1684{
1685        int r;
1686
1687        if (minor >= (1 << MINORBITS))
1688                return -EINVAL;
1689
1690        idr_preload(GFP_KERNEL);
1691        spin_lock(&_minor_lock);
1692
1693        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1694
1695        spin_unlock(&_minor_lock);
1696        idr_preload_end();
1697        if (r < 0)
1698                return r == -ENOSPC ? -EBUSY : r;
1699        return 0;
1700}
1701
1702static int next_free_minor(int *minor)
1703{
1704        int r;
1705
1706        idr_preload(GFP_KERNEL);
1707        spin_lock(&_minor_lock);
1708
1709        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1710
1711        spin_unlock(&_minor_lock);
1712        idr_preload_end();
1713        if (r < 0)
1714                return r;
1715        *minor = r;
1716        return 0;
1717}
1718
1719static const struct block_device_operations dm_blk_dops;
1720static const struct block_device_operations dm_rq_blk_dops;
1721static const struct dax_operations dm_dax_ops;
1722
1723static void dm_wq_work(struct work_struct *work);
1724
1725static void cleanup_mapped_device(struct mapped_device *md)
1726{
1727        if (md->wq)
1728                destroy_workqueue(md->wq);
1729        bioset_exit(&md->bs);
1730        bioset_exit(&md->io_bs);
1731
1732        if (md->dax_dev) {
1733                kill_dax(md->dax_dev);
1734                put_dax(md->dax_dev);
1735                md->dax_dev = NULL;
1736        }
1737
1738        if (md->disk) {
1739                spin_lock(&_minor_lock);
1740                md->disk->private_data = NULL;
1741                spin_unlock(&_minor_lock);
1742                del_gendisk(md->disk);
1743                put_disk(md->disk);
1744        }
1745
1746        if (md->queue)
1747                blk_cleanup_queue(md->queue);
1748
1749        cleanup_srcu_struct(&md->io_barrier);
1750
1751        if (md->bdev) {
1752                bdput(md->bdev);
1753                md->bdev = NULL;
1754        }
1755
1756        mutex_destroy(&md->suspend_lock);
1757        mutex_destroy(&md->type_lock);
1758        mutex_destroy(&md->table_devices_lock);
1759
1760        dm_mq_cleanup_mapped_device(md);
1761}
1762
1763/*
1764 * Allocate and initialise a blank device with a given minor.
1765 */
1766static struct mapped_device *alloc_dev(int minor)
1767{
1768        int r, numa_node_id = dm_get_numa_node();
1769        struct mapped_device *md;
1770        void *old_md;
1771
1772        md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1773        if (!md) {
1774                DMWARN("unable to allocate device, out of memory.");
1775                return NULL;
1776        }
1777
1778        if (!try_module_get(THIS_MODULE))
1779                goto bad_module_get;
1780
1781        /* get a minor number for the dev */
1782        if (minor == DM_ANY_MINOR)
1783                r = next_free_minor(&minor);
1784        else
1785                r = specific_minor(minor);
1786        if (r < 0)
1787                goto bad_minor;
1788
1789        r = init_srcu_struct(&md->io_barrier);
1790        if (r < 0)
1791                goto bad_io_barrier;
1792
1793        md->numa_node_id = numa_node_id;
1794        md->init_tio_pdu = false;
1795        md->type = DM_TYPE_NONE;
1796        mutex_init(&md->suspend_lock);
1797        mutex_init(&md->type_lock);
1798        mutex_init(&md->table_devices_lock);
1799        spin_lock_init(&md->deferred_lock);
1800        atomic_set(&md->holders, 1);
1801        atomic_set(&md->open_count, 0);
1802        atomic_set(&md->event_nr, 0);
1803        atomic_set(&md->uevent_seq, 0);
1804        INIT_LIST_HEAD(&md->uevent_list);
1805        INIT_LIST_HEAD(&md->table_devices);
1806        spin_lock_init(&md->uevent_lock);
1807
1808        /*
1809         * default to bio-based until DM table is loaded and md->type
1810         * established. If request-based table is loaded: blk-mq will
1811         * override accordingly.
