linux/drivers/nvme/host/rdma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVMe over Fabrics RDMA host code.
   4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7#include <linux/module.h>
   8#include <linux/init.h>
   9#include <linux/slab.h>
  10#include <rdma/mr_pool.h>
  11#include <linux/err.h>
  12#include <linux/string.h>
  13#include <linux/atomic.h>
  14#include <linux/blk-mq.h>
  15#include <linux/blk-mq-rdma.h>
  16#include <linux/types.h>
  17#include <linux/list.h>
  18#include <linux/mutex.h>
  19#include <linux/scatterlist.h>
  20#include <linux/nvme.h>
  21#include <asm/unaligned.h>
  22
  23#include <rdma/ib_verbs.h>
  24#include <rdma/rdma_cm.h>
  25#include <linux/nvme-rdma.h>
  26
  27#include "nvme.h"
  28#include "fabrics.h"
  29
  30
  31#define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
  32
  33#define NVME_RDMA_MAX_SEGMENTS          256
  34
  35#define NVME_RDMA_MAX_INLINE_SEGMENTS   4
  36
  37#define NVME_RDMA_DATA_SGL_SIZE \
  38        (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
  39#define NVME_RDMA_METADATA_SGL_SIZE \
  40        (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
  41
  42struct nvme_rdma_device {
  43        struct ib_device        *dev;
  44        struct ib_pd            *pd;
  45        struct kref             ref;
  46        struct list_head        entry;
  47        unsigned int            num_inline_segments;
  48};
  49
  50struct nvme_rdma_qe {
  51        struct ib_cqe           cqe;
  52        void                    *data;
  53        u64                     dma;
  54};
  55
  56struct nvme_rdma_sgl {
  57        int                     nents;
  58        struct sg_table         sg_table;
  59};
  60
  61struct nvme_rdma_queue;
  62struct nvme_rdma_request {
  63        struct nvme_request     req;
  64        struct ib_mr            *mr;
  65        struct nvme_rdma_qe     sqe;
  66        union nvme_result       result;
  67        __le16                  status;
  68        refcount_t              ref;
  69        struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  70        u32                     num_sge;
  71        struct ib_reg_wr        reg_wr;
  72        struct ib_cqe           reg_cqe;
  73        struct nvme_rdma_queue  *queue;
  74        struct nvme_rdma_sgl    data_sgl;
  75        struct nvme_rdma_sgl    *metadata_sgl;
  76        bool                    use_sig_mr;
  77};
  78
  79enum nvme_rdma_queue_flags {
  80        NVME_RDMA_Q_ALLOCATED           = 0,
  81        NVME_RDMA_Q_LIVE                = 1,
  82        NVME_RDMA_Q_TR_READY            = 2,
  83};
  84
  85struct nvme_rdma_queue {
  86        struct nvme_rdma_qe     *rsp_ring;
  87        int                     queue_size;
  88        size_t                  cmnd_capsule_len;
  89        struct nvme_rdma_ctrl   *ctrl;
  90        struct nvme_rdma_device *device;
  91        struct ib_cq            *ib_cq;
  92        struct ib_qp            *qp;
  93
  94        unsigned long           flags;
  95        struct rdma_cm_id       *cm_id;
  96        int                     cm_error;
  97        struct completion       cm_done;
  98        bool                    pi_support;
  99        int                     cq_size;
 100};
 101
 102struct nvme_rdma_ctrl {
 103        /* read only in the hot path */
 104        struct nvme_rdma_queue  *queues;
 105
 106        /* other member variables */
 107        struct blk_mq_tag_set   tag_set;
 108        struct work_struct      err_work;
 109
 110        struct nvme_rdma_qe     async_event_sqe;
 111
 112        struct delayed_work     reconnect_work;
 113
 114        struct list_head        list;
 115
 116        struct blk_mq_tag_set   admin_tag_set;
 117        struct nvme_rdma_device *device;
 118
 119        u32                     max_fr_pages;
 120
 121        struct sockaddr_storage addr;
 122        struct sockaddr_storage src_addr;
 123
 124        struct nvme_ctrl        ctrl;
 125        bool                    use_inline_data;
 126        u32                     io_queues[HCTX_MAX_TYPES];
 127};
 128
 129static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
 130{
 131        return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
 132}
 133
 134static LIST_HEAD(device_list);
 135static DEFINE_MUTEX(device_list_mutex);
 136
 137static LIST_HEAD(nvme_rdma_ctrl_list);
 138static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
 139
 140/*
 141 * Disabling this option makes small I/O goes faster, but is fundamentally
 142 * unsafe.  With it turned off we will have to register a global rkey that
 143 * allows read and write access to all physical memory.
