linux/drivers/net/wireless/ralink/rt2x00/rt2x00queue.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3        Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   4        Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   5        Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
   6        <http://rt2x00.serialmonkey.com>
   7
   8 */
   9
  10/*
  11        Module: rt2x00lib
  12        Abstract: rt2x00 queue specific routines.
  13 */
  14
  15#include <linux/slab.h>
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/dma-mapping.h>
  19
  20#include "rt2x00.h"
  21#include "rt2x00lib.h"
  22
  23struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
  24{
  25        struct data_queue *queue = entry->queue;
  26        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  27        struct sk_buff *skb;
  28        struct skb_frame_desc *skbdesc;
  29        unsigned int frame_size;
  30        unsigned int head_size = 0;
  31        unsigned int tail_size = 0;
  32
  33        /*
  34         * The frame size includes descriptor size, because the
  35         * hardware directly receive the frame into the skbuffer.
  36         */
  37        frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
  38
  39        /*
  40         * The payload should be aligned to a 4-byte boundary,
  41         * this means we need at least 3 bytes for moving the frame
  42         * into the correct offset.
  43         */
  44        head_size = 4;
  45
  46        /*
  47         * For IV/EIV/ICV assembly we must make sure there is
  48         * at least 8 bytes bytes available in headroom for IV/EIV
  49         * and 8 bytes for ICV data as tailroon.
  50         */
  51        if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
  52                head_size += 8;
  53                tail_size += 8;
  54        }
  55
  56        /*
  57         * Allocate skbuffer.
  58         */
  59        skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
  60        if (!skb)
  61                return NULL;
  62
  63        /*
  64         * Make sure we not have a frame with the requested bytes
  65         * available in the head and tail.
  66         */
  67        skb_reserve(skb, head_size);
  68        skb_put(skb, frame_size);
  69
  70        /*
  71         * Populate skbdesc.
  72         */
  73        skbdesc = get_skb_frame_desc(skb);
  74        memset(skbdesc, 0, sizeof(*skbdesc));
  75
  76        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
  77                dma_addr_t skb_dma;
  78
  79                skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
  80                                         DMA_FROM_DEVICE);
  81                if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
  82                        dev_kfree_skb_any(skb);
  83                        return NULL;
  84                }
  85
  86                skbdesc->skb_dma = skb_dma;
  87                skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  88        }
  89
  90        return skb;
  91}
  92
  93int rt2x00queue_map_txskb(struct queue_entry *entry)
  94{
  95        struct device *dev = entry->queue->rt2x00dev->dev;
  96        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  97
  98        skbdesc->skb_dma =
  99            dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
 100
 101        if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
 102                return -ENOMEM;
 103
 104        skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
 105        rt2x00lib_dmadone(entry);
 106        return 0;
 107}
 108EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
 109
 110void rt2x00queue_unmap_skb(struct queue_entry *entry)
 111{
 112        struct device *dev = entry->queue->rt2x00dev->dev;
 113        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 114
 115        if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
 116                dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
 117                                 DMA_FROM_DEVICE);
 118                skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
 119        } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
 120                dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
 121                                 DMA_TO_DEVICE);
 122                skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
 123        }
 124}
 125EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
 126
 127void rt2x00queue_free_skb(struct queue_entry *entry)
 128{
 129        if (!entry->skb)
 130                return;
 131
 132        rt2x00queue_unmap_skb(entry);
 133        dev_kfree_skb_any(entry->skb);
 134        entry->skb = NULL;
 135}
 136
 137void rt2x00queue_align_frame(struct sk_buff *skb)
 138{
 139        unsigned int frame_length = skb->len;
 140        unsigned int align = ALIGN_SIZE(skb, 0);
 141
 142        if (!align)
 143                return;
 144
 145        skb_push(skb, align);
 146        memmove(skb->data, skb->data + align, frame_length);
 147        skb_trim(skb, frame_length);
 148}
 149
 150/*
 151 * H/W needs L2 padding between the header and the paylod if header size
 152 * is not 4 bytes aligned.
 153 */
 154void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
 155{
 156        unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
 157
 158        if (!l2pad)
 159                return;
 160
 161        skb_push(skb, l2pad);
 162        memmove(skb->data, skb->data + l2pad, hdr_len);
 163}
 164
 165void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
 166{
 167        unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
 168
 169        if (!l2pad)
 170                return;
 171
 172        memmove(skb->data + l2pad, skb->data, hdr_len);
 173        skb_pull(skb, l2pad);
 174}
 175
 176static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
 177                                                 struct sk_buff *skb,
 178                                                 struct txentry_desc *txdesc)
 179{
 180        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 181        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 182        struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
 183        u16 seqno;
 184
 185        if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
 186                return;
 187
 188        __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
 189
 190        if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
 191                /*
 192                 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
 193                 * seqno on retransmitted data (non-QOS) and management frames.