1812         */
1813        md->queue = blk_alloc_queue(numa_node_id);
1814        if (!md->queue)
1815                goto bad;
1816
1817        md->disk = alloc_disk_node(1, md->numa_node_id);
1818        if (!md->disk)
1819                goto bad;
1820
1821        init_waitqueue_head(&md->wait);
1822        INIT_WORK(&md->work, dm_wq_work);
1823        init_waitqueue_head(&md->eventq);
1824        init_completion(&md->kobj_holder.completion);
1825
1826        md->disk->major = _major;
1827        md->disk->first_minor = minor;
1828        md->disk->fops = &dm_blk_dops;
1829        md->disk->queue = md->queue;
1830        md->disk->private_data = md;
1831        sprintf(md->disk->disk_name, "dm-%d", minor);
1832
1833        if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1834                md->dax_dev = alloc_dax(md, md->disk->disk_name,
1835                                        &dm_dax_ops, 0);
1836                if (IS_ERR(md->dax_dev))
1837                        goto bad;
1838        }
1839
1840        add_disk_no_queue_reg(md->disk);
1841        format_dev_t(md->name, MKDEV(_major, minor));
1842
1843        md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1844        if (!md->wq)
1845                goto bad;
1846
1847        md->bdev = bdget_disk(md->disk, 0);
1848        if (!md->bdev)
1849                goto bad;
1850
1851        dm_stats_init(&md->stats);
1852
1853        /* Populate the mapping, nobody knows we exist yet */
1854        spin_lock(&_minor_lock);
1855        old_md = idr_replace(&_minor_idr, md, minor);
1856        spin_unlock(&_minor_lock);
1857
1858        BUG_ON(old_md != MINOR_ALLOCED);
1859
1860        return md;
1861
1862bad:
1863        cleanup_mapped_device(md);
1864bad_io_barrier:
1865        free_minor(minor);
1866bad_minor:
1867        module_put(THIS_MODULE);
1868bad_module_get:
1869        kvfree(md);
1870        return NULL;
1871}
1872
1873static void unlock_fs(struct mapped_device *md);
1874
1875static void free_dev(struct mapped_device *md)
1876{
1877        int minor = MINOR(disk_devt(md->disk));
1878
1879        unlock_fs(md);
1880
1881        cleanup_mapped_device(md);
1882
1883        free_table_devices(&md->table_devices);
1884        dm_stats_cleanup(&md->stats);
1885        free_minor(minor);
1886
1887        module_put(THIS_MODULE);
1888        kvfree(md);
1889}
1890
1891static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1892{
1893        struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1894        int ret = 0;
1895
1896        if (dm_table_bio_based(t)) {
1897                /*
1898                 * The md may already have mempools that need changing.
1899                 * If so, reload bioset because front_pad may have changed
1900                 * because a different table was loaded.
1901                 */
1902                bioset_exit(&md->bs);
1903                bioset_exit(&md->io_bs);
1904
1905        } else if (bioset_initialized(&md->bs)) {
1906                /*
1907                 * There's no need to reload with request-based dm
1908                 * because the size of front_pad doesn't change.
1909                 * Note for future: If you are to reload bioset,
1910                 * prep-ed requests in the queue may refer
1911                 * to bio from the old bioset, so you must walk
1912                 * through the queue to unprep.
1913                 */
1914                goto out;
1915        }
1916
1917        BUG_ON(!p ||
1918               bioset_initialized(&md->bs) ||
1919               bioset_initialized(&md->io_bs));
1920
1921        ret = bioset_init_from_src(&md->bs, &p->bs);
1922        if (ret)
1923                goto out;
1924        ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1925        if (ret)
1926                bioset_exit(&md->bs);
1927out:
1928        /* mempool bind completed, no longer need any mempools in the table */
1929        dm_table_free_md_mempools(t);
1930        return ret;
1931}
1932
1933/*
1934 * Bind a table to the device.
1935 */
1936static void event_callback(void *context)
1937{
1938        unsigned long flags;
1939        LIST_HEAD(uevents);
1940        struct mapped_device *md = (struct mapped_device *) context;
1941
1942        spin_lock_irqsave(&md->uevent_lock, flags);
1943        list_splice_init(&md->uevent_list, &uevents);
1944        spin_unlock_irqrestore(&md->uevent_lock, flags);
1945
1946        dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1947
1948        atomic_inc(&md->event_nr);
1949        wake_up(&md->eventq);
1950        dm_issue_global_event();
1951}
1952
1953/*
1954 * Returns old map, which caller must destroy.
1955 */
1956static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1957                               struct queue_limits *limits)
1958{
1959        struct dm_table *old_map;
1960        struct request_queue *q = md->queue;
1961        bool request_based = dm_table_request_based(t);
1962        sector_t size;
1963        int ret;
1964
1965        lockdep_assert_held(&md->suspend_lock);
1966
1967        size = dm_table_get_size(t);
1968
1969        /*
1970         * Wipe any geometry if the size of the table changed.
1971         */
1972        if (size != dm_get_size(md))
1973                memset(&md->geometry, 0, sizeof(md->geometry));
1974
1975        set_capacity(md->disk, size);
1976        bd_set_nr_sectors(md->bdev, size);
1977
1978        dm_table_event_callback(t, event_callback, md);
1979
1980        /*
1981         * The queue hasn't been stopped yet, if the old table type wasn't
1982         * for request-based during suspension.  So stop it to prevent
1983         * I/O mapping before resume.
1984         * This must be done before setting the queue restrictions,
1985         * because request-based dm may be run just after the setting.
1986         */
1987        if (request_based)
1988                dm_stop_queue(q);
1989
1990        if (request_based) {
1991                /*
1992                 * Leverage the fact that request-based DM targets are
1993                 * immutable singletons - used to optimize dm_mq_queue_rq.
1994                 */
1995                md->immutable_target = dm_table_get_immutable_target(t);
1996        }
1997
1998        ret = __bind_mempools(md, t);
1999        if (ret) {
2000                old_map = ERR_PTR(ret);
2001                goto out;
2002        }
2003
2004        old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2005        rcu_assign_pointer(md->map, (void *)t);
2006        md->immutable_target_type = dm_table_get_immutable_target_type(t);
2007
2008        dm_table_set_restrictions(t, q, limits);
2009        if (old_map)
2010                dm_sync_table(md);
2011
2012out:
2013        return old_map;
2014}
2015
2016/*
2017 * Returns unbound table for the caller to free.
