linux/drivers/net/ethernet/chelsio/cxgb4vf/cxgb4vf_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  37
  38#include <linux/module.h>
  39#include <linux/moduleparam.h>
  40#include <linux/init.h>
  41#include <linux/pci.h>
  42#include <linux/dma-mapping.h>
  43#include <linux/netdevice.h>
  44#include <linux/etherdevice.h>
  45#include <linux/debugfs.h>
  46#include <linux/ethtool.h>
  47#include <linux/mdio.h>
  48
  49#include "t4vf_common.h"
  50#include "t4vf_defs.h"
  51
  52#include "../cxgb4/t4_regs.h"
  53#include "../cxgb4/t4_msg.h"
  54
  55/*
  56 * Generic information about the driver.
  57 */
  58#define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
  59
  60/*
  61 * Module Parameters.
  62 * ==================
  63 */
  64
  65/*
  66 * Default ethtool "message level" for adapters.
  67 */
  68#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  69                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
  70                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
  71
  72/*
  73 * The driver uses the best interrupt scheme available on a platform in the
  74 * order MSI-X then MSI.  This parameter determines which of these schemes the
  75 * driver may consider as follows:
  76 *
  77 *     msi = 2: choose from among MSI-X and MSI
  78 *     msi = 1: only consider MSI interrupts
  79 *
  80 * Note that unlike the Physical Function driver, this Virtual Function driver
  81 * does _not_ support legacy INTx interrupts (this limitation is mandated by
  82 * the PCI-E SR-IOV standard).
  83 */
  84#define MSI_MSIX        2
  85#define MSI_MSI         1
  86#define MSI_DEFAULT     MSI_MSIX
  87
  88static int msi = MSI_DEFAULT;
  89
  90module_param(msi, int, 0644);
  91MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
  92
  93/*
  94 * Fundamental constants.
  95 * ======================
  96 */
  97
  98enum {
  99        MAX_TXQ_ENTRIES         = 16384,
 100        MAX_RSPQ_ENTRIES        = 16384,
 101        MAX_RX_BUFFERS          = 16384,
 102
 103        MIN_TXQ_ENTRIES         = 32,
 104        MIN_RSPQ_ENTRIES        = 128,
 105        MIN_FL_ENTRIES          = 16,
 106
 107        /*
 108         * For purposes of manipulating the Free List size we need to
 109         * recognize that Free Lists are actually Egress Queues (the host
 110         * produces free buffers which the hardware consumes), Egress Queues
 111         * indices are all in units of Egress Context Units bytes, and free
 112         * list entries are 64-bit PCI DMA addresses.  And since the state of
 113         * the Producer Index == the Consumer Index implies an EMPTY list, we
 114         * always have at least one Egress Unit's worth of Free List entries
 115         * unused.  See sge.c for more details ...
 116         */
 117        EQ_UNIT = SGE_EQ_IDXSIZE,
 118        FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
 119        MIN_FL_RESID = FL_PER_EQ_UNIT,
 120};
 121
 122/*
 123 * Global driver state.
 124 * ====================
 125 */
 126
 127static struct dentry *cxgb4vf_debugfs_root;
 128
 129/*
 130 * OS "Callback" functions.
 131 * ========================
 132 */
 133
 134/*
 135 * The link status has changed on the indicated "port" (Virtual Interface).
 136 */
 137void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
 138{
 139        struct net_device *dev = adapter->port[pidx];
 140
 141        /*
 142         * If the port is disabled or the current recorded "link up"
 143         * status matches the new status, just return.
 144         */
 145        if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
 146                return;
 147
 148        /*
 149         * Tell the OS that the link status has changed and print a short
 150         * informative message on the console about the event.
 151         */
 152        if (link_ok) {
 153                const char *s;
 154                const char *fc;
 155                const struct port_info *pi = netdev_priv(dev);
 156
 157                netif_carrier_on(dev);
 158
 159                switch (pi->link_cfg.speed) {
 160                case 100:
 161                        s = "100Mbps";
 162                        break;
 163                case 1000:
 164                        s = "1Gbps";
 165                        break;
 166                case 10000:
 167                        s = "10Gbps";
 168                        break;
 169                case 25000:
 170                        s = "25Gbps";
 171                        break;
 172                case 40000:
 173                        s = "40Gbps";
 174                        break;
 175                case 100000:
 176                        s = "100Gbps";
 177                        break;
 178
 179                default:
 180                        s = "unknown";
 181                        break;
 182                }
 183
 184                switch ((int)pi->link_cfg.fc) {
 185                case PAUSE_RX:
 186                        fc = "RX";
 187                        break;
 188
 189                case PAUSE_TX:
 190                        fc = "TX";
 191                        break;
 192
 193                case PAUSE_RX | PAUSE_TX:
 194                        fc = "RX/TX";
 195                        break;
 196
 197                default:
 198                        fc = "no";
 199                        break;
 200                }
 201
 202                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
 203        } else {
 204                netif_carrier_off(dev);
 205                netdev_info(dev, "link down\n");
 206        }
 207}
 208
 209/*
 210 * THe port module type has changed on the indicated "port" (Virtual
 211 * Interface).
 212 */
 213void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
 214{
 215        static const char * const mod_str[] = {
 216                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 217        };
 218        const struct net_device *dev = adapter->port[pidx];
 219        const struct port_info *pi = netdev_priv(dev);
 220
 221        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 222                dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
 223                         dev->name);
 224        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 225                dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
 226                         dev->name, mod_str[pi->mod_type]);
 227        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 228                dev_info(adapter->pdev_dev, "%s: unsupported optical port "
 229                         "module inserted\n", dev->name);
 230        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 231                dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
 232                         "forcing TWINAX\n", dev->name);
 233        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 234                dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
 235                         dev->name);
 236        else
 237                dev_info(adapter->pdev_dev, "%s: unknown module type %d "
 238                         "inserted\n", dev->name, pi->mod_type);
 239}
 240
 241static int cxgb4vf_set_addr_hash(struct port_info *pi)
 242{
 243        struct adapter *adapter = pi->adapter;
 244        u64 vec = 0;
 245        bool ucast = false;
 246        struct hash_mac_addr *entry;
 247
 248        /* Calculate the hash vector for the updated list and program it */
 249        list_for_each_entry(entry, &adapter->mac_hlist, list) {
 250                ucast |= is_unicast_ether_addr(entry->addr);
 251                vec |= (1ULL << hash_mac_addr(entry->addr));
 252        }
 253        return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
 254}
 255
 256/**
 257 *      cxgb4vf_change_mac - Update match filter for a MAC address.
 258 *      @pi: the port_info
 259 *      @viid: the VI id
 260 *      @tcam_idx: TCAM index of existing filter for old value of MAC address,
 261 *                 or -1
 262 *      @addr: the new MAC address value
 263 *      @persistent: whether a new MAC allocation should be persistent
 264 *
 265 *      Modifies an MPS filter and sets it to the new MAC address if
 266 *      @tcam_idx >= 0, or adds the MAC address to a new filter if
 267 *      @tcam_idx < 0. In the latter case the address is added persistently
 268 *      if @persist is %true.
 269 *      Addresses are programmed to hash region, if tcam runs out of entries.
 270 *
 271 */
 272static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid,
 273                              int *tcam_idx, const u8 *addr, bool persistent)
 274{
 275        struct hash_mac_addr *new_entry, *entry;
 276        struct adapter *adapter = pi->adapter;
 277        int ret;
 278
 279        ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent);
 280        /* We ran out of TCAM entries. try programming hash region. */
 281        if (ret == -ENOMEM) {
 282                /* If the MAC address to be updated is in the hash addr
 283                 * list, update it from the list
 284                 */
 285                list_for_each_entry(entry, &adapter->mac_hlist, list) {
 286                        if (entry->iface_mac) {
 287                                ether_addr_copy(entry->addr, addr);
 288                                goto set_hash;
 289                        }
 290                }
 291                new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
 292                if (!new_entry)
 293                        return -ENOMEM;
 294                ether_addr_copy(new_entry->addr, addr);
 295                new_entry->iface_mac = true;
 296                list_add_tail(&new_entry->list, &adapter->mac_hlist);
 297set_hash:
 298                ret = cxgb4vf_set_addr_hash(pi);
 299        } else if (ret >= 0) {
 300                *tcam_idx = ret;
 301                ret = 0;
 302        }
 303
 304        return ret;
 305}
 306
 307/*
 308 * Net device operations.
 309 * ======================
 310 */
 311
 312
 313
 314
 315/*
 316 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
 317 * Interface).
 318 */
 319static int link_start(struct net_device *dev)
 320{
 321        int ret;
 322        struct port_info *pi = netdev_priv(dev);
 323
 324        /*
 325         * We do not set address filters and promiscuity here, the stack does
 326         * that step explicitly. Enable vlan accel.
 327         */
 328        ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
 329                              true);
 330        if (ret == 0)
 331                ret = cxgb4vf_change_mac(pi, pi->viid,
 332                                         &pi->xact_addr_filt,
 333                                         dev->dev_addr, true);
 334
 335        /*
 336         * We don't need to actually "start the link" itself since the
 337         * firmware will do that for us when the first Virtual Interface
 338         * is enabled on a port.
 339         */
 340        if (ret == 0)
 341                ret = t4vf_enable_pi(pi->adapter, pi, true, true);
 342
 343        return ret;
 344}
 345
 346/*
 347 * Name the MSI-X interrupts.
 348 */
 349static void name_msix_vecs(struct adapter *adapter)
 350{
 351        int namelen = sizeof(adapter->msix_info[0].desc) - 1;
 352        int pidx;
 353
 354        /*
 355         * Firmware events.
 356         */
 357        snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
 358                 "%s-FWeventq", adapter->name);
 359        adapter->msix_info[MSIX_FW].desc[namelen] = 0;
 360
 361        /*
 362         * Ethernet queues.
 363         */
 364        for_each_port(adapter, pidx) {
 365                struct net_device *dev = adapter->port[pidx];
 366                const struct port_info *pi = netdev_priv(dev);
 367                int qs, msi;
 368
 369                for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
 370                        snprintf(adapter->msix_info[msi].desc, namelen,
 371                                 "%s-%d", dev->name, qs);
 372                        adapter->msix_info[msi].desc[namelen] = 0;
 373                }
 374        }
 375}
 376
 377/*
 378 * Request all of our MSI-X resources.
 379 */
 380static int request_msix_queue_irqs(struct adapter *adapter)
 381{
 382        struct sge *s = &adapter->sge;
 383        int rxq, msi, err;
 384
 385        /*
 386         * Firmware events.
 387         */
 388        err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
 389                          0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
 390        if (err)
 391                return err;
 392
 393        /*
 394         * Ethernet queues.
 395         */
 396        msi = MSIX_IQFLINT;
 397        for_each_ethrxq(s, rxq) {
 398                err = request_irq(adapter->msix_info[msi].vec,
 399                                  t4vf_sge_intr_msix, 0,
 400                                  adapter->msix_info[msi].desc,
 401                                  &s->ethrxq[rxq].rspq);
 402                if (err)
 403                        goto err_free_irqs;
 404                msi++;
 405        }
 406        return 0;
 407
 408err_free_irqs:
 409        while (--rxq >= 0)
 410                free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
 411        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 412        return err;
 413}
 414
 415/*
 416 * Free our MSI-X resources.
 417 */
 418static void free_msix_queue_irqs(struct adapter *adapter)
 419{
 420        struct sge *s = &adapter->sge;
 421        int rxq, msi;
 422
 423        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 424        msi = MSIX_IQFLINT;
 425        for_each_ethrxq(s, rxq)
 426                free_irq(adapter->msix_info[msi++].vec,
 427                         &s->ethrxq[rxq].rspq);
 428}
 429
 430/*
 431 * Turn on NAPI and start up interrupts on a response queue.
 432 */
 433static void qenable(struct sge_rspq *rspq)
 434{
 435        napi_enable(&rspq->napi);
 436
 437        /*
 438         * 0-increment the Going To Sleep register to start the timer and
 439         * enable interrupts.
 440         */
 441        t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 442                     CIDXINC_V(0) |
 443                     SEINTARM_V(rspq->intr_params) |
 444                     INGRESSQID_V(rspq->cntxt_id));
 445}
 446
 447/*
 448 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
 449 */
 450static void enable_rx(struct adapter *adapter)
 451{
 452        int rxq;
 453        struct sge *s = &adapter->sge;
 454
 455        for_each_ethrxq(s, rxq)
 456                qenable(&s->ethrxq[rxq].rspq);
 457        qenable(&s->fw_evtq);
 458
 459        /*
 460         * The interrupt queue doesn't use NAPI so we do the 0-increment of
 461         * its Going To Sleep register here to get it started.
 462         */
 463        if (adapter->flags & CXGB4VF_USING_MSI)
 464                t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 465                             CIDXINC_V(0) |
 466                             SEINTARM_V(s->intrq.intr_params) |
 467                             INGRESSQID_V(s->intrq.cntxt_id));
 468
 469}
 470
 471/*
 472 * Wait until all NAPI handlers are descheduled.
 473 */
 474static void quiesce_rx(struct adapter *adapter)
 475{
 476        struct sge *s = &adapter->sge;
 477        int rxq;
 478
 479        for_each_ethrxq(s, rxq)
 480                napi_disable(&s->ethrxq[rxq].rspq.napi);
 481        napi_disable(&s->fw_evtq.napi);
 482}
 483
 484/*
 485 * Response queue handler for the firmware event queue.
 486 */
 487static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
 488                          const struct pkt_gl *gl)
 489{
 490        /*
 491         * Extract response opcode and get pointer to CPL message body.