 144 */
 145static bool register_always = true;
 146module_param(register_always, bool, 0444);
 147MODULE_PARM_DESC(register_always,
 148         "Use memory registration even for contiguous memory regions");
 149
 150static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
 151                struct rdma_cm_event *event);
 152static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
 153static void nvme_rdma_complete_rq(struct request *rq);
 154
 155static const struct blk_mq_ops nvme_rdma_mq_ops;
 156static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
 157
 158static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
 159{
 160        return queue - queue->ctrl->queues;
 161}
 162
 163static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
 164{
 165        return nvme_rdma_queue_idx(queue) >
 166                queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
 167                queue->ctrl->io_queues[HCTX_TYPE_READ];
 168}
 169
 170static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
 171{
 172        return queue->cmnd_capsule_len - sizeof(struct nvme_command);
 173}
 174
 175static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 176                size_t capsule_size, enum dma_data_direction dir)
 177{
 178        ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
 179        kfree(qe->data);
 180}
 181
 182static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 183                size_t capsule_size, enum dma_data_direction dir)
 184{
 185        qe->data = kzalloc(capsule_size, GFP_KERNEL);
 186        if (!qe->data)
 187                return -ENOMEM;
 188
 189        qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
 190        if (ib_dma_mapping_error(ibdev, qe->dma)) {
 191                kfree(qe->data);
 192                qe->data = NULL;
 193                return -ENOMEM;
 194        }
 195
 196        return 0;
 197}
 198
 199static void nvme_rdma_free_ring(struct ib_device *ibdev,
 200                struct nvme_rdma_qe *ring, size_t ib_queue_size,
 201                size_t capsule_size, enum dma_data_direction dir)
 202{
 203        int i;
 204
 205        for (i = 0; i < ib_queue_size; i++)
 206                nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
 207        kfree(ring);
 208}
 209
 210static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
 211                size_t ib_queue_size, size_t capsule_size,
 212                enum dma_data_direction dir)
 213{
 214        struct nvme_rdma_qe *ring;
 215        int i;
 216
 217        ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
 218        if (!ring)
 219                return NULL;
 220
 221        /*
 222         * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
 223         * lifetime. It's safe, since any chage in the underlying RDMA device
 224         * will issue error recovery and queue re-creation.
 225         */
 226        for (i = 0; i < ib_queue_size; i++) {
 227                if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
 228                        goto out_free_ring;
 229        }
 230
 231        return ring;
 232
 233out_free_ring:
 234        nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
 235        return NULL;
 236}
 237
 238static void nvme_rdma_qp_event(struct ib_event *event, void *context)
 239{
 240        pr_debug("QP event %s (%d)\n",
 241                 ib_event_msg(event->event), event->event);
 242
 243}
 244
 245static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
 246{
 247        int ret;
 248
 249        ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
 250                        msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
 251        if (ret < 0)
 252                return ret;
 253        if (ret == 0)
 254                return -ETIMEDOUT;
 255        WARN_ON_ONCE(queue->cm_error > 0);
 256        return queue->cm_error;
 257}
 258
 259static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
 260{
 261        struct nvme_rdma_device *dev = queue->device;
 262        struct ib_qp_init_attr init_attr;
 263        int ret;
 264
 265        memset(&init_attr, 0, sizeof(init_attr));
 266        init_attr.event_handler = nvme_rdma_qp_event;
 267        /* +1 for drain */
 268        init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
 269        /* +1 for drain */
 270        init_attr.cap.max_recv_wr = queue->queue_size + 1;
 271        init_attr.cap.max_recv_sge = 1;
 272        init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
 273        init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
 274        init_attr.qp_type = IB_QPT_RC;
 275        init_attr.send_cq = queue->ib_cq;
 276        init_attr.recv_cq = queue->ib_cq;
 277        if (queue->pi_support)
 278                init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
 279        init_attr.qp_context = queue;
 280
 281        ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
 282
 283        queue->qp = queue->cm_id->qp;
 284        return ret;
 285}
 286
 287static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