 194                 * To workaround the problem let's generate seqno in software.
 195                 * Except for beacons which are transmitted periodically by H/W
 196                 * hence hardware has to assign seqno for them.
 197                 */
 198                if (ieee80211_is_beacon(hdr->frame_control)) {
 199                        __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
 200                        /* H/W will generate sequence number */
 201                        return;
 202                }
 203
 204                __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
 205        }
 206
 207        /*
 208         * The hardware is not able to insert a sequence number. Assign a
 209         * software generated one here.
 210         *
 211         * This is wrong because beacons are not getting sequence
 212         * numbers assigned properly.
 213         *
 214         * A secondary problem exists for drivers that cannot toggle
 215         * sequence counting per-frame, since those will override the
 216         * sequence counter given by mac80211.
 217         */
 218        if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
 219                seqno = atomic_add_return(0x10, &intf->seqno);
 220        else
 221                seqno = atomic_read(&intf->seqno);
 222
 223        hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
 224        hdr->seq_ctrl |= cpu_to_le16(seqno);
 225}
 226
 227static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
 228                                                  struct sk_buff *skb,
 229                                                  struct txentry_desc *txdesc,
 230                                                  const struct rt2x00_rate *hwrate)
 231{
 232        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 233        struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 234        unsigned int data_length;
 235        unsigned int duration;
 236        unsigned int residual;
 237
 238        /*
 239         * Determine with what IFS priority this frame should be send.
 240         * Set ifs to IFS_SIFS when the this is not the first fragment,
 241         * or this fragment came after RTS/CTS.
 242         */
 243        if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
 244                txdesc->u.plcp.ifs = IFS_BACKOFF;
 245        else
 246                txdesc->u.plcp.ifs = IFS_SIFS;
 247
 248        /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
 249        data_length = skb->len + 4;
 250        data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
 251
 252        /*
 253         * PLCP setup
 254         * Length calculation depends on OFDM/CCK rate.
 255         */
 256        txdesc->u.plcp.signal = hwrate->plcp;
 257        txdesc->u.plcp.service = 0x04;
 258
 259        if (hwrate->flags & DEV_RATE_OFDM) {
 260                txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
 261                txdesc->u.plcp.length_low = data_length & 0x3f;
 262        } else {
 263                /*
 264                 * Convert length to microseconds.
 265                 */
 266                residual = GET_DURATION_RES(data_length, hwrate->bitrate);
 267                duration = GET_DURATION(data_length, hwrate->bitrate);
 268
 269                if (residual != 0) {
 270                        duration++;
 271
 272                        /*
 273                         * Check if we need to set the Length Extension
 274                         */
 275                        if (hwrate->bitrate == 110 && residual <= 30)
 276                                txdesc->u.plcp.service |= 0x80;
 277                }
 278
 279                txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
 280                txdesc->u.plcp.length_low = duration & 0xff;
 281
 282                /*
 283                 * When preamble is enabled we should set the
 284                 * preamble bit for the signal.
 285                 */
 286                if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 287                        txdesc->u.plcp.signal |= 0x08;
 288        }
 289}
 290
 291static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
 292                                                struct sk_buff *skb,
 293                                                struct txentry_desc *txdesc,
 294                                                struct ieee80211_sta *sta,
 295                                                const struct rt2x00_rate *hwrate)
 296{
 297        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 298        struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 299        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 300        struct rt2x00_sta *sta_priv = NULL;
 301        u8 density = 0;
 302
 303        if (sta) {
 304                sta_priv = sta_to_rt2x00_sta(sta);
 305                txdesc->u.ht.wcid = sta_priv->wcid;
 306                density = sta->ht_cap.ampdu_density;
 307        }
 308
 309        /*
 310         * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
 311         * mcs rate to be used
 312         */
 313        if (txrate->flags & IEEE80211_TX_RC_MCS) {
 314                txdesc->u.ht.mcs = txrate->idx;
 315
 316                /*
 317                 * MIMO PS should be set to 1 for STA's using dynamic SM PS
 318                 * when using more then one tx stream (>MCS7).
 319                 */
 320                if (sta && txdesc->u.ht.mcs > 7 &&
 321                    sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
 322                        __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
 323        } else {
 324                txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
 325                if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 326                        txdesc->u.ht.mcs |= 0x08;
 327        }
 328
 329        if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
 330                if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
 331                        txdesc->u.ht.txop = TXOP_SIFS;
 332                else
 333                        txdesc->u.ht.txop = TXOP_BACKOFF;
 334
 335                /* Left zero on all other settings. */
 336                return;
 337        }
 338
 339        /*
 340         * Only one STBC stream is supported for now.
