linux/drivers/net/ethernet/intel/ice/ice_base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include <net/xdp_sock_drv.h>
   5#include "ice_base.h"
   6#include "ice_lib.h"
   7#include "ice_dcb_lib.h"
   8
   9/**
  10 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
  11 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
  12 *
  13 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
  14 */
  15static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
  16{
  17        unsigned int offset, i;
  18
  19        mutex_lock(qs_cfg->qs_mutex);
  20        offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
  21                                            0, qs_cfg->q_count, 0);
  22        if (offset >= qs_cfg->pf_map_size) {
  23                mutex_unlock(qs_cfg->qs_mutex);
  24                return -ENOMEM;
  25        }
  26
  27        bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
  28        for (i = 0; i < qs_cfg->q_count; i++)
  29                qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
  30        mutex_unlock(qs_cfg->qs_mutex);
  31
  32        return 0;
  33}
  34
  35/**
  36 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
  37 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
  38 *
  39 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
  40 */
  41static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
  42{
  43        unsigned int i, index = 0;
  44
  45        mutex_lock(qs_cfg->qs_mutex);
  46        for (i = 0; i < qs_cfg->q_count; i++) {
  47                index = find_next_zero_bit(qs_cfg->pf_map,
  48                                           qs_cfg->pf_map_size, index);
  49                if (index >= qs_cfg->pf_map_size)
  50                        goto err_scatter;
  51                set_bit(index, qs_cfg->pf_map);
  52                qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
  53        }
  54        mutex_unlock(qs_cfg->qs_mutex);
  55
  56        return 0;
  57err_scatter:
  58        for (index = 0; index < i; index++) {
  59                clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
  60                qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
  61        }
  62        mutex_unlock(qs_cfg->qs_mutex);
  63
  64        return -ENOMEM;
  65}
  66
  67/**
  68 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
  69 * @pf: the PF being configured
  70 * @pf_q: the PF queue
  71 * @ena: enable or disable state of the queue
  72 *
  73 * This routine will wait for the given Rx queue of the PF to reach the
  74 * enabled or disabled state.
  75 * Returns -ETIMEDOUT in case of failing to reach the requested state after
  76 * multiple retries; else will return 0 in case of success.
  77 */
  78static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
  79{
  80        int i;
  81
  82        for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
  83                if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
  84                              QRX_CTRL_QENA_STAT_M))
  85                        return 0;
  86
  87                usleep_range(20, 40);
  88        }
  89
  90        return -ETIMEDOUT;
  91}
  92
  93/**
  94 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
  95 * @vsi: the VSI being configured
  96 * @v_idx: index of the vector in the VSI struct
  97 *
  98 * We allocate one q_vector and set default value for ITR setting associated
  99 * with this q_vector. If allocation fails we return -ENOMEM.
 100 */
 101static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
 102{
 103        struct ice_pf *pf = vsi->back;
 104        struct ice_q_vector *q_vector;
 105
 106        /* allocate q_vector */
 107        q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
 108                                GFP_KERNEL);
 109        if (!q_vector)
 110                return -ENOMEM;
 111
 112        q_vector->vsi = vsi;
 113        q_vector->v_idx = v_idx;
 114        q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
 115        q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
 116        if (vsi->type == ICE_VSI_VF)
 117                goto out;
 118        /* only set affinity_mask if the CPU is online */
 119        if (cpu_online(v_idx))
 120                cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
 121
 122        /* This will not be called in the driver load path because the netdev
 123         * will not be created yet. All other cases with register the NAPI
 124         * handler here (i.e. resume, reset/rebuild, etc.)