 288                struct request *rq, unsigned int hctx_idx)
 289{
 290        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 291
 292        kfree(req->sqe.data);
 293}
 294
 295static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
 296                struct request *rq, unsigned int hctx_idx,
 297                unsigned int numa_node)
 298{
 299        struct nvme_rdma_ctrl *ctrl = set->driver_data;
 300        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 301        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
 302        struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
 303
 304        nvme_req(rq)->ctrl = &ctrl->ctrl;
 305        req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
 306        if (!req->sqe.data)
 307                return -ENOMEM;
 308
 309        /* metadata nvme_rdma_sgl struct is located after command's data SGL */
 310        if (queue->pi_support)
 311                req->metadata_sgl = (void *)nvme_req(rq) +
 312                        sizeof(struct nvme_rdma_request) +
 313                        NVME_RDMA_DATA_SGL_SIZE;
 314
 315        req->queue = queue;
 316
 317        return 0;
 318}
 319
 320static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 321                unsigned int hctx_idx)
 322{
 323        struct nvme_rdma_ctrl *ctrl = data;
 324        struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
 325
 326        BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
 327
 328        hctx->driver_data = queue;
 329        return 0;
 330}
 331
 332static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 333                unsigned int hctx_idx)
 334{
 335        struct nvme_rdma_ctrl *ctrl = data;
 336        struct nvme_rdma_queue *queue = &ctrl->queues[0];
 337
 338        BUG_ON(hctx_idx != 0);
 339
 340        hctx->driver_data = queue;
 341        return 0;
 342}
 343
 344static void nvme_rdma_free_dev(struct kref *ref)
 345{
 346        struct nvme_rdma_device *ndev =
 347                container_of(ref, struct nvme_rdma_device, ref);
 348
 349        mutex_lock(&device_list_mutex);
 350        list_del(&ndev->entry);
 351        mutex_unlock(&device_list_mutex);
 352
 353        ib_dealloc_pd(ndev->pd);
 354        kfree(ndev);
 355}
 356
 357static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
 358{
 359        kref_put(&dev->ref, nvme_rdma_free_dev);
 360}
 361
 362static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
 363{
 364        return kref_get_unless_zero(&dev->ref);
 365}
 366
 367static struct nvme_rdma_device *
 368nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
 369{
 370        struct nvme_rdma_device *ndev;
 371
 372        mutex_lock(&device_list_mutex);
 373        list_for_each_entry(ndev, &device_list, entry) {
 374                if (ndev->dev->node_guid == cm_id->device->node_guid &&
 375                    nvme_rdma_dev_get(ndev))
 376                        goto out_unlock;
 377        }
 378
 379        ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
 380        if (!ndev)
 381                goto out_err;
 382
 383        ndev->dev = cm_id->device;
 384        kref_init(&ndev->ref);
 385
 386        ndev->pd = ib_alloc_pd(ndev->dev,
 387                register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
 388        if (IS_ERR(ndev->pd))
 389                goto out_free_dev;
 390
 391        if (!(ndev->dev->attrs.device_cap_flags &
 392              IB_DEVICE_MEM_MGT_EXTENSIONS)) {
 393                dev_err(&ndev->dev->dev,
 394                        "Memory registrations not supported.\n");
 395                goto out_free_pd;
 396        }
 397
 398        ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
 399                                        ndev->dev->attrs.max_send_sge - 1);
 400        list_add(&ndev->entry, &device_list);
 401out_unlock:
 402        mutex_unlock(&device_list_mutex);
 403        return ndev;
 404
 405out_free_pd:
 406        ib_dealloc_pd(ndev->pd);
 407out_free_dev:
 408        kfree(ndev);
 409out_err:
 410        mutex_unlock(&device_list_mutex);
 411        return NULL;
 412}
 413
 414static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
 415{
 416        if (nvme_rdma_poll_queue(queue))
 417                ib_free_cq(queue->ib_cq);
 418        else
 419                ib_cq_pool_put(queue->ib_cq, queue->cq_size);
 420}
 421
 422static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
 423{
 424        struct nvme_rdma_device *dev;
 425        struct ib_device *ibdev;
 426
 427        if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
 428                return;
 429
 430        dev = queue->device;
 431        ibdev = dev->dev;
 432
 433        if (queue->pi_support)
 434                ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
 435        ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
 436
 437        /*
 438         * The cm_id object might have been destroyed during RDMA connection
 439         * establishment error flow to avoid getting other cma events, thus
 440         * the destruction of the QP shouldn't use rdma_cm API.
