linux/drivers/memory/samsung/exynos5422-dmc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
   4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/devfreq.h>
   9#include <linux/devfreq-event.h>
  10#include <linux/device.h>
  11#include <linux/interrupt.h>
  12#include <linux/io.h>
  13#include <linux/mfd/syscon.h>
  14#include <linux/module.h>
  15#include <linux/moduleparam.h>
  16#include <linux/of_device.h>
  17#include <linux/pm_opp.h>
  18#include <linux/platform_device.h>
  19#include <linux/regmap.h>
  20#include <linux/regulator/consumer.h>
  21#include <linux/slab.h>
  22#include "../jedec_ddr.h"
  23#include "../of_memory.h"
  24
  25static int irqmode;
  26module_param(irqmode, int, 0644);
  27MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
  28
  29#define EXYNOS5_DREXI_TIMINGAREF                (0x0030)
  30#define EXYNOS5_DREXI_TIMINGROW0                (0x0034)
  31#define EXYNOS5_DREXI_TIMINGDATA0               (0x0038)
  32#define EXYNOS5_DREXI_TIMINGPOWER0              (0x003C)
  33#define EXYNOS5_DREXI_TIMINGROW1                (0x00E4)
  34#define EXYNOS5_DREXI_TIMINGDATA1               (0x00E8)
  35#define EXYNOS5_DREXI_TIMINGPOWER1              (0x00EC)
  36#define CDREX_PAUSE                             (0x2091c)
  37#define CDREX_LPDDR3PHY_CON3                    (0x20a20)
  38#define CDREX_LPDDR3PHY_CLKM_SRC                (0x20700)
  39#define EXYNOS5_TIMING_SET_SWI                  BIT(28)
  40#define USE_MX_MSPLL_TIMINGS                    (1)
  41#define USE_BPLL_TIMINGS                        (0)
  42#define EXYNOS5_AREF_NORMAL                     (0x2e)
  43
  44#define DREX_PPCCLKCON          (0x0130)
  45#define DREX_PEREV2CONFIG       (0x013c)
  46#define DREX_PMNC_PPC           (0xE000)
  47#define DREX_CNTENS_PPC         (0xE010)
  48#define DREX_CNTENC_PPC         (0xE020)
  49#define DREX_INTENS_PPC         (0xE030)
  50#define DREX_INTENC_PPC         (0xE040)
  51#define DREX_FLAG_PPC           (0xE050)
  52#define DREX_PMCNT2_PPC         (0xE130)
  53
  54/*
  55 * A value for register DREX_PMNC_PPC which should be written to reset
  56 * the cycle counter CCNT (a reference wall clock). It sets zero to the
  57 * CCNT counter.
  58 */
  59#define CC_RESET                BIT(2)
  60
  61/*
  62 * A value for register DREX_PMNC_PPC which does the reset of all performance
  63 * counters to zero.
  64 */
  65#define PPC_COUNTER_RESET       BIT(1)
  66
  67/*
  68 * Enables all configured counters (including cycle counter). The value should
  69 * be written to the register DREX_PMNC_PPC.
  70 */
  71#define PPC_ENABLE              BIT(0)
  72
  73/* A value for register DREX_PPCCLKCON which enables performance events clock.
  74 * Must be written before first access to the performance counters register
  75 * set, otherwise it could crash.
  76 */
  77#define PEREV_CLK_EN            BIT(0)
  78
  79/*
  80 * Values which are used to enable counters, interrupts or configure flags of
  81 * the performance counters. They configure counter 2 and cycle counter.
  82 */
  83#define PERF_CNT2               BIT(2)
  84#define PERF_CCNT               BIT(31)
  85
  86/*
  87 * Performance event types which are used for setting the preferred event
  88 * to track in the counters.
  89 * There is a set of different types, the values are from range 0 to 0x6f.
  90 * These settings should be written to the configuration register which manages
  91 * the type of the event (register DREX_PEREV2CONFIG).
  92 */
  93#define READ_TRANSFER_CH0       (0x6d)
  94#define READ_TRANSFER_CH1       (0x6f)
  95
  96#define PERF_COUNTER_START_VALUE 0xff000000
  97#define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
  98
  99/**
 100 * struct dmc_opp_table - Operating level desciption
 101 * @freq_hz:            target frequency in Hz
 102 * @volt_uv:            target voltage in uV
 103 *
 104 * Covers frequency and voltage settings of the DMC operating mode.
 105 */
 106struct dmc_opp_table {
 107        u32 freq_hz;
 108        u32 volt_uv;
 109};
 110
 111/**
 112 * struct exynos5_dmc - main structure describing DMC device
 113 * @dev:                DMC device
 114 * @df:                 devfreq device structure returned by devfreq framework
 115 * @gov_data:           configuration of devfreq governor
 116 * @base_drexi0:        DREX0 registers mapping
 117 * @base_drexi1:        DREX1 registers mapping
 118 * @clk_regmap:         regmap for clock controller registers
 119 * @lock:               protects curr_rate and frequency/voltage setting section
 120 * @curr_rate:          current frequency
 121 * @curr_volt:          current voltage
 122 * @opp:                OPP table
 123 * @opp_count:          number of 'opp' elements
 124 * @timings_arr_size:   number of 'timings' elements
 125 * @timing_row:         values for timing row register, for each OPP
 126 * @timing_data:        values for timing data register, for each OPP
 127 * @timing_power:       balues for timing power register, for each OPP
 128 * @timings:            DDR memory timings, from device tree
 129 * @min_tck:            DDR memory minimum timing values, from device tree
 130 * @bypass_timing_row:  value for timing row register for bypass timings
 131 * @bypass_timing_data: value for timing data register for bypass timings
 132 * @bypass_timing_power:        value for timing power register for bypass
 133 *                              timings
 134 * @vdd_mif:            Memory interface regulator
 135 * @fout_spll:          clock: SPLL
 136 * @fout_bpll:          clock: BPLL
 137 * @mout_spll:          clock: mux SPLL
 138 * @mout_bpll:          clock: mux BPLL
 139 * @mout_mclk_cdrex:    clock: mux mclk_cdrex
 140 * @mout_mx_mspll_ccore:        clock: mux mx_mspll_ccore
 141 * @counter:            devfreq events
 142 * @num_counters:       number of 'counter' elements
 143 * @last_overflow_ts:   time (in ns) of last overflow of each DREX
 144 * @load:               utilization in percents
 145 * @total:              total time between devfreq events
 146 * @in_irq_mode:        whether running in interrupt mode (true)
 147 *                      or polling (false)
 148 *
 149 * The main structure for the Dynamic Memory Controller which covers clocks,
 150 * memory regions, HW information, parameters and current operating mode.