 125         */
 126        if (vsi->netdev)
 127                netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
 128                               NAPI_POLL_WEIGHT);
 129
 130out:
 131        /* tie q_vector and VSI together */
 132        vsi->q_vectors[v_idx] = q_vector;
 133
 134        return 0;
 135}
 136
 137/**
 138 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
 139 * @vsi: VSI having the memory freed
 140 * @v_idx: index of the vector to be freed
 141 */
 142static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
 143{
 144        struct ice_q_vector *q_vector;
 145        struct ice_pf *pf = vsi->back;
 146        struct ice_ring *ring;
 147        struct device *dev;
 148
 149        dev = ice_pf_to_dev(pf);
 150        if (!vsi->q_vectors[v_idx]) {
 151                dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
 152                return;
 153        }
 154        q_vector = vsi->q_vectors[v_idx];
 155
 156        ice_for_each_ring(ring, q_vector->tx)
 157                ring->q_vector = NULL;
 158        ice_for_each_ring(ring, q_vector->rx)
 159                ring->q_vector = NULL;
 160
 161        /* only VSI with an associated netdev is set up with NAPI */
 162        if (vsi->netdev)
 163                netif_napi_del(&q_vector->napi);
 164
 165        devm_kfree(dev, q_vector);
 166        vsi->q_vectors[v_idx] = NULL;
 167}
 168
 169/**
 170 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
 171 * @hw: board specific structure
 172 */
 173static void ice_cfg_itr_gran(struct ice_hw *hw)
 174{
 175        u32 regval = rd32(hw, GLINT_CTL);
 176
 177        /* no need to update global register if ITR gran is already set */
 178        if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
 179            (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
 180             GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
 181            (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
 182             GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
 183            (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
 184             GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
 185            (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
 186              GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
 187                return;
 188
 189        regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
 190                  GLINT_CTL_ITR_GRAN_200_M) |
 191                 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
 192                  GLINT_CTL_ITR_GRAN_100_M) |
 193                 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
 194                  GLINT_CTL_ITR_GRAN_50_M) |
 195                 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
 196                  GLINT_CTL_ITR_GRAN_25_M);
 197        wr32(hw, GLINT_CTL, regval);
 198}
 199
 200/**
 201 * ice_calc_q_handle - calculate the queue handle
 202 * @vsi: VSI that ring belongs to
 203 * @ring: ring to get the absolute queue index
 204 * @tc: traffic class number
 205 */
 206static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
 207{
 208        WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
 209
 210        /* Idea here for calculation is that we subtract the number of queue
 211         * count from TC that ring belongs to from it's absolute queue index
 212         * and as a result we get the queue's index within TC.
 213         */
 214        return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
 215}
 216
 217/**
 218 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 219 * @ring: The Tx ring to configure
 220 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 221 * @pf_q: queue index in the PF space
 222 *
 223 * Configure the Tx descriptor ring in TLAN context.
 224 */
 225static void
 226ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
 227{
 228        struct ice_vsi *vsi = ring->vsi;
 229        struct ice_hw *hw = &vsi->back->hw;
 230
 231        tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
 232
 233        tlan_ctx->port_num = vsi->port_info->lport;
 234
 235        /* Transmit Queue Length */
 236        tlan_ctx->qlen = ring->count;
 237
 238        ice_set_cgd_num(tlan_ctx, ring);
 239
 240        /* PF number */
 241        tlan_ctx->pf_num = hw->pf_id;
 242
 243        /* queue belongs to a specific VSI type
 244         * VF / VM index should be programmed per vmvf_type setting:
 245         * for vmvf_type = VF, it is VF number between 0-256
 246         * for vmvf_type = VM, it is VM number between 0-767
 247         * for PF or EMP this field should be set to zero
 248         */
 249        switch (vsi->type) {
 250        case ICE_VSI_LB:
 251        case ICE_VSI_CTRL:
 252        case ICE_VSI_PF:
 253                tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 254                break;
 255        case ICE_VSI_VF:
 256                /* Firmware expects vmvf_num to be absolute VF ID */
 257                tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
 258                tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
 259                break;
 260        default:
 261                return;
 262        }
 263
 264        /* make sure the context is associated with the right VSI */
 265        tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 266
 267        tlan_ctx->tso_ena = ICE_TX_LEGACY;
 268        tlan_ctx->tso_qnum = pf_q;
 269
 270        /* Legacy or Advanced Host Interface:
 271         * 0: Advanced Host Interface
 272         * 1: Legacy Host Interface
 273         */
 274        tlan_ctx->legacy_int = ICE_TX_LEGACY;
 275}
 276
 277/**
 278 * ice_setup_rx_ctx - Configure a receive ring context
 279 * @ring: The Rx ring to configure
 280 *
 281 * Configure the Rx descriptor ring in RLAN context.
