linux/drivers/mtd/nand/raw/fsmc_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * ST Microelectronics
   4 * Flexible Static Memory Controller (FSMC)
   5 * Driver for NAND portions
   6 *
   7 * Copyright © 2010 ST Microelectronics
   8 * Vipin Kumar <vipin.kumar@st.com>
   9 * Ashish Priyadarshi
  10 *
  11 * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
  12 *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
  13 *  Copyright © 2009 Alessandro Rubini
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/completion.h>
  18#include <linux/dmaengine.h>
  19#include <linux/dma-direction.h>
  20#include <linux/dma-mapping.h>
  21#include <linux/err.h>
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/resource.h>
  25#include <linux/sched.h>
  26#include <linux/types.h>
  27#include <linux/mtd/mtd.h>
  28#include <linux/mtd/rawnand.h>
  29#include <linux/mtd/nand_ecc.h>
  30#include <linux/platform_device.h>
  31#include <linux/of.h>
  32#include <linux/mtd/partitions.h>
  33#include <linux/io.h>
  34#include <linux/slab.h>
  35#include <linux/amba/bus.h>
  36#include <mtd/mtd-abi.h>
  37
  38/* fsmc controller registers for NOR flash */
  39#define CTRL                    0x0
  40        /* ctrl register definitions */
  41        #define BANK_ENABLE             BIT(0)
  42        #define MUXED                   BIT(1)
  43        #define NOR_DEV                 (2 << 2)
  44        #define WIDTH_16                BIT(4)
  45        #define RSTPWRDWN               BIT(6)
  46        #define WPROT                   BIT(7)
  47        #define WRT_ENABLE              BIT(12)
  48        #define WAIT_ENB                BIT(13)
  49
  50#define CTRL_TIM                0x4
  51        /* ctrl_tim register definitions */
  52
  53#define FSMC_NOR_BANK_SZ        0x8
  54#define FSMC_NOR_REG_SIZE       0x40
  55
  56#define FSMC_NOR_REG(base, bank, reg)   ((base) +                       \
  57                                         (FSMC_NOR_BANK_SZ * (bank)) +  \
  58                                         (reg))
  59
  60/* fsmc controller registers for NAND flash */
  61#define FSMC_PC                 0x00
  62        /* pc register definitions */
  63        #define FSMC_RESET              BIT(0)
  64        #define FSMC_WAITON             BIT(1)
  65        #define FSMC_ENABLE             BIT(2)
  66        #define FSMC_DEVTYPE_NAND       BIT(3)
  67        #define FSMC_DEVWID_16          BIT(4)
  68        #define FSMC_ECCEN              BIT(6)
  69        #define FSMC_ECCPLEN_256        BIT(7)
  70        #define FSMC_TCLR_SHIFT         (9)
  71        #define FSMC_TCLR_MASK          (0xF)
  72        #define FSMC_TAR_SHIFT          (13)
  73        #define FSMC_TAR_MASK           (0xF)
  74#define STS                     0x04
  75        /* sts register definitions */
  76        #define FSMC_CODE_RDY           BIT(15)
  77#define COMM                    0x08
  78        /* comm register definitions */
  79        #define FSMC_TSET_SHIFT         0
  80        #define FSMC_TSET_MASK          0xFF
  81        #define FSMC_TWAIT_SHIFT        8
  82        #define FSMC_TWAIT_MASK         0xFF
  83        #define FSMC_THOLD_SHIFT        16
  84        #define FSMC_THOLD_MASK         0xFF
  85        #define FSMC_THIZ_SHIFT         24
  86        #define FSMC_THIZ_MASK          0xFF
  87#define ATTRIB                  0x0C
  88#define IOATA                   0x10
  89#define ECC1                    0x14
  90#define ECC2                    0x18
  91#define ECC3                    0x1C
  92#define FSMC_NAND_BANK_SZ       0x20
  93
  94#define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
  95
  96struct fsmc_nand_timings {
  97        u8 tclr;
  98        u8 tar;
  99        u8 thiz;
 100        u8 thold;
 101        u8 twait;
 102        u8 tset;
 103};
 104
 105enum access_mode {
 106        USE_DMA_ACCESS = 1,
 107        USE_WORD_ACCESS,
 108};
 109
 110/**
 111 * struct fsmc_nand_data - structure for FSMC NAND device state
 112 *
 113 * @base:               Inherit from the nand_controller struct
 114 * @pid:                Part ID on the AMBA PrimeCell format
 115 * @nand:               Chip related info for a NAND flash.
 116 *
 117 * @bank:               Bank number for probed device.
 118 * @dev:                Parent device
 119 * @mode:               Access mode
 120 * @clk:                Clock structure for FSMC.
 121 *
 122 * @read_dma_chan:      DMA channel for read access
 123 * @write_dma_chan:     DMA channel for write access to NAND
 124 * @dma_access_complete: Completion structure
 125 *
 126 * @dev_timings:        NAND timings
 127 *
 128 * @data_pa:            NAND Physical port for Data.