2018 */
2019static struct dm_table *__unbind(struct mapped_device *md)
2020{
2021        struct dm_table *map = rcu_dereference_protected(md->map, 1);
2022
2023        if (!map)
2024                return NULL;
2025
2026        dm_table_event_callback(map, NULL, NULL);
2027        RCU_INIT_POINTER(md->map, NULL);
2028        dm_sync_table(md);
2029
2030        return map;
2031}
2032
2033/*
2034 * Constructor for a new device.
2035 */
2036int dm_create(int minor, struct mapped_device **result)
2037{
2038        int r;
2039        struct mapped_device *md;
2040
2041        md = alloc_dev(minor);
2042        if (!md)
2043                return -ENXIO;
2044
2045        r = dm_sysfs_init(md);
2046        if (r) {
2047                free_dev(md);
2048                return r;
2049        }
2050
2051        *result = md;
2052        return 0;
2053}
2054
2055/*
2056 * Functions to manage md->type.
2057 * All are required to hold md->type_lock.
2058 */
2059void dm_lock_md_type(struct mapped_device *md)
2060{
2061        mutex_lock(&md->type_lock);
2062}
2063
2064void dm_unlock_md_type(struct mapped_device *md)
2065{
2066        mutex_unlock(&md->type_lock);
2067}
2068
2069void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2070{
2071        BUG_ON(!mutex_is_locked(&md->type_lock));
2072        md->type = type;
2073}
2074
2075enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2076{
2077        return md->type;
2078}
2079
2080struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2081{
2082        return md->immutable_target_type;
2083}
2084
2085/*
2086 * The queue_limits are only valid as long as you have a reference
2087 * count on 'md'.
2088 */
2089struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2090{
2091        BUG_ON(!atomic_read(&md->holders));
2092        return &md->queue->limits;
2093}
2094EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2095
2096/*
2097 * Setup the DM device's queue based on md's type
2098 */
2099int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2100{
2101        int r;
2102        struct queue_limits limits;
2103        enum dm_queue_mode type = dm_get_md_type(md);
2104
2105        switch (type) {
2106        case DM_TYPE_REQUEST_BASED:
2107                md->disk->fops = &dm_rq_blk_dops;
2108                r = dm_mq_init_request_queue(md, t);
2109                if (r) {
2110                        DMERR("Cannot initialize queue for request-based dm mapped device");
2111                        return r;
2112                }
2113                break;
2114        case DM_TYPE_BIO_BASED:
2115        case DM_TYPE_DAX_BIO_BASED:
2116                break;
2117        case DM_TYPE_NONE:
2118                WARN_ON_ONCE(true);
2119                break;
2120        }
2121
2122        r = dm_calculate_queue_limits(t, &limits);
2123        if (r) {
2124                DMERR("Cannot calculate initial queue limits");
2125                return r;
2126        }
2127        dm_table_set_restrictions(t, md->queue, &limits);
2128        blk_register_queue(md->disk);
2129
2130        return 0;
2131}
2132
2133struct mapped_device *dm_get_md(dev_t dev)
2134{
2135        struct mapped_device *md;
2136        unsigned minor = MINOR(dev);
2137
2138        if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2139                return NULL;
2140
2141        spin_lock(&_minor_lock);
2142
2143        md = idr_find(&_minor_idr, minor);
2144        if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2145            test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2146                md = NULL;
2147                goto out;
2148        }
2149        dm_get(md);
2150out:
2151        spin_unlock(&_minor_lock);
2152
2153        return md;
2154}
2155EXPORT_SYMBOL_GPL(dm_get_md);
2156
2157void *dm_get_mdptr(struct mapped_device *md)
2158{
2159        return md->interface_ptr;
2160}
2161
2162void dm_set_mdptr(struct mapped_device *md, void *ptr)
2163{
2164        md->interface_ptr = ptr;
2165}
2166
2167void dm_get(struct mapped_device *md)
2168{
2169        atomic_inc(&md->holders);
2170        BUG_ON(test_bit(DMF_FREEING, &md->flags));
2171}
2172
2173int dm_hold(struct mapped_device *md)
2174{
2175        spin_lock(&_minor_lock);
2176        if (test_bit(DMF_FREEING, &md->flags)) {
2177                spin_unlock(&_minor_lock);
2178                return -EBUSY;
2179        }
2180        dm_get(md);
2181        spin_unlock(&_minor_lock);
2182        return 0;
2183}
2184EXPORT_SYMBOL_GPL(dm_hold);
2185
2186const char *dm_device_name(struct mapped_device *md)
2187{
2188        return md->name;
2189}
2190EXPORT_SYMBOL_GPL(dm_device_name);
2191
2192static void __dm_destroy(struct mapped_device *md, bool wait)
2193{
2194        struct dm_table *map;
2195        int srcu_idx;
2196
2197        might_sleep();
2198
2199        spin_lock(&_minor_lock);
2200        idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2201        set_bit(DMF_FREEING, &md->flags);
2202        spin_unlock(&_minor_lock);
2203
2204        blk_set_queue_dying(md->queue);
2205
2206        /*
2207         * Take suspend_lock so that presuspend and postsuspend methods
2208         * do not race with internal suspend.