 492         */
 493        struct adapter *adapter = rspq->adapter;
 494        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 495        void *cpl = (void *)(rsp + 1);
 496
 497        switch (opcode) {
 498        case CPL_FW6_MSG: {
 499                /*
 500                 * We've received an asynchronous message from the firmware.
 501                 */
 502                const struct cpl_fw6_msg *fw_msg = cpl;
 503                if (fw_msg->type == FW6_TYPE_CMD_RPL)
 504                        t4vf_handle_fw_rpl(adapter, fw_msg->data);
 505                break;
 506        }
 507
 508        case CPL_FW4_MSG: {
 509                /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 510                 */
 511                const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
 512                opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
 513                if (opcode != CPL_SGE_EGR_UPDATE) {
 514                        dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 515                                , opcode);
 516                        break;
 517                }
 518                cpl = (void *)p;
 519        }
 520                fallthrough;
 521
 522        case CPL_SGE_EGR_UPDATE: {
 523                /*
 524                 * We've received an Egress Queue Status Update message.  We
 525                 * get these, if the SGE is configured to send these when the
 526                 * firmware passes certain points in processing our TX
 527                 * Ethernet Queue or if we make an explicit request for one.
 528                 * We use these updates to determine when we may need to
 529                 * restart a TX Ethernet Queue which was stopped for lack of
 530                 * free TX Queue Descriptors ...
 531                 */
 532                const struct cpl_sge_egr_update *p = cpl;
 533                unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
 534                struct sge *s = &adapter->sge;
 535                struct sge_txq *tq;
 536                struct sge_eth_txq *txq;
 537                unsigned int eq_idx;
 538
 539                /*
 540                 * Perform sanity checking on the Queue ID to make sure it
 541                 * really refers to one of our TX Ethernet Egress Queues which
 542                 * is active and matches the queue's ID.  None of these error
 543                 * conditions should ever happen so we may want to either make
 544                 * them fatal and/or conditionalized under DEBUG.
 545                 */
 546                eq_idx = EQ_IDX(s, qid);
 547                if (unlikely(eq_idx >= MAX_EGRQ)) {
 548                        dev_err(adapter->pdev_dev,
 549                                "Egress Update QID %d out of range\n", qid);
 550                        break;
 551                }
 552                tq = s->egr_map[eq_idx];
 553                if (unlikely(tq == NULL)) {
 554                        dev_err(adapter->pdev_dev,
 555                                "Egress Update QID %d TXQ=NULL\n", qid);
 556                        break;
 557                }
 558                txq = container_of(tq, struct sge_eth_txq, q);
 559                if (unlikely(tq->abs_id != qid)) {
 560                        dev_err(adapter->pdev_dev,
 561                                "Egress Update QID %d refers to TXQ %d\n",
 562                                qid, tq->abs_id);
 563                        break;
 564                }
 565
 566                /*
 567                 * Restart a stopped TX Queue which has less than half of its
 568                 * TX ring in use ...
 569                 */
 570                txq->q.restarts++;
 571                netif_tx_wake_queue(txq->txq);
 572                break;
 573        }
 574
 575        default:
 576                dev_err(adapter->pdev_dev,
 577                        "unexpected CPL %#x on FW event queue\n", opcode);
 578        }
 579
 580        return 0;
 581}
 582
 583/*
 584 * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
 585 * to use and initializes them.  We support multiple "Queue Sets" per port if
 586 * we have MSI-X, otherwise just one queue set per port.
 587 */
 588static int setup_sge_queues(struct adapter *adapter)
 589{
 590        struct sge *s = &adapter->sge;
 591        int err, pidx, msix;
 592
 593        /*
 594         * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
 595         * state.
 596         */
 597        bitmap_zero(s->starving_fl, MAX_EGRQ);
 598
 599        /*
 600         * If we're using MSI interrupt mode we need to set up a "forwarded
 601         * interrupt" queue which we'll set up with our MSI vector.  The rest
 602         * of the ingress queues will be set up to forward their interrupts to
 603         * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
 604         * the intrq's queue ID as the interrupt forwarding queue for the
 605         * subsequent calls ...
 606         */
 607        if (adapter->flags & CXGB4VF_USING_MSI) {
 608                err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
 609                                         adapter->port[0], 0, NULL, NULL);
 610                if (err)
 611                        goto err_free_queues;
 612        }
 613
 614        /*
 615         * Allocate our ingress queue for asynchronous firmware messages.
 616         */
 617        err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
 618                                 MSIX_FW, NULL, fwevtq_handler);
 619        if (err)
 620                goto err_free_queues;
 621
 622        /*
 623         * Allocate each "port"'s initial Queue Sets.  These can be changed
 624         * later on ... up to the point where any interface on the adapter is
 625         * brought up at which point lots of things get nailed down
 626         * permanently ...
 627         */
 628        msix = MSIX_IQFLINT;
 629        for_each_port(adapter, pidx) {
 630                struct net_device *dev = adapter->port[pidx];
 631                struct port_info *pi = netdev_priv(dev);
 632                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 633                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 634                int qs;
 635
 636                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 637                        err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
 638                                                 dev, msix++,
 639                                                 &rxq->fl, t4vf_ethrx_handler);
 640                        if (err)
 641                                goto err_free_queues;
 642
 643                        err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
 644                                             netdev_get_tx_queue(dev, qs),
 645                                             s->fw_evtq.cntxt_id);
 646                        if (err)
 647                                goto err_free_queues;
 648
 649                        rxq->rspq.idx = qs;
 650                        memset(&rxq->stats, 0, sizeof(rxq->stats));
 651                }
 652        }
 653
 654        /*
 655         * Create the reverse mappings for the queues.
 656         */
 657        s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
 658        s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
 659        IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
 660        for_each_port(adapter, pidx) {
 661                struct net_device *dev = adapter->port[pidx];
 662                struct port_info *pi = netdev_priv(dev);
 663                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 664                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 665                int qs;
 666
 667                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 668                        IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
 669                        EQ_MAP(s, txq->q.abs_id) = &txq->q;
 670
 671                        /*
 672                         * The FW_IQ_CMD doesn't return the Absolute Queue IDs
 673                         * for Free Lists but since all of the Egress Queues
 674                         * (including Free Lists) have Relative Queue IDs
 675                         * which are computed as Absolute - Base Queue ID, we
 676                         * can synthesize the Absolute Queue IDs for the Free
 677                         * Lists.  This is useful for debugging purposes when
 678                         * we want to dump Queue Contexts via the PF Driver.
 679                         */
 680                        rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
 681                        EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
 682                }
 683        }
 684        return 0;
 685
 686err_free_queues:
 687        t4vf_free_sge_resources(adapter);
 688        return err;
 689}
 690
 691/*
 692 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
 693 * queues.  We configure the RSS CPU lookup table to distribute to the number
 694 * of HW receive queues, and the response queue lookup table to narrow that
 695 * down to the response queues actually configured for each "port" (Virtual
 696 * Interface).  We always configure the RSS mapping for all ports since the
 697 * mapping table has plenty of entries.
 698 */
 699static int setup_rss(struct adapter *adapter)
 700{
 701        int pidx;
 702
 703        for_each_port(adapter, pidx) {
 704                struct port_info *pi = adap2pinfo(adapter, pidx);
 705                struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
 706                u16 rss[MAX_PORT_QSETS];
 707                int qs, err;
 708
 709                for (qs = 0; qs < pi->nqsets; qs++)
 710                        rss[qs] = rxq[qs].rspq.abs_id;
 711
 712                err = t4vf_config_rss_range(adapter, pi->viid,
 713                                            0, pi->rss_size, rss, pi->nqsets);
 714                if (err)
 715                        return err;
 716
 717                /*
 718                 * Perform Global RSS Mode-specific initialization.
 719                 */
 720                switch (adapter->params.rss.mode) {
 721                case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
 722                        /*
 723                         * If Tunnel All Lookup isn't specified in the global
 724                         * RSS Configuration, then we need to specify a
 725                         * default Ingress Queue for any ingress packets which
 726                         * aren't hashed.  We'll use our first ingress queue
 727                         * ...
 728                         */
 729                        if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
 730                                union rss_vi_config config;
 731                                err = t4vf_read_rss_vi_config(adapter,
 732                                                              pi->viid,
 733                                                              &config);
 734                                if (err)
 735                                        return err;
 736                                config.basicvirtual.defaultq =
 737                                        rxq[0].rspq.abs_id;
 738                                err = t4vf_write_rss_vi_config(adapter,
 739                                                               pi->viid,
 740                                                               &config);
 741                                if (err)
 742                                        return err;
 743                        }
 744                        break;
 745                }
 746        }
 747
 748        return 0;
 749}
 750
 751/*
 752 * Bring the adapter up.  Called whenever we go from no "ports" open to having
 753 * one open.  This function performs the actions necessary to make an adapter
 754 * operational, such as completing the initialization of HW modules, and
 755 * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
 756 * this is called "cxgb_up" in the PF Driver.)
 757 */
 758static int adapter_up(struct adapter *adapter)
 759{
 760        int err;
 761
 762        /*
 763         * If this is the first time we've been called, perform basic
 764         * adapter setup.  Once we've done this, many of our adapter
 765         * parameters can no longer be changed ...
 766         */
 767        if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) {
 768                err = setup_sge_queues(adapter);
 769                if (err)
 770                        return err;
 771                err = setup_rss(adapter);
 772                if (err) {
 773                        t4vf_free_sge_resources(adapter);
 774                        return err;
 775                }
 776
 777                if (adapter->flags & CXGB4VF_USING_MSIX)
 778                        name_msix_vecs(adapter);
 779
 780                adapter->flags |= CXGB4VF_FULL_INIT_DONE;
 781        }
 782
 783        /*
 784         * Acquire our interrupt resources.  We only support MSI-X and MSI.
 785         */
 786        BUG_ON((adapter->flags &
 787               (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
 788        if (adapter->flags & CXGB4VF_USING_MSIX)
 789                err = request_msix_queue_irqs(adapter);
 790        else
 791                err = request_irq(adapter->pdev->irq,
 792                                  t4vf_intr_handler(adapter), 0,
 793                                  adapter->name, adapter);
 794        if (err) {
 795                dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
 796                        err);
 797                return err;
 798        }
 799
 800        /*
 801         * Enable NAPI ingress processing and return success.
 802         */
 803        enable_rx(adapter);
 804        t4vf_sge_start(adapter);
 805
 806        return 0;
 807}
 808
 809/*
 810 * Bring the adapter down.  Called whenever the last "port" (Virtual
 811 * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
 812 * Driver.)
 813 */
 814static void adapter_down(struct adapter *adapter)
 815{
 816        /*
 817         * Free interrupt resources.
 818         */
 819        if (adapter->flags & CXGB4VF_USING_MSIX)
 820                free_msix_queue_irqs(adapter);
 821        else
 822                free_irq(adapter->pdev->irq, adapter);
 823
 824        /*
 825         * Wait for NAPI handlers to finish.
 826         */
 827        quiesce_rx(adapter);
 828}
 829
 830/*
 831 * Start up a net device.
 832 */
 833static int cxgb4vf_open(struct net_device *dev)
 834{
 835        int err;
 836        struct port_info *pi = netdev_priv(dev);
 837        struct adapter *adapter = pi->adapter;
 838
 839        /*
 840         * If we don't have a connection to the firmware there's nothing we
 841         * can do.
 842         */
 843        if (!(adapter->flags & CXGB4VF_FW_OK))
 844                return -ENXIO;
 845
 846        /*
 847         * If this is the first interface that we're opening on the "adapter",
 848         * bring the "adapter" up now.
 849         */
 850        if (adapter->open_device_map == 0) {
 851                err = adapter_up(adapter);
 852                if (err)
 853                        return err;
 854        }
 855
 856        /* It's possible that the basic port information could have
 857         * changed since we first read it.
 858         */
 859        err = t4vf_update_port_info(pi);
 860        if (err < 0)
 861                return err;
 862
 863        /*
 864         * Note that this interface is up and start everything up ...
 865         */
 866        err = link_start(dev);
 867        if (err)
 868                goto err_unwind;
 869
 870        pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
 871
 872        netif_tx_start_all_queues(dev);
 873        set_bit(pi->port_id, &adapter->open_device_map);
 874        return 0;
 875
 876err_unwind:
 877        if (adapter->open_device_map == 0)
 878                adapter_down(adapter);
 879        return err;
 880}
 881
 882/*
 883 * Shut down a net device.  This routine is called "cxgb_close" in the PF
 884 * Driver ...
 885 */
 886static int cxgb4vf_stop(struct net_device *dev)
 887{
 888        struct port_info *pi = netdev_priv(dev);
 889        struct adapter *adapter = pi->adapter;
 890
 891        netif_tx_stop_all_queues(dev);
 892        netif_carrier_off(dev);
 893        t4vf_enable_pi(adapter, pi, false, false);
 894
 895        clear_bit(pi->port_id, &adapter->open_device_map);
 896        if (adapter->open_device_map == 0)
 897                adapter_down(adapter);
 898        return 0;
 899}
 900
 901/*
 902 * Translate our basic statistics into the standard "ifconfig" statistics.