 151 */
 152struct exynos5_dmc {
 153        struct device *dev;
 154        struct devfreq *df;
 155        struct devfreq_simple_ondemand_data gov_data;
 156        void __iomem *base_drexi0;
 157        void __iomem *base_drexi1;
 158        struct regmap *clk_regmap;
 159        /* Protects curr_rate and frequency/voltage setting section */
 160        struct mutex lock;
 161        unsigned long curr_rate;
 162        unsigned long curr_volt;
 163        struct dmc_opp_table *opp;
 164        int opp_count;
 165        u32 timings_arr_size;
 166        u32 *timing_row;
 167        u32 *timing_data;
 168        u32 *timing_power;
 169        const struct lpddr3_timings *timings;
 170        const struct lpddr3_min_tck *min_tck;
 171        u32 bypass_timing_row;
 172        u32 bypass_timing_data;
 173        u32 bypass_timing_power;
 174        struct regulator *vdd_mif;
 175        struct clk *fout_spll;
 176        struct clk *fout_bpll;
 177        struct clk *mout_spll;
 178        struct clk *mout_bpll;
 179        struct clk *mout_mclk_cdrex;
 180        struct clk *mout_mx_mspll_ccore;
 181        struct devfreq_event_dev **counter;
 182        int num_counters;
 183        u64 last_overflow_ts[2];
 184        unsigned long load;
 185        unsigned long total;
 186        bool in_irq_mode;
 187};
 188
 189#define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
 190        { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
 191
 192#define TIMING_VAL2REG(timing, t_val)                   \
 193({                                                      \
 194                u32 __val;                              \
 195                __val = (t_val) << (timing)->bit_beg;   \
 196                __val;                                  \
 197})
 198
 199struct timing_reg {
 200        char *name;
 201        int bit_beg;
 202        int bit_end;
 203        unsigned int val;
 204};
 205
 206static const struct timing_reg timing_row_reg_fields[] = {
 207        TIMING_FIELD("tRFC", 24, 31),
 208        TIMING_FIELD("tRRD", 20, 23),
 209        TIMING_FIELD("tRP", 16, 19),
 210        TIMING_FIELD("tRCD", 12, 15),
 211        TIMING_FIELD("tRC", 6, 11),
 212        TIMING_FIELD("tRAS", 0, 5),
 213};
 214
 215static const struct timing_reg timing_data_reg_fields[] = {
 216        TIMING_FIELD("tWTR", 28, 31),
 217        TIMING_FIELD("tWR", 24, 27),
 218        TIMING_FIELD("tRTP", 20, 23),
 219        TIMING_FIELD("tW2W-C2C", 14, 14),
 220        TIMING_FIELD("tR2R-C2C", 12, 12),
 221        TIMING_FIELD("WL", 8, 11),
 222        TIMING_FIELD("tDQSCK", 4, 7),
 223        TIMING_FIELD("RL", 0, 3),
 224};
 225
 226static const struct timing_reg timing_power_reg_fields[] = {
 227        TIMING_FIELD("tFAW", 26, 31),
 228        TIMING_FIELD("tXSR", 16, 25),
 229        TIMING_FIELD("tXP", 8, 15),
 230        TIMING_FIELD("tCKE", 4, 7),
 231        TIMING_FIELD("tMRD", 0, 3),
 232};
 233
 234#define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
 235                      ARRAY_SIZE(timing_data_reg_fields) + \
 236                      ARRAY_SIZE(timing_power_reg_fields))
 237
 238static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
 239{
 240        int i, ret;
 241
 242        for (i = 0; i < dmc->num_counters; i++) {
 243                if (!dmc->counter[i])
 244                        continue;
 245                ret = devfreq_event_set_event(dmc->counter[i]);
 246                if (ret < 0)
 247                        return ret;
 248        }
 249        return 0;
 250}
 251
 252static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
 253{
 254        int i, ret;
 255
 256        for (i = 0; i < dmc->num_counters; i++) {
 257                if (!dmc->counter[i])
 258                        continue;
 259                ret = devfreq_event_enable_edev(dmc->counter[i]);
 260                if (ret < 0)
 261                        return ret;
 262        }
 263        return 0;
 264}
 265
 266static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
 267{
 268        int i, ret;
 269
 270        for (i = 0; i < dmc->num_counters; i++) {
 271                if (!dmc->counter[i])
 272                        continue;
 273                ret = devfreq_event_disable_edev(dmc->counter[i]);
 274                if (ret < 0)
 275                        return ret;
 276        }
 277        return 0;
 278}
 279
 280/**
 281 * find_target_freq_id() - Finds requested frequency in local DMC configuration
 282 * @dmc:        device for which the information is checked
 283 * @target_rate:        requested frequency in KHz
 284 *
 285 * Seeks in the local DMC driver structure for the requested frequency value
 286 * and returns index or error value.
 287 */
 288static int find_target_freq_idx(struct exynos5_dmc *dmc,
 289                                unsigned long target_rate)
 290{
 291        int i;
 292
 293        for (i = dmc->opp_count - 1; i >= 0; i--)
 294                if (dmc->opp[i].freq_hz <= target_rate)
 295                        return i;
 296
 297        return -EINVAL;
 298}
 299
 300/**
 301 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
 302 * @dmc:        device for which the new settings is going to be applied
 303 * @set:        boolean variable passing set value
 304 *
 305 * Changes the register set, which holds timing parameters.
 306 * There is two register sets: 0 and 1. The register set 0
 307 * is used in normal operation when the clock is provided from main PLL.
 308 * The bank register set 1 is used when the main PLL frequency is going to be
 309 * changed and the clock is taken from alternative, stable source.
 310 * This function switches between these banks according to the
 311 * currently used clock source.
 312 */
 313static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
 314{
 315        unsigned int reg;
 316        int ret;
 317
 318        ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
 319        if (ret)
 320                return ret;
 321
 322        if (set)
 323                reg |= EXYNOS5_TIMING_SET_SWI;
 324        else
 325                reg &= ~EXYNOS5_TIMING_SET_SWI;
 326
 327        regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
 328
 329        return 0;
 330}
 331
 332/**
 333 * exynos5_init_freq_table() - Initialized PM OPP framework
 334 * @dmc:        DMC device for which the frequencies are used for OPP init
 335 * @profile:    devfreq device's profile
 336 *
 337 * Populate the devfreq device's OPP table based on current frequency, voltage.