 282 */
 283int ice_setup_rx_ctx(struct ice_ring *ring)
 284{
 285        struct device *dev = ice_pf_to_dev(ring->vsi->back);
 286        int chain_len = ICE_MAX_CHAINED_RX_BUFS;
 287        u16 num_bufs = ICE_DESC_UNUSED(ring);
 288        struct ice_vsi *vsi = ring->vsi;
 289        u32 rxdid = ICE_RXDID_FLEX_NIC;
 290        struct ice_rlan_ctx rlan_ctx;
 291        struct ice_hw *hw;
 292        u16 pf_q;
 293        int err;
 294
 295        hw = &vsi->back->hw;
 296
 297        /* what is Rx queue number in global space of 2K Rx queues */
 298        pf_q = vsi->rxq_map[ring->q_index];
 299
 300        /* clear the context structure first */
 301        memset(&rlan_ctx, 0, sizeof(rlan_ctx));
 302
 303        ring->rx_buf_len = vsi->rx_buf_len;
 304
 305        if (ring->vsi->type == ICE_VSI_PF) {
 306                if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
 307                        /* coverity[check_return] */
 308                        xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
 309                                         ring->q_index);
 310
 311                ring->xsk_pool = ice_xsk_pool(ring);
 312                if (ring->xsk_pool) {
 313                        xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
 314
 315                        ring->rx_buf_len =
 316                                xsk_pool_get_rx_frame_size(ring->xsk_pool);
 317                        /* For AF_XDP ZC, we disallow packets to span on
 318                         * multiple buffers, thus letting us skip that
 319                         * handling in the fast-path.
 320                         */
 321                        chain_len = 1;
 322                        err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 323                                                         MEM_TYPE_XSK_BUFF_POOL,
 324                                                         NULL);
 325                        if (err)
 326                                return err;
 327                        xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
 328
 329                        dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
 330                                 ring->q_index);
 331                } else {
 332                        if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
 333                                /* coverity[check_return] */
 334                                xdp_rxq_info_reg(&ring->xdp_rxq,
 335                                                 ring->netdev,
 336                                                 ring->q_index);
 337
 338                        err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 339                                                         MEM_TYPE_PAGE_SHARED,
 340                                                         NULL);
 341                        if (err)
 342                                return err;
 343                }
 344        }
 345        /* Receive Queue Base Address.
 346         * Indicates the starting address of the descriptor queue defined in
 347         * 128 Byte units.
 348         */
 349        rlan_ctx.base = ring->dma >> 7;
 350
 351        rlan_ctx.qlen = ring->count;
 352
 353        /* Receive Packet Data Buffer Size.
 354         * The Packet Data Buffer Size is defined in 128 byte units.
 355         */
 356        rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
 357
 358        /* use 32 byte descriptors */
 359        rlan_ctx.dsize = 1;
 360
 361        /* Strip the Ethernet CRC bytes before the packet is posted to host
 362         * memory.
 363         */
 364        rlan_ctx.crcstrip = 1;
 365
 366        /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
 367        rlan_ctx.l2tsel = 1;
 368
 369        rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
 370        rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
 371        rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
 372
 373        /* This controls whether VLAN is stripped from inner headers
 374         * The VLAN in the inner L2 header is stripped to the receive
 375         * descriptor if enabled by this flag.