 903 */
 904static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
 905{
 906        struct t4vf_port_stats stats;
 907        struct port_info *pi = netdev2pinfo(dev);
 908        struct adapter *adapter = pi->adapter;
 909        struct net_device_stats *ns = &dev->stats;
 910        int err;
 911
 912        spin_lock(&adapter->stats_lock);
 913        err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
 914        spin_unlock(&adapter->stats_lock);
 915
 916        memset(ns, 0, sizeof(*ns));
 917        if (err)
 918                return ns;
 919
 920        ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
 921                        stats.tx_ucast_bytes + stats.tx_offload_bytes);
 922        ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
 923                          stats.tx_ucast_frames + stats.tx_offload_frames);
 924        ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
 925                        stats.rx_ucast_bytes);
 926        ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
 927                          stats.rx_ucast_frames);
 928        ns->multicast = stats.rx_mcast_frames;
 929        ns->tx_errors = stats.tx_drop_frames;
 930        ns->rx_errors = stats.rx_err_frames;
 931
 932        return ns;
 933}
 934
 935static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 936{
 937        struct port_info *pi = netdev_priv(netdev);
 938        struct adapter *adapter = pi->adapter;
 939        int ret;
 940        u64 mhash = 0;
 941        u64 uhash = 0;
 942        bool free = false;
 943        bool ucast = is_unicast_ether_addr(mac_addr);
 944        const u8 *maclist[1] = {mac_addr};
 945        struct hash_mac_addr *new_entry;
 946
 947        ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
 948                                  NULL, ucast ? &uhash : &mhash, false);
 949        if (ret < 0)
 950                goto out;
 951        /* if hash != 0, then add the addr to hash addr list
 952         * so on the end we will calculate the hash for the
 953         * list and program it
 954         */
 955        if (uhash || mhash) {
 956                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 957                if (!new_entry)
 958                        return -ENOMEM;
 959                ether_addr_copy(new_entry->addr, mac_addr);
 960                list_add_tail(&new_entry->list, &adapter->mac_hlist);
 961                ret = cxgb4vf_set_addr_hash(pi);
 962        }
 963out:
 964        return ret < 0 ? ret : 0;
 965}
 966
 967static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 968{
 969        struct port_info *pi = netdev_priv(netdev);
 970        struct adapter *adapter = pi->adapter;
 971        int ret;
 972        const u8 *maclist[1] = {mac_addr};
 973        struct hash_mac_addr *entry, *tmp;
 974
 975        /* If the MAC address to be removed is in the hash addr
 976         * list, delete it from the list and update hash vector
 977         */
 978        list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
 979                if (ether_addr_equal(entry->addr, mac_addr)) {
 980                        list_del(&entry->list);
 981                        kfree(entry);
 982                        return cxgb4vf_set_addr_hash(pi);
 983                }
 984        }
 985
 986        ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
 987        return ret < 0 ? -EINVAL : 0;
 988}
 989
 990/*
 991 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
 992 * If @mtu is -1 it is left unchanged.
 993 */
 994static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 995{
 996        struct port_info *pi = netdev_priv(dev);
 997
 998        __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
 999        __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
1000        return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
1001                               (dev->flags & IFF_PROMISC) != 0,
1002                               (dev->flags & IFF_ALLMULTI) != 0,
1003                               1, -1, sleep_ok);
1004}
1005
1006/*
1007 * Set the current receive modes on the device.
1008 */
1009static void cxgb4vf_set_rxmode(struct net_device *dev)
1010{
1011        /* unfortunately we can't return errors to the stack */
1012        set_rxmode(dev, -1, false);
1013}
1014
1015/*
1016 * Find the entry in the interrupt holdoff timer value array which comes
1017 * closest to the specified interrupt holdoff value.
1018 */
1019static int closest_timer(const struct sge *s, int us)
1020{
1021        int i, timer_idx = 0, min_delta = INT_MAX;
1022
1023        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1024                int delta = us - s->timer_val[i];
1025                if (delta < 0)
1026                        delta = -delta;
1027                if (delta < min_delta) {
1028                        min_delta = delta;
1029                        timer_idx = i;
1030                }
1031        }
1032        return timer_idx;
1033}
1034
1035static int closest_thres(const struct sge *s, int thres)
1036{
1037        int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
1038
1039        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1040                delta = thres - s->counter_val[i];
1041                if (delta < 0)
1042                        delta = -delta;
1043                if (delta < min_delta) {
1044                        min_delta = delta;
1045                        pktcnt_idx = i;
1046                }
1047        }
1048        return pktcnt_idx;
1049}
1050
1051/*
1052 * Return a queue's interrupt hold-off time in us.  0 means no timer.
1053 */
1054static unsigned int qtimer_val(const struct adapter *adapter,
1055                               const struct sge_rspq *rspq)
1056{
1057        unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1058
1059        return timer_idx < SGE_NTIMERS
1060                ? adapter->sge.timer_val[timer_idx]
1061                : 0;
1062}
1063
1064/**
1065 *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
1066 *      @adapter: the adapter
1067 *      @rspq: the RX response queue
1068 *      @us: the hold-off time in us, or 0 to disable timer
1069 *      @cnt: the hold-off packet count, or 0 to disable counter
1070 *
1071 *      Sets an RX response queue's interrupt hold-off time and packet count.
1072 *      At least one of the two needs to be enabled for the queue to generate
1073 *      interrupts.
1074 */
1075static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1076                               unsigned int us, unsigned int cnt)
1077{
1078        unsigned int timer_idx;
1079
1080        /*
1081         * If both the interrupt holdoff timer and count are specified as
1082         * zero, default to a holdoff count of 1 ...
1083         */
1084        if ((us | cnt) == 0)
1085                cnt = 1;
1086
1087        /*
1088         * If an interrupt holdoff count has been specified, then find the
1089         * closest configured holdoff count and use that.  If the response
1090         * queue has already been created, then update its queue context
1091         * parameters ...
1092         */
1093        if (cnt) {
1094                int err;
1095                u32 v, pktcnt_idx;
1096
1097                pktcnt_idx = closest_thres(&adapter->sge, cnt);
1098                if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1099                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1100                            FW_PARAMS_PARAM_X_V(
1101                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1102                            FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1103                        err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1104                        if (err)
1105                                return err;
1106                }
1107                rspq->pktcnt_idx = pktcnt_idx;
1108        }
1109
1110        /*
1111         * Compute the closest holdoff timer index from the supplied holdoff
1112         * timer value.
1113         */
1114        timer_idx = (us == 0
1115                     ? SGE_TIMER_RSTRT_CNTR
1116                     : closest_timer(&adapter->sge, us));
1117
1118        /*
1119         * Update the response queue's interrupt coalescing parameters and
1120         * return success.
1121         */
1122        rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1123                             QINTR_CNT_EN_V(cnt > 0));
1124        return 0;
1125}
1126
1127/*
1128 * Return a version number to identify the type of adapter.  The scheme is:
1129 * - bits 0..9: chip version
1130 * - bits 10..15: chip revision
1131 */
1132static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1133{
1134        /*
1135         * Chip version 4, revision 0x3f (cxgb4vf).
1136         */
1137        return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1138}
1139
1140/*
1141 * Execute the specified ioctl command.
1142 */
1143static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1144{
1145        int ret = 0;
1146
1147        switch (cmd) {
1148            /*
1149             * The VF Driver doesn't have access to any of the other
1150             * common Ethernet device ioctl()'s (like reading/writing
1151             * PHY registers, etc.
1152             */
1153
1154        default:
1155                ret = -EOPNOTSUPP;
1156                break;
1157        }
1158        return ret;
1159}
1160
1161/*
1162 * Change the device's MTU.
1163 */
1164static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1165{
1166        int ret;
1167        struct port_info *pi = netdev_priv(dev);
1168
1169        ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1170                              -1, -1, -1, -1, true);
1171        if (!ret)
1172                dev->mtu = new_mtu;
1173        return ret;
1174}
1175
1176static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1177        netdev_features_t features)
1178{
1179        /*
1180         * Since there is no support for separate rx/tx vlan accel
1181         * enable/disable make sure tx flag is always in same state as rx.
1182         */
1183        if (features & NETIF_F_HW_VLAN_CTAG_RX)
1184                features |= NETIF_F_HW_VLAN_CTAG_TX;
1185        else
1186                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1187
1188        return features;
1189}
1190
1191static int cxgb4vf_set_features(struct net_device *dev,
1192        netdev_features_t features)
1193{
1194        struct port_info *pi = netdev_priv(dev);
1195        netdev_features_t changed = dev->features ^ features;
1196
1197        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1198                t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1199                                features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1200
1201        return 0;
1202}
1203
1204/*
1205 * Change the devices MAC address.
1206 */
1207static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1208{
1209        int ret;
1210        struct sockaddr *addr = _addr;
1211        struct port_info *pi = netdev_priv(dev);
1212
1213        if (!is_valid_ether_addr(addr->sa_data))
1214                return -EADDRNOTAVAIL;
1215
1216        ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt,
1217                                 addr->sa_data, true);
1218        if (ret < 0)
1219                return ret;
1220
1221        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1222        return 0;
1223}
1224
1225#ifdef CONFIG_NET_POLL_CONTROLLER
1226/*
1227 * Poll all of our receive queues.  This is called outside of normal interrupt
1228 * context.
1229 */
1230static void cxgb4vf_poll_controller(struct net_device *dev)
1231{
1232        struct port_info *pi = netdev_priv(dev);
1233        struct adapter *adapter = pi->adapter;
1234
1235        if (adapter->flags & CXGB4VF_USING_MSIX) {
1236                struct sge_eth_rxq *rxq;
1237                int nqsets;
1238
1239                rxq = &adapter->sge.ethrxq[pi->first_qset];
1240                for (nqsets = pi->nqsets; nqsets; nqsets--) {
1241                        t4vf_sge_intr_msix(0, &rxq->rspq);
1242                        rxq++;
1243                }
1244        } else
1245                t4vf_intr_handler(adapter)(0, adapter);
1246}
1247#endif
1248
1249/*
1250 * Ethtool operations.
1251 * ===================
1252 *
1253 * Note that we don't support any ethtool operations which change the physical
1254 * state of the port to which we're linked.
1255 */
1256
1257/**
1258 *      from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1259 *      @port_type: Firmware Port Type
1260 *      @mod_type: Firmware Module Type
1261 *
1262 *      Translate Firmware Port/Module type to Ethtool Port Type.
1263 */
1264static int from_fw_port_mod_type(enum fw_port_type port_type,
1265                                 enum fw_port_module_type mod_type)
1266{
1267        if (port_type == FW_PORT_TYPE_BT_SGMII ||
1268            port_type == FW_PORT_TYPE_BT_XFI ||
1269            port_type == FW_PORT_TYPE_BT_XAUI) {
1270                return PORT_TP;
1271        } else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1272                   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1273                return PORT_FIBRE;
1274        } else if (port_type == FW_PORT_TYPE_SFP ||
1275                   port_type == FW_PORT_TYPE_QSFP_10G ||
1276                   port_type == FW_PORT_TYPE_QSA ||
1277                   port_type == FW_PORT_TYPE_QSFP ||
1278                   port_type == FW_PORT_TYPE_CR4_QSFP ||
1279                   port_type == FW_PORT_TYPE_CR_QSFP ||
1280                   port_type == FW_PORT_TYPE_CR2_QSFP ||
1281                   port_type == FW_PORT_TYPE_SFP28) {
1282                if (mod_type == FW_PORT_MOD_TYPE_LR ||
1283                    mod_type == FW_PORT_MOD_TYPE_SR ||
1284                    mod_type == FW_PORT_MOD_TYPE_ER ||
1285                    mod_type == FW_PORT_MOD_TYPE_LRM)
1286                        return PORT_FIBRE;
1287                else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1288                         mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1289                        return PORT_DA;
1290                else
1291                        return PORT_OTHER;
1292        } else if (port_type == FW_PORT_TYPE_KR4_100G ||
1293                   port_type == FW_PORT_TYPE_KR_SFP28 ||
1294                   port_type == FW_PORT_TYPE_KR_XLAUI) {
1295                return PORT_NONE;
1296        }
1297
1298        return PORT_OTHER;
1299}
1300
1301/**
1302 *      fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1303 *      @port_type: Firmware Port Type
1304 *      @fw_caps: Firmware Port Capabilities
1305 *      @link_mode_mask: ethtool Link Mode Mask
1306 *
1307 *      Translate a Firmware Port Capabilities specification to an ethtool
1308 *      Link Mode Mask.