 341         */
 342        if (tx_info->flags & IEEE80211_TX_CTL_STBC)
 343                txdesc->u.ht.stbc = 1;
 344
 345        /*
 346         * This frame is eligible for an AMPDU, however, don't aggregate
 347         * frames that are intended to probe a specific tx rate.
 348         */
 349        if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
 350            !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
 351                __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
 352                txdesc->u.ht.mpdu_density = density;
 353                txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
 354        }
 355
 356        /*
 357         * Set 40Mhz mode if necessary (for legacy rates this will
 358         * duplicate the frame to both channels).
 359         */
 360        if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
 361            txrate->flags & IEEE80211_TX_RC_DUP_DATA)
 362                __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
 363        if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
 364                __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
 365
 366        /*
 367         * Determine IFS values
 368         * - Use TXOP_BACKOFF for management frames except beacons
 369         * - Use TXOP_SIFS for fragment bursts
 370         * - Use TXOP_HTTXOP for everything else
 371         *
 372         * Note: rt2800 devices won't use CTS protection (if used)
 373         * for frames not transmitted with TXOP_HTTXOP
 374         */
 375        if (ieee80211_is_mgmt(hdr->frame_control) &&
 376            !ieee80211_is_beacon(hdr->frame_control))
 377                txdesc->u.ht.txop = TXOP_BACKOFF;
 378        else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
 379                txdesc->u.ht.txop = TXOP_SIFS;
 380        else
 381                txdesc->u.ht.txop = TXOP_HTTXOP;
 382}
 383
 384static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
 385                                             struct sk_buff *skb,
 386                                             struct txentry_desc *txdesc,
 387                                             struct ieee80211_sta *sta)
 388{
 389        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 390        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 391        struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 392        struct ieee80211_rate *rate;
 393        const struct rt2x00_rate *hwrate = NULL;
 394
 395        memset(txdesc, 0, sizeof(*txdesc));
 396
 397        /*
 398         * Header and frame information.
 399         */
 400        txdesc->length = skb->len;
 401        txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
 402
 403        /*
 404         * Check whether this frame is to be acked.
 405         */
 406        if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
 407                __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
 408
 409        /*
 410         * Check if this is a RTS/CTS frame
 411         */
 412        if (ieee80211_is_rts(hdr->frame_control) ||
 413            ieee80211_is_cts(hdr->frame_control)) {
 414                __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 415                if (ieee80211_is_rts(hdr->frame_control))
 416                        __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
 417                else
 418                        __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
 419                if (tx_info->control.rts_cts_rate_idx >= 0)
 420                        rate =
 421                            ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
 422        }
 423
 424        /*
 425         * Determine retry information.
 426         */
 427        txdesc->retry_limit = tx_info->control.rates[0].count - 1;
 428        if (txdesc->retry_limit >= rt2x00dev->long_retry)
 429                __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
 430
 431        /*
 432         * Check if more fragments are pending
 433         */
 434        if (ieee80211_has_morefrags(hdr->frame_control)) {
 435                __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 436                __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
 437        }
 438
 439        /*
 440         * Check if more frames (!= fragments) are pending
 441         */
 442        if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
 443                __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 444
 445        /*
 446         * Beacons and probe responses require the tsf timestamp
 447         * to be inserted into the frame.
 448         */
 449        if (ieee80211_is_beacon(hdr->frame_control) ||
 450            ieee80211_is_probe_resp(hdr->frame_control))
 451                __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
 452
 453        if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
 454            !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
 455                __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
 456
 457        /*
 458         * Determine rate modulation.
 459         */
 460        if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
 461                txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
 462        else if (txrate->flags & IEEE80211_TX_RC_MCS)
 463                txdesc->rate_mode = RATE_MODE_HT_MIX;
 464        else {
 465                rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
 466                hwrate = rt2x00_get_rate(rate->hw_value);
 467                if (hwrate->flags & DEV_RATE_OFDM)
 468                        txdesc->rate_mode = RATE_MODE_OFDM;
 469                else
 470                        txdesc->rate_mode = RATE_MODE_CCK;
 471        }
 472
 473        /*
 474         * Apply TX descriptor handling by components
 475         */
 476        rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
 477        rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
 478
 479        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
 480                rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
 481                                                   sta, hwrate);
 482        else
 483                rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
 484                                                      hwrate);
 485}
 486
 487static int rt2x00queue_write_tx_data(struct queue_entry *entry,
 488                                     struct txentry_desc *txdesc)
 489{
 490        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 491
 492        /*
 493         * This should not happen, we already checked the entry
 494         * was ours. When the hardware disagrees there has been
 495         * a queue corruption!