 376         */
 377        rlan_ctx.showiv = 0;
 378
 379        /* Max packet size for this queue - must not be set to a larger value
 380         * than 5 x DBUF
 381         */
 382        rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
 383                               chain_len * ring->rx_buf_len);
 384
 385        /* Rx queue threshold in units of 64 */
 386        rlan_ctx.lrxqthresh = 1;
 387
 388        /* Enable Flexible Descriptors in the queue context which
 389         * allows this driver to select a specific receive descriptor format
 390         * increasing context priority to pick up profile ID; default is 0x01;
 391         * setting to 0x03 to ensure profile is programming if prev context is
 392         * of same priority
 393         */
 394        if (vsi->type != ICE_VSI_VF)
 395                ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3);
 396        else
 397                ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3);
 398
 399        /* Absolute queue number out of 2K needs to be passed */
 400        err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
 401        if (err) {
 402                dev_err(dev, "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
 403                        pf_q, err);
 404                return -EIO;
 405        }
 406
 407        if (vsi->type == ICE_VSI_VF)
 408                return 0;
 409
 410        /* configure Rx buffer alignment */
 411        if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
 412                ice_clear_ring_build_skb_ena(ring);
 413        else
 414                ice_set_ring_build_skb_ena(ring);
 415
 416        /* init queue specific tail register */
 417        ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
 418        writel(0, ring->tail);
 419
 420        if (ring->xsk_pool) {
 421                if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
 422                        dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
 423                                 num_bufs, ring->q_index);
 424                        dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
 425
 426                        return 0;
 427                }
 428
 429                err = ice_alloc_rx_bufs_zc(ring, num_bufs);
 430                if (err)
 431                        dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
 432                                 ring->q_index, pf_q);
 433                return 0;
 434        }
 435
 436        ice_alloc_rx_bufs(ring, num_bufs);
 437
 438        return 0;
 439}
 440
 441/**
 442 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 443 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 444 *
 445 * This function first tries to find contiguous space. If it is not successful,
 446 * it tries with the scatter approach.
 447 *
 448 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 449 */
 450int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
 451{
 452        int ret = 0;
 453
 454        ret = __ice_vsi_get_qs_contig(qs_cfg);
 455        if (ret) {
 456                /* contig failed, so try with scatter approach */
 457                qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
 458                qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
 459                                        qs_cfg->scatter_count);
 460                ret = __ice_vsi_get_qs_sc(qs_cfg);
 461        }
 462        return ret;
 463}
 464
 465/**
 466 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
 467 * @vsi: the VSI being configured
 468 * @ena: start or stop the Rx ring
 469 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 470 * @wait: wait or don't wait for configuration to finish in hardware
 471 *
 472 * Return 0 on success and negative on error.
 473 */
 474int
 475ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
 476{
 477        int pf_q = vsi->rxq_map[rxq_idx];
 478        struct ice_pf *pf = vsi->back;
 479        struct ice_hw *hw = &pf->hw;
 480        u32 rx_reg;
 481
 482        rx_reg = rd32(hw, QRX_CTRL(pf_q));
 483
 484        /* Skip if the queue is already in the requested state */
 485        if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
 486                return 0;
 487
 488        /* turn on/off the queue */
 489        if (ena)
 490                rx_reg |= QRX_CTRL_QENA_REQ_M;
 491        else
 492                rx_reg &= ~QRX_CTRL_QENA_REQ_M;
 493        wr32(hw, QRX_CTRL(pf_q), rx_reg);
 494
 495        if (!wait)
 496                return 0;
 497
 498        ice_flush(hw);
 499        return ice_pf_rxq_wait(pf, pf_q, ena);
 500}
 501
 502/**
 503 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
 504 * @vsi: the VSI being configured
 505 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
 506 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 507 *
 508 * This routine will wait for the given Rx queue of the VSI to reach the
 509 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
 510 * the requested state after multiple retries; else will return 0 in case of
 511 * success.