1309 */
1310static void fw_caps_to_lmm(enum fw_port_type port_type,
1311                           unsigned int fw_caps,
1312                           unsigned long *link_mode_mask)
1313{
1314        #define SET_LMM(__lmm_name) \
1315                __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1316                          link_mode_mask)
1317
1318        #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1319                do { \
1320                        if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1321                                SET_LMM(__lmm_name); \
1322                } while (0)
1323
1324        switch (port_type) {
1325        case FW_PORT_TYPE_BT_SGMII:
1326        case FW_PORT_TYPE_BT_XFI:
1327        case FW_PORT_TYPE_BT_XAUI:
1328                SET_LMM(TP);
1329                FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1330                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1331                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1332                break;
1333
1334        case FW_PORT_TYPE_KX4:
1335        case FW_PORT_TYPE_KX:
1336                SET_LMM(Backplane);
1337                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1338                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1339                break;
1340
1341        case FW_PORT_TYPE_KR:
1342                SET_LMM(Backplane);
1343                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1344                break;
1345
1346        case FW_PORT_TYPE_BP_AP:
1347                SET_LMM(Backplane);
1348                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1349                FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1350                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1351                break;
1352
1353        case FW_PORT_TYPE_BP4_AP:
1354                SET_LMM(Backplane);
1355                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1356                FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1357                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1358                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1359                break;
1360
1361        case FW_PORT_TYPE_FIBER_XFI:
1362        case FW_PORT_TYPE_FIBER_XAUI:
1363        case FW_PORT_TYPE_SFP:
1364        case FW_PORT_TYPE_QSFP_10G:
1365        case FW_PORT_TYPE_QSA:
1366                SET_LMM(FIBRE);
1367                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1368                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1369                break;
1370
1371        case FW_PORT_TYPE_BP40_BA:
1372        case FW_PORT_TYPE_QSFP:
1373                SET_LMM(FIBRE);
1374                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1375                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1376                FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1377                break;
1378
1379        case FW_PORT_TYPE_CR_QSFP:
1380        case FW_PORT_TYPE_SFP28:
1381                SET_LMM(FIBRE);
1382                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1383                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1384                FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1385                break;
1386
1387        case FW_PORT_TYPE_KR_SFP28:
1388                SET_LMM(Backplane);
1389                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1390                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1391                FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1392                break;
1393
1394        case FW_PORT_TYPE_KR_XLAUI:
1395                SET_LMM(Backplane);
1396                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1397                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1398                FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1399                break;
1400
1401        case FW_PORT_TYPE_CR2_QSFP:
1402                SET_LMM(FIBRE);
1403                FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1404                break;
1405
1406        case FW_PORT_TYPE_KR4_100G:
1407        case FW_PORT_TYPE_CR4_QSFP:
1408                SET_LMM(FIBRE);
1409                FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1410                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1411                FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1412                FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1413                FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1414                FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1415                break;
1416
1417        default:
1418                break;
1419        }
1420
1421        if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
1422                FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
1423                FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
1424        } else {
1425                SET_LMM(FEC_NONE);
1426        }
1427
1428        FW_CAPS_TO_LMM(ANEG, Autoneg);
1429        FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1430        FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1431
1432        #undef FW_CAPS_TO_LMM
1433        #undef SET_LMM
1434}
1435
1436static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1437                                  struct ethtool_link_ksettings *link_ksettings)
1438{
1439        struct port_info *pi = netdev_priv(dev);
1440        struct ethtool_link_settings *base = &link_ksettings->base;
1441
1442        /* For the nonce, the Firmware doesn't send up Port State changes
1443         * when the Virtual Interface attached to the Port is down.  So
1444         * if it's down, let's grab any changes.
1445         */
1446        if (!netif_running(dev))
1447                (void)t4vf_update_port_info(pi);
1448
1449        ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1450        ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1451        ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1452
1453        base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1454
1455        if (pi->mdio_addr >= 0) {
1456                base->phy_address = pi->mdio_addr;
1457                base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1458                                      ? ETH_MDIO_SUPPORTS_C22
1459                                      : ETH_MDIO_SUPPORTS_C45);
1460        } else {
1461                base->phy_address = 255;
1462                base->mdio_support = 0;
1463        }
1464
1465        fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1466                       link_ksettings->link_modes.supported);
1467        fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1468                       link_ksettings->link_modes.advertising);
1469        fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1470                       link_ksettings->link_modes.lp_advertising);
1471
1472        if (netif_carrier_ok(dev)) {
1473                base->speed = pi->link_cfg.speed;
1474                base->duplex = DUPLEX_FULL;
1475        } else {
1476                base->speed = SPEED_UNKNOWN;
1477                base->duplex = DUPLEX_UNKNOWN;
1478        }
1479
1480        base->autoneg = pi->link_cfg.autoneg;
1481        if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1482                ethtool_link_ksettings_add_link_mode(link_ksettings,
1483                                                     supported, Autoneg);
1484        if (pi->link_cfg.autoneg)
1485                ethtool_link_ksettings_add_link_mode(link_ksettings,
1486                                                     advertising, Autoneg);
1487
1488        return 0;
1489}
1490
1491/* Translate the Firmware FEC value into the ethtool value. */
1492static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1493{
1494        unsigned int eth_fec = 0;
1495
1496        if (fw_fec & FW_PORT_CAP32_FEC_RS)
1497                eth_fec |= ETHTOOL_FEC_RS;
1498        if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1499                eth_fec |= ETHTOOL_FEC_BASER;
1500
1501        /* if nothing is set, then FEC is off */
1502        if (!eth_fec)
1503                eth_fec = ETHTOOL_FEC_OFF;
1504
1505        return eth_fec;
1506}
1507
1508/* Translate Common Code FEC value into ethtool value. */
1509static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1510{
1511        unsigned int eth_fec = 0;
1512
1513        if (cc_fec & FEC_AUTO)
1514                eth_fec |= ETHTOOL_FEC_AUTO;
1515        if (cc_fec & FEC_RS)
1516                eth_fec |= ETHTOOL_FEC_RS;
1517        if (cc_fec & FEC_BASER_RS)
1518                eth_fec |= ETHTOOL_FEC_BASER;
1519
1520        /* if nothing is set, then FEC is off */
1521        if (!eth_fec)
1522                eth_fec = ETHTOOL_FEC_OFF;
1523
1524        return eth_fec;
1525}
1526
1527static int cxgb4vf_get_fecparam(struct net_device *dev,
1528                                struct ethtool_fecparam *fec)
1529{
1530        const struct port_info *pi = netdev_priv(dev);
1531        const struct link_config *lc = &pi->link_cfg;
1532
1533        /* Translate the Firmware FEC Support into the ethtool value.  We
1534         * always support IEEE 802.3 "automatic" selection of Link FEC type if
1535         * any FEC is supported.
1536         */
1537        fec->fec = fwcap_to_eth_fec(lc->pcaps);
1538        if (fec->fec != ETHTOOL_FEC_OFF)
1539                fec->fec |= ETHTOOL_FEC_AUTO;
1540
1541        /* Translate the current internal FEC parameters into the
1542         * ethtool values.
1543         */
1544        fec->active_fec = cc_to_eth_fec(lc->fec);
1545        return 0;
1546}
1547
1548/*
1549 * Return our driver information.
1550 */
1551static void cxgb4vf_get_drvinfo(struct net_device *dev,
1552                                struct ethtool_drvinfo *drvinfo)
1553{
1554        struct adapter *adapter = netdev2adap(dev);
1555
1556        strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1557        strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1558                sizeof(drvinfo->bus_info));
1559        snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1560                 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1561                 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1562                 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1563                 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1564                 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1565                 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1566                 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1567                 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1568                 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1569}
1570
1571/*
1572 * Return current adapter message level.
1573 */
1574static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1575{
1576        return netdev2adap(dev)->msg_enable;
1577}
1578
1579/*
1580 * Set current adapter message level.
1581 */
1582static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1583{
1584        netdev2adap(dev)->msg_enable = msglevel;
1585}
1586
1587/*
1588 * Return the device's current Queue Set ring size parameters along with the
1589 * allowed maximum values.  Since ethtool doesn't understand the concept of
1590 * multi-queue devices, we just return the current values associated with the
1591 * first Queue Set.
1592 */
1593static void cxgb4vf_get_ringparam(struct net_device *dev,
1594                                  struct ethtool_ringparam *rp)
1595{
1596        const struct port_info *pi = netdev_priv(dev);
1597        const struct sge *s = &pi->adapter->sge;
1598
1599        rp->rx_max_pending = MAX_RX_BUFFERS;
1600        rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1601        rp->rx_jumbo_max_pending = 0;
1602        rp->tx_max_pending = MAX_TXQ_ENTRIES;
1603
1604        rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1605        rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1606        rp->rx_jumbo_pending = 0;
1607        rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1608}
1609
1610/*
1611 * Set the Queue Set ring size parameters for the device.  Again, since
1612 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1613 * apply these new values across all of the Queue Sets associated with the
1614 * device -- after vetting them of course!
1615 */
1616static int cxgb4vf_set_ringparam(struct net_device *dev,
1617                                 struct ethtool_ringparam *rp)
1618{
1619        const struct port_info *pi = netdev_priv(dev);
1620        struct adapter *adapter = pi->adapter;
1621        struct sge *s = &adapter->sge;
1622        int qs;
1623
1624        if (rp->rx_pending > MAX_RX_BUFFERS ||
1625            rp->rx_jumbo_pending ||
1626            rp->tx_pending > MAX_TXQ_ENTRIES ||
1627            rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1628            rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1629            rp->rx_pending < MIN_FL_ENTRIES ||
1630            rp->tx_pending < MIN_TXQ_ENTRIES)
1631                return -EINVAL;
1632
1633        if (adapter->flags & CXGB4VF_FULL_INIT_DONE)
1634                return -EBUSY;
1635
1636        for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1637                s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1638                s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1639                s->ethtxq[qs].q.size = rp->tx_pending;
1640        }
1641        return 0;
1642}
1643
1644/*
1645 * Return the interrupt holdoff timer and count for the first Queue Set on the
1646 * device.  Our extension ioctl() (the cxgbtool interface) allows the
1647 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1648 */
1649static int cxgb4vf_get_coalesce(struct net_device *dev,
1650                                struct ethtool_coalesce *coalesce)
1651{
1652        const struct port_info *pi = netdev_priv(dev);
1653        const struct adapter *adapter = pi->adapter;
1654        const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1655
1656        coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1657        coalesce->rx_max_coalesced_frames =
1658                ((rspq->intr_params & QINTR_CNT_EN_F)
1659                 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1660                 : 0);
1661        return 0;
1662}
1663
1664/*
1665 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1666 * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1667 * the interrupt holdoff timer on any of the device's Queue Sets.
1668 */
1669static int cxgb4vf_set_coalesce(struct net_device *dev,
1670                                struct ethtool_coalesce *coalesce)
1671{
1672        const struct port_info *pi = netdev_priv(dev);
1673        struct adapter *adapter = pi->adapter;
1674
1675        return set_rxq_intr_params(adapter,
1676                                   &adapter->sge.ethrxq[pi->first_qset].rspq,
1677                                   coalesce->rx_coalesce_usecs,
1678                                   coalesce->rx_max_coalesced_frames);
1679}
1680
1681/*
1682 * Report current port link pause parameter settings.
1683 */
1684static void cxgb4vf_get_pauseparam(struct net_device *dev,
1685                                   struct ethtool_pauseparam *pauseparam)
1686{
1687        struct port_info *pi = netdev_priv(dev);
1688
1689        pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1690        pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0;
1691        pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0;
1692}
1693
1694/*
1695 * Identify the port by blinking the port's LED.
1696 */
1697static int cxgb4vf_phys_id(struct net_device *dev,
1698                           enum ethtool_phys_id_state state)
1699{
1700        unsigned int val;
1701        struct port_info *pi = netdev_priv(dev);
1702
1703        if (state == ETHTOOL_ID_ACTIVE)
1704                val = 0xffff;
1705        else if (state == ETHTOOL_ID_INACTIVE)
1706                val = 0;
1707        else
1708                return -EINVAL;
1709
1710        return t4vf_identify_port(pi->adapter, pi->viid, val);
1711}
1712
1713/*
1714 * Port stats maintained per queue of the port.
1715 */
1716struct queue_port_stats {
1717        u64 tso;
1718        u64 tx_csum;
1719        u64 rx_csum;
1720        u64 vlan_ex;
1721        u64 vlan_ins;
1722        u64 lro_pkts;
1723        u64 lro_merged;
1724};
1725
1726/*
1727 * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1728 * these need to match the order of statistics returned by
1729 * t4vf_get_port_stats().
1730 */
1731static const char stats_strings[][ETH_GSTRING_LEN] = {
1732        /*
1733         * These must match the layout of the t4vf_port_stats structure.
1734         */
1735        "TxBroadcastBytes  ",
1736        "TxBroadcastFrames ",
1737        "TxMulticastBytes  ",
1738        "TxMulticastFrames ",
1739        "TxUnicastBytes    ",
1740        "TxUnicastFrames   ",
1741        "TxDroppedFrames   ",
1742        "TxOffloadBytes    ",
1743        "TxOffloadFrames   ",
1744        "RxBroadcastBytes  ",
1745        "RxBroadcastFrames ",
1746        "RxMulticastBytes  ",
1747        "RxMulticastFrames ",
1748        "RxUnicastBytes    ",
1749        "RxUnicastFrames   ",
1750        "RxErrorFrames     ",
1751
1752        /*
1753         * These are accumulated per-queue statistics and must match the
1754         * order of the fields in the queue_port_stats structure.
1755         */
1756        "TSO               ",
1757        "TxCsumOffload     ",
1758        "RxCsumGood        ",
1759        "VLANextractions   ",
1760        "VLANinsertions    ",
1761        "GROPackets        ",
1762        "GROMerged         ",
1763};
1764
1765/*
1766 * Return the number of statistics in the specified statistics set.
1767 */
1768static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1769{
1770        switch (sset) {
1771        case ETH_SS_STATS:
1772                return ARRAY_SIZE(stats_strings);
1773        default:
1774                return -EOPNOTSUPP;
1775        }
1776        /*NOTREACHED*/
1777}
1778
1779/*
1780 * Return the strings for the specified statistics set.
1781 */
1782static void cxgb4vf_get_strings(struct net_device *dev,
1783                                u32 sset,
1784                                u8 *data)
1785{
1786        switch (sset) {
1787        case ETH_SS_STATS:
1788                memcpy(data, stats_strings, sizeof(stats_strings));
1789                break;
1790        }
1791}
1792
1793/*
1794 * Small utility routine to accumulate queue statistics across the queues of
1795 * a "port".
1796 */
1797static void collect_sge_port_stats(const struct adapter *adapter,
1798                                   const struct port_info *pi,
1799                                   struct queue_port_stats *stats)
1800{
1801        const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1802        const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1803        int qs;
1804
1805        memset(stats, 0, sizeof(*stats));
1806        for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1807                stats->tso += txq->tso;
1808                stats->tx_csum += txq->tx_cso;
1809                stats->rx_csum += rxq->stats.rx_cso;
1810                stats->vlan_ex += rxq->stats.vlan_ex;
1811                stats->vlan_ins += txq->vlan_ins;
1812                stats->lro_pkts += rxq->stats.lro_pkts;
1813                stats->lro_merged += rxq->stats.lro_merged;
1814        }
1815}
1816
1817/*
1818 * Return the ETH_SS_STATS statistics set.