 129 * @data_va:            NAND port for Data.
 130 * @cmd_va:             NAND port for Command.
 131 * @addr_va:            NAND port for Address.
 132 * @regs_va:            Registers base address for a given bank.
 133 */
 134struct fsmc_nand_data {
 135        struct nand_controller  base;
 136        u32                     pid;
 137        struct nand_chip        nand;
 138
 139        unsigned int            bank;
 140        struct device           *dev;
 141        enum access_mode        mode;
 142        struct clk              *clk;
 143
 144        /* DMA related objects */
 145        struct dma_chan         *read_dma_chan;
 146        struct dma_chan         *write_dma_chan;
 147        struct completion       dma_access_complete;
 148
 149        struct fsmc_nand_timings *dev_timings;
 150
 151        dma_addr_t              data_pa;
 152        void __iomem            *data_va;
 153        void __iomem            *cmd_va;
 154        void __iomem            *addr_va;
 155        void __iomem            *regs_va;
 156};
 157
 158static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
 159                                   struct mtd_oob_region *oobregion)
 160{
 161        struct nand_chip *chip = mtd_to_nand(mtd);
 162
 163        if (section >= chip->ecc.steps)
 164                return -ERANGE;
 165
 166        oobregion->offset = (section * 16) + 2;
 167        oobregion->length = 3;
 168
 169        return 0;
 170}
 171
 172static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
 173                                    struct mtd_oob_region *oobregion)
 174{
 175        struct nand_chip *chip = mtd_to_nand(mtd);
 176
 177        if (section >= chip->ecc.steps)
 178                return -ERANGE;
 179
 180        oobregion->offset = (section * 16) + 8;
 181
 182        if (section < chip->ecc.steps - 1)
 183                oobregion->length = 8;
 184        else
 185                oobregion->length = mtd->oobsize - oobregion->offset;
 186
 187        return 0;
 188}
 189
 190static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
 191        .ecc = fsmc_ecc1_ooblayout_ecc,
 192        .free = fsmc_ecc1_ooblayout_free,
 193};
 194
 195/*
 196 * ECC placement definitions in oobfree type format.
 197 * There are 13 bytes of ecc for every 512 byte block and it has to be read
 198 * consecutively and immediately after the 512 byte data block for hardware to
 199 * generate the error bit offsets in 512 byte data.
 200 */
 201static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
 202                                   struct mtd_oob_region *oobregion)
 203{
 204        struct nand_chip *chip = mtd_to_nand(mtd);
 205
 206        if (section >= chip->ecc.steps)
 207                return -ERANGE;
 208
 209        oobregion->length = chip->ecc.bytes;
 210
 211        if (!section && mtd->writesize <= 512)
 212                oobregion->offset = 0;
 213        else
 214                oobregion->offset = (section * 16) + 2;
 215
 216        return 0;
 217}
 218
 219static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
 220                                    struct mtd_oob_region *oobregion)
 221{
 222        struct nand_chip *chip = mtd_to_nand(mtd);
 223
 224        if (section >= chip->ecc.steps)
 225                return -ERANGE;
 226
 227        oobregion->offset = (section * 16) + 15;
 228
 229        if (section < chip->ecc.steps - 1)
 230                oobregion->length = 3;
 231        else
 232                oobregion->length = mtd->oobsize - oobregion->offset;
 233
 234        return 0;
 235}
 236
 237static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
 238        .ecc = fsmc_ecc4_ooblayout_ecc,
 239        .free = fsmc_ecc4_ooblayout_free,
 240};
 241
 242static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
 243{
 244        return container_of(chip, struct fsmc_nand_data, nand);
 245}
 246
 247/*
 248 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
 249 *
 250 * This routine initializes timing parameters related to NAND memory access in
 251 * FSMC registers
 252 */
 253static void fsmc_nand_setup(struct fsmc_nand_data *host,
 254                            struct fsmc_nand_timings *tims)
 255{
 256        u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
 257        u32 tclr, tar, thiz, thold, twait, tset;
 258
 259        tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
 260        tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
 261        thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
 262        thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
 263        twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
 264        tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
 265
 266        if (host->nand.options & NAND_BUSWIDTH_16)
 267                value |= FSMC_DEVWID_16;
 268
 269        writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
 270        writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
 271        writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
 272}
 273
 274static int fsmc_calc_timings(struct fsmc_nand_data *host,
 275                             const struct nand_sdr_timings *sdrt,
 276                             struct fsmc_nand_timings *tims)
 277{
 278        unsigned long hclk = clk_get_rate(host->clk);
 279        unsigned long hclkn = NSEC_PER_SEC / hclk;