2209         */
2210        mutex_lock(&md->suspend_lock);
2211        map = dm_get_live_table(md, &srcu_idx);
2212        if (!dm_suspended_md(md)) {
2213                dm_table_presuspend_targets(map);
2214                set_bit(DMF_SUSPENDED, &md->flags);
2215                set_bit(DMF_POST_SUSPENDING, &md->flags);
2216                dm_table_postsuspend_targets(map);
2217        }
2218        /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2219        dm_put_live_table(md, srcu_idx);
2220        mutex_unlock(&md->suspend_lock);
2221
2222        /*
2223         * Rare, but there may be I/O requests still going to complete,
2224         * for example.  Wait for all references to disappear.
2225         * No one should increment the reference count of the mapped_device,
2226         * after the mapped_device state becomes DMF_FREEING.
2227         */
2228        if (wait)
2229                while (atomic_read(&md->holders))
2230                        msleep(1);
2231        else if (atomic_read(&md->holders))
2232                DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2233                       dm_device_name(md), atomic_read(&md->holders));
2234
2235        dm_sysfs_exit(md);
2236        dm_table_destroy(__unbind(md));
2237        free_dev(md);
2238}
2239
2240void dm_destroy(struct mapped_device *md)
2241{
2242        __dm_destroy(md, true);
2243}
2244
2245void dm_destroy_immediate(struct mapped_device *md)
2246{
2247        __dm_destroy(md, false);
2248}
2249
2250void dm_put(struct mapped_device *md)
2251{
2252        atomic_dec(&md->holders);
2253}
2254EXPORT_SYMBOL_GPL(dm_put);
2255
2256static bool md_in_flight_bios(struct mapped_device *md)
2257{
2258        int cpu;
2259        struct hd_struct *part = &dm_disk(md)->part0;
2260        long sum = 0;
2261
2262        for_each_possible_cpu(cpu) {
2263                sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2264                sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2265        }
2266
2267        return sum != 0;
2268}
2269
2270static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2271{
2272        int r = 0;
2273        DEFINE_WAIT(wait);
2274
2275        while (true) {
2276                prepare_to_wait(&md->wait, &wait, task_state);
2277
2278                if (!md_in_flight_bios(md))
2279                        break;
2280
2281                if (signal_pending_state(task_state, current)) {
2282                        r = -EINTR;
2283                        break;
2284                }
2285
2286                io_schedule();
2287        }
2288        finish_wait(&md->wait, &wait);
2289
2290        return r;
2291}
2292
2293static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2294{
2295        int r = 0;
2296
2297        if (!queue_is_mq(md->queue))
2298                return dm_wait_for_bios_completion(md, task_state);
2299
2300        while (true) {
2301                if (!blk_mq_queue_inflight(md->queue))
2302                        break;
2303
2304                if (signal_pending_state(task_state, current)) {
2305                        r = -EINTR;
2306                        break;
2307                }
2308
2309                msleep(5);
2310        }
2311
2312        return r;
2313}
2314
2315/*
2316 * Process the deferred bios
2317 */
2318static void dm_wq_work(struct work_struct *work)
2319{
2320        struct mapped_device *md = container_of(work, struct mapped_device, work);
2321        struct bio *bio;
2322
2323        while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2324                spin_lock_irq(&md->deferred_lock);
2325                bio = bio_list_pop(&md->deferred);
2326                spin_unlock_irq(&md->deferred_lock);
2327
2328                if (!bio)
2329                        break;
2330
2331                submit_bio_noacct(bio);
2332        }
2333}
2334
2335static void dm_queue_flush(struct mapped_device *md)
2336{
2337        clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2338        smp_mb__after_atomic();
2339        queue_work(md->wq, &md->work);
2340}
2341
2342/*
2343 * Swap in a new table, returning the old one for the caller to destroy.
2344 */
2345struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2346{
2347        struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2348        struct queue_limits limits;
2349        int r;
2350
2351        mutex_lock(&md->suspend_lock);
2352
2353        /* device must be suspended */
2354        if (!dm_suspended_md(md))
2355                goto out;
2356
2357        /*
2358         * If the new table has no data devices, retain the existing limits.
2359         * This helps multipath with queue_if_no_path if all paths disappear,
2360         * then new I/O is queued based on these limits, and then some paths
2361         * reappear.
2362         */
2363        if (dm_table_has_no_data_devices(table)) {
2364                live_map = dm_get_live_table_fast(md);
2365                if (live_map)
2366                        limits = md->queue->limits;
2367                dm_put_live_table_fast(md);
2368        }
2369
2370        if (!live_map) {
2371                r = dm_calculate_queue_limits(table, &limits);
2372                if (r) {
2373                        map = ERR_PTR(r);
2374                        goto out;
2375                }
2376        }
2377
2378        map = __bind(md, table, &limits);
2379        dm_issue_global_event();
2380
2381out:
2382        mutex_unlock(&md->suspend_lock);
2383        return map;
2384}
2385
2386/*
2387 * Functions to lock and unlock any filesystem running on the
2388 * device.