1819 */
1820static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1821                                      struct ethtool_stats *stats,
1822                                      u64 *data)
1823{
1824        struct port_info *pi = netdev2pinfo(dev);
1825        struct adapter *adapter = pi->adapter;
1826        int err = t4vf_get_port_stats(adapter, pi->pidx,
1827                                      (struct t4vf_port_stats *)data);
1828        if (err)
1829                memset(data, 0, sizeof(struct t4vf_port_stats));
1830
1831        data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1832        collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1833}
1834
1835/*
1836 * Return the size of our register map.
1837 */
1838static int cxgb4vf_get_regs_len(struct net_device *dev)
1839{
1840        return T4VF_REGMAP_SIZE;
1841}
1842
1843/*
1844 * Dump a block of registers, start to end inclusive, into a buffer.
1845 */
1846static void reg_block_dump(struct adapter *adapter, void *regbuf,
1847                           unsigned int start, unsigned int end)
1848{
1849        u32 *bp = regbuf + start - T4VF_REGMAP_START;
1850
1851        for ( ; start <= end; start += sizeof(u32)) {
1852                /*
1853                 * Avoid reading the Mailbox Control register since that
1854                 * can trigger a Mailbox Ownership Arbitration cycle and
1855                 * interfere with communication with the firmware.
1856                 */
1857                if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1858                        *bp++ = 0xffff;
1859                else
1860                        *bp++ = t4_read_reg(adapter, start);
1861        }
1862}
1863
1864/*
1865 * Copy our entire register map into the provided buffer.
1866 */
1867static void cxgb4vf_get_regs(struct net_device *dev,
1868                             struct ethtool_regs *regs,
1869                             void *regbuf)
1870{
1871        struct adapter *adapter = netdev2adap(dev);
1872
1873        regs->version = mk_adap_vers(adapter);
1874
1875        /*
1876         * Fill in register buffer with our register map.
1877         */
1878        memset(regbuf, 0, T4VF_REGMAP_SIZE);
1879
1880        reg_block_dump(adapter, regbuf,
1881                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1882                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1883        reg_block_dump(adapter, regbuf,
1884                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1885                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1886
1887        /* T5 adds new registers in the PL Register map.
1888         */
1889        reg_block_dump(adapter, regbuf,
1890                       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1891                       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1892                       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1893        reg_block_dump(adapter, regbuf,
1894                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1895                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1896
1897        reg_block_dump(adapter, regbuf,
1898                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1899                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1900}
1901
1902/*
1903 * Report current Wake On LAN settings.
1904 */
1905static void cxgb4vf_get_wol(struct net_device *dev,
1906                            struct ethtool_wolinfo *wol)
1907{
1908        wol->supported = 0;
1909        wol->wolopts = 0;
1910        memset(&wol->sopass, 0, sizeof(wol->sopass));
1911}
1912
1913/*
1914 * TCP Segmentation Offload flags which we support.
1915 */
1916#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1917#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
1918                   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
1919
1920static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1921        .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1922                                     ETHTOOL_COALESCE_RX_MAX_FRAMES,
1923        .get_link_ksettings     = cxgb4vf_get_link_ksettings,
1924        .get_fecparam           = cxgb4vf_get_fecparam,
1925        .get_drvinfo            = cxgb4vf_get_drvinfo,
1926        .get_msglevel           = cxgb4vf_get_msglevel,
1927        .set_msglevel           = cxgb4vf_set_msglevel,
1928        .get_ringparam          = cxgb4vf_get_ringparam,
1929        .set_ringparam          = cxgb4vf_set_ringparam,
1930        .get_coalesce           = cxgb4vf_get_coalesce,
1931        .set_coalesce           = cxgb4vf_set_coalesce,
1932        .get_pauseparam         = cxgb4vf_get_pauseparam,
1933        .get_link               = ethtool_op_get_link,
1934        .get_strings            = cxgb4vf_get_strings,
1935        .set_phys_id            = cxgb4vf_phys_id,
1936        .get_sset_count         = cxgb4vf_get_sset_count,
1937        .get_ethtool_stats      = cxgb4vf_get_ethtool_stats,
1938        .get_regs_len           = cxgb4vf_get_regs_len,
1939        .get_regs               = cxgb4vf_get_regs,
1940        .get_wol                = cxgb4vf_get_wol,
1941};
1942
1943/*
1944 * /sys/kernel/debug/cxgb4vf support code and data.
1945 * ================================================
1946 */
1947
1948/*
1949 * Show Firmware Mailbox Command/Reply Log
1950 *
1951 * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1952 * it's possible that we can catch things during a log update and therefore
1953 * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1954 * If we ever decide that we want to make sure that we're dumping a coherent
1955 * log, we'd need to perform locking in the mailbox logging and in
1956 * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1957 * like we do for the Firmware Device Log.  But as stated above, meh ...
1958 */
1959static int mboxlog_show(struct seq_file *seq, void *v)
1960{
1961        struct adapter *adapter = seq->private;
1962        struct mbox_cmd_log *log = adapter->mbox_log;
1963        struct mbox_cmd *entry;
1964        int entry_idx, i;
1965
1966        if (v == SEQ_START_TOKEN) {
1967                seq_printf(seq,
1968                           "%10s  %15s  %5s  %5s  %s\n",
1969                           "Seq#", "Tstamp", "Atime", "Etime",
1970                           "Command/Reply");
1971                return 0;
1972        }
1973
1974        entry_idx = log->cursor + ((uintptr_t)v - 2);
1975        if (entry_idx >= log->size)
1976                entry_idx -= log->size;
1977        entry = mbox_cmd_log_entry(log, entry_idx);
1978
1979        /* skip over unused entries */
1980        if (entry->timestamp == 0)
1981                return 0;
1982
1983        seq_printf(seq, "%10u  %15llu  %5d  %5d",
1984                   entry->seqno, entry->timestamp,
1985                   entry->access, entry->execute);
1986        for (i = 0; i < MBOX_LEN / 8; i++) {
1987                u64 flit = entry->cmd[i];
1988                u32 hi = (u32)(flit >> 32);
1989                u32 lo = (u32)flit;
1990
1991                seq_printf(seq, "  %08x %08x", hi, lo);
1992        }
1993        seq_puts(seq, "\n");
1994        return 0;
1995}
1996
1997static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1998{
1999        struct adapter *adapter = seq->private;
2000        struct mbox_cmd_log *log = adapter->mbox_log;
2001
2002        return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
2003}
2004
2005static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
2006{
2007        return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
2008}
2009
2010static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
2011{
2012        ++*pos;
2013        return mboxlog_get_idx(seq, *pos);
2014}
2015
2016static void mboxlog_stop(struct seq_file *seq, void *v)
2017{
2018}
2019
2020static const struct seq_operations mboxlog_sops = {
2021        .start = mboxlog_start,
2022        .next  = mboxlog_next,
2023        .stop  = mboxlog_stop,
2024        .show  = mboxlog_show
2025};
2026
2027DEFINE_SEQ_ATTRIBUTE(mboxlog);
2028/*
2029 * Show SGE Queue Set information.  We display QPL Queues Sets per line.
2030 */
2031#define QPL     4
2032
2033static int sge_qinfo_show(struct seq_file *seq, void *v)
2034{
2035        struct adapter *adapter = seq->private;
2036        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2037        int qs, r = (uintptr_t)v - 1;
2038
2039        if (r)
2040                seq_putc(seq, '\n');
2041
2042        #define S3(fmt_spec, s, v) \
2043                do {\
2044                        seq_printf(seq, "%-12s", s); \
2045                        for (qs = 0; qs < n; ++qs) \
2046                                seq_printf(seq, " %16" fmt_spec, v); \
2047                        seq_putc(seq, '\n'); \
2048                } while (0)
2049        #define S(s, v)         S3("s", s, v)
2050        #define T(s, v)         S3("u", s, txq[qs].v)
2051        #define R(s, v)         S3("u", s, rxq[qs].v)
2052
2053        if (r < eth_entries) {
2054                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2055                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2056                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2057
2058                S("QType:", "Ethernet");
2059                S("Interface:",
2060                  (rxq[qs].rspq.netdev
2061                   ? rxq[qs].rspq.netdev->name
2062                   : "N/A"));
2063                S3("d", "Port:",
2064                   (rxq[qs].rspq.netdev
2065                    ? ((struct port_info *)
2066                       netdev_priv(rxq[qs].rspq.netdev))->port_id
2067                    : -1));
2068                T("TxQ ID:", q.abs_id);
2069                T("TxQ size:", q.size);
2070                T("TxQ inuse:", q.in_use);
2071                T("TxQ PIdx:", q.pidx);
2072                T("TxQ CIdx:", q.cidx);
2073                R("RspQ ID:", rspq.abs_id);
2074                R("RspQ size:", rspq.size);
2075                R("RspQE size:", rspq.iqe_len);
2076                S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2077                S3("u", "Intr pktcnt:",
2078                   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2079                R("RspQ CIdx:", rspq.cidx);
2080                R("RspQ Gen:", rspq.gen);
2081                R("FL ID:", fl.abs_id);
2082                R("FL size:", fl.size - MIN_FL_RESID);
2083                R("FL avail:", fl.avail);
2084                R("FL PIdx:", fl.pidx);
2085                R("FL CIdx:", fl.cidx);
2086                return 0;
2087        }
2088
2089        r -= eth_entries;
2090        if (r == 0) {
2091                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2092
2093                seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2094                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2095                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2096                           qtimer_val(adapter, evtq));
2097                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2098                           adapter->sge.counter_val[evtq->pktcnt_idx]);
2099                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2100                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2101        } else if (r == 1) {
2102                const struct sge_rspq *intrq = &adapter->sge.intrq;
2103
2104                seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2105                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2106                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2107                           qtimer_val(adapter, intrq));
2108                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2109                           adapter->sge.counter_val[intrq->pktcnt_idx]);
2110                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2111                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2112        }
2113
2114        #undef R
2115        #undef T
2116        #undef S
2117        #undef S3
2118
2119        return 0;
2120}
2121
2122/*
2123 * Return the number of "entries" in our "file".  We group the multi-Queue
2124 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2125 *
2126 *     Ethernet RX/TX Queue Sets
2127 *     Firmware Event Queue
2128 *     Forwarded Interrupt Queue (if in MSI mode)
2129 */
2130static int sge_queue_entries(const struct adapter *adapter)
2131{
2132        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2133                ((adapter->flags & CXGB4VF_USING_MSI) != 0);
2134}
2135
2136static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2137{
2138        int entries = sge_queue_entries(seq->private);
2139
2140        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2141}
2142
2143static void sge_queue_stop(struct seq_file *seq, void *v)
2144{
2145}
2146
2147static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2148{
2149        int entries = sge_queue_entries(seq->private);
2150
2151        ++*pos;
2152        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2153}
2154
2155static const struct seq_operations sge_qinfo_sops = {
2156        .start = sge_queue_start,
2157        .next  = sge_queue_next,
2158        .stop  = sge_queue_stop,
2159        .show  = sge_qinfo_show
2160};
2161
2162DEFINE_SEQ_ATTRIBUTE(sge_qinfo);
2163
2164/*
2165 * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2166 */
2167#define QPL     4
2168
2169static int sge_qstats_show(struct seq_file *seq, void *v)
2170{
2171        struct adapter *adapter = seq->private;
2172        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2173        int qs, r = (uintptr_t)v - 1;
2174
2175        if (r)
2176                seq_putc(seq, '\n');
2177
2178        #define S3(fmt, s, v) \
2179                do { \
2180                        seq_printf(seq, "%-16s", s); \
2181                        for (qs = 0; qs < n; ++qs) \
2182                                seq_printf(seq, " %8" fmt, v); \
2183                        seq_putc(seq, '\n'); \
2184                } while (0)
2185        #define S(s, v)         S3("s", s, v)
2186
2187        #define T3(fmt, s, v)   S3(fmt, s, txq[qs].v)
2188        #define T(s, v)         T3("lu", s, v)
2189
2190        #define R3(fmt, s, v)   S3(fmt, s, rxq[qs].v)
2191        #define R(s, v)         R3("lu", s, v)
2192
2193        if (r < eth_entries) {
2194                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2195                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2196                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2197
2198                S("QType:", "Ethernet");
2199                S("Interface:",
2200                  (rxq[qs].rspq.netdev
2201                   ? rxq[qs].rspq.netdev->name
2202                   : "N/A"));
2203                R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2204                R("RxPackets:", stats.pkts);
2205                R("RxCSO:", stats.rx_cso);
2206                R("VLANxtract:", stats.vlan_ex);
2207                R("LROmerged:", stats.lro_merged);
2208                R("LROpackets:", stats.lro_pkts);
2209                R("RxDrops:", stats.rx_drops);
2210                T("TSO:", tso);
2211                T("TxCSO:", tx_cso);
2212                T("VLANins:", vlan_ins);
2213                T("TxQFull:", q.stops);
2214                T("TxQRestarts:", q.restarts);
2215                T("TxMapErr:", mapping_err);
2216                R("FLAllocErr:", fl.alloc_failed);
2217                R("FLLrgAlcErr:", fl.large_alloc_failed);
2218                R("FLStarving:", fl.starving);
2219                return 0;
2220        }
2221
2222        r -= eth_entries;
2223        if (r == 0) {
2224                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2225
2226                seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2227                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2228                           evtq->unhandled_irqs);
2229                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2230                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2231        } else if (r == 1) {
2232                const struct sge_rspq *intrq = &adapter->sge.intrq;
2233
2234                seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2235                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2236                           intrq->unhandled_irqs);
2237                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2238                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2239        }
2240
2241        #undef R
2242        #undef T
2243        #undef S
2244        #undef R3
2245        #undef T3
2246        #undef S3
2247
2248        return 0;
2249}
2250
2251/*
2252 * Return the number of "entries" in our "file".  We group the multi-Queue
2253 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2254 *
2255 *     Ethernet RX/TX Queue Sets
2256 *     Firmware Event Queue
2257 *     Forwarded Interrupt Queue (if in MSI mode)
2258 */
2259static int sge_qstats_entries(const struct adapter *adapter)
2260{
2261        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2262                ((adapter->flags & CXGB4VF_USING_MSI) != 0);
2263}
2264
2265static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2266{
2267        int entries = sge_qstats_entries(seq->private);
2268
2269        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2270}
2271
2272static void sge_qstats_stop(struct seq_file *seq, void *v)
2273{
2274}
2275
2276static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2277{
2278        int entries = sge_qstats_entries(seq->private);
2279
2280        (*pos)++;
2281        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2282}
2283
2284static const struct seq_operations sge_qstats_sops = {
2285        .start = sge_qstats_start,
2286        .next  = sge_qstats_next,
2287        .stop  = sge_qstats_stop,
2288        .show  = sge_qstats_show
2289};
2290
2291DEFINE_SEQ_ATTRIBUTE(sge_qstats);
2292
2293/*
2294 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2295 */
2296static int resources_show(struct seq_file *seq, void *v)
2297{
2298        struct adapter *adapter = seq->private;
2299        struct vf_resources *vfres = &adapter->params.vfres;
2300
2301        #define S(desc, fmt, var) \
2302                seq_printf(seq, "%-60s " fmt "\n", \
2303                           desc " (" #var "):", vfres->var)
2304
2305        S("Virtual Interfaces", "%d", nvi);
2306        S("Egress Queues", "%d", neq);
2307        S("Ethernet Control", "%d", nethctrl);
2308        S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2309        S("Ingress Queues", "%d", niq);
2310        S("Traffic Class", "%d", tc);
2311        S("Port Access Rights Mask", "%#x", pmask);
2312        S("MAC Address Filters", "%d", nexactf);
2313        S("Firmware Command Read Capabilities", "%#x", r_caps);
2314        S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2315
2316        #undef S
2317
2318        return 0;
2319}
2320DEFINE_SHOW_ATTRIBUTE(resources);
2321
2322/*
2323 * Show Virtual Interfaces.