 280        u32 thiz, thold, twait, tset;
 281
 282        if (sdrt->tRC_min < 30000)
 283                return -EOPNOTSUPP;
 284
 285        tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
 286        if (tims->tar > FSMC_TAR_MASK)
 287                tims->tar = FSMC_TAR_MASK;
 288        tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
 289        if (tims->tclr > FSMC_TCLR_MASK)
 290                tims->tclr = FSMC_TCLR_MASK;
 291
 292        thiz = sdrt->tCS_min - sdrt->tWP_min;
 293        tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
 294
 295        thold = sdrt->tDH_min;
 296        if (thold < sdrt->tCH_min)
 297                thold = sdrt->tCH_min;
 298        if (thold < sdrt->tCLH_min)
 299                thold = sdrt->tCLH_min;
 300        if (thold < sdrt->tWH_min)
 301                thold = sdrt->tWH_min;
 302        if (thold < sdrt->tALH_min)
 303                thold = sdrt->tALH_min;
 304        if (thold < sdrt->tREH_min)
 305                thold = sdrt->tREH_min;
 306        tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
 307        if (tims->thold == 0)
 308                tims->thold = 1;
 309        else if (tims->thold > FSMC_THOLD_MASK)
 310                tims->thold = FSMC_THOLD_MASK;
 311
 312        twait = max(sdrt->tRP_min, sdrt->tWP_min);
 313        tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
 314        if (tims->twait == 0)
 315                tims->twait = 1;
 316        else if (tims->twait > FSMC_TWAIT_MASK)
 317                tims->twait = FSMC_TWAIT_MASK;
 318
 319        tset = max(sdrt->tCS_min - sdrt->tWP_min,
 320                   sdrt->tCEA_max - sdrt->tREA_max);
 321        tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
 322        if (tims->tset == 0)
 323                tims->tset = 1;
 324        else if (tims->tset > FSMC_TSET_MASK)
 325                tims->tset = FSMC_TSET_MASK;
 326
 327        return 0;
 328}
 329
 330static int fsmc_setup_interface(struct nand_chip *nand, int csline,
 331                                const struct nand_interface_config *conf)
 332{
 333        struct fsmc_nand_data *host = nand_to_fsmc(nand);
 334        struct fsmc_nand_timings tims;
 335        const struct nand_sdr_timings *sdrt;
 336        int ret;
 337
 338        sdrt = nand_get_sdr_timings(conf);
 339        if (IS_ERR(sdrt))
 340                return PTR_ERR(sdrt);
 341
 342        ret = fsmc_calc_timings(host, sdrt, &tims);
 343        if (ret)
 344                return ret;
 345
 346        if (csline == NAND_DATA_IFACE_CHECK_ONLY)
 347                return 0;
 348
 349        fsmc_nand_setup(host, &tims);
 350
 351        return 0;
 352}
 353
 354/*
 355 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
 356 */
 357static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
 358{
 359        struct fsmc_nand_data *host = nand_to_fsmc(chip);
 360
 361        writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
 362                       host->regs_va + FSMC_PC);
 363        writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
 364                       host->regs_va + FSMC_PC);
 365        writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
 366                       host->regs_va + FSMC_PC);
 367}
 368
 369/*
 370 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
 371 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
 372 * max of 8-bits)
 373 */
 374static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
 375                                u8 *ecc)
 376{
 377        struct fsmc_nand_data *host = nand_to_fsmc(chip);
 378        u32 ecc_tmp;
 379        unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
 380
 381        do {
 382                if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
 383                        break;
 384
 385                cond_resched();
 386        } while (!time_after_eq(jiffies, deadline));
 387
 388        if (time_after_eq(jiffies, deadline)) {
 389                dev_err(host->dev, "calculate ecc timed out\n");
 390                return -ETIMEDOUT;
 391        }
 392
 393        ecc_tmp = readl_relaxed(host->regs_va + ECC1);
 394        ecc[0] = ecc_tmp;
 395        ecc[1] = ecc_tmp >> 8;
 396        ecc[2] = ecc_tmp >> 16;
 397        ecc[3] = ecc_tmp >> 24;
 398
 399        ecc_tmp = readl_relaxed(host->regs_va + ECC2);
 400        ecc[4] = ecc_tmp;
 401        ecc[5] = ecc_tmp >> 8;
 402        ecc[6] = ecc_tmp >> 16;
 403        ecc[7] = ecc_tmp >> 24;
 404
 405        ecc_tmp = readl_relaxed(host->regs_va + ECC3);
 406        ecc[8] = ecc_tmp;
 407        ecc[9] = ecc_tmp >> 8;
 408        ecc[10] = ecc_tmp >> 16;
 409        ecc[11] = ecc_tmp >> 24;
 410
 411        ecc_tmp = readl_relaxed(host->regs_va + STS);
 412        ecc[12] = ecc_tmp >> 16;
 413
 414        return 0;
 415}
 416
 417/*
 418 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
 419 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
 420 * max of 1-bit)
 421 */
 422static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
 423                                u8 *ecc)
 424{
 425        struct fsmc_nand_data *host = nand_to_fsmc(chip);
 426        u32 ecc_tmp;
 427
 428        ecc_tmp = readl_relaxed(host->regs_va + ECC1);
 429        ecc[0] = ecc_tmp;
 430        ecc[1] = ecc_tmp >> 8;
 431        ecc[2] = ecc_tmp >> 16;
 432
 433        return 0;