2389 */
2390static int lock_fs(struct mapped_device *md)
2391{
2392        int r;
2393
2394        WARN_ON(md->frozen_sb);
2395
2396        md->frozen_sb = freeze_bdev(md->bdev);
2397        if (IS_ERR(md->frozen_sb)) {
2398                r = PTR_ERR(md->frozen_sb);
2399                md->frozen_sb = NULL;
2400                return r;
2401        }
2402
2403        set_bit(DMF_FROZEN, &md->flags);
2404
2405        return 0;
2406}
2407
2408static void unlock_fs(struct mapped_device *md)
2409{
2410        if (!test_bit(DMF_FROZEN, &md->flags))
2411                return;
2412
2413        thaw_bdev(md->bdev, md->frozen_sb);
2414        md->frozen_sb = NULL;
2415        clear_bit(DMF_FROZEN, &md->flags);
2416}
2417
2418/*
2419 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2420 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2421 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2422 *
2423 * If __dm_suspend returns 0, the device is completely quiescent
2424 * now. There is no request-processing activity. All new requests
2425 * are being added to md->deferred list.
2426 */
2427static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2428                        unsigned suspend_flags, long task_state,
2429                        int dmf_suspended_flag)
2430{
2431        bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2432        bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2433        int r;
2434
2435        lockdep_assert_held(&md->suspend_lock);
2436
2437        /*
2438         * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2439         * This flag is cleared before dm_suspend returns.
2440         */
2441        if (noflush)
2442                set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2443        else
2444                DMDEBUG("%s: suspending with flush", dm_device_name(md));
2445
2446        /*
2447         * This gets reverted if there's an error later and the targets
2448         * provide the .presuspend_undo hook.
2449         */
2450        dm_table_presuspend_targets(map);
2451
2452        /*
2453         * Flush I/O to the device.
2454         * Any I/O submitted after lock_fs() may not be flushed.
2455         * noflush takes precedence over do_lockfs.
2456         * (lock_fs() flushes I/Os and waits for them to complete.)
2457         */
2458        if (!noflush && do_lockfs) {
2459                r = lock_fs(md);
2460                if (r) {
2461                        dm_table_presuspend_undo_targets(map);
2462                        return r;
2463                }
2464        }
2465
2466        /*
2467         * Here we must make sure that no processes are submitting requests
2468         * to target drivers i.e. no one may be executing
2469         * __split_and_process_bio from dm_submit_bio.
2470         *
2471         * To get all processes out of __split_and_process_bio in dm_submit_bio,
2472         * we take the write lock. To prevent any process from reentering
2473         * __split_and_process_bio from dm_submit_bio and quiesce the thread
2474         * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2475         * flush_workqueue(md->wq).
2476         */
2477        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2478        if (map)
2479                synchronize_srcu(&md->io_barrier);
2480
2481        /*
2482         * Stop md->queue before flushing md->wq in case request-based
2483         * dm defers requests to md->wq from md->queue.
2484         */
2485        if (dm_request_based(md))
2486                dm_stop_queue(md->queue);
2487
2488        flush_workqueue(md->wq);
2489
2490        /*
2491         * At this point no more requests are entering target request routines.
2492         * We call dm_wait_for_completion to wait for all existing requests
2493         * to finish.
2494         */
2495        r = dm_wait_for_completion(md, task_state);
2496        if (!r)
2497                set_bit(dmf_suspended_flag, &md->flags);
2498
2499        if (noflush)
2500                clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2501        if (map)
2502                synchronize_srcu(&md->io_barrier);
2503
2504        /* were we interrupted ? */
2505        if (r < 0) {
2506                dm_queue_flush(md);
2507
2508                if (dm_request_based(md))
2509                        dm_start_queue(md->queue);
2510
2511                unlock_fs(md);
2512                dm_table_presuspend_undo_targets(map);
2513                /* pushback list is already flushed, so skip flush */
2514        }
2515
2516        return r;
2517}
2518
2519/*
2520 * We need to be able to change a mapping table under a mounted
2521 * filesystem.  For example we might want to move some data in
2522 * the background.  Before the table can be swapped with
2523 * dm_bind_table, dm_suspend must be called to flush any in
2524 * flight bios and ensure that any further io gets deferred.
2525 */
2526/*
2527 * Suspend mechanism in request-based dm.
2528 *
2529 * 1. Flush all I/Os by lock_fs() if needed.
2530 * 2. Stop dispatching any I/O by stopping the request_queue.
2531 * 3. Wait for all in-flight I/Os to be completed or requeued.
2532 *
2533 * To abort suspend, start the request_queue.
2534 */
2535int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2536{
2537        struct dm_table *map = NULL;
2538        int r = 0;
2539
2540retry:
2541        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2542
2543        if (dm_suspended_md(md)) {
2544                r = -EINVAL;
2545                goto out_unlock;
2546        }
2547
2548        if (dm_suspended_internally_md(md)) {
2549                /* already internally suspended, wait for internal resume */
2550                mutex_unlock(&md->suspend_lock);
2551                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2552                if (r)
2553                        return r;
2554                goto retry;
2555        }
2556
2557        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2558
2559        r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2560        if (r)
2561                goto out_unlock;
2562
2563        set_bit(DMF_POST_SUSPENDING, &md->flags);
2564        dm_table_postsuspend_targets(map);
2565        clear_bit(DMF_POST_SUSPENDING, &md->flags);
2566
2567out_unlock:
2568        mutex_unlock(&md->suspend_lock);
2569        return r;
2570}
2571
2572static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2573{
2574        if (map) {
2575                int r = dm_table_resume_targets(map);
2576                if (r)
2577                        return r;
2578        }
2579
2580        dm_queue_flush(md);
2581
2582        /*
2583         * Flushing deferred I/Os must be done after targets are resumed
2584         * so that mapping of targets can work correctly.
