linux/drivers/mtd/nand/raw/fsl_upm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale UPM NAND driver.
   4 *
   5 * Copyright © 2007-2008  MontaVista Software, Inc.
   6 *
   7 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/module.h>
  12#include <linux/delay.h>
  13#include <linux/mtd/rawnand.h>
  14#include <linux/mtd/nand_ecc.h>
  15#include <linux/mtd/partitions.h>
  16#include <linux/mtd/mtd.h>
  17#include <linux/of_platform.h>
  18#include <linux/io.h>
  19#include <linux/slab.h>
  20#include <asm/fsl_lbc.h>
  21
  22struct fsl_upm_nand {
  23        struct nand_controller base;
  24        struct device *dev;
  25        struct nand_chip chip;
  26        struct fsl_upm upm;
  27        uint8_t upm_addr_offset;
  28        uint8_t upm_cmd_offset;
  29        void __iomem *io_base;
  30        struct gpio_desc *rnb_gpio[NAND_MAX_CHIPS];
  31        uint32_t mchip_offsets[NAND_MAX_CHIPS];
  32        uint32_t mchip_count;
  33        uint32_t mchip_number;
  34};
  35
  36static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
  37{
  38        return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand,
  39                            chip);
  40}
  41
  42static int fun_chip_init(struct fsl_upm_nand *fun,
  43                         const struct device_node *upm_np,
  44                         const struct resource *io_res)
  45{
  46        struct mtd_info *mtd = nand_to_mtd(&fun->chip);
  47        int ret;
  48        struct device_node *flash_np;
  49
  50        fun->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
  51        fun->chip.ecc.algo = NAND_ECC_ALGO_HAMMING;
  52        fun->chip.controller = &fun->base;
  53        mtd->dev.parent = fun->dev;
  54
  55        flash_np = of_get_next_child(upm_np, NULL);
  56        if (!flash_np)
  57                return -ENODEV;
  58
  59        nand_set_flash_node(&fun->chip, flash_np);
  60        mtd->name = devm_kasprintf(fun->dev, GFP_KERNEL, "0x%llx.%pOFn",
  61                                   (u64)io_res->start,
  62                                   flash_np);
  63        if (!mtd->name) {
  64                ret = -ENOMEM;
  65                goto err;
  66        }
  67
  68        ret = nand_scan(&fun->chip, fun->mchip_count);
  69        if (ret)
  70                goto err;
  71
  72        ret = mtd_device_register(mtd, NULL, 0);
  73err:
  74        of_node_put(flash_np);
  75        return ret;
  76}
  77
  78static int func_exec_instr(struct nand_chip *chip,
  79                           const struct nand_op_instr *instr)
  80{
  81        struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
  82        u32 mar, reg_offs = fun->mchip_offsets[fun->mchip_number];
  83        unsigned int i;
  84        const u8 *out;
  85        u8 *in;
  86
  87        switch (instr->type) {
  88        case NAND_OP_CMD_INSTR:
  89                fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
  90                mar = (instr->ctx.cmd.opcode << (32 - fun->upm.width)) |
  91                      reg_offs;
  92                fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
  93                fsl_upm_end_pattern(&fun->upm);
  94                return 0;
  95
  96        case NAND_OP_ADDR_INSTR:
  97                fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
  98                for (i = 0; i < instr->ctx.addr.naddrs; i++) {
  99                        mar = (instr->ctx.addr.addrs[i] << (32 - fun->upm.width)) |
 100                              reg_offs;
 101                        fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
 102                }
 103                fsl_upm_end_pattern(&fun->upm);
 104                return 0;
 105
 106        case NAND_OP_DATA_IN_INSTR:
 107                in = instr->ctx.data.buf.in;
 108                for (i = 0; i < instr->ctx.data.len; i++)
 109                        in[i] = in_8(fun->io_base + reg_offs);
 110                return 0;
 111
 112        case NAND_OP_DATA_OUT_INSTR:
 113                out = instr->ctx.data.buf.out;
 114                for (i = 0; i < instr->ctx.data.len; i++)
 115                        out_8(fun->io_base + reg_offs, out[i]);
 116                return 0;
 117
 118        case NAND_OP_WAITRDY_INSTR:
 119                if (!fun->rnb_gpio[fun->mchip_number])
 120                        return nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
 121
 122                return nand_gpio_waitrdy(chip, fun->rnb_gpio[fun->mchip_number],
 123                                         instr->ctx.waitrdy.timeout_ms);
 124
 125        default:
 126                return -EINVAL;
 127        }
 128
 129        return 0;
 130}
 131
 132static int fun_exec_op(struct nand_chip *chip, const struct nand_operation *op,
 133                       bool check_only)
 134{