 496         */
 497        if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
 498                     rt2x00dev->ops->lib->get_entry_state(entry))) {
 499                rt2x00_err(rt2x00dev,
 500                           "Corrupt queue %d, accessing entry which is not ours\n"
 501                           "Please file bug report to %s\n",
 502                           entry->queue->qid, DRV_PROJECT);
 503                return -EINVAL;
 504        }
 505
 506        /*
 507         * Add the requested extra tx headroom in front of the skb.
 508         */
 509        skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
 510        memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
 511
 512        /*
 513         * Call the driver's write_tx_data function, if it exists.
 514         */
 515        if (rt2x00dev->ops->lib->write_tx_data)
 516                rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
 517
 518        /*
 519         * Map the skb to DMA.
 520         */
 521        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
 522            rt2x00queue_map_txskb(entry))
 523                return -ENOMEM;
 524
 525        return 0;
 526}
 527
 528static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
 529                                            struct txentry_desc *txdesc)
 530{
 531        struct data_queue *queue = entry->queue;
 532
 533        queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
 534
 535        /*
 536         * All processing on the frame has been completed, this means
 537         * it is now ready to be dumped to userspace through debugfs.
 538         */
 539        rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
 540}
 541
 542static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
 543                                      struct txentry_desc *txdesc)
 544{
 545        /*
 546         * Check if we need to kick the queue, there are however a few rules
 547         *      1) Don't kick unless this is the last in frame in a burst.
 548         *         When the burst flag is set, this frame is always followed
 549         *         by another frame which in some way are related to eachother.
 550         *         This is true for fragments, RTS or CTS-to-self frames.
 551         *      2) Rule 1 can be broken when the available entries
 552         *         in the queue are less then a certain threshold.
 553         */
 554        if (rt2x00queue_threshold(queue) ||
 555            !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
 556                queue->rt2x00dev->ops->lib->kick_queue(queue);
 557}
 558
 559static void rt2x00queue_bar_check(struct queue_entry *entry)
 560{
 561        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 562        struct ieee80211_bar *bar = (void *) (entry->skb->data +
 563                                    rt2x00dev->extra_tx_headroom);
 564        struct rt2x00_bar_list_entry *bar_entry;
 565
 566        if (likely(!ieee80211_is_back_req(bar->frame_control)))
 567                return;
 568
 569        bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
 570
 571        /*
 572         * If the alloc fails we still send the BAR out but just don't track
 573         * it in our bar list. And as a result we will report it to mac80211
 574         * back as failed.
 575         */
 576        if (!bar_entry)
 577                return;
 578
 579        bar_entry->entry = entry;
 580        bar_entry->block_acked = 0;
 581
 582        /*
 583         * Copy the relevant parts of the 802.11 BAR into out check list
 584         * such that we can use RCU for less-overhead in the RX path since
 585         * sending BARs and processing the according BlockAck should be
 586         * the exception.
 587         */
 588        memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
 589        memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
 590        bar_entry->control = bar->control;
 591        bar_entry->start_seq_num = bar->start_seq_num;
 592
 593        /*
 594         * Insert BAR into our BAR check list.
 595         */
 596        spin_lock_bh(&rt2x00dev->bar_list_lock);
 597        list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
 598        spin_unlock_bh(&rt2x00dev->bar_list_lock);
 599}
 600
 601int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
 602                               struct ieee80211_sta *sta, bool local)
 603{
 604        struct ieee80211_tx_info *tx_info;
 605        struct queue_entry *entry;
 606        struct txentry_desc txdesc;
 607        struct skb_frame_desc *skbdesc;
 608        u8 rate_idx, rate_flags;
 609        int ret = 0;
 610
 611        /*
 612         * Copy all TX descriptor information into txdesc,
 613         * after that we are free to use the skb->cb array
 614         * for our information.
 615         */
 616        rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
 617
 618        /*
 619         * All information is retrieved from the skb->cb array,
 620         * now we should claim ownership of the driver part of that
 621         * array, preserving the bitrate index and flags.
 622         */
 623        tx_info = IEEE80211_SKB_CB(skb);
 624        rate_idx = tx_info->control.rates[0].idx;
 625        rate_flags = tx_info->control.rates[0].flags;
 626        skbdesc = get_skb_frame_desc(skb);
 627        memset(skbdesc, 0, sizeof(*skbdesc));
 628        skbdesc->tx_rate_idx = rate_idx;
 629        skbdesc->tx_rate_flags = rate_flags;
 630
 631        if (local)
 632                skbdesc->flags |= SKBDESC_NOT_MAC80211;
 633
 634        /*
 635         * When hardware encryption is supported, and this frame
 636         * is to be encrypted, we should strip the IV/EIV data from
 637         * the frame so we can provide it to the driver separately.