 512 */
 513int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
 514{
 515        int pf_q = vsi->rxq_map[rxq_idx];
 516        struct ice_pf *pf = vsi->back;
 517
 518        return ice_pf_rxq_wait(pf, pf_q, ena);
 519}
 520
 521/**
 522 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
 523 * @vsi: the VSI being configured
 524 *
 525 * We allocate one q_vector per queue interrupt. If allocation fails we
 526 * return -ENOMEM.
 527 */
 528int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
 529{
 530        struct device *dev = ice_pf_to_dev(vsi->back);
 531        u16 v_idx;
 532        int err;
 533
 534        if (vsi->q_vectors[0]) {
 535                dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
 536                return -EEXIST;
 537        }
 538
 539        for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
 540                err = ice_vsi_alloc_q_vector(vsi, v_idx);
 541                if (err)
 542                        goto err_out;
 543        }
 544
 545        return 0;
 546
 547err_out:
 548        while (v_idx--)
 549                ice_free_q_vector(vsi, v_idx);
 550
 551        dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
 552                vsi->num_q_vectors, vsi->vsi_num, err);
 553        vsi->num_q_vectors = 0;
 554        return err;
 555}
 556
 557/**
 558 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
 559 * @vsi: the VSI being configured
 560 *
 561 * This function maps descriptor rings to the queue-specific vectors allotted
 562 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
 563 * and Rx rings to the vector as "efficiently" as possible.
 564 */
 565void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
 566{
 567        int q_vectors = vsi->num_q_vectors;
 568        u16 tx_rings_rem, rx_rings_rem;
 569        int v_id;
 570
 571        /* initially assigning remaining rings count to VSIs num queue value */
 572        tx_rings_rem = vsi->num_txq;
 573        rx_rings_rem = vsi->num_rxq;
 574
 575        for (v_id = 0; v_id < q_vectors; v_id++) {
 576                struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
 577                u8 tx_rings_per_v, rx_rings_per_v;
 578                u16 q_id, q_base;
 579
 580                /* Tx rings mapping to vector */
 581                tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
 582                                                  q_vectors - v_id);
 583                q_vector->num_ring_tx = tx_rings_per_v;
 584                q_vector->tx.ring = NULL;
 585                q_vector->tx.itr_idx = ICE_TX_ITR;
 586                q_base = vsi->num_txq - tx_rings_rem;
 587
 588                for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
 589                        struct ice_ring *tx_ring = vsi->tx_rings[q_id];
 590
 591                        tx_ring->q_vector = q_vector;
 592                        tx_ring->next = q_vector->tx.ring;
 593                        q_vector->tx.ring = tx_ring;
 594                }
 595                tx_rings_rem -= tx_rings_per_v;
 596
 597                /* Rx rings mapping to vector */
 598                rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
 599                                                  q_vectors - v_id);
 600                q_vector->num_ring_rx = rx_rings_per_v;
 601                q_vector->rx.ring = NULL;
 602                q_vector->rx.itr_idx = ICE_RX_ITR;
 603                q_base = vsi->num_rxq - rx_rings_rem;
 604
 605                for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
 606                        struct ice_ring *rx_ring = vsi->rx_rings[q_id];
 607
 608                        rx_ring->q_vector = q_vector;
 609                        rx_ring->next = q_vector->rx.ring;
 610                        q_vector->rx.ring = rx_ring;
 611                }
 612                rx_rings_rem -= rx_rings_per_v;
 613        }
 614}
 615
 616/**
 617 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
 618 * @vsi: the VSI having memory freed
 619 */
 620void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
 621{
 622        int v_idx;
 623
 624        ice_for_each_q_vector(vsi, v_idx)
 625                ice_free_q_vector(vsi, v_idx);
 626}
 627
 628/**
 629 * ice_vsi_cfg_txq - Configure single Tx queue
 630 * @vsi: the VSI that queue belongs to
 631 * @ring: Tx ring to be configured
 632 * @qg_buf: queue group buffer
 633 */
 634int
 635ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
 636                struct ice_aqc_add_tx_qgrp *qg_buf)
 637{
 638        u8 buf_len = struct_size(qg_buf, txqs, 1);
 639        struct ice_tlan_ctx tlan_ctx = { 0 };
 640        struct ice_aqc_add_txqs_perq *txq;
 641        struct ice_pf *pf = vsi->back;
 642        struct ice_hw *hw = &pf->hw;
 643        enum ice_status status;
 644        u16 pf_q;
 645        u8 tc;
 646
 647        pf_q = ring->reg_idx;
 648        ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
 649        /* copy context contents into the qg_buf */
 650        qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
 651        ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
 652                    ice_tlan_ctx_info);
 653
 654        /* init queue specific tail reg. It is referred as
 655         * transmit comm scheduler queue doorbell.