 338 */
 339static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
 340                                   struct devfreq_dev_profile *profile)
 341{
 342        int i, ret;
 343        int idx;
 344        unsigned long freq;
 345
 346        ret = dev_pm_opp_of_add_table(dmc->dev);
 347        if (ret < 0) {
 348                dev_err(dmc->dev, "Failed to get OPP table\n");
 349                return ret;
 350        }
 351
 352        dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
 353
 354        dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
 355                                      sizeof(struct dmc_opp_table), GFP_KERNEL);
 356        if (!dmc->opp)
 357                goto err_opp;
 358
 359        idx = dmc->opp_count - 1;
 360        for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
 361                struct dev_pm_opp *opp;
 362
 363                opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
 364                if (IS_ERR(opp))
 365                        goto err_opp;
 366
 367                dmc->opp[idx - i].freq_hz = freq;
 368                dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
 369
 370                dev_pm_opp_put(opp);
 371        }
 372
 373        return 0;
 374
 375err_opp:
 376        dev_pm_opp_of_remove_table(dmc->dev);
 377
 378        return -EINVAL;
 379}
 380
 381/**
 382 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
 383 * @dmc:        device for which the new settings is going to be applied
 384 *
 385 * Low-level function for changing timings for DRAM memory clocking from
 386 * 'bypass' clock source (fixed frequency @400MHz).
 387 * It uses timing bank registers set 1.
 388 */
 389static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
 390{
 391        writel(EXYNOS5_AREF_NORMAL,
 392               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
 393
 394        writel(dmc->bypass_timing_row,
 395               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
 396        writel(dmc->bypass_timing_row,
 397               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
 398        writel(dmc->bypass_timing_data,
 399               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
 400        writel(dmc->bypass_timing_data,
 401               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
 402        writel(dmc->bypass_timing_power,
 403               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
 404        writel(dmc->bypass_timing_power,
 405               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
 406}
 407
 408/**
 409 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
 410 * @dmc:        device for which the new settings is going to be applied
 411 * @target_rate:        target frequency of the DMC
 412 *
 413 * Low-level function for changing timings for DRAM memory operating from main
 414 * clock source (BPLL), which can have different frequencies. Thus, each
 415 * frequency must have corresponding timings register values in order to keep
 416 * the needed delays.
 417 * It uses timing bank registers set 0.
 418 */
 419static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
 420                                       unsigned long target_rate)
 421{
 422        int idx;
 423
 424        for (idx = dmc->opp_count - 1; idx >= 0; idx--)
 425                if (dmc->opp[idx].freq_hz <= target_rate)
 426                        break;
 427
 428        if (idx < 0)
 429                return -EINVAL;
 430
 431        writel(EXYNOS5_AREF_NORMAL,
 432               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
 433
 434        writel(dmc->timing_row[idx],
 435               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
 436        writel(dmc->timing_row[idx],
 437               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
 438        writel(dmc->timing_data[idx],
 439               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
 440        writel(dmc->timing_data[idx],
 441               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
 442        writel(dmc->timing_power[idx],
 443               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
 444        writel(dmc->timing_power[idx],
 445               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
 446
 447        return 0;
 448}
 449
 450/**
 451 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
 452 * @dmc:        device for which it is going to be set
 453 * @target_volt:        new voltage which is chosen to be final
 454 *
 455 * Function tries to align voltage to the safe level for 'normal' mode.
 456 * It checks the need of higher voltage and changes the value. The target
 457 * voltage might be lower that currently set and still the system will be
 458 * stable.
 459 */
 460static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
 461                                            unsigned long target_volt)
 462{
 463        int ret = 0;
 464
 465        if (dmc->curr_volt <= target_volt)
 466                return 0;
 467
 468        ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
 469                                    target_volt);
 470        if (!ret)
 471                dmc->curr_volt = target_volt;
 472
 473        return ret;
 474}
 475
 476/**
 477 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
 478 * @dmc:        device for which it is going to be set
 479 * @target_volt:        new voltage which is chosen to be final
 480 *
 481 * Function tries to align voltage to the safe level for the 'bypass' mode.
 482 * It checks the need of higher voltage and changes the value.
 483 * The target voltage must not be less than currently needed, because
 484 * for current frequency the device might become unstable.
 485 */
 486static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
 487                                            unsigned long target_volt)
 488{
 489        int ret = 0;
 490
 491        if (dmc->curr_volt >= target_volt)
 492                return 0;
 493
 494        ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
 495                                    target_volt);
 496        if (!ret)
 497                dmc->curr_volt = target_volt;
 498
 499        return ret;
 500}
 501
 502/**
 503 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
 504 * @dmc:        device for which it is going to be set
 505 * @target_rate:        new frequency which is chosen to be final
 506 *
 507 * Function changes the DRAM timings for the temporary 'bypass' mode.
 508 */
 509static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
 510                                                 unsigned long target_rate)
 511{
 512        int idx = find_target_freq_idx(dmc, target_rate);
 513
 514        if (idx < 0)
 515                return -EINVAL;
 516
 517        exynos5_set_bypass_dram_timings(dmc);
 518
 519        return 0;
 520}
 521
 522/**
 523 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
 524 * @dmc:        DMC device for which the switching is going to happen
 525 * @target_rate:        new frequency which is going to be set as a final
 526 * @target_volt:        new voltage which is going to be set as a final
 527 *
 528 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
 529 * This mode is used only temporary but if required, changes voltage and timings
 530 * for DRAM chips. It switches the main clock to stable clock source for the
 531 * period of the main PLL reconfiguration.
 532 */
 533static int
 534exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
 535                                           unsigned long target_rate,
 536                                           unsigned long target_volt)
 537{
 538        int ret;
 539
 540        /*
 541         * Having higher voltage for a particular frequency does not harm
 542         * the chip. Use it for the temporary frequency change when one
 543         * voltage manipulation might be avoided.
 544         */
 545        ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
 546        if (ret)
 547                return ret;
 548
 549        /*
 550         * Longer delays for DRAM does not cause crash, the opposite does.
 551         */
 552        ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
 553        if (ret)
 554                return ret;
 555
 556        /*
 557         * Delays are long enough, so use them for the new coming clock.
 558         */
 559        ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
 560
 561        return ret;
 562}
 563
 564/**
 565 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
 566 * using safe procedure
 567 * @dmc:        device for which the frequency is going to be changed
 568 * @target_rate:        requested new frequency
 569 * @target_volt:        requested voltage which corresponds to the new frequency
 570 *
 571 * The DMC frequency change procedure requires a few steps.