 638         */
 639        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
 640            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
 641                if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
 642                        rt2x00crypto_tx_copy_iv(skb, &txdesc);
 643                else
 644                        rt2x00crypto_tx_remove_iv(skb, &txdesc);
 645        }
 646
 647        /*
 648         * When DMA allocation is required we should guarantee to the
 649         * driver that the DMA is aligned to a 4-byte boundary.
 650         * However some drivers require L2 padding to pad the payload
 651         * rather then the header. This could be a requirement for
 652         * PCI and USB devices, while header alignment only is valid
 653         * for PCI devices.
 654         */
 655        if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
 656                rt2x00queue_insert_l2pad(skb, txdesc.header_length);
 657        else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
 658                rt2x00queue_align_frame(skb);
 659
 660        /*
 661         * That function must be called with bh disabled.
 662         */
 663        spin_lock(&queue->tx_lock);
 664
 665        if (unlikely(rt2x00queue_full(queue))) {
 666                rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
 667                           queue->qid);
 668                ret = -ENOBUFS;
 669                goto out;
 670        }
 671
 672        entry = rt2x00queue_get_entry(queue, Q_INDEX);
 673
 674        if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
 675                                      &entry->flags))) {
 676                rt2x00_err(queue->rt2x00dev,
 677                           "Arrived at non-free entry in the non-full queue %d\n"
 678                           "Please file bug report to %s\n",
 679                           queue->qid, DRV_PROJECT);
 680                ret = -EINVAL;
 681                goto out;
 682        }
 683
 684        entry->skb = skb;
 685
 686        /*
 687         * It could be possible that the queue was corrupted and this
 688         * call failed. Since we always return NETDEV_TX_OK to mac80211,
 689         * this frame will simply be dropped.
 690         */
 691        if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
 692                clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 693                entry->skb = NULL;
 694                ret = -EIO;
 695                goto out;
 696        }
 697
 698        /*
 699         * Put BlockAckReqs into our check list for driver BA processing.
 700         */
 701        rt2x00queue_bar_check(entry);
 702
 703        set_bit(ENTRY_DATA_PENDING, &entry->flags);
 704
 705        rt2x00queue_index_inc(entry, Q_INDEX);
 706        rt2x00queue_write_tx_descriptor(entry, &txdesc);
 707        rt2x00queue_kick_tx_queue(queue, &txdesc);
 708
 709out:
 710        /*
 711         * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
 712         * do this under queue->tx_lock. Bottom halve was already disabled
 713         * before ieee80211_xmit() call.
 714         */
 715        if (rt2x00queue_threshold(queue))
 716                rt2x00queue_pause_queue(queue);
 717
 718        spin_unlock(&queue->tx_lock);
 719        return ret;
 720}
 721
 722int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
 723                             struct ieee80211_vif *vif)
 724{
 725        struct rt2x00_intf *intf = vif_to_intf(vif);
 726
 727        if (unlikely(!intf->beacon))
 728                return -ENOBUFS;
 729
 730        /*
 731         * Clean up the beacon skb.
 732         */
 733        rt2x00queue_free_skb(intf->beacon);
 734
 735        /*
 736         * Clear beacon (single bssid devices don't need to clear the beacon
 737         * since the beacon queue will get stopped anyway).
 738         */
 739        if (rt2x00dev->ops->lib->clear_beacon)
 740                rt2x00dev->ops->lib->clear_beacon(intf->beacon);
 741
 742        return 0;
 743}
 744
 745int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
 746                              struct ieee80211_vif *vif)
 747{
 748        struct rt2x00_intf *intf = vif_to_intf(vif);
 749        struct skb_frame_desc *skbdesc;
 750        struct txentry_desc txdesc;
 751
 752        if (unlikely(!intf->beacon))
 753                return -ENOBUFS;
 754
 755        /*
 756         * Clean up the beacon skb.
 757         */
 758        rt2x00queue_free_skb(intf->beacon);
 759
 760        intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
 761        if (!intf->beacon->skb)
 762                return -ENOMEM;
 763
 764        /*
 765         * Copy all TX descriptor information into txdesc,
 766         * after that we are free to use the skb->cb array
 767         * for our information.
 768         */
 769        rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
 770
 771        /*
 772         * Fill in skb descriptor
 773         */
 774        skbdesc = get_skb_frame_desc(intf->beacon->skb);
 775        memset(skbdesc, 0, sizeof(*skbdesc));
 776
 777        /*
 778         * Send beacon to hardware.