 441         */
 442        ib_destroy_qp(queue->qp);
 443        nvme_rdma_free_cq(queue);
 444
 445        nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
 446                        sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 447
 448        nvme_rdma_dev_put(dev);
 449}
 450
 451static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
 452{
 453        u32 max_page_list_len;
 454
 455        if (pi_support)
 456                max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
 457        else
 458                max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
 459
 460        return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
 461}
 462
 463static int nvme_rdma_create_cq(struct ib_device *ibdev,
 464                struct nvme_rdma_queue *queue)
 465{
 466        int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
 467        enum ib_poll_context poll_ctx;
 468
 469        /*
 470         * Spread I/O queues completion vectors according their queue index.
 471         * Admin queues can always go on completion vector 0.
 472         */
 473        comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
 474
 475        /* Polling queues need direct cq polling context */
 476        if (nvme_rdma_poll_queue(queue)) {
 477                poll_ctx = IB_POLL_DIRECT;
 478                queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
 479                                           comp_vector, poll_ctx);
 480        } else {
 481                poll_ctx = IB_POLL_SOFTIRQ;
 482                queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
 483                                              comp_vector, poll_ctx);
 484        }
 485
 486        if (IS_ERR(queue->ib_cq)) {
 487                ret = PTR_ERR(queue->ib_cq);
 488                return ret;
 489        }
 490
 491        return 0;
 492}
 493
 494static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
 495{
 496        struct ib_device *ibdev;
 497        const int send_wr_factor = 3;                   /* MR, SEND, INV */
 498        const int cq_factor = send_wr_factor + 1;       /* + RECV */
 499        int ret, pages_per_mr;
 500
 501        queue->device = nvme_rdma_find_get_device(queue->cm_id);
 502        if (!queue->device) {
 503                dev_err(queue->cm_id->device->dev.parent,
 504                        "no client data found!\n");
 505                return -ECONNREFUSED;
 506        }
 507        ibdev = queue->device->dev;
 508
 509        /* +1 for ib_stop_cq */
 510        queue->cq_size = cq_factor * queue->queue_size + 1;
 511
 512        ret = nvme_rdma_create_cq(ibdev, queue);
 513        if (ret)
 514                goto out_put_dev;
 515
 516        ret = nvme_rdma_create_qp(queue, send_wr_factor);
 517        if (ret)
 518                goto out_destroy_ib_cq;
 519
 520        queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
 521                        sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 522        if (!queue->rsp_ring) {
 523                ret = -ENOMEM;
 524                goto out_destroy_qp;
 525        }
 526
 527        /*
 528         * Currently we don't use SG_GAPS MR's so if the first entry is
 529         * misaligned we'll end up using two entries for a single data page,
 530         * so one additional entry is required.