 135        struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
 136        unsigned int i;
 137        int ret;
 138
 139        if (op->cs > NAND_MAX_CHIPS)
 140                return -EINVAL;
 141
 142        if (check_only)
 143                return 0;
 144
 145        fun->mchip_number = op->cs;
 146
 147        for (i = 0; i < op->ninstrs; i++) {
 148                ret = func_exec_instr(chip, &op->instrs[i]);
 149                if (ret)
 150                        return ret;
 151
 152                if (op->instrs[i].delay_ns)
 153                        ndelay(op->instrs[i].delay_ns);
 154        }
 155
 156        return 0;
 157}
 158
 159static const struct nand_controller_ops fun_ops = {
 160        .exec_op = fun_exec_op,
 161};
 162
 163static int fun_probe(struct platform_device *ofdev)
 164{
 165        struct fsl_upm_nand *fun;
 166        struct resource *io_res;
 167        const __be32 *prop;
 168        int ret;
 169        int size;
 170        int i;
 171
 172        fun = devm_kzalloc(&ofdev->dev, sizeof(*fun), GFP_KERNEL);
 173        if (!fun)
 174                return -ENOMEM;
 175
 176        io_res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
 177        fun->io_base = devm_ioremap_resource(&ofdev->dev, io_res);
 178        if (IS_ERR(fun->io_base))
 179                return PTR_ERR(fun->io_base);
 180
 181        ret = fsl_upm_find(io_res->start, &fun->upm);
 182        if (ret) {
 183                dev_err(&ofdev->dev, "can't find UPM\n");
 184                return ret;
 185        }
 186
 187        prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
 188                               &size);
 189        if (!prop || size != sizeof(uint32_t)) {
 190                dev_err(&ofdev->dev, "can't get UPM address offset\n");
 191                return -EINVAL;
 192        }
 193        fun->upm_addr_offset = *prop;
 194
 195        prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
 196        if (!prop || size != sizeof(uint32_t)) {
 197                dev_err(&ofdev->dev, "can't get UPM command offset\n");
 198                return -EINVAL;
 199        }
 200        fun->upm_cmd_offset = *prop;
 201
 202        prop = of_get_property(ofdev->dev.of_node,
 203                               "fsl,upm-addr-line-cs-offsets", &size);
 204        if (prop && (size / sizeof(uint32_t)) > 0) {
 205                fun->mchip_count = size / sizeof(uint32_t);
 206                if (fun->mchip_count >= NAND_MAX_CHIPS) {
 207                        dev_err(&ofdev->dev, "too much multiple chips\n");
 208                        return -EINVAL;
 209                }
 210                for (i = 0; i < fun->mchip_count; i++)
 211                        fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
 212        } else {
 213                fun->mchip_count = 1;
 214        }
 215
 216        for (i = 0; i < fun->mchip_count; i++) {
 217                fun->rnb_gpio[i] = devm_gpiod_get_index_optional(&ofdev->dev,
 218                                                                 NULL, i,
 219                                                                 GPIOD_IN);
 220                if (IS_ERR(fun->rnb_gpio[i])) {
 221                        dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
 222                        return PTR_ERR(fun->rnb_gpio[i]);
 223                }
 224        }
 225
 226        nand_controller_init(&fun->base);
 227        fun->base.ops = &fun_ops;
 228        fun->dev = &ofdev->dev;
 229
 230        ret = fun_chip_init(fun, ofdev->dev.of_node, io_res);
 231        if (ret)
 232                return ret;
 233
 234        dev_set_drvdata(&ofdev->dev, fun);
 235
 236        return 0;
 237}
 238
 239static int fun_remove(struct platform_device *ofdev)
 240{
 241        struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
 242        struct nand_chip *chip = &fun->chip;
 243        struct mtd_info *mtd = nand_to_mtd(chip);
 244        int ret;
 245
 246        ret = mtd_device_unregister(mtd);
 247        WARN_ON(ret);
 248        nand_cleanup(chip);
 249
 250        return 0;
 251}
 252
 253static const struct of_device_id of_fun_match[] = {
 254        { .compatible = "fsl,upm-nand" },
 255        {},
 256};
 257MODULE_DEVICE_TABLE(of, of_fun_match);
 258
 259static struct platform_driver of_fun_driver = {
 260        .driver = {
 261                .name = "fsl,upm-nand",
 262                .of_match_table = of_fun_match,
 263        },
 264        .probe          = fun_probe,
 265        .remove         = fun_remove,
 266};
 267
 268module_platform_driver(of_fun_driver);
 269
 270MODULE_LICENSE("GPL");
 271MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
 272MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
 273                   "LocalBus User-Programmable Machine");
 274