 779         */
 780        rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
 781
 782        return 0;
 783
 784}
 785
 786bool rt2x00queue_for_each_entry(struct data_queue *queue,
 787                                enum queue_index start,
 788                                enum queue_index end,
 789                                void *data,
 790                                bool (*fn)(struct queue_entry *entry,
 791                                           void *data))
 792{
 793        unsigned long irqflags;
 794        unsigned int index_start;
 795        unsigned int index_end;
 796        unsigned int i;
 797
 798        if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
 799                rt2x00_err(queue->rt2x00dev,
 800                           "Entry requested from invalid index range (%d - %d)\n",
 801                           start, end);
 802                return true;
 803        }
 804
 805        /*
 806         * Only protect the range we are going to loop over,
 807         * if during our loop a extra entry is set to pending
 808         * it should not be kicked during this run, since it
 809         * is part of another TX operation.
 810         */
 811        spin_lock_irqsave(&queue->index_lock, irqflags);
 812        index_start = queue->index[start];
 813        index_end = queue->index[end];
 814        spin_unlock_irqrestore(&queue->index_lock, irqflags);
 815
 816        /*
 817         * Start from the TX done pointer, this guarantees that we will
 818         * send out all frames in the correct order.
 819         */
 820        if (index_start < index_end) {
 821                for (i = index_start; i < index_end; i++) {
 822                        if (fn(&queue->entries[i], data))
 823                                return true;
 824                }
 825        } else {
 826                for (i = index_start; i < queue->limit; i++) {
 827                        if (fn(&queue->entries[i], data))
 828                                return true;
 829                }
 830
 831                for (i = 0; i < index_end; i++) {
 832                        if (fn(&queue->entries[i], data))
 833                                return true;
 834                }
 835        }
 836
 837        return false;
 838}
 839EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
 840
 841struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
 842                                          enum queue_index index)
 843{
 844        struct queue_entry *entry;
 845        unsigned long irqflags;
 846
 847        if (unlikely(index >= Q_INDEX_MAX)) {
 848                rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
 849                           index);
 850                return NULL;
 851        }
 852
 853        spin_lock_irqsave(&queue->index_lock, irqflags);
 854
 855        entry = &queue->entries[queue->index[index]];
 856
 857        spin_unlock_irqrestore(&queue->index_lock, irqflags);
 858
 859        return entry;
 860}
 861EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
 862
 863void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
 864{
 865        struct data_queue *queue = entry->queue;
 866        unsigned long irqflags;
 867
 868        if (unlikely(index >= Q_INDEX_MAX)) {
 869                rt2x00_err(queue->rt2x00dev,
 870                           "Index change on invalid index type (%d)\n", index);
 871                return;
 872        }
 873
 874        spin_lock_irqsave(&queue->index_lock, irqflags);
 875
 876        queue->index[index]++;
 877        if (queue->index[index] >= queue->limit)
 878                queue->index[index] = 0;
 879
 880        entry->last_action = jiffies;
 881
 882        if (index == Q_INDEX) {
 883                queue->length++;
 884        } else if (index == Q_INDEX_DONE) {
 885                queue->length--;
 886                queue->count++;
 887        }
 888
 889        spin_unlock_irqrestore(&queue->index_lock, irqflags);
 890}
 891
 892static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
 893{
 894        switch (queue->qid) {
 895        case QID_AC_VO:
 896        case QID_AC_VI:
 897        case QID_AC_BE:
 898        case QID_AC_BK:
 899                /*
 900                 * For TX queues, we have to disable the queue
 901                 * inside mac80211.
 902                 */
 903                ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
 904                break;
 905        default:
 906                break;
 907        }
 908}
 909void rt2x00queue_pause_queue(struct data_queue *queue)
 910{
 911        if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
 912            !test_bit(QUEUE_STARTED, &queue->flags) ||
 913            test_and_set_bit(QUEUE_PAUSED, &queue->flags))
 914                return;
 915
 916        rt2x00queue_pause_queue_nocheck(queue);
 917}
 918EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
 919
 920void rt2x00queue_unpause_queue(struct data_queue *queue)
 921{
 922        if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
 923            !test_bit(QUEUE_STARTED, &queue->flags) ||
 924            !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
 925                return;
 926
 927        switch (queue->qid) {
 928        case QID_AC_VO:
 929        case QID_AC_VI:
 930        case QID_AC_BE:
 931        case QID_AC_BK:
 932                /*
 933                 * For TX queues, we have to enable the queue
 934                 * inside mac80211.
 935                 */
 936                ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
 937                break;
 938        case QID_RX:
 939                /*
 940                 * For RX we need to kick the queue now in order to
 941                 * receive frames.