 434}
 435
 436/* Count the number of 0's in buff upto a max of max_bits */
 437static int count_written_bits(u8 *buff, int size, int max_bits)
 438{
 439        int k, written_bits = 0;
 440
 441        for (k = 0; k < size; k++) {
 442                written_bits += hweight8(~buff[k]);
 443                if (written_bits > max_bits)
 444                        break;
 445        }
 446
 447        return written_bits;
 448}
 449
 450static void dma_complete(void *param)
 451{
 452        struct fsmc_nand_data *host = param;
 453
 454        complete(&host->dma_access_complete);
 455}
 456
 457static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
 458                    enum dma_data_direction direction)
 459{
 460        struct dma_chan *chan;
 461        struct dma_device *dma_dev;
 462        struct dma_async_tx_descriptor *tx;
 463        dma_addr_t dma_dst, dma_src, dma_addr;
 464        dma_cookie_t cookie;
 465        unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 466        int ret;
 467        unsigned long time_left;
 468
 469        if (direction == DMA_TO_DEVICE)
 470                chan = host->write_dma_chan;
 471        else if (direction == DMA_FROM_DEVICE)
 472                chan = host->read_dma_chan;
 473        else
 474                return -EINVAL;
 475
 476        dma_dev = chan->device;
 477        dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
 478
 479        if (direction == DMA_TO_DEVICE) {
 480                dma_src = dma_addr;
 481                dma_dst = host->data_pa;
 482        } else {
 483                dma_src = host->data_pa;
 484                dma_dst = dma_addr;
 485        }
 486
 487        tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
 488                        len, flags);
 489        if (!tx) {
 490                dev_err(host->dev, "device_prep_dma_memcpy error\n");
 491                ret = -EIO;
 492                goto unmap_dma;
 493        }
 494
 495        tx->callback = dma_complete;
 496        tx->callback_param = host;
 497        cookie = tx->tx_submit(tx);
 498
 499        ret = dma_submit_error(cookie);
 500        if (ret) {
 501                dev_err(host->dev, "dma_submit_error %d\n", cookie);
 502                goto unmap_dma;
 503        }
 504
 505        dma_async_issue_pending(chan);
 506
 507        time_left =
 508        wait_for_completion_timeout(&host->dma_access_complete,
 509                                    msecs_to_jiffies(3000));
 510        if (time_left == 0) {
 511                dmaengine_terminate_all(chan);
 512                dev_err(host->dev, "wait_for_completion_timeout\n");
 513                ret = -ETIMEDOUT;
 514                goto unmap_dma;
 515        }
 516
 517        ret = 0;
 518
 519unmap_dma:
 520        dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
 521
 522        return ret;
 523}
 524
 525/*
 526 * fsmc_write_buf - write buffer to chip
 527 * @host:       FSMC NAND controller
 528 * @buf:        data buffer
 529 * @len:        number of bytes to write
 530 */
 531static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
 532                           int len)
 533{
 534        int i;
 535
 536        if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
 537            IS_ALIGNED(len, sizeof(u32))) {
 538                u32 *p = (u32 *)buf;
 539
 540                len = len >> 2;
 541                for (i = 0; i < len; i++)
 542                        writel_relaxed(p[i], host->data_va);
 543        } else {
 544                for (i = 0; i < len; i++)
 545                        writeb_relaxed(buf[i], host->data_va);
 546        }
 547}
 548
 549/*
 550 * fsmc_read_buf - read chip data into buffer
 551 * @host:       FSMC NAND controller
 552 * @buf:        buffer to store date
 553 * @len:        number of bytes to read
 554 */
 555static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
 556{
 557        int i;
 558
 559        if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
 560            IS_ALIGNED(len, sizeof(u32))) {
 561                u32 *p = (u32 *)buf;
 562
 563                len = len >> 2;
 564                for (i = 0; i < len; i++)
 565                        p[i] = readl_relaxed(host->data_va);
 566        } else {
 567                for (i = 0; i < len; i++)
 568                        buf[i] = readb_relaxed(host->data_va);
 569        }
 570}
 571
 572/*
 573 * fsmc_read_buf_dma - read chip data into buffer
 574 * @host:       FSMC NAND controller
 575 * @buf:        buffer to store date
 576 * @len:        number of bytes to read
 577 */
 578static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
 579                              int len)
 580{
 581        dma_xfer(host, buf, len, DMA_FROM_DEVICE);
 582}
 583
 584/*
 585 * fsmc_write_buf_dma - write buffer to chip
 586 * @host:       FSMC NAND controller
 587 * @buf:        data buffer
 588 * @len:        number of bytes to write
 589 */
 590static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
 591                               int len)
 592{
 593        dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
 594}
 595
 596/*
 597 * fsmc_exec_op - hook called by the core to execute NAND operations
 598 *
 599 * This controller is simple enough and thus does not need to use the parser
 600 * provided by the core, instead, handle every situation here.