 572 * The main requirement is to change the clock source in the clk mux
 573 * for the time of main clock PLL locking. The assumption is that the
 574 * alternative clock source set as parent is stable.
 575 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
 576 * clock. This requires alignment in DRAM timing parameters for the new
 577 * T-period. There is two bank sets for keeping DRAM
 578 * timings: set 0 and set 1. The set 0 is used when main clock source is
 579 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
 580 * the two bank sets is part of the process.
 581 * The voltage must also be aligned to the minimum required level. There is
 582 * this intermediate step with switching to 'bypass' parent clock source.
 583 * if the old voltage is lower, it requires an increase of the voltage level.
 584 * The complexity of the voltage manipulation is hidden in low level function.
 585 * In this function there is last alignment of the voltage level at the end.
 586 */
 587static int
 588exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
 589                                 unsigned long target_rate,
 590                                 unsigned long target_volt)
 591{
 592        int ret;
 593
 594        ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
 595                                                         target_volt);
 596        if (ret)
 597                return ret;
 598
 599        /*
 600         * Voltage is set at least to a level needed for this frequency,
 601         * so switching clock source is safe now.
 602         */
 603        clk_prepare_enable(dmc->fout_spll);
 604        clk_prepare_enable(dmc->mout_spll);
 605        clk_prepare_enable(dmc->mout_mx_mspll_ccore);
 606
 607        ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
 608        if (ret)
 609                goto disable_clocks;
 610
 611        /*
 612         * We are safe to increase the timings for current bypass frequency.
 613         * Thanks to this the settings will be ready for the upcoming clock
 614         * source change.
 615         */
 616        exynos5_dram_change_timings(dmc, target_rate);
 617
 618        clk_set_rate(dmc->fout_bpll, target_rate);
 619
 620        ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
 621        if (ret)
 622                goto disable_clocks;
 623
 624        ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
 625        if (ret)
 626                goto disable_clocks;
 627
 628        /*
 629         * Make sure if the voltage is not from 'bypass' settings and align to
 630         * the right level for power efficiency.
 631         */
 632        ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
 633
 634disable_clocks:
 635        clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
 636        clk_disable_unprepare(dmc->mout_spll);
 637        clk_disable_unprepare(dmc->fout_spll);
 638
 639        return ret;
 640}
 641
 642/**
 643 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
 644 * table.
 645 * @dmc:        device for which the frequency is going to be changed
 646 * @freq:       requested frequency in KHz
 647 * @target_rate:        returned frequency which is the same or lower than
 648 *                      requested
 649 * @target_volt:        returned voltage which corresponds to the returned
 650 *                      frequency
 651 * @flags:      devfreq flags provided for this frequency change request
 652 *
 653 * Function gets requested frequency and checks OPP framework for needed
 654 * frequency and voltage. It populates the values 'target_rate' and
 655 * 'target_volt' or returns error value when OPP framework fails.
 656 */
 657static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
 658                                     unsigned long *freq,
 659                                     unsigned long *target_rate,
 660                                     unsigned long *target_volt, u32 flags)
 661{
 662        struct dev_pm_opp *opp;
 663
 664        opp = devfreq_recommended_opp(dmc->dev, freq, flags);
 665        if (IS_ERR(opp))
 666                return PTR_ERR(opp);
 667
 668        *target_rate = dev_pm_opp_get_freq(opp);
 669        *target_volt = dev_pm_opp_get_voltage(opp);
 670        dev_pm_opp_put(opp);
 671
 672        return 0;
 673}
 674
 675/**
 676 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
 677 * @dev:        device for which the frequency is going to be changed
 678 * @freq:       requested frequency in KHz
 679 * @flags:      flags provided for this frequency change request
 680 *
 681 * An entry function provided to the devfreq framework which provides frequency
 682 * change of the DMC. The function gets the possible rate from OPP table based
 683 * on requested frequency. It calls the next function responsible for the
 684 * frequency and voltage change. In case of failure, does not set 'curr_rate'
 685 * and returns error value to the framework.
 686 */
 687static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
 688                              u32 flags)
 689{
 690        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 691        unsigned long target_rate = 0;
 692        unsigned long target_volt = 0;
 693        int ret;
 694
 695        ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
 696                                        flags);
 697
 698        if (ret)
 699                return ret;
 700
 701        if (target_rate == dmc->curr_rate)
 702                return 0;
 703
 704        mutex_lock(&dmc->lock);
 705
 706        ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
 707
 708        if (ret) {
 709                mutex_unlock(&dmc->lock);
 710                return ret;
 711        }
 712
 713        dmc->curr_rate = target_rate;
 714
 715        mutex_unlock(&dmc->lock);
 716        return 0;
 717}
 718
 719/**
 720 * exynos5_counters_get() - Gets the performance counters values.
 721 * @dmc:        device for which the counters are going to be checked
 722 * @load_count: variable which is populated with counter value
 723 * @total_count:        variable which is used as 'wall clock' reference
 724 *
 725 * Function which provides performance counters values. It sums up counters for
 726 * two DMC channels. The 'total_count' is used as a reference and max value.
 727 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
 728 */
 729static int exynos5_counters_get(struct exynos5_dmc *dmc,
 730                                unsigned long *load_count,
 731                                unsigned long *total_count)
 732{
 733        unsigned long total = 0;
 734        struct devfreq_event_data event;
 735        int ret, i;
 736
 737        *load_count = 0;
 738
 739        /* Take into account only read+write counters, but stop all */
 740        for (i = 0; i < dmc->num_counters; i++) {
 741                if (!dmc->counter[i])
 742                        continue;
 743
 744                ret = devfreq_event_get_event(dmc->counter[i], &event);
 745                if (ret < 0)
 746                        return ret;
 747
 748                *load_count += event.load_count;
 749
 750                if (total < event.total_count)
 751                        total = event.total_count;
 752        }
 753
 754        *total_count = total;
 755
 756        return 0;
 757}
 758
 759/**
 760 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
 761 * @dmc:        device for which the counters are going to be checked
 762 * @beg_value:  initial value for the counter
 763 *
 764 * Function which enables needed counters, interrupts and sets initial values
 765 * then starts the counters.
