linux/drivers/media/i2c/cx25840/cx25840-ir.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
   4 *
   5 *  Integrated Consumer Infrared Controller
   6 *
   7 *  Copyright (C) 2010  Andy Walls <awalls@md.metrocast.net>
   8 */
   9
  10#include <linux/slab.h>
  11#include <linux/kfifo.h>
  12#include <linux/module.h>
  13#include <media/drv-intf/cx25840.h>
  14#include <media/rc-core.h>
  15
  16#include "cx25840-core.h"
  17
  18static unsigned int ir_debug;
  19module_param(ir_debug, int, 0644);
  20MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
  21
  22#define CX25840_IR_REG_BASE     0x200
  23
  24#define CX25840_IR_CNTRL_REG    0x200
  25#define CNTRL_WIN_3_3   0x00000000
  26#define CNTRL_WIN_4_3   0x00000001
  27#define CNTRL_WIN_3_4   0x00000002
  28#define CNTRL_WIN_4_4   0x00000003
  29#define CNTRL_WIN       0x00000003
  30#define CNTRL_EDG_NONE  0x00000000
  31#define CNTRL_EDG_FALL  0x00000004
  32#define CNTRL_EDG_RISE  0x00000008
  33#define CNTRL_EDG_BOTH  0x0000000C
  34#define CNTRL_EDG       0x0000000C
  35#define CNTRL_DMD       0x00000010
  36#define CNTRL_MOD       0x00000020
  37#define CNTRL_RFE       0x00000040
  38#define CNTRL_TFE       0x00000080
  39#define CNTRL_RXE       0x00000100
  40#define CNTRL_TXE       0x00000200
  41#define CNTRL_RIC       0x00000400
  42#define CNTRL_TIC       0x00000800
  43#define CNTRL_CPL       0x00001000
  44#define CNTRL_LBM       0x00002000
  45#define CNTRL_R         0x00004000
  46
  47#define CX25840_IR_TXCLK_REG    0x204
  48#define TXCLK_TCD       0x0000FFFF
  49
  50#define CX25840_IR_RXCLK_REG    0x208
  51#define RXCLK_RCD       0x0000FFFF
  52
  53#define CX25840_IR_CDUTY_REG    0x20C
  54#define CDUTY_CDC       0x0000000F
  55
  56#define CX25840_IR_STATS_REG    0x210
  57#define STATS_RTO       0x00000001
  58#define STATS_ROR       0x00000002
  59#define STATS_RBY       0x00000004
  60#define STATS_TBY       0x00000008
  61#define STATS_RSR       0x00000010
  62#define STATS_TSR       0x00000020
  63
  64#define CX25840_IR_IRQEN_REG    0x214
  65#define IRQEN_RTE       0x00000001
  66#define IRQEN_ROE       0x00000002
  67#define IRQEN_RSE       0x00000010
  68#define IRQEN_TSE       0x00000020
  69#define IRQEN_MSK       0x00000033
  70
  71#define CX25840_IR_FILTR_REG    0x218
  72#define FILTR_LPF       0x0000FFFF
  73
  74#define CX25840_IR_FIFO_REG     0x23C
  75#define FIFO_RXTX       0x0000FFFF
  76#define FIFO_RXTX_LVL   0x00010000
  77#define FIFO_RXTX_RTO   0x0001FFFF
  78#define FIFO_RX_NDV     0x00020000
  79#define FIFO_RX_DEPTH   8
  80#define FIFO_TX_DEPTH   8
  81
  82#define CX25840_VIDCLK_FREQ     108000000 /* 108 MHz, BT.656 */
  83#define CX25840_IR_REFCLK_FREQ  (CX25840_VIDCLK_FREQ / 2)
  84
  85/*
  86 * We use this union internally for convenience, but callers to tx_write
  87 * and rx_read will be expecting records of type struct ir_raw_event.
  88 * Always ensure the size of this union is dictated by struct ir_raw_event.