2324 */
2325static int interfaces_show(struct seq_file *seq, void *v)
2326{
2327        if (v == SEQ_START_TOKEN) {
2328                seq_puts(seq, "Interface  Port   VIID\n");
2329        } else {
2330                struct adapter *adapter = seq->private;
2331                int pidx = (uintptr_t)v - 2;
2332                struct net_device *dev = adapter->port[pidx];
2333                struct port_info *pi = netdev_priv(dev);
2334
2335                seq_printf(seq, "%9s  %4d  %#5x\n",
2336                           dev->name, pi->port_id, pi->viid);
2337        }
2338        return 0;
2339}
2340
2341static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2342{
2343        return pos <= adapter->params.nports
2344                ? (void *)(uintptr_t)(pos + 1)
2345                : NULL;
2346}
2347
2348static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2349{
2350        return *pos
2351                ? interfaces_get_idx(seq->private, *pos)
2352                : SEQ_START_TOKEN;
2353}
2354
2355static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2356{
2357        (*pos)++;
2358        return interfaces_get_idx(seq->private, *pos);
2359}
2360
2361static void interfaces_stop(struct seq_file *seq, void *v)
2362{
2363}
2364
2365static const struct seq_operations interfaces_sops = {
2366        .start = interfaces_start,
2367        .next  = interfaces_next,
2368        .stop  = interfaces_stop,
2369        .show  = interfaces_show
2370};
2371
2372DEFINE_SEQ_ATTRIBUTE(interfaces);
2373
2374/*
2375 * /sys/kernel/debugfs/cxgb4vf/ files list.
2376 */
2377struct cxgb4vf_debugfs_entry {
2378        const char *name;               /* name of debugfs node */
2379        umode_t mode;                   /* file system mode */
2380        const struct file_operations *fops;
2381};
2382
2383static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2384        { "mboxlog",    0444, &mboxlog_fops },
2385        { "sge_qinfo",  0444, &sge_qinfo_fops },
2386        { "sge_qstats", 0444, &sge_qstats_fops },
2387        { "resources",  0444, &resources_fops },
2388        { "interfaces", 0444, &interfaces_fops },
2389};
2390
2391/*
2392 * Module and device initialization and cleanup code.
2393 * ==================================================
2394 */
2395
2396/*
2397 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2398 * directory (debugfs_root) has already been set up.
2399 */
2400static int setup_debugfs(struct adapter *adapter)
2401{
2402        int i;
2403
2404        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2405
2406        /*
2407         * Debugfs support is best effort.
2408         */
2409        for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2410                debugfs_create_file(debugfs_files[i].name,
2411                                    debugfs_files[i].mode,
2412                                    adapter->debugfs_root, adapter,
2413                                    debugfs_files[i].fops);
2414
2415        return 0;
2416}
2417
2418/*
2419 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2420 * it to our caller to tear down the directory (debugfs_root).
2421 */
2422static void cleanup_debugfs(struct adapter *adapter)
2423{
2424        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2425
2426        /*
2427         * Unlike our sister routine cleanup_proc(), we don't need to remove
2428         * individual entries because a call will be made to
2429         * debugfs_remove_recursive().  We just need to clean up any ancillary
2430         * persistent state.
2431         */
2432        /* nothing to do */
2433}
2434
2435/* Figure out how many Ports and Queue Sets we can support.  This depends on
2436 * knowing our Virtual Function Resources and may be called a second time if
2437 * we fall back from MSI-X to MSI Interrupt Mode.
2438 */
2439static void size_nports_qsets(struct adapter *adapter)
2440{
2441        struct vf_resources *vfres = &adapter->params.vfres;
2442        unsigned int ethqsets, pmask_nports;
2443
2444        /* The number of "ports" which we support is equal to the number of
2445         * Virtual Interfaces with which we've been provisioned.
2446         */
2447        adapter->params.nports = vfres->nvi;
2448        if (adapter->params.nports > MAX_NPORTS) {
2449                dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2450                         " allowed virtual interfaces\n", MAX_NPORTS,
2451                         adapter->params.nports);
2452                adapter->params.nports = MAX_NPORTS;
2453        }
2454
2455        /* We may have been provisioned with more VIs than the number of
2456         * ports we're allowed to access (our Port Access Rights Mask).
2457         * This is obviously a configuration conflict but we don't want to
2458         * crash the kernel or anything silly just because of that.
2459         */
2460        pmask_nports = hweight32(adapter->params.vfres.pmask);
2461        if (pmask_nports < adapter->params.nports) {
2462                dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2463                         " virtual interfaces; limited by Port Access Rights"
2464                         " mask %#x\n", pmask_nports, adapter->params.nports,
2465                         adapter->params.vfres.pmask);
2466                adapter->params.nports = pmask_nports;
2467        }
2468
2469        /* We need to reserve an Ingress Queue for the Asynchronous Firmware
2470         * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2471         * reserve an Ingress Queue for a Forwarded Interrupts.
2472         *
2473         * The rest of the FL/Intr-capable ingress queues will be matched up
2474         * one-for-one with Ethernet/Control egress queues in order to form
2475         * "Queue Sets" which will be aportioned between the "ports".  For
2476         * each Queue Set, we'll need the ability to allocate two Egress
2477         * Contexts -- one for the Ingress Queue Free List and one for the TX
2478         * Ethernet Queue.
2479         *
2480         * Note that even if we're currently configured to use MSI-X
2481         * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2482         * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2483         * happens we'll need to adjust things later.
2484         */
2485        ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2486        if (vfres->nethctrl != ethqsets)
2487                ethqsets = min(vfres->nethctrl, ethqsets);
2488        if (vfres->neq < ethqsets*2)
2489                ethqsets = vfres->neq/2;
2490        if (ethqsets > MAX_ETH_QSETS)
2491                ethqsets = MAX_ETH_QSETS;
2492        adapter->sge.max_ethqsets = ethqsets;
2493
2494        if (adapter->sge.max_ethqsets < adapter->params.nports) {
2495                dev_warn(adapter->pdev_dev, "only using %d of %d available"
2496                         " virtual interfaces (too few Queue Sets)\n",
2497                         adapter->sge.max_ethqsets, adapter->params.nports);
2498                adapter->params.nports = adapter->sge.max_ethqsets;
2499        }
2500}
2501
2502/*
2503 * Perform early "adapter" initialization.  This is where we discover what
2504 * adapter parameters we're going to be using and initialize basic adapter
2505 * hardware support.
2506 */
2507static int adap_init0(struct adapter *adapter)
2508{
2509        struct sge_params *sge_params = &adapter->params.sge;
2510        struct sge *s = &adapter->sge;
2511        int err;
2512        u32 param, val = 0;
2513
2514        /*
2515         * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2516         * 2.6.31 and later we can't call pci_reset_function() in order to
2517         * issue an FLR because of a self- deadlock on the device semaphore.
2518         * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2519         * cases where they're needed -- for instance, some versions of KVM
2520         * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2521         * use the firmware based reset in order to reset any per function
2522         * state.
2523         */
2524        err = t4vf_fw_reset(adapter);
2525        if (err < 0) {
2526                dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2527                return err;
2528        }
2529
2530        /*
2531         * Grab basic operational parameters.  These will predominantly have
2532         * been set up by the Physical Function Driver or will be hard coded
2533         * into the adapter.  We just have to live with them ...  Note that
2534         * we _must_ get our VPD parameters before our SGE parameters because
2535         * we need to know the adapter's core clock from the VPD in order to
2536         * properly decode the SGE Timer Values.
2537         */
2538        err = t4vf_get_dev_params(adapter);
2539        if (err) {
2540                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2541                        " device parameters: err=%d\n", err);
2542                return err;
2543        }
2544        err = t4vf_get_vpd_params(adapter);
2545        if (err) {
2546                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2547                        " VPD parameters: err=%d\n", err);
2548                return err;
2549        }
2550        err = t4vf_get_sge_params(adapter);
2551        if (err) {
2552                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2553                        " SGE parameters: err=%d\n", err);
2554                return err;
2555        }
2556        err = t4vf_get_rss_glb_config(adapter);
2557        if (err) {
2558                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2559                        " RSS parameters: err=%d\n", err);
2560                return err;
2561        }
2562        if (adapter->params.rss.mode !=
2563            FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2564                dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2565                        " mode %d\n", adapter->params.rss.mode);
2566                return -EINVAL;
2567        }
2568        err = t4vf_sge_init(adapter);
2569        if (err) {
2570                dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2571                        " err=%d\n", err);
2572                return err;
2573        }
2574
2575        /* If we're running on newer firmware, let it know that we're
2576         * prepared to deal with encapsulated CPL messages.  Older
2577         * firmware won't understand this and we'll just get
2578         * unencapsulated messages ...
2579         */
2580        param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2581                FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2582        val = 1;
2583        (void) t4vf_set_params(adapter, 1, &param, &val);
2584
2585        /*
2586         * Retrieve our RX interrupt holdoff timer values and counter
2587         * threshold values from the SGE parameters.
2588         */
2589        s->timer_val[0] = core_ticks_to_us(adapter,
2590                TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2591        s->timer_val[1] = core_ticks_to_us(adapter,
2592                TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2593        s->timer_val[2] = core_ticks_to_us(adapter,
2594                TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2595        s->timer_val[3] = core_ticks_to_us(adapter,
2596                TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2597        s->timer_val[4] = core_ticks_to_us(adapter,
2598                TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2599        s->timer_val[5] = core_ticks_to_us(adapter,
2600                TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2601
2602        s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2603        s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2604        s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2605        s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2606
2607        /*
2608         * Grab our Virtual Interface resource allocation, extract the
2609         * features that we're interested in and do a bit of sanity testing on
2610         * what we discover.
2611         */
2612        err = t4vf_get_vfres(adapter);
2613        if (err) {
2614                dev_err(adapter->pdev_dev, "unable to get virtual interface"
2615                        " resources: err=%d\n", err);
2616                return err;
2617        }
2618
2619        /* Check for various parameter sanity issues */
2620        if (adapter->params.vfres.pmask == 0) {
2621                dev_err(adapter->pdev_dev, "no port access configured\n"
2622                        "usable!\n");
2623                return -EINVAL;
2624        }
2625        if (adapter->params.vfres.nvi == 0) {
2626                dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2627                        "usable!\n");
2628                return -EINVAL;
2629        }
2630
2631        /* Initialize nports and max_ethqsets now that we have our Virtual
2632         * Function Resources.
2633         */
2634        size_nports_qsets(adapter);
2635
2636        adapter->flags |= CXGB4VF_FW_OK;
2637        return 0;
2638}
2639
2640static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2641                             u8 pkt_cnt_idx, unsigned int size,
2642                             unsigned int iqe_size)
2643{
2644        rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2645                             (pkt_cnt_idx < SGE_NCOUNTERS ?
2646                              QINTR_CNT_EN_F : 0));
2647        rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2648                            ? pkt_cnt_idx
2649                            : 0);
2650        rspq->iqe_len = iqe_size;
2651        rspq->size = size;
2652}
2653
2654/*
2655 * Perform default configuration of DMA queues depending on the number and
2656 * type of ports we found and the number of available CPUs.  Most settings can
2657 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2658 * being brought up for the first time.