 766 */
 767static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
 768                                          u32 beg_value)
 769{
 770        /* Enable interrupts for counter 2 */
 771        writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
 772        writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
 773
 774        /* Enable counter 2 and CCNT  */
 775        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
 776        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
 777
 778        /* Clear overflow flag for all counters */
 779        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
 780        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
 781
 782        /* Reset all counters */
 783        writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
 784        writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
 785
 786        /*
 787         * Set start value for the counters, the number of samples that
 788         * will be gathered is calculated as: 0xffffffff - beg_value
 789         */
 790        writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
 791        writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
 792
 793        /* Start all counters */
 794        writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
 795        writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
 796}
 797
 798/**
 799 * exynos5_dmc_perf_events_calc() - Calculate utilization
 800 * @dmc:        device for which the counters are going to be checked
 801 * @diff_ts:    time between last interrupt and current one
 802 *
 803 * Function which calculates needed utilization for the devfreq governor.
 804 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
 805 * between interrupts, which approximates utilization.
 806 */
 807static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
 808{
 809        /*
 810         * This is a simple algorithm for managing traffic on DMC.
 811         * When there is almost no load the counters overflow every 4s,
 812         * no mater the DMC frequency.
 813         * The high load might be approximated using linear function.
 814         * Knowing that, simple calculation can provide 'busy_time' and
 815         * 'total_time' to the devfreq governor which picks up target
 816         * frequency.
 817         * We want a fast ramp up and slow decay in frequency change function.
 818         */
 819        if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
 820                /*
 821                 * Set higher utilization for the simple_ondemand governor.
 822                 * The governor should increase the frequency of the DMC.
 823                 */
 824                dmc->load = 70;
 825                dmc->total = 100;
 826        } else {
 827                /*
 828                 * Set low utilization for the simple_ondemand governor.
 829                 * The governor should decrease the frequency of the DMC.
 830                 */
 831                dmc->load = 35;
 832                dmc->total = 100;
 833        }
 834
 835        dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
 836}
 837
 838/**
 839 * exynos5_dmc_perf_events_check() - Checks the status of the counters
 840 * @dmc:        device for which the counters are going to be checked
 841 *
 842 * Function which is called from threaded IRQ to check the counters state
 843 * and to call approximation for the needed utilization.
 844 */
 845static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
 846{
 847        u32 val;
 848        u64 diff_ts, ts;
 849
 850        ts = ktime_get_ns();
 851
 852        /* Stop all counters */
 853        writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
 854        writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
 855
 856        /* Check the source in interrupt flag registers (which channel) */
 857        val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
 858        if (val) {
 859                diff_ts = ts - dmc->last_overflow_ts[0];
 860                dmc->last_overflow_ts[0] = ts;
 861                dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
 862        } else {
 863                val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
 864                diff_ts = ts - dmc->last_overflow_ts[1];
 865                dmc->last_overflow_ts[1] = ts;
 866                dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
 867        }
 868
 869        exynos5_dmc_perf_events_calc(dmc, diff_ts);
 870
 871        exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
 872}
 873
 874/**
 875 * exynos5_dmc_enable_perf_events() - Enable performance events
 876 * @dmc:        device for which the counters are going to be checked
 877 *
 878 * Function which is setup needed environment and enables counters.
 879 */
 880static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
 881{
 882        u64 ts;
 883
 884        /* Enable Performance Event Clock */
 885        writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
 886        writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
 887
 888        /* Select read transfers as performance event2 */
 889        writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
 890        writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
 891
 892        ts = ktime_get_ns();
 893        dmc->last_overflow_ts[0] = ts;
 894        dmc->last_overflow_ts[1] = ts;
 895
 896        /* Devfreq shouldn't be faster than initialization, play safe though. */
 897        dmc->load = 99;
 898        dmc->total = 100;
 899}
 900
 901/**
 902 * exynos5_dmc_disable_perf_events() - Disable performance events
 903 * @dmc:        device for which the counters are going to be checked
 904 *
 905 * Function which stops, disables performance event counters and interrupts.
 906 */
 907static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
 908{
 909        /* Stop all counters */
 910        writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
 911        writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
 912
 913        /* Disable interrupts for counter 2 */
 914        writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
 915        writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
 916
 917        /* Disable counter 2 and CCNT  */
 918        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
 919        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
 920
 921        /* Clear overflow flag for all counters */
 922        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
 923        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
 924}
 925
 926/**
 927 * exynos5_dmc_get_status() - Read current DMC performance statistics.
 928 * @dev:        device for which the statistics are requested
 929 * @stat:       structure which has statistic fields
 930 *
 931 * Function reads the DMC performance counters and calculates 'busy_time'
 932 * and 'total_time'. To protect from overflow, the values are shifted right
 933 * by 10. After read out the counters are setup to count again.
 934 */
 935static int exynos5_dmc_get_status(struct device *dev,
 936                                  struct devfreq_dev_status *stat)
 937{
 938        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 939        unsigned long load, total;
 940        int ret;
 941
 942        if (dmc->in_irq_mode) {
 943                mutex_lock(&dmc->lock);
 944                stat->current_frequency = dmc->curr_rate;
 945                mutex_unlock(&dmc->lock);
 946
 947                stat->busy_time = dmc->load;
 948                stat->total_time = dmc->total;
 949        } else {
 950                ret = exynos5_counters_get(dmc, &load, &total);
 951                if (ret < 0)
 952                        return -EINVAL;
 953
 954                /* To protect from overflow, divide by 1024 */
 955                stat->busy_time = load >> 10;
 956                stat->total_time = total >> 10;
 957
 958                ret = exynos5_counters_set_event(dmc);
 959                if (ret < 0) {
 960                        dev_err(dev, "could not set event counter\n");
 961                        return ret;
 962                }
 963        }
 964
 965        return 0;
 966}
 967
 968/**
 969 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
 970 * @dev:        device for which the framework checks operating frequency
 971 * @freq:       returned frequency value
 972 *
 973 * It returns the currently used frequency of the DMC. The real operating
 974 * frequency might be lower when the clock source value could not be divided
 975 * to the requested value.
 976 */
 977static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
 978{
 979        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 980
 981        mutex_lock(&dmc->lock);
 982        *freq = dmc->curr_rate;
 983        mutex_unlock(&dmc->lock);
 984
 985        return 0;
 986}
 987
 988/*
 989 * exynos5_dmc_df_profile - Devfreq governor's profile structure
 990 *
 991 * It provides to the devfreq framework needed functions and polling period.