 656         */
 657        ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
 658
 659        if (IS_ENABLED(CONFIG_DCB))
 660                tc = ring->dcb_tc;
 661        else
 662                tc = 0;
 663
 664        /* Add unique software queue handle of the Tx queue per
 665         * TC into the VSI Tx ring
 666         */
 667        ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
 668
 669        status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
 670                                 1, qg_buf, buf_len, NULL);
 671        if (status) {
 672                dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
 673                        ice_stat_str(status));
 674                return -ENODEV;
 675        }
 676
 677        /* Add Tx Queue TEID into the VSI Tx ring from the
 678         * response. This will complete configuring and
 679         * enabling the queue.
 680         */
 681        txq = &qg_buf->txqs[0];
 682        if (pf_q == le16_to_cpu(txq->txq_id))
 683                ring->txq_teid = le32_to_cpu(txq->q_teid);
 684
 685        return 0;
 686}
 687
 688/**
 689 * ice_cfg_itr - configure the initial interrupt throttle values
 690 * @hw: pointer to the HW structure
 691 * @q_vector: interrupt vector that's being configured
 692 *
 693 * Configure interrupt throttling values for the ring containers that are
 694 * associated with the interrupt vector passed in.
 695 */
 696void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
 697{
 698        ice_cfg_itr_gran(hw);
 699
 700        if (q_vector->num_ring_rx) {
 701                struct ice_ring_container *rc = &q_vector->rx;
 702
 703                rc->target_itr = ITR_TO_REG(rc->itr_setting);
 704                rc->next_update = jiffies + 1;
 705                rc->current_itr = rc->target_itr;
 706                wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
 707                     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
 708        }
 709
 710        if (q_vector->num_ring_tx) {
 711                struct ice_ring_container *rc = &q_vector->tx;
 712
 713                rc->target_itr = ITR_TO_REG(rc->itr_setting);
 714                rc->next_update = jiffies + 1;
 715                rc->current_itr = rc->target_itr;
 716                wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
 717                     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
 718        }
 719}
 720
 721/**
 722 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
 723 * @vsi: the VSI being configured
 724 * @txq: Tx queue being mapped to MSI-X vector
 725 * @msix_idx: MSI-X vector index within the function
 726 * @itr_idx: ITR index of the interrupt cause
 727 *
 728 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
 729 * within the function space.
 730 */
 731void
 732ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
 733{
 734        struct ice_pf *pf = vsi->back;
 735        struct ice_hw *hw = &pf->hw;
 736        u32 val;
 737
 738        itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
 739
 740        val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
 741              ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
 742
 743        wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
 744        if (ice_is_xdp_ena_vsi(vsi)) {
 745                u32 xdp_txq = txq + vsi->num_xdp_txq;
 746
 747                wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
 748                     val);
 749        }
 750        ice_flush(hw);
 751}
 752
 753/**
 754 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
 755 * @vsi: the VSI being configured
 756 * @rxq: Rx queue being mapped to MSI-X vector
 757 * @msix_idx: MSI-X vector index within the function
 758 * @itr_idx: ITR index of the interrupt cause
 759 *
 760 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
 761 * within the function space.