2585         * Request-based dm is queueing the deferred I/Os in its request_queue.
2586         */
2587        if (dm_request_based(md))
2588                dm_start_queue(md->queue);
2589
2590        unlock_fs(md);
2591
2592        return 0;
2593}
2594
2595int dm_resume(struct mapped_device *md)
2596{
2597        int r;
2598        struct dm_table *map = NULL;
2599
2600retry:
2601        r = -EINVAL;
2602        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2603
2604        if (!dm_suspended_md(md))
2605                goto out;
2606
2607        if (dm_suspended_internally_md(md)) {
2608                /* already internally suspended, wait for internal resume */
2609                mutex_unlock(&md->suspend_lock);
2610                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2611                if (r)
2612                        return r;
2613                goto retry;
2614        }
2615
2616        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2617        if (!map || !dm_table_get_size(map))
2618                goto out;
2619
2620        r = __dm_resume(md, map);
2621        if (r)
2622                goto out;
2623
2624        clear_bit(DMF_SUSPENDED, &md->flags);
2625out:
2626        mutex_unlock(&md->suspend_lock);
2627
2628        return r;
2629}
2630
2631/*
2632 * Internal suspend/resume works like userspace-driven suspend. It waits
2633 * until all bios finish and prevents issuing new bios to the target drivers.
2634 * It may be used only from the kernel.
2635 */
2636
2637static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2638{
2639        struct dm_table *map = NULL;
2640
2641        lockdep_assert_held(&md->suspend_lock);
2642
2643        if (md->internal_suspend_count++)
2644                return; /* nested internal suspend */
2645
2646        if (dm_suspended_md(md)) {
2647                set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2648                return; /* nest suspend */
2649        }
2650
2651        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2652
2653        /*
2654         * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2655         * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2656         * would require changing .presuspend to return an error -- avoid this
2657         * until there is a need for more elaborate variants of internal suspend.
2658         */
2659        (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2660                            DMF_SUSPENDED_INTERNALLY);
2661
2662        set_bit(DMF_POST_SUSPENDING, &md->flags);
2663        dm_table_postsuspend_targets(map);
2664        clear_bit(DMF_POST_SUSPENDING, &md->flags);
2665}
2666
2667static void __dm_internal_resume(struct mapped_device *md)
2668{
2669        BUG_ON(!md->internal_suspend_count);
2670
2671        if (--md->internal_suspend_count)
2672                return; /* resume from nested internal suspend */
2673
2674        if (dm_suspended_md(md))
2675                goto done; /* resume from nested suspend */
2676
2677        /*
2678         * NOTE: existing callers don't need to call dm_table_resume_targets
2679         * (which may fail -- so best to avoid it for now by passing NULL map)
2680         */
2681        (void) __dm_resume(md, NULL);
2682
2683done:
2684        clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2685        smp_mb__after_atomic();
2686        wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2687}
2688
2689void dm_internal_suspend_noflush(struct mapped_device *md)
2690{
2691        mutex_lock(&md->suspend_lock);
2692        __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2693        mutex_unlock(&md->suspend_lock);
2694}
2695EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2696
2697void dm_internal_resume(struct mapped_device *md)
2698{
2699        mutex_lock(&md->suspend_lock);
2700        __dm_internal_resume(md);
2701        mutex_unlock(&md->suspend_lock);
2702}
2703EXPORT_SYMBOL_GPL(dm_internal_resume);
2704
2705/*
2706 * Fast variants of internal suspend/resume hold md->suspend_lock,
2707 * which prevents interaction with userspace-driven suspend.
2708 */
2709
2710void dm_internal_suspend_fast(struct mapped_device *md)
2711{
2712        mutex_lock(&md->suspend_lock);
2713        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2714                return;
2715
2716        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2717        synchronize_srcu(&md->io_barrier);
2718        flush_workqueue(md->wq);
2719        dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2720}
2721EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2722
2723void dm_internal_resume_fast(struct mapped_device *md)
2724{
2725        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2726                goto done;
2727
2728        dm_queue_flush(md);
2729
2730done:
2731        mutex_unlock(&md->suspend_lock);
2732}
2733EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2734
2735/*-----------------------------------------------------------------
2736 * Event notification.