 601 */
 602static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
 603                        bool check_only)
 604{
 605        struct fsmc_nand_data *host = nand_to_fsmc(chip);
 606        const struct nand_op_instr *instr = NULL;
 607        int ret = 0;
 608        unsigned int op_id;
 609        int i;
 610
 611        if (check_only)
 612                return 0;
 613
 614        pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
 615
 616        for (op_id = 0; op_id < op->ninstrs; op_id++) {
 617                instr = &op->instrs[op_id];
 618
 619                nand_op_trace("  ", instr);
 620
 621                switch (instr->type) {
 622                case NAND_OP_CMD_INSTR:
 623                        writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
 624                        break;
 625
 626                case NAND_OP_ADDR_INSTR:
 627                        for (i = 0; i < instr->ctx.addr.naddrs; i++)
 628                                writeb_relaxed(instr->ctx.addr.addrs[i],
 629                                               host->addr_va);
 630                        break;
 631
 632                case NAND_OP_DATA_IN_INSTR:
 633                        if (host->mode == USE_DMA_ACCESS)
 634                                fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
 635                                                  instr->ctx.data.len);
 636                        else
 637                                fsmc_read_buf(host, instr->ctx.data.buf.in,
 638                                              instr->ctx.data.len);
 639                        break;
 640
 641                case NAND_OP_DATA_OUT_INSTR:
 642                        if (host->mode == USE_DMA_ACCESS)
 643                                fsmc_write_buf_dma(host,
 644                                                   instr->ctx.data.buf.out,
 645                                                   instr->ctx.data.len);
 646                        else
 647                                fsmc_write_buf(host, instr->ctx.data.buf.out,
 648                                               instr->ctx.data.len);
 649                        break;
 650
 651                case NAND_OP_WAITRDY_INSTR:
 652                        ret = nand_soft_waitrdy(chip,
 653                                                instr->ctx.waitrdy.timeout_ms);
 654                        break;
 655                }
 656        }
 657
 658        return ret;
 659}
 660
 661/*
 662 * fsmc_read_page_hwecc
 663 * @chip:       nand chip info structure
 664 * @buf:        buffer to store read data
 665 * @oob_required:       caller expects OOB data read to chip->oob_poi
 666 * @page:       page number to read
 667 *
 668 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
 669 * performed in a strict sequence as follows:
 670 * data(512 byte) -> ecc(13 byte)
 671 * After this read, fsmc hardware generates and reports error data bits(up to a
 672 * max of 8 bits)
 673 */
 674static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
 675                                int oob_required, int page)
 676{
 677        struct mtd_info *mtd = nand_to_mtd(chip);
 678        int i, j, s, stat, eccsize = chip->ecc.size;
 679        int eccbytes = chip->ecc.bytes;
 680        int eccsteps = chip->ecc.steps;
 681        u8 *p = buf;
 682        u8 *ecc_calc = chip->ecc.calc_buf;
 683        u8 *ecc_code = chip->ecc.code_buf;
 684        int off, len, ret, group = 0;
 685        /*
 686         * ecc_oob is intentionally taken as u16. In 16bit devices, we
 687         * end up reading 14 bytes (7 words) from oob. The local array is
 688         * to maintain word alignment
 689         */
 690        u16 ecc_oob[7];
 691        u8 *oob = (u8 *)&ecc_oob[0];
 692        unsigned int max_bitflips = 0;
 693
 694        for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
 695                nand_read_page_op(chip, page, s * eccsize, NULL, 0);
 696                chip->ecc.hwctl(chip, NAND_ECC_READ);
 697                ret = nand_read_data_op(chip, p, eccsize, false, false);
 698                if (ret)
 699                        return ret;
 700
 701                for (j = 0; j < eccbytes;) {
 702                        struct mtd_oob_region oobregion;
 703
 704                        ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
 705                        if (ret)
 706                                return ret;
 707
 708                        off = oobregion.offset;
 709                        len = oobregion.length;
 710
 711                        /*
 712                         * length is intentionally kept a higher multiple of 2
 713                         * to read at least 13 bytes even in case of 16 bit NAND
 714                         * devices
 715                         */
 716                        if (chip->options & NAND_BUSWIDTH_16)
 717                                len = roundup(len, 2);
 718
 719                        nand_read_oob_op(chip, page, off, oob + j, len);
 720                        j += len;
 721                }
 722
 723                memcpy(&ecc_code[i], oob, chip->ecc.bytes);
 724                chip->ecc.calculate(chip, p, &ecc_calc[i]);
 725
 726                stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
 727                if (stat < 0) {
 728                        mtd->ecc_stats.failed++;
 729                } else {
 730                        mtd->ecc_stats.corrected += stat;
 731                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
 732                }
 733        }
 734
 735        return max_bitflips;
 736}
 737
 738/*
 739 * fsmc_bch8_correct_data
 740 * @mtd:        mtd info structure
 741 * @dat:        buffer of read data
 742 * @read_ecc:   ecc read from device spare area
 743 * @calc_ecc:   ecc calculated from read data
 744 *
 745 * calc_ecc is a 104 bit information containing maximum of 8 error
 746 * offset information of 13 bits each in 512 bytes of read data.