  89 */
  90union cx25840_ir_fifo_rec {
  91        u32 hw_fifo_data;
  92        struct ir_raw_event ir_core_data;
  93};
  94
  95#define CX25840_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
  96#define CX25840_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
  97
  98struct cx25840_ir_state {
  99        struct i2c_client *c;
 100
 101        struct v4l2_subdev_ir_parameters rx_params;
 102        struct mutex rx_params_lock; /* protects Rx parameter settings cache */
 103        atomic_t rxclk_divider;
 104        atomic_t rx_invert;
 105
 106        struct kfifo rx_kfifo;
 107        spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
 108
 109        struct v4l2_subdev_ir_parameters tx_params;
 110        struct mutex tx_params_lock; /* protects Tx parameter settings cache */
 111        atomic_t txclk_divider;
 112};
 113
 114static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
 115{
 116        struct cx25840_state *state = to_state(sd);
 117        return state ? state->ir_state : NULL;
 118}
 119
 120
 121/*
 122 * Rx and Tx Clock Divider register computations
 123 *
 124 * Note the largest clock divider value of 0xffff corresponds to:
 125 *      (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
 126 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 127 */
 128static inline u16 count_to_clock_divider(unsigned int d)
 129{
 130        if (d > RXCLK_RCD + 1)
 131                d = RXCLK_RCD;
 132        else if (d < 2)
 133                d = 1;
 134        else
 135                d--;
 136        return (u16) d;
 137}
 138
 139static inline u16 ns_to_clock_divider(unsigned int ns)
 140{
 141        return count_to_clock_divider(
 142                DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
 143}
 144
 145static inline unsigned int clock_divider_to_ns(unsigned int divider)
 146{
 147        /* Period of the Rx or Tx clock in ns */
 148        return DIV_ROUND_CLOSEST((divider + 1) * 1000,
 149                                 CX25840_IR_REFCLK_FREQ / 1000000);
 150}
 151
 152static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
 153{
 154        return count_to_clock_divider(
 155                          DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
 156}
 157
 158static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
 159{
 160        return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
 161}
 162
 163static inline u16 freq_to_clock_divider(unsigned int freq,
 164                                        unsigned int rollovers)
 165{
 166        return count_to_clock_divider(
 167                   DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
 168}
 169
 170static inline unsigned int clock_divider_to_freq(unsigned int divider,
 171                                                 unsigned int rollovers)
 172{
 173        return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
 174                                 (divider + 1) * rollovers);
 175}
 176
 177/*
 178 * Low Pass Filter register calculations
 179 *
 180 * Note the largest count value of 0xffff corresponds to:
 181 *      0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
 182 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 183 */
 184static inline u16 count_to_lpf_count(unsigned int d)
 185{
 186        if (d > FILTR_LPF)
 187                d = FILTR_LPF;
 188        else if (d < 4)
 189                d = 0;
 190        return (u16) d;
 191}
 192
 193static inline u16 ns_to_lpf_count(unsigned int ns)
 194{
 195        return count_to_lpf_count(
 196                DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
 197}
 198
 199static inline unsigned int lpf_count_to_ns(unsigned int count)
 200{
 201        /* Duration of the Low Pass Filter rejection window in ns */
 202        return DIV_ROUND_CLOSEST(count * 1000,
 203                                 CX25840_IR_REFCLK_FREQ / 1000000);
 204}
 205
 206static inline unsigned int lpf_count_to_us(unsigned int count)
 207{
 208        /* Duration of the Low Pass Filter rejection window in us */
 209        return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
 210}
 211
 212/*
 213 * FIFO register pulse width count computations
 214 */
 215static u32 clock_divider_to_resolution(u16 divider)
 216{
 217        /*
 218         * Resolution is the duration of 1 tick of the readable portion of
 219         * of the pulse width counter as read from the FIFO.  The two lsb's are
 220         * not readable, hence the << 2.  This function returns ns.
 221         */
 222        return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
 223                                 CX25840_IR_REFCLK_FREQ / 1000000);
 224}
 225
 226static u64 pulse_width_count_to_ns(u16 count, u16 divider)
 227{
 228        u64 n;
 229        u32 rem;
 230
 231        /*
 232         * The 2 lsb's of the pulse width timer count are not readable, hence
 233         * the (count << 2) | 0x3
 234         */
 235        n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
 236        rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
 237        if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
 238                n++;
 239        return n;
 240}
 241
 242#if 0
 243/* Keep as we will need this for Transmit functionality */
 244static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
 245{
 246        u64 n;
 247        u32 d;
 248        u32 rem;
 249
 250        /*
 251         * The 2 lsb's of the pulse width timer count are not accessible, hence
 252         * the (1 << 2)
 253         */
 254        n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
 255        d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
 256        rem = do_div(n, d);
 257        if (rem >= d / 2)
 258                n++;
 259
 260        if (n > FIFO_RXTX)
 261                n = FIFO_RXTX;
 262        else if (n == 0)
 263                n = 1;
 264        return (u16) n;
 265}
 266
 267#endif
 268static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
 269{
 270        u64 n;
 271        u32 rem;
 272
 273        /*
 274         * The 2 lsb's of the pulse width timer count are not readable, hence
 275         * the (count << 2) | 0x3
 276         */
 277        n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
 278        rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
 279        if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
 280                n++;
 281        return (unsigned int) n;
 282}
 283
 284/*
 285 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
 286 *
 287 * The total pulse clock count is an 18 bit pulse width timer count as the most
 288 * significant part and (up to) 16 bit clock divider count as a modulus.
 289 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
 290 * width timer count's least significant bit.