2737 *---------------------------------------------------------------*/
2738int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2739                       unsigned cookie)
2740{
2741        int r;
2742        unsigned noio_flag;
2743        char udev_cookie[DM_COOKIE_LENGTH];
2744        char *envp[] = { udev_cookie, NULL };
2745
2746        noio_flag = memalloc_noio_save();
2747
2748        if (!cookie)
2749                r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2750        else {
2751                snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2752                         DM_COOKIE_ENV_VAR_NAME, cookie);
2753                r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2754                                       action, envp);
2755        }
2756
2757        memalloc_noio_restore(noio_flag);
2758
2759        return r;
2760}
2761
2762uint32_t dm_next_uevent_seq(struct mapped_device *md)
2763{
2764        return atomic_add_return(1, &md->uevent_seq);
2765}
2766
2767uint32_t dm_get_event_nr(struct mapped_device *md)
2768{
2769        return atomic_read(&md->event_nr);
2770}
2771
2772int dm_wait_event(struct mapped_device *md, int event_nr)
2773{
2774        return wait_event_interruptible(md->eventq,
2775                        (event_nr != atomic_read(&md->event_nr)));
2776}
2777
2778void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2779{
2780        unsigned long flags;
2781
2782        spin_lock_irqsave(&md->uevent_lock, flags);
2783        list_add(elist, &md->uevent_list);
2784        spin_unlock_irqrestore(&md->uevent_lock, flags);
2785}
2786
2787/*
2788 * The gendisk is only valid as long as you have a reference
2789 * count on 'md'.
2790 */
2791struct gendisk *dm_disk(struct mapped_device *md)
2792{
2793        return md->disk;
2794}
2795EXPORT_SYMBOL_GPL(dm_disk);
2796
2797struct kobject *dm_kobject(struct mapped_device *md)
2798{
2799        return &md->kobj_holder.kobj;
2800}
2801
2802struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2803{
2804        struct mapped_device *md;
2805
2806        md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2807
2808        spin_lock(&_minor_lock);
2809        if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2810                md = NULL;
2811                goto out;
2812        }
2813        dm_get(md);
2814out:
2815        spin_unlock(&_minor_lock);
2816
2817        return md;
2818}
2819
2820int dm_suspended_md(struct mapped_device *md)
2821{
2822        return test_bit(DMF_SUSPENDED, &md->flags);
2823}
2824
2825static int dm_post_suspending_md(struct mapped_device *md)
2826{
2827        return test_bit(DMF_POST_SUSPENDING, &md->flags);
2828}
2829
2830int dm_suspended_internally_md(struct mapped_device *md)
2831{
2832        return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2833}
2834
2835int dm_test_deferred_remove_flag(struct mapped_device *md)
2836{
2837        return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2838}
2839
2840int dm_suspended(struct dm_target *ti)
2841{
2842        return dm_suspended_md(ti->table->md);
2843}
2844EXPORT_SYMBOL_GPL(dm_suspended);
2845
2846int dm_post_suspending(struct dm_target *ti)
2847{
2848        return dm_post_suspending_md(ti->table->md);
2849}
2850EXPORT_SYMBOL_GPL(dm_post_suspending);
2851
2852int dm_noflush_suspending(struct dm_target *ti)
2853{
2854        return __noflush_suspending(ti->table->md);
2855}
2856EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2857
2858struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2859                                            unsigned integrity, unsigned per_io_data_size,
2860                                            unsigned min_pool_size)
2861{
2862        struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2863        unsigned int pool_size = 0;
2864        unsigned int front_pad, io_front_pad;
2865        int ret;
2866
2867        if (!pools)
2868                return NULL;
2869
2870        switch (type) {
2871        case DM_TYPE_BIO_BASED:
2872        case DM_TYPE_DAX_BIO_BASED:
2873                pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2874                front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2875                io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2876                ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2877                if (ret)
2878                        goto out;
2879                if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2880                        goto out;
2881                break;
2882        case DM_TYPE_REQUEST_BASED:
2883                pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2884                front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2885                /* per_io_data_size is used for blk-mq pdu at queue allocation */
2886                break;
2887        default:
2888                BUG();
2889        }
2890
2891        ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2892        if (ret)
2893                goto out;
2894
2895        if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2896                goto out;
2897
2898        return pools;
2899
2900out:
2901        dm_free_md_mempools(pools);
2902
2903        return NULL;
2904}
2905
2906void dm_free_md_mempools(struct dm_md_mempools *pools)
2907{
2908        if (!pools)
2909                return;
2910
2911        bioset_exit(&pools->bs);
2912        bioset_exit(&pools->io_bs);
2913
2914        kfree(pools);
2915}
2916
2917struct dm_pr {
2918        u64     old_key;
2919        u64     new_key;
2920        u32     flags;
2921        bool    fail_early;
2922};
2923
2924static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2925                      void *data)
2926{
2927        struct mapped_device *md = bdev->bd_disk->private_data;
2928        struct dm_table *table;
2929        struct dm_target *ti;
2930        int ret = -ENOTTY, srcu_idx;
2931
2932        table = dm_get_live_table(md, &srcu_idx);
2933        if (!table || !dm_table_get_size(table))
2934                goto out;
2935
2936        /* We only support devices that have a single target */
2937        if (dm_table_get_num_targets(table) != 1)
2938                goto out;
2939        ti = dm_table_get_target(table, 0);
2940
2941        ret = -EINVAL;
2942        if (!ti->type->iterate_devices)
2943                goto out;
2944
2945        ret = ti->type->iterate_devices(ti, fn, data);
2946out:
2947        dm_put_live_table(md, srcu_idx);
2948        return ret;
2949}
2950
2951/*
2952 * For register / unregister we need to manually call out to every path.