 747 */
 748static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
 749                                  u8 *read_ecc, u8 *calc_ecc)
 750{
 751        struct fsmc_nand_data *host = nand_to_fsmc(chip);
 752        u32 err_idx[8];
 753        u32 num_err, i;
 754        u32 ecc1, ecc2, ecc3, ecc4;
 755
 756        num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
 757
 758        /* no bit flipping */
 759        if (likely(num_err == 0))
 760                return 0;
 761
 762        /* too many errors */
 763        if (unlikely(num_err > 8)) {
 764                /*
 765                 * This is a temporary erase check. A newly erased page read
 766                 * would result in an ecc error because the oob data is also
 767                 * erased to FF and the calculated ecc for an FF data is not
 768                 * FF..FF.
 769                 * This is a workaround to skip performing correction in case
 770                 * data is FF..FF
 771                 *
 772                 * Logic:
 773                 * For every page, each bit written as 0 is counted until these
 774                 * number of bits are greater than 8 (the maximum correction
 775                 * capability of FSMC for each 512 + 13 bytes)
 776                 */
 777
 778                int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
 779                int bits_data = count_written_bits(dat, chip->ecc.size, 8);
 780
 781                if ((bits_ecc + bits_data) <= 8) {
 782                        if (bits_data)
 783                                memset(dat, 0xff, chip->ecc.size);
 784                        return bits_data;
 785                }
 786
 787                return -EBADMSG;
 788        }
 789
 790        /*
 791         * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
 792         * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
 793         *
 794         * calc_ecc is a 104 bit information containing maximum of 8 error
 795         * offset information of 13 bits each. calc_ecc is copied into a
 796         * u64 array and error offset indexes are populated in err_idx
 797         * array
 798         */
 799        ecc1 = readl_relaxed(host->regs_va + ECC1);
 800        ecc2 = readl_relaxed(host->regs_va + ECC2);
 801        ecc3 = readl_relaxed(host->regs_va + ECC3);
 802        ecc4 = readl_relaxed(host->regs_va + STS);
 803
 804        err_idx[0] = (ecc1 >> 0) & 0x1FFF;
 805        err_idx[1] = (ecc1 >> 13) & 0x1FFF;
 806        err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
 807        err_idx[3] = (ecc2 >> 7) & 0x1FFF;
 808        err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
 809        err_idx[5] = (ecc3 >> 1) & 0x1FFF;
 810        err_idx[6] = (ecc3 >> 14) & 0x1FFF;
 811        err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
 812
 813        i = 0;
 814        while (num_err--) {
 815                err_idx[i] ^= 3;
 816
 817                if (err_idx[i] < chip->ecc.size * 8) {
 818                        int err = err_idx[i];
 819
 820                        dat[err >> 3] ^= BIT(err & 7);
 821                        i++;
 822                }
 823        }
 824        return i;
 825}
 826
 827static bool filter(struct dma_chan *chan, void *slave)
 828{
 829        chan->private = slave;
 830        return true;
 831}
 832
 833static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 834                                     struct fsmc_nand_data *host,
 835                                     struct nand_chip *nand)
 836{
 837        struct device_node *np = pdev->dev.of_node;
 838        u32 val;
 839        int ret;
 840
 841        nand->options = 0;
 842
 843        if (!of_property_read_u32(np, "bank-width", &val)) {
 844                if (val == 2) {
 845                        nand->options |= NAND_BUSWIDTH_16;
 846                } else if (val != 1) {
 847                        dev_err(&pdev->dev, "invalid bank-width %u\n", val);
 848                        return -EINVAL;
 849                }
 850        }
 851
 852        if (of_get_property(np, "nand-skip-bbtscan", NULL))
 853                nand->options |= NAND_SKIP_BBTSCAN;
 854
 855        host->dev_timings = devm_kzalloc(&pdev->dev,
 856                                         sizeof(*host->dev_timings),
 857                                         GFP_KERNEL);
 858        if (!host->dev_timings)
 859                return -ENOMEM;
 860
 861        ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
 862                                        sizeof(*host->dev_timings));
 863        if (ret)
 864                host->dev_timings = NULL;
 865
 866        /* Set default NAND bank to 0 */
 867        host->bank = 0;
 868        if (!of_property_read_u32(np, "bank", &val)) {
 869                if (val > 3) {
 870                        dev_err(&pdev->dev, "invalid bank %u\n", val);
 871                        return -EINVAL;
 872                }
 873                host->bank = val;
 874        }
 875        return 0;
 876}
 877
 878static int fsmc_nand_attach_chip(struct nand_chip *nand)
 879{
 880        struct mtd_info *mtd = nand_to_mtd(nand);
 881        struct fsmc_nand_data *host = nand_to_fsmc(nand);
 882
 883        if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
 884                nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
 885
 886        if (!nand->ecc.size)
 887                nand->ecc.size = 512;
 888
 889        if (AMBA_REV_BITS(host->pid) >= 8) {
 890                nand->ecc.read_page = fsmc_read_page_hwecc;
 891                nand->ecc.calculate = fsmc_read_hwecc_ecc4;