 291 */
 292static u64 ns_to_pulse_clocks(u32 ns)
 293{
 294        u64 clocks;
 295        u32 rem;
 296        clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
 297        rem = do_div(clocks, 1000);                         /* /1000 = cycles */
 298        if (rem >= 1000 / 2)
 299                clocks++;
 300        return clocks;
 301}
 302
 303static u16 pulse_clocks_to_clock_divider(u64 count)
 304{
 305        do_div(count, (FIFO_RXTX << 2) | 0x3);
 306
 307        /* net result needs to be rounded down and decremented by 1 */
 308        if (count > RXCLK_RCD + 1)
 309                count = RXCLK_RCD;
 310        else if (count < 2)
 311                count = 1;
 312        else
 313                count--;
 314        return (u16) count;
 315}
 316
 317/*
 318 * IR Control Register helpers
 319 */
 320enum tx_fifo_watermark {
 321        TX_FIFO_HALF_EMPTY = 0,
 322        TX_FIFO_EMPTY      = CNTRL_TIC,
 323};
 324
 325enum rx_fifo_watermark {
 326        RX_FIFO_HALF_FULL = 0,
 327        RX_FIFO_NOT_EMPTY = CNTRL_RIC,
 328};
 329
 330static inline void control_tx_irq_watermark(struct i2c_client *c,
 331                                            enum tx_fifo_watermark level)
 332{
 333        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
 334}
 335
 336static inline void control_rx_irq_watermark(struct i2c_client *c,
 337                                            enum rx_fifo_watermark level)
 338{
 339        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
 340}
 341
 342static inline void control_tx_enable(struct i2c_client *c, bool enable)
 343{
 344        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
 345                        enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
 346}
 347
 348static inline void control_rx_enable(struct i2c_client *c, bool enable)
 349{
 350        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
 351                        enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
 352}
 353
 354static inline void control_tx_modulation_enable(struct i2c_client *c,
 355                                                bool enable)
 356{
 357        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
 358                        enable ? CNTRL_MOD : 0);
 359}
 360
 361static inline void control_rx_demodulation_enable(struct i2c_client *c,
 362                                                  bool enable)
 363{
 364        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
 365                        enable ? CNTRL_DMD : 0);
 366}
 367
 368static inline void control_rx_s_edge_detection(struct i2c_client *c,
 369                                               u32 edge_types)
 370{
 371        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
 372                        edge_types & CNTRL_EDG_BOTH);
 373}
 374
 375static void control_rx_s_carrier_window(struct i2c_client *c,
 376                                        unsigned int carrier,
 377                                        unsigned int *carrier_range_low,
 378                                        unsigned int *carrier_range_high)
 379{
 380        u32 v;
 381        unsigned int c16 = carrier * 16;
 382
 383        if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
 384                v = CNTRL_WIN_3_4;
 385                *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
 386        } else {
 387                v = CNTRL_WIN_3_3;
 388                *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
 389        }
 390
 391        if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
 392                v |= CNTRL_WIN_4_3;
 393                *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
 394        } else {
 395                v |= CNTRL_WIN_3_3;
 396                *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
 397        }
 398        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
 399}
 400
 401static inline void control_tx_polarity_invert(struct i2c_client *c,
 402                                              bool invert)
 403{
 404        cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
 405                        invert ? CNTRL_CPL : 0);
 406}
 407
 408/*
 409 * IR Rx & Tx Clock Register helpers
 410 */
 411static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
 412                                       unsigned int freq,
 413                                       u16 *divider)
 414{
 415        *divider = carrier_freq_to_clock_divider(freq);
 416        cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
 417        return clock_divider_to_carrier_freq(*divider);
 418}
 419
 420static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
 421                                       unsigned int freq,
 422                                       u16 *divider)
 423{
 424        *divider = carrier_freq_to_clock_divider(freq);
 425        cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
 426        return clock_divider_to_carrier_freq(*divider);
 427}
 428
 429static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
 430                                      u16 *divider)
 431{
 432        u64 pulse_clocks;
 433
 434        if (ns > IR_MAX_DURATION)
 435                ns = IR_MAX_DURATION;
 436        pulse_clocks = ns_to_pulse_clocks(ns);
 437        *divider = pulse_clocks_to_clock_divider(pulse_clocks);
 438        cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
 439        return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
 440}
 441
 442static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
 443                                      u16 *divider)
 444{
 445        u64 pulse_clocks;
 446
 447        if (ns > IR_MAX_DURATION)
 448                ns = IR_MAX_DURATION;
 449        pulse_clocks = ns_to_pulse_clocks(ns);
 450        *divider = pulse_clocks_to_clock_divider(pulse_clocks);
 451        cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
 452        return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
 453}
 454
 455/*
 456 * IR Tx Carrier Duty Cycle register helpers
 457 */
 458static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
 459                                          unsigned int duty_cycle)
 460{
 461        u32 n;
 462        n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
 463        if (n != 0)
 464                n--;
 465        if (n > 15)
 466                n = 15;
 467        cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
 468        return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
 469}
 470
 471/*
 472 * IR Filter Register helpers
 473 */
 474static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
 475{
 476        u32 count = ns_to_lpf_count(min_width_ns);
 477        cx25840_write4(c, CX25840_IR_FILTR_REG, count);
 478        return lpf_count_to_ns(count);
 479}
 480
 481/*
 482 * IR IRQ Enable Register helpers
 483 */
 484static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
 485{