2953 */
2954static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2955                            sector_t start, sector_t len, void *data)
2956{
2957        struct dm_pr *pr = data;
2958        const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2959
2960        if (!ops || !ops->pr_register)
2961                return -EOPNOTSUPP;
2962        return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2963}
2964
2965static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2966                          u32 flags)
2967{
2968        struct dm_pr pr = {
2969                .old_key        = old_key,
2970                .new_key        = new_key,
2971                .flags          = flags,
2972                .fail_early     = true,
2973        };
2974        int ret;
2975
2976        ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2977        if (ret && new_key) {
2978                /* unregister all paths if we failed to register any path */
2979                pr.old_key = new_key;
2980                pr.new_key = 0;
2981                pr.flags = 0;
2982                pr.fail_early = false;
2983                dm_call_pr(bdev, __dm_pr_register, &pr);
2984        }
2985
2986        return ret;
2987}
2988
2989static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2990                         u32 flags)
2991{
2992        struct mapped_device *md = bdev->bd_disk->private_data;
2993        const struct pr_ops *ops;
2994        int r, srcu_idx;
2995
2996        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2997        if (r < 0)
2998                goto out;
2999
3000        ops = bdev->bd_disk->fops->pr_ops;
3001        if (ops && ops->pr_reserve)
3002                r = ops->pr_reserve(bdev, key, type, flags);
3003        else
3004                r = -EOPNOTSUPP;
3005out:
3006        dm_unprepare_ioctl(md, srcu_idx);
3007        return r;
3008}
3009
3010static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3011{
3012        struct mapped_device *md = bdev->bd_disk->private_data;
3013        const struct pr_ops *ops;
3014        int r, srcu_idx;
3015
3016        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3017        if (r < 0)
3018                goto out;
3019
3020        ops = bdev->bd_disk->fops->pr_ops;
3021        if (ops && ops->pr_release)
3022                r = ops->pr_release(bdev, key, type);
3023        else
3024                r = -EOPNOTSUPP;
3025out:
3026        dm_unprepare_ioctl(md, srcu_idx);
3027        return r;
3028}
3029
3030static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3031                         enum pr_type type, bool abort)
3032{
3033        struct mapped_device *md = bdev->bd_disk->private_data;
3034        const struct pr_ops *ops;
3035        int r, srcu_idx;
3036
3037        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3038        if (r < 0)
3039                goto out;
3040
3041        ops = bdev->bd_disk->fops->pr_ops;
3042        if (ops && ops->pr_preempt)
3043                r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3044        else
3045                r = -EOPNOTSUPP;
3046out:
3047        dm_unprepare_ioctl(md, srcu_idx);
3048        return r;
3049}
3050
3051static int dm_pr_clear(struct block_device *bdev, u64 key)
3052{
3053        struct mapped_device *md = bdev->bd_disk->private_data;
3054        const struct pr_ops *ops;
3055        int r, srcu_idx;
3056
3057        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3058        if (r < 0)
3059                goto out;
3060
3061        ops = bdev->bd_disk->fops->pr_ops;
3062        if (ops && ops->pr_clear)
3063                r = ops->pr_clear(bdev, key);
3064        else
3065                r = -EOPNOTSUPP;
3066out:
3067        dm_unprepare_ioctl(md, srcu_idx);
3068        return r;
3069}
3070
3071static const struct pr_ops dm_pr_ops = {
3072        .pr_register    = dm_pr_register,
3073        .pr_reserve     = dm_pr_reserve,
3074        .pr_release     = dm_pr_release,
3075        .pr_preempt     = dm_pr_preempt,
3076        .pr_clear       = dm_pr_clear,
3077};
3078
3079static const struct block_device_operations dm_blk_dops = {
3080        .submit_bio = dm_submit_bio,
3081        .open = dm_blk_open,
3082        .release = dm_blk_close,
3083        .ioctl = dm_blk_ioctl,
3084        .getgeo = dm_blk_getgeo,
3085        .report_zones = dm_blk_report_zones,
3086        .pr_ops = &dm_pr_ops,
3087        .owner = THIS_MODULE
3088};
3089
3090static const struct block_device_operations dm_rq_blk_dops = {
3091        .open = dm_blk_open,
3092        .release = dm_blk_close,
3093        .ioctl = dm_blk_ioctl,
3094        .getgeo = dm_blk_getgeo,
3095        .pr_ops = &dm_pr_ops,
3096        .owner = THIS_MODULE
3097};
3098
3099static const struct dax_operations dm_dax_ops = {
3100        .direct_access = dm_dax_direct_access,
3101        .dax_supported = dm_dax_supported,
3102        .copy_from_iter = dm_dax_copy_from_iter,
3103        .copy_to_iter = dm_dax_copy_to_iter,
3104        .zero_page_range = dm_dax_zero_page_range,
3105};
3106
3107/*
3108 * module hooks
3109 */
3110module_init(dm_init);
3111module_exit(dm_exit);
3112
3113module_param(major, uint, 0);
3114MODULE_PARM_DESC(major, "The major number of the device mapper");
3115
3116module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3117MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3118
3119module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3120MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3121
3122MODULE_DESCRIPTION(DM_NAME " driver");
3123MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3124MODULE_LICENSE("GPL");
3125