 892                nand->ecc.correct = fsmc_bch8_correct_data;
 893                nand->ecc.bytes = 13;
 894                nand->ecc.strength = 8;
 895        }
 896
 897        if (AMBA_REV_BITS(host->pid) >= 8) {
 898                switch (mtd->oobsize) {
 899                case 16:
 900                case 64:
 901                case 128:
 902                case 224:
 903                case 256:
 904                        break;
 905                default:
 906                        dev_warn(host->dev,
 907                                 "No oob scheme defined for oobsize %d\n",
 908                                 mtd->oobsize);
 909                        return -EINVAL;
 910                }
 911
 912                mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
 913
 914                return 0;
 915        }
 916
 917        switch (nand->ecc.engine_type) {
 918        case NAND_ECC_ENGINE_TYPE_ON_HOST:
 919                dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
 920                nand->ecc.calculate = fsmc_read_hwecc_ecc1;
 921                nand->ecc.correct = nand_correct_data;
 922                nand->ecc.hwctl = fsmc_enable_hwecc;
 923                nand->ecc.bytes = 3;
 924                nand->ecc.strength = 1;
 925                nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
 926                break;
 927
 928        case NAND_ECC_ENGINE_TYPE_SOFT:
 929                if (nand->ecc.algo == NAND_ECC_ALGO_BCH) {
 930                        dev_info(host->dev,
 931                                 "Using 4-bit SW BCH ECC scheme\n");
 932                        break;
 933                }
 934
 935        case NAND_ECC_ENGINE_TYPE_ON_DIE:
 936                break;
 937
 938        default:
 939                dev_err(host->dev, "Unsupported ECC mode!\n");
 940                return -ENOTSUPP;
 941        }
 942
 943        /*
 944         * Don't set layout for BCH4 SW ECC. This will be
 945         * generated later in nand_bch_init() later.
 946         */
 947        if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
 948                switch (mtd->oobsize) {
 949                case 16:
 950                case 64:
 951                case 128:
 952                        mtd_set_ooblayout(mtd,
 953                                          &fsmc_ecc1_ooblayout_ops);
 954                        break;
 955                default:
 956                        dev_warn(host->dev,
 957                                 "No oob scheme defined for oobsize %d\n",
 958                                 mtd->oobsize);
 959                        return -EINVAL;
 960                }
 961        }
 962
 963        return 0;
 964}
 965
 966static const struct nand_controller_ops fsmc_nand_controller_ops = {
 967        .attach_chip = fsmc_nand_attach_chip,
 968        .exec_op = fsmc_exec_op,
 969        .setup_interface = fsmc_setup_interface,
 970};
 971
 972/**
 973 * fsmc_nand_disable() - Disables the NAND bank
 974 * @host: The instance to disable
 975 */
 976static void fsmc_nand_disable(struct fsmc_nand_data *host)
 977{
 978        u32 val;
 979
 980        val = readl(host->regs_va + FSMC_PC);
 981        val &= ~FSMC_ENABLE;
 982        writel(val, host->regs_va + FSMC_PC);
 983}
 984
 985/*
 986 * fsmc_nand_probe - Probe function
 987 * @pdev:       platform device structure
 988 */
 989static int __init fsmc_nand_probe(struct platform_device *pdev)
 990{
 991        struct fsmc_nand_data *host;
 992        struct mtd_info *mtd;
 993        struct nand_chip *nand;
 994        struct resource *res;
 995        void __iomem *base;
 996        dma_cap_mask_t mask;
 997        int ret = 0;
 998        u32 pid;
 999        int i;
1000
1001        /* Allocate memory for the device structure (and zero it) */
1002        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1003        if (!host)
1004                return -ENOMEM;
1005
1006        nand = &host->nand;
1007
1008        ret = fsmc_nand_probe_config_dt(pdev, host, nand);
1009        if (ret)
1010                return ret;
1011
1012        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
1013        host->data_va = devm_ioremap_resource(&pdev->dev, res);
1014        if (IS_ERR(host->data_va))
1015                return PTR_ERR(host->data_va);
1016
1017        host->data_pa = (dma_addr_t)res->start;
1018
1019        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1020        host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1021        if (IS_ERR(host->addr_va))
1022                return PTR_ERR(host->addr_va);
1023
1024        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1025        host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1026        if (IS_ERR(host->cmd_va))
1027                return PTR_ERR(host->cmd_va);
1028
1029        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1030        base = devm_ioremap_resource(&pdev->dev, res);
1031        if (IS_ERR(base))
1032                return PTR_ERR(base);
1033
1034        host->regs_va = base + FSMC_NOR_REG_SIZE +
1035                (host->bank * FSMC_NAND_BANK_SZ);
1036
1037        host->clk = devm_clk_get(&pdev->dev, NULL);
1038        if (IS_ERR(host->clk)) {
1039                dev_err(&pdev->dev, "failed to fetch block clock\n");
1040                return PTR_ERR(host->clk);
1041        }
1042
1043        ret = clk_prepare_enable(host->clk);
1044        if (ret)
1045                return ret;
1046
1047        /*
1048         * This device ID is actually a common AMBA ID as used on the
1049         * AMBA PrimeCell bus. However it is not a PrimeCell.