 942                 */
 943                queue->rt2x00dev->ops->lib->kick_queue(queue);
 944        default:
 945                break;
 946        }
 947}
 948EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
 949
 950void rt2x00queue_start_queue(struct data_queue *queue)
 951{
 952        mutex_lock(&queue->status_lock);
 953
 954        if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
 955            test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
 956                mutex_unlock(&queue->status_lock);
 957                return;
 958        }
 959
 960        set_bit(QUEUE_PAUSED, &queue->flags);
 961
 962        queue->rt2x00dev->ops->lib->start_queue(queue);
 963
 964        rt2x00queue_unpause_queue(queue);
 965
 966        mutex_unlock(&queue->status_lock);
 967}
 968EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
 969
 970void rt2x00queue_stop_queue(struct data_queue *queue)
 971{
 972        mutex_lock(&queue->status_lock);
 973
 974        if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
 975                mutex_unlock(&queue->status_lock);
 976                return;
 977        }
 978
 979        rt2x00queue_pause_queue_nocheck(queue);
 980
 981        queue->rt2x00dev->ops->lib->stop_queue(queue);
 982
 983        mutex_unlock(&queue->status_lock);
 984}
 985EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
 986
 987void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
 988{
 989        bool tx_queue =
 990                (queue->qid == QID_AC_VO) ||
 991                (queue->qid == QID_AC_VI) ||
 992                (queue->qid == QID_AC_BE) ||
 993                (queue->qid == QID_AC_BK);
 994
 995        if (rt2x00queue_empty(queue))
 996                return;
 997
 998        /*
 999         * If we are not supposed to drop any pending
1000         * frames, this means we must force a start (=kick)
1001         * to the queue to make sure the hardware will
1002         * start transmitting.
1003         */
1004        if (!drop && tx_queue)
1005                queue->rt2x00dev->ops->lib->kick_queue(queue);
1006
1007        /*
1008         * Check if driver supports flushing, if that is the case we can
1009         * defer the flushing to the driver. Otherwise we must use the
1010         * alternative which just waits for the queue to become empty.
1011         */
1012        if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1013                queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1014
1015        /*
1016         * The queue flush has failed...
1017         */
1018        if (unlikely(!rt2x00queue_empty(queue)))
1019                rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1020                            queue->qid);
1021}
1022EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1023
1024void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1025{
1026        struct data_queue *queue;
1027
1028        /*
1029         * rt2x00queue_start_queue will call ieee80211_wake_queue
1030         * for each queue after is has been properly initialized.
1031         */
1032        tx_queue_for_each(rt2x00dev, queue)
1033                rt2x00queue_start_queue(queue);
1034
1035        rt2x00queue_start_queue(rt2x00dev->rx);
1036}
1037EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1038
1039void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1040{
1041        struct data_queue *queue;
1042
1043        /*
1044         * rt2x00queue_stop_queue will call ieee80211_stop_queue
1045         * as well, but we are completely shutting doing everything
1046         * now, so it is much safer to stop all TX queues at once,
1047         * and use rt2x00queue_stop_queue for cleaning up.
1048         */
1049        ieee80211_stop_queues(rt2x00dev->hw);
1050
1051        tx_queue_for_each(rt2x00dev, queue)
1052                rt2x00queue_stop_queue(queue);
1053
1054        rt2x00queue_stop_queue(rt2x00dev->rx);
1055}
1056EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1057
1058void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1059{
1060        struct data_queue *queue;
1061
1062        tx_queue_for_each(rt2x00dev, queue)
1063                rt2x00queue_flush_queue(queue, drop);
1064
1065        rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1066}
1067EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1068
1069static void rt2x00queue_reset(struct data_queue *queue)
1070{
1071        unsigned long irqflags;
1072        unsigned int i;
1073
1074        spin_lock_irqsave(&queue->index_lock, irqflags);
1075
1076        queue->count = 0;
1077        queue->length = 0;
1078
1079        for (i = 0; i < Q_INDEX_MAX; i++)
1080                queue->index[i] = 0;
1081
1082        spin_unlock_irqrestore(&queue->index_lock, irqflags);
1083}
1084
1085void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1086{
1087        struct data_queue *queue;
1088        unsigned int i;
1089
1090        queue_for_each(rt2x00dev, queue) {
1091                rt2x00queue_reset(queue);
1092
1093                for (i = 0; i < queue->limit; i++)
1094                        rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1095        }
1096}
1097
1098static int rt2x00queue_alloc_entries(struct data_queue *queue)
1099{
1100        struct queue_entry *entries;
1101        unsigned int entry_size;
1102        unsigned int i;
1103
1104        rt2x00queue_reset(queue);
1105
1106        /*
1107         * Allocate all queue entries.