 486        struct cx25840_state *state = to_state(sd);
 487
 488        if (is_cx23885(state) || is_cx23887(state))
 489                mask ^= IRQEN_MSK;
 490        mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
 491        cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
 492                        ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
 493}
 494
 495static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
 496{
 497        struct cx25840_state *state = to_state(sd);
 498
 499        if (is_cx23885(state) || is_cx23887(state))
 500                mask ^= IRQEN_MSK;
 501        mask &= IRQEN_TSE;
 502        cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
 503}
 504
 505/*
 506 * V4L2 Subdevice IR Ops
 507 */
 508int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
 509{
 510        struct cx25840_state *state = to_state(sd);
 511        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 512        struct i2c_client *c = NULL;
 513        unsigned long flags;
 514
 515        union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
 516        unsigned int i, j, k;
 517        u32 events, v;
 518        int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
 519        u32 cntrl, irqen, stats;
 520
 521        *handled = false;
 522        if (ir_state == NULL)
 523                return -ENODEV;
 524
 525        c = ir_state->c;
 526
 527        /* Only support the IR controller for the CX2388[57] AV Core for now */
 528        if (!(is_cx23885(state) || is_cx23887(state)))
 529                return -ENODEV;
 530
 531        cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
 532        irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
 533        if (is_cx23885(state) || is_cx23887(state))
 534                irqen ^= IRQEN_MSK;
 535        stats = cx25840_read4(c, CX25840_IR_STATS_REG);
 536
 537        tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
 538        rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
 539        rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
 540        ror = stats & STATS_ROR; /* Rx FIFO Over Run */
 541
 542        tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
 543        rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */
 544        rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
 545        roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
 546
 547        v4l2_dbg(2, ir_debug, sd, "IR IRQ Status:  %s %s %s %s %s %s\n",
 548                 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
 549                 rto ? "rto" : "   ", ror ? "ror" : "   ",
 550                 stats & STATS_TBY ? "tby" : "   ",
 551                 stats & STATS_RBY ? "rby" : "   ");
 552
 553        v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
 554                 tse ? "tse" : "   ", rse ? "rse" : "   ",
 555                 rte ? "rte" : "   ", roe ? "roe" : "   ");
 556
 557        /*
 558         * Transmitter interrupt service
 559         */
 560        if (tse && tsr) {
 561                /*
 562                 * TODO:
 563                 * Check the watermark threshold setting
 564                 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
 565                 * Push the data to the hardware FIFO.
 566                 * If there was nothing more to send in the tx_kfifo, disable
 567                 *      the TSR IRQ and notify the v4l2_device.
 568                 * If there was something in the tx_kfifo, check the tx_kfifo
 569                 *      level and notify the v4l2_device, if it is low.
 570                 */
 571                /* For now, inhibit TSR interrupt until Tx is implemented */
 572                irqenable_tx(sd, 0);
 573                events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
 574                v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
 575                *handled = true;
 576        }
 577
 578        /*
 579         * Receiver interrupt service
 580         */
 581        kror = 0;
 582        if ((rse && rsr) || (rte && rto)) {
 583                /*
 584                 * Receive data on RSR to clear the STATS_RSR.
 585                 * Receive data on RTO, since we may not have yet hit the RSR
 586                 * watermark when we receive the RTO.
 587                 */
 588                for (i = 0, v = FIFO_RX_NDV;
 589                     (v & FIFO_RX_NDV) && !kror; i = 0) {
 590                        for (j = 0;
 591                             (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
 592                                v = cx25840_read4(c, CX25840_IR_FIFO_REG);
 593                                rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
 594                                i++;
 595                        }
 596                        if (i == 0)
 597                                break;
 598                        j = i * sizeof(union cx25840_ir_fifo_rec);
 599                        k = kfifo_in_locked(&ir_state->rx_kfifo,
 600                                            (unsigned char *) rx_data, j,
 601                                            &ir_state->rx_kfifo_lock);
 602                        if (k != j)
 603                                kror++; /* rx_kfifo over run */
 604                }
 605                *handled = true;
 606        }
 607
 608        events = 0;
 609        v = 0;
 610        if (kror) {
 611                events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
 612                v4l2_err(sd, "IR receiver software FIFO overrun\n");
 613        }
 614        if (roe && ror) {
 615                /*
 616                 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
 617                 * the Rx FIFO Over Run status (STATS_ROR)
 618                 */
 619                v |= CNTRL_RFE;
 620                events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
 621                v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
 622        }
 623        if (rte && rto) {
 624                /*
 625                 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
 626                 * the Rx Pulse Width Timer Time Out (STATS_RTO)
 627                 */
 628                v |= CNTRL_RXE;
 629                events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
 630        }
 631        if (v) {
 632                /* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */
 633                cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
 634                cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
 635                *handled = true;
 636        }
 637        spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
 638        if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
 639                events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
 640        spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
 641
 642        if (events)