1050         */
1051        for (pid = 0, i = 0; i < 4; i++)
1052                pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1053                        255) << (i * 8);
1054
1055        host->pid = pid;
1056
1057        dev_info(&pdev->dev,
1058                 "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1059                 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1060                 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1061
1062        host->dev = &pdev->dev;
1063
1064        if (host->mode == USE_DMA_ACCESS)
1065                init_completion(&host->dma_access_complete);
1066
1067        /* Link all private pointers */
1068        mtd = nand_to_mtd(&host->nand);
1069        nand_set_flash_node(nand, pdev->dev.of_node);
1070
1071        mtd->dev.parent = &pdev->dev;
1072
1073        nand->badblockbits = 7;
1074
1075        if (host->mode == USE_DMA_ACCESS) {
1076                dma_cap_zero(mask);
1077                dma_cap_set(DMA_MEMCPY, mask);
1078                host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1079                if (!host->read_dma_chan) {
1080                        dev_err(&pdev->dev, "Unable to get read dma channel\n");
1081                        goto disable_clk;
1082                }
1083                host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1084                if (!host->write_dma_chan) {
1085                        dev_err(&pdev->dev, "Unable to get write dma channel\n");
1086                        goto release_dma_read_chan;
1087                }
1088        }
1089
1090        if (host->dev_timings) {
1091                fsmc_nand_setup(host, host->dev_timings);
1092                nand->options |= NAND_KEEP_TIMINGS;
1093        }
1094
1095        nand_controller_init(&host->base);
1096        host->base.ops = &fsmc_nand_controller_ops;
1097        nand->controller = &host->base;
1098
1099        /*
1100         * Scan to find existence of the device
1101         */
1102        ret = nand_scan(nand, 1);
1103        if (ret)
1104                goto release_dma_write_chan;
1105
1106        mtd->name = "nand";
1107        ret = mtd_device_register(mtd, NULL, 0);
1108        if (ret)
1109                goto cleanup_nand;
1110
1111        platform_set_drvdata(pdev, host);
1112        dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1113
1114        return 0;
1115
1116cleanup_nand:
1117        nand_cleanup(nand);
1118release_dma_write_chan:
1119        if (host->mode == USE_DMA_ACCESS)
1120                dma_release_channel(host->write_dma_chan);
1121release_dma_read_chan:
1122        if (host->mode == USE_DMA_ACCESS)
1123                dma_release_channel(host->read_dma_chan);
1124disable_clk:
1125        fsmc_nand_disable(host);
1126        clk_disable_unprepare(host->clk);
1127
1128        return ret;
1129}
1130
1131/*
1132 * Clean up routine
1133 */
1134static int fsmc_nand_remove(struct platform_device *pdev)
1135{
1136        struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1137
1138        if (host) {
1139                struct nand_chip *chip = &host->nand;
1140                int ret;
1141
1142                ret = mtd_device_unregister(nand_to_mtd(chip));
1143                WARN_ON(ret);
1144                nand_cleanup(chip);
1145                fsmc_nand_disable(host);
1146
1147                if (host->mode == USE_DMA_ACCESS) {
1148                        dma_release_channel(host->write_dma_chan);
1149                        dma_release_channel(host->read_dma_chan);
1150                }
1151                clk_disable_unprepare(host->clk);
1152        }
1153
1154        return 0;
1155}
1156
1157#ifdef CONFIG_PM_SLEEP
1158static int fsmc_nand_suspend(struct device *dev)
1159{
1160        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1161
1162        if (host)
1163                clk_disable_unprepare(host->clk);
1164
1165        return 0;
1166}
1167
1168static int fsmc_nand_resume(struct device *dev)
1169{
1170        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1171
1172        if (host) {
1173                clk_prepare_enable(host->clk);
1174                if (host->dev_timings)
1175                        fsmc_nand_setup(host, host->dev_timings);
1176                nand_reset(&host->nand, 0);
1177        }
1178
1179        return 0;
1180}
1181#endif
1182
1183static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1184
1185static const struct of_device_id fsmc_nand_id_table[] = {
1186        { .compatible = "st,spear600-fsmc-nand" },
1187        { .compatible = "stericsson,fsmc-nand" },
1188        {}
1189};
1190MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1191
1192static struct platform_driver fsmc_nand_driver = {
1193        .remove = fsmc_nand_remove,
1194        .driver = {
1195                .name = "fsmc-nand",
1196                .of_match_table = fsmc_nand_id_table,
1197                .pm = &fsmc_nand_pm_ops,
1198        },
1199};
1200
1201module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1202
1203MODULE_LICENSE("GPL v2");
1204MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1205MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
1206