1108         */
1109        entry_size = sizeof(*entries) + queue->priv_size;
1110        entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1111        if (!entries)
1112                return -ENOMEM;
1113
1114#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1115        (((char *)(__base)) + ((__limit) * (__esize)) + \
1116            ((__index) * (__psize)))
1117
1118        for (i = 0; i < queue->limit; i++) {
1119                entries[i].flags = 0;
1120                entries[i].queue = queue;
1121                entries[i].skb = NULL;
1122                entries[i].entry_idx = i;
1123                entries[i].priv_data =
1124                    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1125                                            sizeof(*entries), queue->priv_size);
1126        }
1127
1128#undef QUEUE_ENTRY_PRIV_OFFSET
1129
1130        queue->entries = entries;
1131
1132        return 0;
1133}
1134
1135static void rt2x00queue_free_skbs(struct data_queue *queue)
1136{
1137        unsigned int i;
1138
1139        if (!queue->entries)
1140                return;
1141
1142        for (i = 0; i < queue->limit; i++) {
1143                rt2x00queue_free_skb(&queue->entries[i]);
1144        }
1145}
1146
1147static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1148{
1149        unsigned int i;
1150        struct sk_buff *skb;
1151
1152        for (i = 0; i < queue->limit; i++) {
1153                skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1154                if (!skb)
1155                        return -ENOMEM;
1156                queue->entries[i].skb = skb;
1157        }
1158
1159        return 0;
1160}
1161
1162int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1163{
1164        struct data_queue *queue;
1165        int status;
1166
1167        status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1168        if (status)
1169                goto exit;
1170
1171        tx_queue_for_each(rt2x00dev, queue) {
1172                status = rt2x00queue_alloc_entries(queue);
1173                if (status)
1174                        goto exit;
1175        }
1176
1177        status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1178        if (status)
1179                goto exit;
1180
1181        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
1182                status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1183                if (status)
1184                        goto exit;
1185        }
1186
1187        status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1188        if (status)
1189                goto exit;
1190
1191        return 0;
1192
1193exit:
1194        rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1195
1196        rt2x00queue_uninitialize(rt2x00dev);
1197
1198        return status;
1199}
1200
1201void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1202{
1203        struct data_queue *queue;
1204
1205        rt2x00queue_free_skbs(rt2x00dev->rx);
1206
1207        queue_for_each(rt2x00dev, queue) {
1208                kfree(queue->entries);
1209                queue->entries = NULL;
1210        }
1211}
1212
1213static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1214                             struct data_queue *queue, enum data_queue_qid qid)
1215{
1216        mutex_init(&queue->status_lock);
1217        spin_lock_init(&queue->tx_lock);
1218        spin_lock_init(&queue->index_lock);
1219
1220        queue->rt2x00dev = rt2x00dev;
1221        queue->qid = qid;
1222        queue->txop = 0;
1223        queue->aifs = 2;
1224        queue->cw_min = 5;
1225        queue->cw_max = 10;
1226
1227        rt2x00dev->ops->queue_init(queue);
1228
1229        queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1230}
1231
1232int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1233{
1234        struct data_queue *queue;
1235        enum data_queue_qid qid;
1236        unsigned int req_atim =
1237            rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
1238
1239        /*
1240         * We need the following queues:
1241         * RX: 1
1242         * TX: ops->tx_queues
1243         * Beacon: 1
1244         * Atim: 1 (if required)
1245         */
1246        rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1247
1248        queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1249        if (!queue)
1250                return -ENOMEM;
1251
1252        /*
1253         * Initialize pointers
1254         */
1255        rt2x00dev->rx = queue;
1256        rt2x00dev->tx = &queue[1];
1257        rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1258        rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1259
1260        /*
1261         * Initialize queue parameters.
1262         * RX: qid = QID_RX
1263         * TX: qid = QID_AC_VO + index
1264         * TX: cw_min: 2^5 = 32.
1265         * TX: cw_max: 2^10 = 1024.
1266         * BCN: qid = QID_BEACON
1267         * ATIM: qid = QID_ATIM
1268         */
1269        rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1270
1271        qid = QID_AC_VO;
1272        tx_queue_for_each(rt2x00dev, queue)
1273                rt2x00queue_init(rt2x00dev, queue, qid++);
1274
1275        rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1276        if (req_atim)
1277                rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1278
1279        return 0;
1280}
1281
1282void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1283{
1284        kfree(rt2x00dev->rx);
1285        rt2x00dev->rx = NULL;
1286        rt2x00dev->tx = NULL;
1287        rt2x00dev->bcn = NULL;
1288}
1289