2659 */
2660static void cfg_queues(struct adapter *adapter)
2661{
2662        struct sge *s = &adapter->sge;
2663        int q10g, n10g, qidx, pidx, qs;
2664        size_t iqe_size;
2665
2666        /*
2667         * We should not be called till we know how many Queue Sets we can
2668         * support.  In particular, this means that we need to know what kind
2669         * of interrupts we'll be using ...
2670         */
2671        BUG_ON((adapter->flags &
2672               (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2673
2674        /*
2675         * Count the number of 10GbE Virtual Interfaces that we have.
2676         */
2677        n10g = 0;
2678        for_each_port(adapter, pidx)
2679                n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2680
2681        /*
2682         * We default to 1 queue per non-10G port and up to # of cores queues
2683         * per 10G port.
2684         */
2685        if (n10g == 0)
2686                q10g = 0;
2687        else {
2688                int n1g = (adapter->params.nports - n10g);
2689                q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2690                if (q10g > num_online_cpus())
2691                        q10g = num_online_cpus();
2692        }
2693
2694        /*
2695         * Allocate the "Queue Sets" to the various Virtual Interfaces.
2696         * The layout will be established in setup_sge_queues() when the
2697         * adapter is brough up for the first time.
2698         */
2699        qidx = 0;
2700        for_each_port(adapter, pidx) {
2701                struct port_info *pi = adap2pinfo(adapter, pidx);
2702
2703                pi->first_qset = qidx;
2704                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2705                qidx += pi->nqsets;
2706        }
2707        s->ethqsets = qidx;
2708
2709        /*
2710         * The Ingress Queue Entry Size for our various Response Queues needs
2711         * to be big enough to accommodate the largest message we can receive
2712         * from the chip/firmware; which is 64 bytes ...
2713         */
2714        iqe_size = 64;
2715
2716        /*
2717         * Set up default Queue Set parameters ...  Start off with the
2718         * shortest interrupt holdoff timer.
2719         */
2720        for (qs = 0; qs < s->max_ethqsets; qs++) {
2721                struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2722                struct sge_eth_txq *txq = &s->ethtxq[qs];
2723
2724                init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2725                rxq->fl.size = 72;
2726                txq->q.size = 1024;
2727        }
2728
2729        /*
2730         * The firmware event queue is used for link state changes and
2731         * notifications of TX DMA completions.
2732         */
2733        init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2734
2735        /*
2736         * The forwarded interrupt queue is used when we're in MSI interrupt
2737         * mode.  In this mode all interrupts associated with RX queues will
2738         * be forwarded to a single queue which we'll associate with our MSI
2739         * interrupt vector.  The messages dropped in the forwarded interrupt
2740         * queue will indicate which ingress queue needs servicing ...  This
2741         * queue needs to be large enough to accommodate all of the ingress
2742         * queues which are forwarding their interrupt (+1 to prevent the PIDX
2743         * from equalling the CIDX if every ingress queue has an outstanding
2744         * interrupt).  The queue doesn't need to be any larger because no
2745         * ingress queue will ever have more than one outstanding interrupt at
2746         * any time ...
2747         */
2748        init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2749                  iqe_size);
2750}
2751
2752/*
2753 * Reduce the number of Ethernet queues across all ports to at most n.
2754 * n provides at least one queue per port.
2755 */
2756static void reduce_ethqs(struct adapter *adapter, int n)
2757{
2758        int i;
2759        struct port_info *pi;
2760
2761        /*
2762         * While we have too many active Ether Queue Sets, interate across the
2763         * "ports" and reduce their individual Queue Set allocations.
2764         */
2765        BUG_ON(n < adapter->params.nports);
2766        while (n < adapter->sge.ethqsets)
2767                for_each_port(adapter, i) {
2768                        pi = adap2pinfo(adapter, i);
2769                        if (pi->nqsets > 1) {
2770                                pi->nqsets--;
2771                                adapter->sge.ethqsets--;
2772                                if (adapter->sge.ethqsets <= n)
2773                                        break;
2774                        }
2775                }
2776
2777        /*
2778         * Reassign the starting Queue Sets for each of the "ports" ...
2779         */
2780        n = 0;
2781        for_each_port(adapter, i) {
2782                pi = adap2pinfo(adapter, i);
2783                pi->first_qset = n;
2784                n += pi->nqsets;
2785        }
2786}
2787
2788/*
2789 * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2790 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2791 * need.  Minimally we need one for every Virtual Interface plus those needed
2792 * for our "extras".  Note that this process may lower the maximum number of
2793 * allowed Queue Sets ...
2794 */
2795static int enable_msix(struct adapter *adapter)
2796{
2797        int i, want, need, nqsets;
2798        struct msix_entry entries[MSIX_ENTRIES];
2799        struct sge *s = &adapter->sge;
2800
2801        for (i = 0; i < MSIX_ENTRIES; ++i)
2802                entries[i].entry = i;
2803
2804        /*
2805         * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2806         * plus those needed for our "extras" (for example, the firmware
2807         * message queue).  We _need_ at least one "Queue Set" per Virtual
2808         * Interface plus those needed for our "extras".  So now we get to see
2809         * if the song is right ...
2810         */
2811        want = s->max_ethqsets + MSIX_EXTRAS;
2812        need = adapter->params.nports + MSIX_EXTRAS;
2813
2814        want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2815        if (want < 0)
2816                return want;
2817
2818        nqsets = want - MSIX_EXTRAS;
2819        if (nqsets < s->max_ethqsets) {
2820                dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2821                         " for %d Queue Sets\n", nqsets);
2822                s->max_ethqsets = nqsets;
2823                if (nqsets < s->ethqsets)
2824                        reduce_ethqs(adapter, nqsets);
2825        }
2826        for (i = 0; i < want; ++i)
2827                adapter->msix_info[i].vec = entries[i].vector;
2828
2829        return 0;
2830}
2831
2832static const struct net_device_ops cxgb4vf_netdev_ops   = {
2833        .ndo_open               = cxgb4vf_open,
2834        .ndo_stop               = cxgb4vf_stop,
2835        .ndo_start_xmit         = t4vf_eth_xmit,
2836        .ndo_get_stats          = cxgb4vf_get_stats,
2837        .ndo_set_rx_mode        = cxgb4vf_set_rxmode,
2838        .ndo_set_mac_address    = cxgb4vf_set_mac_addr,
2839        .ndo_validate_addr      = eth_validate_addr,
2840        .ndo_do_ioctl           = cxgb4vf_do_ioctl,
2841        .ndo_change_mtu         = cxgb4vf_change_mtu,
2842        .ndo_fix_features       = cxgb4vf_fix_features,
2843        .ndo_set_features       = cxgb4vf_set_features,
2844#ifdef CONFIG_NET_POLL_CONTROLLER
2845        .ndo_poll_controller    = cxgb4vf_poll_controller,
2846#endif
2847};
2848
2849/**
2850 *      cxgb4vf_get_port_mask - Get port mask for the VF based on mac
2851 *                              address stored on the adapter
2852 *      @adapter: The adapter
2853 *
2854 *      Find the the port mask for the VF based on the index of mac
2855 *      address stored in the adapter. If no mac address is stored on
2856 *      the adapter for the VF, use the port mask received from the
2857 *      firmware.
2858 */
2859static unsigned int cxgb4vf_get_port_mask(struct adapter *adapter)
2860{
2861        unsigned int naddr = 1, pidx = 0;
2862        unsigned int pmask, rmask = 0;
2863        u8 mac[ETH_ALEN];
2864        int err;
2865
2866        pmask = adapter->params.vfres.pmask;
2867        while (pmask) {
2868                if (pmask & 1) {
2869                        err = t4vf_get_vf_mac_acl(adapter, pidx, &naddr, mac);
2870                        if (!err && !is_zero_ether_addr(mac))
2871                                rmask |= (1 << pidx);
2872                }
2873                pmask >>= 1;
2874                pidx++;
2875        }
2876        if (!rmask)
2877                rmask = adapter->params.vfres.pmask;
2878
2879        return rmask;
2880}
2881
2882/*
2883 * "Probe" a device: initialize a device and construct all kernel and driver
2884 * state needed to manage the device.  This routine is called "init_one" in
2885 * the PF Driver ...
2886 */
2887static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2888                             const struct pci_device_id *ent)
2889{
2890        struct adapter *adapter;
2891        struct net_device *netdev;
2892        struct port_info *pi;
2893        unsigned int pmask;
2894        int pci_using_dac;
2895        int err, pidx;
2896
2897        /*
2898         * Initialize generic PCI device state.
2899         */
2900        err = pci_enable_device(pdev);
2901        if (err) {
2902                dev_err(&pdev->dev, "cannot enable PCI device\n");
2903                return err;
2904        }
2905
2906        /*
2907         * Reserve PCI resources for the device.  If we can't get them some
2908         * other driver may have already claimed the device ...
2909         */
2910        err = pci_request_regions(pdev, KBUILD_MODNAME);
2911        if (err) {
2912                dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2913                goto err_disable_device;
2914        }
2915
2916        /*
2917         * Set up our DMA mask: try for 64-bit address masking first and
2918         * fall back to 32-bit if we can't get 64 bits ...
2919         */
2920        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2921        if (err == 0) {
2922                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2923                if (err) {
2924                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2925                                " coherent allocations\n");
2926                        goto err_release_regions;
2927                }
2928                pci_using_dac = 1;
2929        } else {
2930                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2931                if (err != 0) {
2932                        dev_err(&pdev->dev, "no usable DMA configuration\n");
2933                        goto err_release_regions;
2934                }
2935                pci_using_dac = 0;
2936        }
2937
2938        /*
2939         * Enable bus mastering for the device ...
2940         */
2941        pci_set_master(pdev);
2942
2943        /*
2944         * Allocate our adapter data structure and attach it to the device.
2945         */
2946        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2947        if (!adapter) {
2948                err = -ENOMEM;
2949                goto err_release_regions;
2950        }
2951        pci_set_drvdata(pdev, adapter);
2952        adapter->pdev = pdev;
2953        adapter->pdev_dev = &pdev->dev;
2954
2955        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2956                                    (sizeof(struct mbox_cmd) *
2957                                     T4VF_OS_LOG_MBOX_CMDS),
2958                                    GFP_KERNEL);
2959        if (!adapter->mbox_log) {
2960                err = -ENOMEM;
2961                goto err_free_adapter;
2962        }
2963        adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2964
2965        /*
2966         * Initialize SMP data synchronization resources.
2967         */
2968        spin_lock_init(&adapter->stats_lock);
2969        spin_lock_init(&adapter->mbox_lock);
2970        INIT_LIST_HEAD(&adapter->mlist.list);
2971
2972        /*
2973         * Map our I/O registers in BAR0.
2974         */
2975        adapter->regs = pci_ioremap_bar(pdev, 0);
2976        if (!adapter->regs) {
2977                dev_err(&pdev->dev, "cannot map device registers\n");
2978                err = -ENOMEM;
2979                goto err_free_adapter;
2980        }
2981
2982        /* Wait for the device to become ready before proceeding ...
2983         */
2984        err = t4vf_prep_adapter(adapter);
2985        if (err) {
2986                dev_err(adapter->pdev_dev, "device didn't become ready:"
2987                        " err=%d\n", err);
2988                goto err_unmap_bar0;
2989        }
2990
2991        /* For T5 and later we want to use the new BAR-based User Doorbells,
2992         * so we need to map BAR2 here ...
2993         */
2994        if (!is_t4(adapter->params.chip)) {
2995                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2996                                           pci_resource_len(pdev, 2));
2997                if (!adapter->bar2) {
2998                        dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2999                        err = -ENOMEM;
3000                        goto err_unmap_bar0;
3001                }
3002        }
3003        /*
3004         * Initialize adapter level features.
3005         */
3006        adapter->name = pci_name(pdev);
3007        adapter->msg_enable = DFLT_MSG_ENABLE;
3008
3009        /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3010         * Ingress Packet Data to Free List Buffers in order to allow for
3011         * chipset performance optimizations between the Root Complex and
3012         * Memory Controllers.  (Messages to the associated Ingress Queue
3013         * notifying new Packet Placement in the Free Lists Buffers will be
3014         * send without the Relaxed Ordering Attribute thus guaranteeing that
3015         * all preceding PCIe Transaction Layer Packets will be processed
3016         * first.)  But some Root Complexes have various issues with Upstream
3017         * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3018         * The PCIe devices which under the Root Complexes will be cleared the
3019         * Relaxed Ordering bit in the configuration space, So we check our
3020         * PCIe configuration space to see if it's flagged with advice against
3021         * using Relaxed Ordering.
3022         */
3023        if (!pcie_relaxed_ordering_enabled(pdev))
3024                adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING;
3025
3026        err = adap_init0(adapter);
3027        if (err)
3028                dev_err(&pdev->dev,
3029                        "Adapter initialization failed, error %d. Continuing in debug mode\n",
3030                        err);
3031
3032        /* Initialize hash mac addr list */
3033        INIT_LIST_HEAD(&adapter->mac_hlist);
3034
3035        /*
3036         * Allocate our "adapter ports" and stitch everything together.
3037         */
3038        pmask = cxgb4vf_get_port_mask(adapter);
3039        for_each_port(adapter, pidx) {
3040                int port_id, viid;
3041                u8 mac[ETH_ALEN];
3042                unsigned int naddr = 1;
3043
3044                /*
3045                 * We simplistically allocate our virtual interfaces
3046                 * sequentially across the port numbers to which we have
3047                 * access rights.  This should be configurable in some manner
3048                 * ...
3049                 */
3050                if (pmask == 0)
3051                        break;
3052                port_id = ffs(pmask) - 1;
3053                pmask &= ~(1 << port_id);
3054
3055                /*
3056                 * Allocate our network device and stitch things together.