 643                v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
 644        return 0;
 645}
 646
 647/* Receiver */
 648static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
 649                              ssize_t *num)
 650{
 651        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 652        bool invert;
 653        u16 divider;
 654        unsigned int i, n;
 655        union cx25840_ir_fifo_rec *p;
 656        unsigned u, v, w;
 657
 658        if (ir_state == NULL)
 659                return -ENODEV;
 660
 661        invert = (bool) atomic_read(&ir_state->rx_invert);
 662        divider = (u16) atomic_read(&ir_state->rxclk_divider);
 663
 664        n = count / sizeof(union cx25840_ir_fifo_rec)
 665                * sizeof(union cx25840_ir_fifo_rec);
 666        if (n == 0) {
 667                *num = 0;
 668                return 0;
 669        }
 670
 671        n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
 672                             &ir_state->rx_kfifo_lock);
 673
 674        n /= sizeof(union cx25840_ir_fifo_rec);
 675        *num = n * sizeof(union cx25840_ir_fifo_rec);
 676
 677        for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
 678
 679                if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
 680                        /* Assume RTO was because of no IR light input */
 681                        u = 0;
 682                        w = 1;
 683                } else {
 684                        u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
 685                        if (invert)
 686                                u = u ? 0 : 1;
 687                        w = 0;
 688                }
 689
 690                v = (unsigned) pulse_width_count_to_ns(
 691                                  (u16)(p->hw_fifo_data & FIFO_RXTX), divider) / 1000;
 692                if (v > IR_MAX_DURATION)
 693                        v = IR_MAX_DURATION;
 694
 695                p->ir_core_data = (struct ir_raw_event)
 696                        { .pulse = u, .duration = v, .timeout = w };
 697
 698                v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns  %s  %s\n",
 699                         v, u ? "mark" : "space", w ? "(timed out)" : "");
 700                if (w)
 701                        v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
 702        }
 703        return 0;
 704}
 705
 706static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
 707                                      struct v4l2_subdev_ir_parameters *p)
 708{
 709        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 710
 711        if (ir_state == NULL)
 712                return -ENODEV;
 713
 714        mutex_lock(&ir_state->rx_params_lock);
 715        memcpy(p, &ir_state->rx_params,
 716                                      sizeof(struct v4l2_subdev_ir_parameters));
 717        mutex_unlock(&ir_state->rx_params_lock);
 718        return 0;
 719}
 720
 721static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
 722{
 723        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 724        struct i2c_client *c;
 725
 726        if (ir_state == NULL)
 727                return -ENODEV;
 728
 729        c = ir_state->c;
 730        mutex_lock(&ir_state->rx_params_lock);
 731
 732        /* Disable or slow down all IR Rx circuits and counters */
 733        irqenable_rx(sd, 0);
 734        control_rx_enable(c, false);
 735        control_rx_demodulation_enable(c, false);
 736        control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
 737        filter_rx_s_min_width(c, 0);
 738        cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
 739
 740        ir_state->rx_params.shutdown = true;
 741
 742        mutex_unlock(&ir_state->rx_params_lock);
 743        return 0;
 744}
 745
 746static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
 747                                      struct v4l2_subdev_ir_parameters *p)
 748{
 749        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 750        struct i2c_client *c;
 751        struct v4l2_subdev_ir_parameters *o;
 752        u16 rxclk_divider;
 753
 754        if (ir_state == NULL)
 755                return -ENODEV;
 756
 757        if (p->shutdown)
 758                return cx25840_ir_rx_shutdown(sd);
 759
 760        if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
 761                return -ENOSYS;
 762
 763        c = ir_state->c;
 764        o = &ir_state->rx_params;
 765
 766        mutex_lock(&ir_state->rx_params_lock);
 767
 768        o->shutdown = p->shutdown;
 769
 770        p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
 771        o->mode = p->mode;
 772
 773        p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
 774        o->bytes_per_data_element = p->bytes_per_data_element;
 775
 776        /* Before we tweak the hardware, we have to disable the receiver */
 777        irqenable_rx(sd, 0);
 778        control_rx_enable(c, false);
 779
 780        control_rx_demodulation_enable(c, p->modulation);
 781        o->modulation = p->modulation;
 782
 783        if (p->modulation) {
 784                p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
 785                                                     &rxclk_divider);
 786
 787                o->carrier_freq = p->carrier_freq;
 788
 789                p->duty_cycle = 50;
 790                o->duty_cycle = p->duty_cycle;
 791
 792                control_rx_s_carrier_window(c, p->carrier_freq,
 793                                            &p->carrier_range_lower,
 794                                            &p->carrier_range_upper);
 795                o->carrier_range_lower = p->carrier_range_lower;
 796                o->carrier_range_upper = p->carrier_range_upper;
 797
 798                p->max_pulse_width =
 799                        (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
 800        } else {
 801                p->max_pulse_width =
 802                            rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
 803                                                       &rxclk_divider);
 804        }
 805        o->max_pulse_width = p->max_pulse_width;
 806        atomic_set(&ir_state->rxclk_divider, rxclk_divider);
 807
 808        p->noise_filter_min_width =
 809                            filter_rx_s_min_width(c, p->noise_filter_min_width);
 810        o->noise_filter_min_width = p->noise_filter_min_width;
 811
 812        p->resolution = clock_divider_to_resolution(rxclk_divider);
 813        o->resolution = p->resolution;
 814
 815        /* FIXME - make this dependent on resolution for better performance */
 816        control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
 817
 818        control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
 819
 820        o->invert_level = p->invert_level;
 821        atomic_set(&ir_state->rx_invert, p->invert_level);
 822
 823        o->interrupt_enable = p->interrupt_enable;