 762 */
 763void
 764ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
 765{
 766        struct ice_pf *pf = vsi->back;
 767        struct ice_hw *hw = &pf->hw;
 768        u32 val;
 769
 770        itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
 771
 772        val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
 773              ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
 774
 775        wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
 776
 777        ice_flush(hw);
 778}
 779
 780/**
 781 * ice_trigger_sw_intr - trigger a software interrupt
 782 * @hw: pointer to the HW structure
 783 * @q_vector: interrupt vector to trigger the software interrupt for
 784 */
 785void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
 786{
 787        wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
 788             (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
 789             GLINT_DYN_CTL_SWINT_TRIG_M |
 790             GLINT_DYN_CTL_INTENA_M);
 791}
 792
 793/**
 794 * ice_vsi_stop_tx_ring - Disable single Tx ring
 795 * @vsi: the VSI being configured
 796 * @rst_src: reset source
 797 * @rel_vmvf_num: Relative ID of VF/VM
 798 * @ring: Tx ring to be stopped
 799 * @txq_meta: Meta data of Tx ring to be stopped
 800 */
 801int
 802ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
 803                     u16 rel_vmvf_num, struct ice_ring *ring,
 804                     struct ice_txq_meta *txq_meta)
 805{
 806        struct ice_pf *pf = vsi->back;
 807        struct ice_q_vector *q_vector;
 808        struct ice_hw *hw = &pf->hw;
 809        enum ice_status status;
 810        u32 val;
 811
 812        /* clear cause_ena bit for disabled queues */
 813        val = rd32(hw, QINT_TQCTL(ring->reg_idx));
 814        val &= ~QINT_TQCTL_CAUSE_ENA_M;
 815        wr32(hw, QINT_TQCTL(ring->reg_idx), val);
 816
 817        /* software is expected to wait for 100 ns */
 818        ndelay(100);
 819
 820        /* trigger a software interrupt for the vector
 821         * associated to the queue to schedule NAPI handler
 822         */
 823        q_vector = ring->q_vector;
 824        if (q_vector)
 825                ice_trigger_sw_intr(hw, q_vector);
 826
 827        status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
 828                                 txq_meta->tc, 1, &txq_meta->q_handle,
 829                                 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
 830                                 rel_vmvf_num, NULL);
 831
 832        /* if the disable queue command was exercised during an
 833         * active reset flow, ICE_ERR_RESET_ONGOING is returned.
 834         * This is not an error as the reset operation disables
 835         * queues at the hardware level anyway.
 836         */
 837        if (status == ICE_ERR_RESET_ONGOING) {
 838                dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
 839        } else if (status == ICE_ERR_DOES_NOT_EXIST) {
 840                dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
 841        } else if (status) {
 842                dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
 843                        ice_stat_str(status));
 844                return -ENODEV;
 845        }
 846
 847        return 0;
 848}
 849
 850/**
 851 * ice_fill_txq_meta - Prepare the Tx queue's meta data
 852 * @vsi: VSI that ring belongs to
 853 * @ring: ring that txq_meta will be based on
 854 * @txq_meta: a helper struct that wraps Tx queue's information
 855 *
 856 * Set up a helper struct that will contain all the necessary fields that
 857 * are needed for stopping Tx queue
 858 */
 859void
 860ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
 861                  struct ice_txq_meta *txq_meta)
 862{
 863        u8 tc;
 864
 865        if (IS_ENABLED(CONFIG_DCB))
 866                tc = ring->dcb_tc;
 867        else
 868                tc = 0;
 869
 870        txq_meta->q_id = ring->reg_idx;
 871        txq_meta->q_teid = ring->txq_teid;
 872        txq_meta->q_handle = ring->q_handle;
 873        txq_meta->vsi_idx = vsi->idx;
 874        txq_meta->tc = tc;
 875}
 876