 992 */
 993static struct devfreq_dev_profile exynos5_dmc_df_profile = {
 994        .timer = DEVFREQ_TIMER_DELAYED,
 995        .target = exynos5_dmc_target,
 996        .get_dev_status = exynos5_dmc_get_status,
 997        .get_cur_freq = exynos5_dmc_get_cur_freq,
 998};
 999
1000/**
1001 * exynos5_dmc_align_initial_frequency() - Align initial frequency value
1002 * @dmc:        device for which the frequency is going to be set
1003 * @bootloader_init_freq:       initial frequency set by the bootloader in KHz
1004 *
1005 * The initial bootloader frequency, which is present during boot, might be
1006 * different that supported frequency values in the driver. It is possible
1007 * due to different PLL settings or used PLL as a source.
1008 * This function provides the 'initial_freq' for the devfreq framework
1009 * statistics engine which supports only registered values. Thus, some alignment
1010 * must be made.
1011 */
1012static unsigned long
1013exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
1014                            unsigned long bootloader_init_freq)
1015{
1016        unsigned long aligned_freq;
1017        int idx;
1018
1019        idx = find_target_freq_idx(dmc, bootloader_init_freq);
1020        if (idx >= 0)
1021                aligned_freq = dmc->opp[idx].freq_hz;
1022        else
1023                aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
1024
1025        return aligned_freq;
1026}
1027
1028/**
1029 * create_timings_aligned() - Create register values and align with standard
1030 * @dmc:        device for which the frequency is going to be set
1031 * @reg_timing_row:     array to fill with values for timing row register
1032 * @reg_timing_data:    array to fill with values for timing data register
1033 * @reg_timing_power:   array to fill with values for timing power register
1034 * @clk_period_ps:      the period of the clock, known as tCK
1035 *
1036 * The function calculates timings and creates a register value ready for
1037 * a frequency transition. The register contains a few timings. They are
1038 * shifted by a known offset. The timing value is calculated based on memory
1039 * specyfication: minimal time required and minimal cycles required.
1040 */
1041static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1042                                  u32 *reg_timing_data, u32 *reg_timing_power,
1043                                  u32 clk_period_ps)
1044{
1045        u32 val;
1046        const struct timing_reg *reg;
1047
1048        if (clk_period_ps == 0)
1049                return -EINVAL;
1050
1051        *reg_timing_row = 0;
1052        *reg_timing_data = 0;
1053        *reg_timing_power = 0;
1054
1055        val = dmc->timings->tRFC / clk_period_ps;
1056        val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1057        val = max(val, dmc->min_tck->tRFC);
1058        reg = &timing_row_reg_fields[0];
1059        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1060
1061        val = dmc->timings->tRRD / clk_period_ps;
1062        val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1063        val = max(val, dmc->min_tck->tRRD);
1064        reg = &timing_row_reg_fields[1];
1065        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1066
1067        val = dmc->timings->tRPab / clk_period_ps;
1068        val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1069        val = max(val, dmc->min_tck->tRPab);
1070        reg = &timing_row_reg_fields[2];
1071        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1072
1073        val = dmc->timings->tRCD / clk_period_ps;
1074        val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1075        val = max(val, dmc->min_tck->tRCD);
1076        reg = &timing_row_reg_fields[3];
1077        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1078
1079        val = dmc->timings->tRC / clk_period_ps;
1080        val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1081        val = max(val, dmc->min_tck->tRC);
1082        reg = &timing_row_reg_fields[4];
1083        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1084
1085        val = dmc->timings->tRAS / clk_period_ps;
1086        val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1087        val = max(val, dmc->min_tck->tRAS);
1088        reg = &timing_row_reg_fields[5];
1089        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1090
1091        /* data related timings */
1092        val = dmc->timings->tWTR / clk_period_ps;
1093        val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1094        val = max(val, dmc->min_tck->tWTR);
1095        reg = &timing_data_reg_fields[0];
1096        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1097
1098        val = dmc->timings->tWR / clk_period_ps;
1099        val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1100        val = max(val, dmc->min_tck->tWR);
1101        reg = &timing_data_reg_fields[1];
1102        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1103
1104        val = dmc->timings->tRTP / clk_period_ps;
1105        val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1106        val = max(val, dmc->min_tck->tRTP);
1107        reg = &timing_data_reg_fields[2];
1108        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1109
1110        val = dmc->timings->tW2W_C2C / clk_period_ps;
1111        val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1112        val = max(val, dmc->min_tck->tW2W_C2C);
1113        reg = &timing_data_reg_fields[3];
1114        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1115
1116        val = dmc->timings->tR2R_C2C / clk_period_ps;
1117        val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1118        val = max(val, dmc->min_tck->tR2R_C2C);
1119        reg = &timing_data_reg_fields[4];
1120        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1121
1122        val = dmc->timings->tWL / clk_period_ps;
1123        val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1124        val = max(val, dmc->min_tck->tWL);
1125        reg = &timing_data_reg_fields[5];
1126        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1127
1128        val = dmc->timings->tDQSCK / clk_period_ps;
1129        val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1130        val = max(val, dmc->min_tck->tDQSCK);
1131        reg = &timing_data_reg_fields[6];
1132        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1133
1134        val = dmc->timings->tRL / clk_period_ps;
1135        val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1136        val = max(val, dmc->min_tck->tRL);
1137        reg = &timing_data_reg_fields[7];
1138        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1139
1140        /* power related timings */
1141        val = dmc->timings->tFAW / clk_period_ps;
1142        val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1143        val = max(val, dmc->min_tck->tFAW);
1144        reg = &timing_power_reg_fields[0];
1145        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1146
1147        val = dmc->timings->tXSR / clk_period_ps;
1148        val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1149        val = max(val, dmc->min_tck->tXSR);
1150        reg = &timing_power_reg_fields[1];
1151        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1152
1153        val = dmc->timings->tXP / clk_period_ps;
1154        val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1155        val = max(val, dmc->min_tck->tXP);
1156        reg = &timing_power_reg_fields[2];
1157        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1158
1159        val = dmc->timings->tCKE / clk_period_ps;
1160        val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1161        val = max(val, dmc->min_tck->tCKE);
1162        reg = &timing_power_reg_fields[3];
1163        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1164
1165        val = dmc->timings->tMRD / clk_period_ps;
1166        val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1167        val = max(val, dmc->min_tck->tMRD);
1168        reg = &timing_power_reg_fields[4];
1169        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1170
1171        return 0;
1172}
1173
1174/**
1175 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1176 * @dmc:        device for which the frequency is going to be set
1177 *
1178 * The function parses DT entries with DRAM information.