 824        o->enable = p->enable;
 825        if (p->enable) {
 826                unsigned long flags;
 827
 828                spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
 829                kfifo_reset(&ir_state->rx_kfifo);
 830                spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
 831                if (p->interrupt_enable)
 832                        irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
 833                control_rx_enable(c, p->enable);
 834        }
 835
 836        mutex_unlock(&ir_state->rx_params_lock);
 837        return 0;
 838}
 839
 840/* Transmitter */
 841static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
 842                               ssize_t *num)
 843{
 844        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 845
 846        if (ir_state == NULL)
 847                return -ENODEV;
 848
 849#if 0
 850        /*
 851         * FIXME - the code below is an incomplete and untested sketch of what
 852         * may need to be done.  The critical part is to get 4 (or 8) pulses
 853         * from the tx_kfifo, or converted from ns to the proper units from the
 854         * input, and push them off to the hardware Tx FIFO right away, if the
 855         * HW TX fifo needs service.  The rest can be pushed to the tx_kfifo in
 856         * a less critical timeframe.  Also watch out for overruning the
 857         * tx_kfifo - don't let it happen and let the caller know not all his
 858         * pulses were written.
 859         */
 860        u32 *ns_pulse = (u32 *) buf;
 861        unsigned int n;
 862        u32 fifo_pulse[FIFO_TX_DEPTH];
 863        u32 mark;
 864
 865        /* Compute how much we can fit in the tx kfifo */
 866        n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
 867        n = min(n, (unsigned int) count);
 868        n /= sizeof(u32);
 869
 870        /* FIXME - turn on Tx Fifo service interrupt
 871         * check hardware fifo level, and other stuff
 872         */
 873        for (i = 0; i < n; ) {
 874                for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
 875                        mark = ns_pulse[i] & LEVEL_MASK;
 876                        fifo_pulse[j] = ns_to_pulse_width_count(
 877                                         ns_pulse[i] &
 878                                               ~LEVEL_MASK,
 879                                         ir_state->txclk_divider);
 880                        if (mark)
 881                                fifo_pulse[j] &= FIFO_RXTX_LVL;
 882                        i++;
 883                }
 884                kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
 885                                                               j * sizeof(u32));
 886        }
 887        *num = n * sizeof(u32);
 888#else
 889        /* For now enable the Tx FIFO Service interrupt & pretend we did work */
 890        irqenable_tx(sd, IRQEN_TSE);
 891        *num = count;
 892#endif
 893        return 0;
 894}
 895
 896static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
 897                                      struct v4l2_subdev_ir_parameters *p)
 898{
 899        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 900
 901        if (ir_state == NULL)
 902                return -ENODEV;
 903
 904        mutex_lock(&ir_state->tx_params_lock);
 905        memcpy(p, &ir_state->tx_params,
 906                                      sizeof(struct v4l2_subdev_ir_parameters));
 907        mutex_unlock(&ir_state->tx_params_lock);
 908        return 0;
 909}
 910
 911static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
 912{
 913        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 914        struct i2c_client *c;
 915
 916        if (ir_state == NULL)
 917                return -ENODEV;
 918
 919        c = ir_state->c;
 920        mutex_lock(&ir_state->tx_params_lock);
 921
 922        /* Disable or slow down all IR Tx circuits and counters */
 923        irqenable_tx(sd, 0);
 924        control_tx_enable(c, false);
 925        control_tx_modulation_enable(c, false);
 926        cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
 927
 928        ir_state->tx_params.shutdown = true;
 929
 930        mutex_unlock(&ir_state->tx_params_lock);
 931        return 0;
 932}
 933
 934static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
 935                                      struct v4l2_subdev_ir_parameters *p)
 936{
 937        struct cx25840_ir_state *ir_state = to_ir_state(sd);
 938        struct i2c_client *c;
 939        struct v4l2_subdev_ir_parameters *o;
 940        u16 txclk_divider;
 941
 942        if (ir_state == NULL)
 943                return -ENODEV;
 944
 945        if (p->shutdown)
 946                return cx25840_ir_tx_shutdown(sd);
 947
 948        if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
 949                return -ENOSYS;
 950
 951        c = ir_state->c;
 952        o = &ir_state->tx_params;
 953        mutex_lock(&ir_state->tx_params_lock);
 954
 955        o->shutdown = p->shutdown;
 956
 957        p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
 958        o->mode = p->mode;
 959
 960        p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
 961        o->bytes_per_data_element = p->bytes_per_data_element;
 962
 963        /* Before we tweak the hardware, we have to disable the transmitter */
 964        irqenable_tx(sd, 0);
 965        control_tx_enable(c, false);
 966
 967        control_tx_modulation_enable(c, p->modulation);
 968        o->modulation = p->modulation;
 969
 970        if (p->modulation) {
 971                p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
 972                                                     &txclk_divider);
 973                o->carrier_freq = p->carrier_freq;
 974
 975                p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
 976                o->duty_cycle = p->duty_cycle;
 977
 978                p->max_pulse_width =
 979                        (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
 980        } else {
 981                p->max_pulse_width =
 982                            txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
 983                                                       &txclk_divider);
 984        }
 985        o->max_pulse_width = p->max_pulse_width;
 986        atomic_set(&ir_state->txclk_divider, txclk_divider);
 987
 988        p->resolution = clock_divider_to_resolution(txclk_divider);
 989        o->resolution = p->resolution;
 990
 991        /* FIXME - make this dependent on resolution for better performance */
 992        control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
 993
 994        control_tx_polarity_invert(c, p->invert_carrier_sense);
 995        o->invert_carrier_sense = p->invert_carrier_sense;
 996
 997        /*
 998         * FIXME: we don't have hardware help for IO pin level inversion
 999         * here like we have on the CX23888.