3057                 */
3058                netdev = alloc_etherdev_mq(sizeof(struct port_info),
3059                                           MAX_PORT_QSETS);
3060                if (netdev == NULL) {
3061                        err = -ENOMEM;
3062                        goto err_free_dev;
3063                }
3064                adapter->port[pidx] = netdev;
3065                SET_NETDEV_DEV(netdev, &pdev->dev);
3066                pi = netdev_priv(netdev);
3067                pi->adapter = adapter;
3068                pi->pidx = pidx;
3069                pi->port_id = port_id;
3070
3071                /*
3072                 * Initialize the starting state of our "port" and register
3073                 * it.
3074                 */
3075                pi->xact_addr_filt = -1;
3076                netdev->irq = pdev->irq;
3077
3078                netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO |
3079                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
3080                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
3081                netdev->features = netdev->hw_features;
3082                if (pci_using_dac)
3083                        netdev->features |= NETIF_F_HIGHDMA;
3084                netdev->vlan_features = netdev->features & VLAN_FEAT;
3085
3086                netdev->priv_flags |= IFF_UNICAST_FLT;
3087                netdev->min_mtu = 81;
3088                netdev->max_mtu = ETH_MAX_MTU;
3089
3090                netdev->netdev_ops = &cxgb4vf_netdev_ops;
3091                netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3092                netdev->dev_port = pi->port_id;
3093
3094                /*
3095                 * If we haven't been able to contact the firmware, there's
3096                 * nothing else we can do for this "port" ...
3097                 */
3098                if (!(adapter->flags & CXGB4VF_FW_OK))
3099                        continue;
3100
3101                viid = t4vf_alloc_vi(adapter, port_id);
3102                if (viid < 0) {
3103                        dev_err(&pdev->dev,
3104                                "cannot allocate VI for port %d: err=%d\n",
3105                                port_id, viid);
3106                        err = viid;
3107                        goto err_free_dev;
3108                }
3109                pi->viid = viid;
3110
3111                /*
3112                 * Initialize the hardware/software state for the port.
3113                 */
3114                err = t4vf_port_init(adapter, pidx);
3115                if (err) {
3116                        dev_err(&pdev->dev, "cannot initialize port %d\n",
3117                                pidx);
3118                        goto err_free_dev;
3119                }
3120
3121                err = t4vf_get_vf_mac_acl(adapter, port_id, &naddr, mac);
3122                if (err) {
3123                        dev_err(&pdev->dev,
3124                                "unable to determine MAC ACL address, "
3125                                "continuing anyway.. (status %d)\n", err);
3126                } else if (naddr && adapter->params.vfres.nvi == 1) {
3127                        struct sockaddr addr;
3128
3129                        ether_addr_copy(addr.sa_data, mac);
3130                        err = cxgb4vf_set_mac_addr(netdev, &addr);
3131                        if (err) {
3132                                dev_err(&pdev->dev,
3133                                        "unable to set MAC address %pM\n",
3134                                        mac);
3135                                goto err_free_dev;
3136                        }
3137                        dev_info(&pdev->dev,
3138                                 "Using assigned MAC ACL: %pM\n", mac);
3139                }
3140        }
3141
3142        /* See what interrupts we'll be using.  If we've been configured to
3143         * use MSI-X interrupts, try to enable them but fall back to using
3144         * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3145         * get MSI interrupts we bail with the error.
3146         */
3147        if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3148                adapter->flags |= CXGB4VF_USING_MSIX;
3149        else {
3150                if (msi == MSI_MSIX) {
3151                        dev_info(adapter->pdev_dev,
3152                                 "Unable to use MSI-X Interrupts; falling "
3153                                 "back to MSI Interrupts\n");
3154
3155                        /* We're going to need a Forwarded Interrupt Queue so
3156                         * that may cut into how many Queue Sets we can
3157                         * support.
3158                         */
3159                        msi = MSI_MSI;
3160                        size_nports_qsets(adapter);
3161                }
3162                err = pci_enable_msi(pdev);
3163                if (err) {
3164                        dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3165                                " err=%d\n", err);
3166                        goto err_free_dev;
3167                }
3168                adapter->flags |= CXGB4VF_USING_MSI;
3169        }
3170
3171        /* Now that we know how many "ports" we have and what interrupt
3172         * mechanism we're going to use, we can configure our queue resources.
3173         */
3174        cfg_queues(adapter);
3175
3176        /*
3177         * The "card" is now ready to go.  If any errors occur during device
3178         * registration we do not fail the whole "card" but rather proceed
3179         * only with the ports we manage to register successfully.  However we
3180         * must register at least one net device.
3181         */
3182        for_each_port(adapter, pidx) {
3183                struct port_info *pi = netdev_priv(adapter->port[pidx]);
3184                netdev = adapter->port[pidx];
3185                if (netdev == NULL)
3186                        continue;
3187
3188                netif_set_real_num_tx_queues(netdev, pi->nqsets);
3189                netif_set_real_num_rx_queues(netdev, pi->nqsets);
3190
3191                err = register_netdev(netdev);
3192                if (err) {
3193                        dev_warn(&pdev->dev, "cannot register net device %s,"
3194                                 " skipping\n", netdev->name);
3195                        continue;
3196                }
3197
3198                netif_carrier_off(netdev);
3199                set_bit(pidx, &adapter->registered_device_map);
3200        }
3201        if (adapter->registered_device_map == 0) {
3202                dev_err(&pdev->dev, "could not register any net devices\n");
3203                goto err_disable_interrupts;
3204        }
3205
3206        /*
3207         * Set up our debugfs entries.
3208         */
3209        if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3210                adapter->debugfs_root =
3211                        debugfs_create_dir(pci_name(pdev),
3212                                           cxgb4vf_debugfs_root);
3213                setup_debugfs(adapter);
3214        }
3215
3216        /*
3217         * Print a short notice on the existence and configuration of the new
3218         * VF network device ...
3219         */
3220        for_each_port(adapter, pidx) {
3221                dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3222                         adapter->port[pidx]->name,
3223                         (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" :
3224                         (adapter->flags & CXGB4VF_USING_MSI)  ? "MSI" : "");
3225        }
3226
3227        /*
3228         * Return success!
3229         */
3230        return 0;
3231
3232        /*
3233         * Error recovery and exit code.  Unwind state that's been created
3234         * so far and return the error.
3235         */
3236err_disable_interrupts:
3237        if (adapter->flags & CXGB4VF_USING_MSIX) {
3238                pci_disable_msix(adapter->pdev);
3239                adapter->flags &= ~CXGB4VF_USING_MSIX;
3240        } else if (adapter->flags & CXGB4VF_USING_MSI) {
3241                pci_disable_msi(adapter->pdev);
3242                adapter->flags &= ~CXGB4VF_USING_MSI;
3243        }
3244
3245err_free_dev:
3246        for_each_port(adapter, pidx) {
3247                netdev = adapter->port[pidx];
3248                if (netdev == NULL)
3249                        continue;
3250                pi = netdev_priv(netdev);
3251                if (pi->viid)
3252                        t4vf_free_vi(adapter, pi->viid);
3253                if (test_bit(pidx, &adapter->registered_device_map))
3254                        unregister_netdev(netdev);
3255                free_netdev(netdev);
3256        }
3257
3258        if (!is_t4(adapter->params.chip))
3259                iounmap(adapter->bar2);
3260
3261err_unmap_bar0:
3262        iounmap(adapter->regs);
3263
3264err_free_adapter:
3265        kfree(adapter->mbox_log);
3266        kfree(adapter);
3267
3268err_release_regions:
3269        pci_release_regions(pdev);
3270        pci_clear_master(pdev);
3271
3272err_disable_device:
3273        pci_disable_device(pdev);
3274
3275        return err;
3276}
3277
3278/*
3279 * "Remove" a device: tear down all kernel and driver state created in the
3280 * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3281 * that this is called "remove_one" in the PF Driver.)
3282 */
3283static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3284{
3285        struct adapter *adapter = pci_get_drvdata(pdev);
3286        struct hash_mac_addr *entry, *tmp;
3287
3288        /*
3289         * Tear down driver state associated with device.
3290         */
3291        if (adapter) {
3292                int pidx;
3293
3294                /*
3295                 * Stop all of our activity.  Unregister network port,
3296                 * disable interrupts, etc.
3297                 */
3298                for_each_port(adapter, pidx)
3299                        if (test_bit(pidx, &adapter->registered_device_map))
3300                                unregister_netdev(adapter->port[pidx]);
3301                t4vf_sge_stop(adapter);
3302                if (adapter->flags & CXGB4VF_USING_MSIX) {
3303                        pci_disable_msix(adapter->pdev);
3304                        adapter->flags &= ~CXGB4VF_USING_MSIX;
3305                } else if (adapter->flags & CXGB4VF_USING_MSI) {
3306                        pci_disable_msi(adapter->pdev);
3307                        adapter->flags &= ~CXGB4VF_USING_MSI;
3308                }
3309
3310                /*
3311                 * Tear down our debugfs entries.
3312                 */
3313                if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3314                        cleanup_debugfs(adapter);
3315                        debugfs_remove_recursive(adapter->debugfs_root);
3316                }
3317
3318                /*
3319                 * Free all of the various resources which we've acquired ...
3320                 */
3321                t4vf_free_sge_resources(adapter);
3322                for_each_port(adapter, pidx) {
3323                        struct net_device *netdev = adapter->port[pidx];
3324                        struct port_info *pi;
3325
3326                        if (netdev == NULL)
3327                                continue;
3328
3329                        pi = netdev_priv(netdev);
3330                        if (pi->viid)
3331                                t4vf_free_vi(adapter, pi->viid);
3332                        free_netdev(netdev);
3333                }
3334                iounmap(adapter->regs);
3335                if (!is_t4(adapter->params.chip))
3336                        iounmap(adapter->bar2);
3337                kfree(adapter->mbox_log);
3338                list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
3339                                         list) {
3340                        list_del(&entry->list);
3341                        kfree(entry);
3342                }
3343                kfree(adapter);
3344        }
3345
3346        /*
3347         * Disable the device and release its PCI resources.
3348         */
3349        pci_disable_device(pdev);
3350        pci_clear_master(pdev);
3351        pci_release_regions(pdev);
3352}
3353
3354/*
3355 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3356 * delivery.
3357 */
3358static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3359{
3360        struct adapter *adapter;
3361        int pidx;
3362
3363        adapter = pci_get_drvdata(pdev);
3364        if (!adapter)
3365                return;
3366
3367        /* Disable all Virtual Interfaces.  This will shut down the
3368         * delivery of all ingress packets into the chip for these
3369         * Virtual Interfaces.
3370         */
3371        for_each_port(adapter, pidx)
3372                if (test_bit(pidx, &adapter->registered_device_map))
3373                        unregister_netdev(adapter->port[pidx]);
3374
3375        /* Free up all Queues which will prevent further DMA and
3376         * Interrupts allowing various internal pathways to drain.
3377         */
3378        t4vf_sge_stop(adapter);
3379        if (adapter->flags & CXGB4VF_USING_MSIX) {
3380                pci_disable_msix(adapter->pdev);
3381                adapter->flags &= ~CXGB4VF_USING_MSIX;
3382        } else if (adapter->flags & CXGB4VF_USING_MSI) {
3383                pci_disable_msi(adapter->pdev);
3384                adapter->flags &= ~CXGB4VF_USING_MSI;
3385        }
3386
3387        /*
3388         * Free up all Queues which will prevent further DMA and
3389         * Interrupts allowing various internal pathways to drain.
3390         */
3391        t4vf_free_sge_resources(adapter);
3392        pci_set_drvdata(pdev, NULL);
3393}
3394
3395/* Macros needed to support the PCI Device ID Table ...
3396 */
3397#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3398        static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3399#define CH_PCI_DEVICE_ID_FUNCTION       0x8
3400
3401#define CH_PCI_ID_TABLE_ENTRY(devid) \
3402                { PCI_VDEVICE(CHELSIO, (devid)), 0 }
3403
3404#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3405
3406#include "../cxgb4/t4_pci_id_tbl.h"
3407
3408MODULE_DESCRIPTION(DRV_DESC);
3409MODULE_AUTHOR("Chelsio Communications");
3410MODULE_LICENSE("Dual BSD/GPL");
3411MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3412
3413static struct pci_driver cxgb4vf_driver = {
3414        .name           = KBUILD_MODNAME,
3415        .id_table       = cxgb4vf_pci_tbl,
3416        .probe          = cxgb4vf_pci_probe,
3417        .remove         = cxgb4vf_pci_remove,
3418        .shutdown       = cxgb4vf_pci_shutdown,
3419};
3420
3421/*
3422 * Initialize global driver state.
3423 */
3424static int __init cxgb4vf_module_init(void)
3425{
3426        int ret;
3427
3428        /*
3429         * Vet our module parameters.
3430         */
3431        if (msi != MSI_MSIX && msi != MSI_MSI) {
3432                pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3433                        msi, MSI_MSIX, MSI_MSI);
3434                return -EINVAL;
3435        }
3436
3437        /* Debugfs support is optional, debugfs will warn if this fails */
3438        cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3439
3440        ret = pci_register_driver(&cxgb4vf_driver);
3441        if (ret < 0)
3442                debugfs_remove(cxgb4vf_debugfs_root);
3443        return ret;
3444}
3445
3446/*
3447 * Tear down global driver state.
3448 */
3449static void __exit cxgb4vf_module_exit(void)
3450{
3451        pci_unregister_driver(&cxgb4vf_driver);
3452        debugfs_remove(cxgb4vf_debugfs_root);
3453}
3454
3455module_init(cxgb4vf_module_init);
3456module_exit(cxgb4vf_module_exit);
3457