1179 */
1180static int of_get_dram_timings(struct exynos5_dmc *dmc)
1181{
1182        int ret = 0;
1183        int idx;
1184        struct device_node *np_ddr;
1185        u32 freq_mhz, clk_period_ps;
1186
1187        np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1188        if (!np_ddr) {
1189                dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1190                return -EINVAL;
1191        }
1192
1193        dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1194                                             sizeof(u32), GFP_KERNEL);
1195        if (!dmc->timing_row)
1196                return -ENOMEM;
1197
1198        dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1199                                              sizeof(u32), GFP_KERNEL);
1200        if (!dmc->timing_data)
1201                return -ENOMEM;
1202
1203        dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1204                                               sizeof(u32), GFP_KERNEL);
1205        if (!dmc->timing_power)
1206                return -ENOMEM;
1207
1208        dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1209                                                 DDR_TYPE_LPDDR3,
1210                                                 &dmc->timings_arr_size);
1211        if (!dmc->timings) {
1212                of_node_put(np_ddr);
1213                dev_warn(dmc->dev, "could not get timings from DT\n");
1214                return -EINVAL;
1215        }
1216
1217        dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1218        if (!dmc->min_tck) {
1219                of_node_put(np_ddr);
1220                dev_warn(dmc->dev, "could not get tck from DT\n");
1221                return -EINVAL;
1222        }
1223
1224        /* Sorted array of OPPs with frequency ascending */
1225        for (idx = 0; idx < dmc->opp_count; idx++) {
1226                freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1227                clk_period_ps = 1000000 / freq_mhz;
1228
1229                ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1230                                             &dmc->timing_data[idx],
1231                                             &dmc->timing_power[idx],
1232                                             clk_period_ps);
1233        }
1234
1235        of_node_put(np_ddr);
1236
1237        /* Take the highest frequency's timings as 'bypass' */
1238        dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1239        dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1240        dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1241
1242        return ret;
1243}
1244
1245/**
1246 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1247 * @dmc:        DMC structure containing needed fields
1248 *
1249 * Get the needed clocks defined in DT device, enable and set the right parents.
1250 * Read current frequency and initialize the initial rate for governor.
1251 */
1252static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1253{
1254        int ret;
1255        unsigned long target_volt = 0;
1256        unsigned long target_rate = 0;
1257        unsigned int tmp;
1258
1259        dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1260        if (IS_ERR(dmc->fout_spll))
1261                return PTR_ERR(dmc->fout_spll);
1262
1263        dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1264        if (IS_ERR(dmc->fout_bpll))
1265                return PTR_ERR(dmc->fout_bpll);
1266
1267        dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1268        if (IS_ERR(dmc->mout_mclk_cdrex))
1269                return PTR_ERR(dmc->mout_mclk_cdrex);
1270
1271        dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1272        if (IS_ERR(dmc->mout_bpll))
1273                return PTR_ERR(dmc->mout_bpll);
1274
1275        dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1276                                                "mout_mx_mspll_ccore");
1277        if (IS_ERR(dmc->mout_mx_mspll_ccore))
1278                return PTR_ERR(dmc->mout_mx_mspll_ccore);
1279
1280        dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1281        if (IS_ERR(dmc->mout_spll)) {
1282                dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1283                if (IS_ERR(dmc->mout_spll))
1284                        return PTR_ERR(dmc->mout_spll);
1285        }
1286
1287        /*
1288         * Convert frequency to KHz values and set it for the governor.
1289         */
1290        dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1291        dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1292        exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1293
1294        ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1295                                        &target_volt, 0);
1296        if (ret)
1297                return ret;
1298
1299        dmc->curr_volt = target_volt;
1300
1301        clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1302
1303        clk_prepare_enable(dmc->fout_bpll);
1304        clk_prepare_enable(dmc->mout_bpll);
1305
1306        /*
1307         * Some bootloaders do not set clock routes correctly.
1308         * Stop one path in clocks to PHY.
1309         */
1310        regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1311        tmp &= ~(BIT(1) | BIT(0));
1312        regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1313
1314        return 0;
1315}
1316
1317/**
1318 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1319 * @dmc:        DMC for which it does the setup
1320 *
1321 * Initialization of performance counters in DMC for estimating usage.
1322 * The counter's values are used for calculation of a memory bandwidth and based
1323 * on that the governor changes the frequency.
1324 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1325 */
1326static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1327{
1328        int counters_size;
1329        int ret, i;
1330
1331        dmc->num_counters = devfreq_event_get_edev_count(dmc->dev,
1332                                                        "devfreq-events");
1333        if (dmc->num_counters < 0) {
1334                dev_err(dmc->dev, "could not get devfreq-event counters\n");
1335                return dmc->num_counters;
1336        }
1337
1338        counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1339        dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1340        if (!dmc->counter)
1341                return -ENOMEM;
1342
1343        for (i = 0; i < dmc->num_counters; i++) {
1344                dmc->counter[i] =
1345                        devfreq_event_get_edev_by_phandle(dmc->dev,
1346                                                "devfreq-events", i);
1347                if (IS_ERR_OR_NULL(dmc->counter[i]))
1348                        return -EPROBE_DEFER;
1349        }
1350
1351        ret = exynos5_counters_enable_edev(dmc);
1352        if (ret < 0) {
1353                dev_err(dmc->dev, "could not enable event counter\n");
1354                return ret;
1355        }
1356
1357        ret = exynos5_counters_set_event(dmc);
1358        if (ret < 0) {
1359                exynos5_counters_disable_edev(dmc);
1360                dev_err(dmc->dev, "could not set event counter\n");
1361                return ret;
1362        }
1363
1364        return 0;
1365}
1366
1367/**
1368 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1369 * @dmc:        device which is used for changing this feature
1370 *
1371 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1372 * changes its configuration. In such situation access to the memory is blocked
1373 * in DMC automatically. This feature is used when clock frequency change
1374 * request appears and touches clock tree.
1375 */
1376static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1377{
1378        unsigned int val;
1379        int ret;
1380
1381        ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1382        if (ret)
1383                return ret;
1384
1385        val |= 1UL;
1386        regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1387
1388        return 0;
1389}
1390
1391static irqreturn_t dmc_irq_thread(int irq, void *priv)
1392{
1393        int res;
1394        struct exynos5_dmc *dmc = priv;
1395
1396        mutex_lock(&dmc->df->lock);
1397        exynos5_dmc_perf_events_check(dmc);
1398        res = update_devfreq(dmc->df);
1399        mutex_unlock(&dmc->df->lock);
1400
1401        if (res)
1402                dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1403
1404        return IRQ_HANDLED;
1405}
1406
1407/**
1408 * exynos5_dmc_probe() - Probe function for the DMC driver
1409 * @pdev:       platform device for which the driver is going to be initialized
1410 *
1411 * Initialize basic components: clocks, regulators, performance counters, etc.