1000         * Act on this with some mix of logical inversion of data levels,
1001         * carrier polarity, and carrier duty cycle.
1002         */
1003        o->invert_level = p->invert_level;
1004
1005        o->interrupt_enable = p->interrupt_enable;
1006        o->enable = p->enable;
1007        if (p->enable) {
1008                /* reset tx_fifo here */
1009                if (p->interrupt_enable)
1010                        irqenable_tx(sd, IRQEN_TSE);
1011                control_tx_enable(c, p->enable);
1012        }
1013
1014        mutex_unlock(&ir_state->tx_params_lock);
1015        return 0;
1016}
1017
1018
1019/*
1020 * V4L2 Subdevice Core Ops support
1021 */
1022int cx25840_ir_log_status(struct v4l2_subdev *sd)
1023{
1024        struct cx25840_state *state = to_state(sd);
1025        struct i2c_client *c = state->c;
1026        char *s;
1027        int i, j;
1028        u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
1029
1030        /* The CX23888 chip doesn't have an IR controller on the A/V core */
1031        if (is_cx23888(state))
1032                return 0;
1033
1034        cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
1035        txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
1036        rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
1037        cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
1038        stats = cx25840_read4(c, CX25840_IR_STATS_REG);
1039        irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
1040        if (is_cx23885(state) || is_cx23887(state))
1041                irqen ^= IRQEN_MSK;
1042        filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
1043
1044        v4l2_info(sd, "IR Receiver:\n");
1045        v4l2_info(sd, "\tEnabled:                           %s\n",
1046                  cntrl & CNTRL_RXE ? "yes" : "no");
1047        v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
1048                  cntrl & CNTRL_DMD ? "enabled" : "disabled");
1049        v4l2_info(sd, "\tFIFO:                              %s\n",
1050                  cntrl & CNTRL_RFE ? "enabled" : "disabled");
1051        switch (cntrl & CNTRL_EDG) {
1052        case CNTRL_EDG_NONE:
1053                s = "disabled";
1054                break;
1055        case CNTRL_EDG_FALL:
1056                s = "falling edge";
1057                break;
1058        case CNTRL_EDG_RISE:
1059                s = "rising edge";
1060                break;
1061        case CNTRL_EDG_BOTH:
1062                s = "rising & falling edges";
1063                break;
1064        default:
1065                s = "??? edge";
1066                break;
1067        }
1068        v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
1069        v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1070                  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1071        v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1072                  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1073        v4l2_info(sd, "\tLoopback mode:                     %s\n",
1074                  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1075        if (cntrl & CNTRL_DMD) {
1076                v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
1077                          clock_divider_to_carrier_freq(rxclk));
1078                switch (cntrl & CNTRL_WIN) {
1079                case CNTRL_WIN_3_3:
1080                        i = 3;
1081                        j = 3;
1082                        break;
1083                case CNTRL_WIN_4_3:
1084                        i = 4;
1085                        j = 3;
1086                        break;
1087                case CNTRL_WIN_3_4:
1088                        i = 3;
1089                        j = 4;
1090                        break;
1091                case CNTRL_WIN_4_4:
1092                        i = 4;
1093                        j = 4;
1094                        break;
1095                default:
1096                        i = 0;
1097                        j = 0;
1098                        break;
1099                }
1100                v4l2_info(sd, "\tNext carrier edge window:          16 clocks -%1d/+%1d, %u to %u Hz\n",
1101                          i, j,
1102                          clock_divider_to_freq(rxclk, 16 + j),
1103                          clock_divider_to_freq(rxclk, 16 - i));
1104        }
1105        v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1106                  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1107                  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1108        v4l2_info(sd, "\tLow pass filter:                   %s\n",
1109                  filtr ? "enabled" : "disabled");
1110        if (filtr)
1111                v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, %u ns\n",
1112                          lpf_count_to_us(filtr),
1113                          lpf_count_to_ns(filtr));
1114        v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1115                  stats & STATS_RTO ? "yes" : "no");
1116        v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1117                  irqen & IRQEN_RTE ? "enabled" : "disabled");
1118        v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1119                  stats & STATS_ROR ? "yes" : "no");
1120        v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1121                  irqen & IRQEN_ROE ? "enabled" : "disabled");
1122        v4l2_info(sd, "\tBusy:                              %s\n",
1123                  stats & STATS_RBY ? "yes" : "no");
1124        v4l2_info(sd, "\tFIFO service requested:            %s\n",