1412 * Read out product version and based on the information setup
1413 * internal structures for the controller (frequency and voltage) and for DRAM
1414 * memory parameters: timings for each operating frequency.
1415 * Register new devfreq device for controlling DVFS of the DMC.
1416 */
1417static int exynos5_dmc_probe(struct platform_device *pdev)
1418{
1419        int ret = 0;
1420        struct device *dev = &pdev->dev;
1421        struct device_node *np = dev->of_node;
1422        struct exynos5_dmc *dmc;
1423        int irq[2];
1424
1425        dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1426        if (!dmc)
1427                return -ENOMEM;
1428
1429        mutex_init(&dmc->lock);
1430
1431        dmc->dev = dev;
1432        platform_set_drvdata(pdev, dmc);
1433
1434        dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1435        if (IS_ERR(dmc->base_drexi0))
1436                return PTR_ERR(dmc->base_drexi0);
1437
1438        dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1439        if (IS_ERR(dmc->base_drexi1))
1440                return PTR_ERR(dmc->base_drexi1);
1441
1442        dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1443                                                          "samsung,syscon-clk");
1444        if (IS_ERR(dmc->clk_regmap))
1445                return PTR_ERR(dmc->clk_regmap);
1446
1447        ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1448        if (ret) {
1449                dev_warn(dev, "couldn't initialize frequency settings\n");
1450                return ret;
1451        }
1452
1453        dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1454        if (IS_ERR(dmc->vdd_mif)) {
1455                ret = PTR_ERR(dmc->vdd_mif);
1456                return ret;
1457        }
1458
1459        ret = exynos5_dmc_init_clks(dmc);
1460        if (ret)
1461                return ret;
1462
1463        ret = of_get_dram_timings(dmc);
1464        if (ret) {
1465                dev_warn(dev, "couldn't initialize timings settings\n");
1466                goto remove_clocks;
1467        }
1468
1469        ret = exynos5_dmc_set_pause_on_switching(dmc);
1470        if (ret) {
1471                dev_warn(dev, "couldn't get access to PAUSE register\n");
1472                goto remove_clocks;
1473        }
1474
1475        /* There is two modes in which the driver works: polling or IRQ */
1476        irq[0] = platform_get_irq_byname(pdev, "drex_0");
1477        irq[1] = platform_get_irq_byname(pdev, "drex_1");
1478        if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1479                ret = devm_request_threaded_irq(dev, irq[0], NULL,
1480                                                dmc_irq_thread, IRQF_ONESHOT,
1481                                                dev_name(dev), dmc);
1482                if (ret) {
1483                        dev_err(dev, "couldn't grab IRQ\n");
1484                        goto remove_clocks;
1485                }
1486
1487                ret = devm_request_threaded_irq(dev, irq[1], NULL,
1488                                                dmc_irq_thread, IRQF_ONESHOT,
1489                                                dev_name(dev), dmc);
1490                if (ret) {
1491                        dev_err(dev, "couldn't grab IRQ\n");
1492                        goto remove_clocks;
1493                }
1494
1495                /*
1496                 * Setup default thresholds for the devfreq governor.
1497                 * The values are chosen based on experiments.
1498                 */
1499                dmc->gov_data.upthreshold = 55;
1500                dmc->gov_data.downdifferential = 5;
1501
1502                exynos5_dmc_enable_perf_events(dmc);
1503
1504                dmc->in_irq_mode = 1;
1505        } else {
1506                ret = exynos5_performance_counters_init(dmc);
1507                if (ret) {
1508                        dev_warn(dev, "couldn't probe performance counters\n");
1509                        goto remove_clocks;
1510                }
1511
1512                /*
1513                 * Setup default thresholds for the devfreq governor.
1514                 * The values are chosen based on experiments.
1515                 */
1516                dmc->gov_data.upthreshold = 10;
1517                dmc->gov_data.downdifferential = 5;
1518
1519                exynos5_dmc_df_profile.polling_ms = 100;
1520        }
1521
1522        dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1523                                          DEVFREQ_GOV_SIMPLE_ONDEMAND,
1524                                          &dmc->gov_data);
1525
1526        if (IS_ERR(dmc->df)) {
1527                ret = PTR_ERR(dmc->df);
1528                goto err_devfreq_add;
1529        }
1530
1531        if (dmc->in_irq_mode)
1532                exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1533
1534        dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1535
1536        return 0;
1537
1538err_devfreq_add:
1539        if (dmc->in_irq_mode)
1540                exynos5_dmc_disable_perf_events(dmc);
1541        else
1542                exynos5_counters_disable_edev(dmc);
1543remove_clocks:
1544        clk_disable_unprepare(dmc->mout_bpll);
1545        clk_disable_unprepare(dmc->fout_bpll);
1546
1547        return ret;
1548}
1549
1550/**
1551 * exynos5_dmc_remove() - Remove function for the platform device
1552 * @pdev:       platform device which is going to be removed
1553 *
1554 * The function relies on 'devm' framework function which automatically
1555 * clean the device's resources. It just calls explicitly disable function for
1556 * the performance counters.
1557 */
1558static int exynos5_dmc_remove(struct platform_device *pdev)
1559{
1560        struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1561
1562        if (dmc->in_irq_mode)
1563                exynos5_dmc_disable_perf_events(dmc);
1564        else
1565                exynos5_counters_disable_edev(dmc);
1566
1567        clk_disable_unprepare(dmc->mout_bpll);
1568        clk_disable_unprepare(dmc->fout_bpll);
1569
1570        dev_pm_opp_remove_table(dmc->dev);
1571
1572        return 0;
1573}
1574
1575static const struct of_device_id exynos5_dmc_of_match[] = {
1576        { .compatible = "samsung,exynos5422-dmc", },
1577        { },
1578};
1579MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1580
1581static struct platform_driver exynos5_dmc_platdrv = {
1582        .probe  = exynos5_dmc_probe,
1583        .remove = exynos5_dmc_remove,
1584        .driver = {
1585                .name   = "exynos5-dmc",
1586                .of_match_table = exynos5_dmc_of_match,
1587        },
1588};
1589module_platform_driver(exynos5_dmc_platdrv);
1590MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1591MODULE_LICENSE("GPL v2");
1592MODULE_AUTHOR("Lukasz Luba");
1593