1125                  stats & STATS_RSR ? "yes" : "no");
1126        v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1127                  irqen & IRQEN_RSE ? "enabled" : "disabled");
1128
1129        v4l2_info(sd, "IR Transmitter:\n");
1130        v4l2_info(sd, "\tEnabled:                           %s\n",
1131                  cntrl & CNTRL_TXE ? "yes" : "no");
1132        v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1133                  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1134        v4l2_info(sd, "\tFIFO:                              %s\n",
1135                  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1136        v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1137                  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1138        v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1139                  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1140                                    : "space:noburst mark:burst");
1141        if (cntrl & CNTRL_MOD) {
1142                v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1143                          clock_divider_to_carrier_freq(txclk));
1144                v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1145                          cduty + 1);
1146        }
1147        v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1148                  pulse_width_count_to_us(FIFO_RXTX, txclk),
1149                  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1150        v4l2_info(sd, "\tBusy:                              %s\n",
1151                  stats & STATS_TBY ? "yes" : "no");
1152        v4l2_info(sd, "\tFIFO service requested:            %s\n",
1153                  stats & STATS_TSR ? "yes" : "no");
1154        v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1155                  irqen & IRQEN_TSE ? "enabled" : "disabled");
1156
1157        return 0;
1158}
1159
1160
1161const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1162        .rx_read = cx25840_ir_rx_read,
1163        .rx_g_parameters = cx25840_ir_rx_g_parameters,
1164        .rx_s_parameters = cx25840_ir_rx_s_parameters,
1165
1166        .tx_write = cx25840_ir_tx_write,
1167        .tx_g_parameters = cx25840_ir_tx_g_parameters,
1168        .tx_s_parameters = cx25840_ir_tx_s_parameters,
1169};
1170
1171
1172static const struct v4l2_subdev_ir_parameters default_rx_params = {
1173        .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1174        .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1175
1176        .enable = false,
1177        .interrupt_enable = false,
1178        .shutdown = true,
1179
1180        .modulation = true,
1181        .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1182
1183        /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1184        /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1185        .noise_filter_min_width = 333333, /* ns */
1186        .carrier_range_lower = 35000,
1187        .carrier_range_upper = 37000,
1188        .invert_level = false,
1189};
1190
1191static const struct v4l2_subdev_ir_parameters default_tx_params = {
1192        .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1193        .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1194
1195        .enable = false,
1196        .interrupt_enable = false,
1197        .shutdown = true,
1198
1199        .modulation = true,
1200        .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1201        .duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1202        .invert_level = false,
1203        .invert_carrier_sense = false,
1204};
1205
1206int cx25840_ir_probe(struct v4l2_subdev *sd)
1207{
1208        struct cx25840_state *state = to_state(sd);
1209        struct cx25840_ir_state *ir_state;
1210        struct v4l2_subdev_ir_parameters default_params;
1211
1212        /* Only init the IR controller for the CX2388[57] AV Core for now */
1213        if (!(is_cx23885(state) || is_cx23887(state)))
1214                return 0;
1215
1216        ir_state = devm_kzalloc(&state->c->dev, sizeof(*ir_state), GFP_KERNEL);
1217        if (ir_state == NULL)
1218                return -ENOMEM;
1219
1220        spin_lock_init(&ir_state->rx_kfifo_lock);
1221        if (kfifo_alloc(&ir_state->rx_kfifo,
1222                        CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1223                return -ENOMEM;
1224
1225        ir_state->c = state->c;
1226        state->ir_state = ir_state;
1227
1228        /* Ensure no interrupts arrive yet */
1229        if (is_cx23885(state) || is_cx23887(state))
1230                cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1231        else
1232                cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1233
1234        mutex_init(&ir_state->rx_params_lock);
1235        default_params = default_rx_params;
1236        v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1237
1238        mutex_init(&ir_state->tx_params_lock);
1239        default_params = default_tx_params;
1240        v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1241
1242        return 0;
1243}
1244
1245int cx25840_ir_remove(struct v4l2_subdev *sd)
1246{
1247        struct cx25840_state *state = to_state(sd);
1248        struct cx25840_ir_state *ir_state = to_ir_state(sd);
1249
1250        if (ir_state == NULL)
1251                return -ENODEV;
1252
1253        cx25840_ir_rx_shutdown(sd);
1254        cx25840_ir_tx_shutdown(sd);
1255
1256        kfifo_free(&ir_state->rx_kfifo);
1257        state->ir_state = NULL;
1258        return 0;
1259}
1260