 531         */
 532        pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
 533        ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
 534                              queue->queue_size,
 535                              IB_MR_TYPE_MEM_REG,
 536                              pages_per_mr, 0);
 537        if (ret) {
 538                dev_err(queue->ctrl->ctrl.device,
 539                        "failed to initialize MR pool sized %d for QID %d\n",
 540                        queue->queue_size, nvme_rdma_queue_idx(queue));
 541                goto out_destroy_ring;
 542        }
 543
 544        if (queue->pi_support) {
 545                ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
 546                                      queue->queue_size, IB_MR_TYPE_INTEGRITY,
 547                                      pages_per_mr, pages_per_mr);
 548                if (ret) {
 549                        dev_err(queue->ctrl->ctrl.device,
 550                                "failed to initialize PI MR pool sized %d for QID %d\n",
 551                                queue->queue_size, nvme_rdma_queue_idx(queue));
 552                        goto out_destroy_mr_pool;
 553                }
 554        }
 555
 556        set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
 557
 558        return 0;
 559
 560out_destroy_mr_pool:
 561        ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
 562out_destroy_ring:
 563        nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
 564                            sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 565out_destroy_qp:
 566        rdma_destroy_qp(queue->cm_id);
 567out_destroy_ib_cq:
 568        nvme_rdma_free_cq(queue);
 569out_put_dev:
 570        nvme_rdma_dev_put(queue->device);
 571        return ret;
 572}
 573
 574static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
 575                int idx, size_t queue_size)
 576{
 577        struct nvme_rdma_queue *queue;
 578        struct sockaddr *src_addr = NULL;
 579        int ret;
 580
 581        queue = &ctrl->queues[idx];
 582        queue->ctrl = ctrl;
 583        if (idx && ctrl->ctrl.max_integrity_segments)
 584                queue->pi_support = true;
 585        else
 586                queue->pi_support = false;
 587        init_completion(&queue->cm_done);
 588
 589        if (idx > 0)
 590                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
 591        else
 592                queue->cmnd_capsule_len = sizeof(struct nvme_command);
 593
 594        queue->queue_size = queue_size;
 595
 596        queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
 597                        RDMA_PS_TCP, IB_QPT_RC);
 598        if (IS_ERR(queue->cm_id)) {
 599                dev_info(ctrl->ctrl.device,
 600                        "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
 601                return PTR_ERR(queue->cm_id);
 602        }
 603
 604        if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
 605                src_addr = (struct sockaddr *)&ctrl->src_addr;
 606
 607        queue->cm_error = -ETIMEDOUT;
 608        ret = rdma_resolve_addr(queue->cm_id, src_addr,
 609                        (struct sockaddr *)&ctrl->addr,
 610                        NVME_RDMA_CONNECT_TIMEOUT_MS);
 611        if (ret) {
 612                dev_info(ctrl->ctrl.device,
 613                        "rdma_resolve_addr failed (%d).\n", ret);
 614                goto out_destroy_cm_id;
 615        }
 616
 617        ret = nvme_rdma_wait_for_cm(queue);
 618        if (ret) {
 619                dev_info(ctrl->ctrl.device,
 620                        "rdma connection establishment failed (%d)\n", ret);
 621                goto out_destroy_cm_id;
 622        }
 623
 624        set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
 625
 626        return 0;
 627
 628out_destroy_cm_id:
 629        rdma_destroy_id(queue->cm_id);
 630        nvme_rdma_destroy_queue_ib(queue);
 631        return ret;
 632}
 633
 634static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
 635{
 636        rdma_disconnect(queue->cm_id);
 637        ib_drain_qp(queue->qp);
 638}
 639
 640static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
 641{
 642        if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
 643                return;
 644        __nvme_rdma_stop_queue(queue);
 645}
 646
 647static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
 648{
 649        if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
 650                return;
 651
 652        nvme_rdma_destroy_queue_ib(queue);
 653        rdma_destroy_id(queue->cm_id);
 654}
 655
 656static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
 657{
 658        int i;
 659
 660        for (i = 1; i < ctrl->ctrl.queue_count; i++)
 661                nvme_rdma_free_queue(&ctrl->queues[i]);
 662}
 663
 664static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
 665{
 666        int i;
 667
 668        for (i = 1; i < ctrl->ctrl.queue_count; i++)
 669                nvme_rdma_stop_queue(&ctrl->queues[i]);
 670}
 671
 672static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
 673{
 674        struct nvme_rdma_queue *queue = &ctrl->queues[idx];
 675        bool poll = nvme_rdma_poll_queue(queue);
 676        int ret;
 677
 678        if (idx)
 679                ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
 680        else
 681                ret = nvmf_connect_admin_queue(&ctrl->ctrl);
 682
 683        if (!ret) {
 684                set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
 685        } else {
 686                if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
 687                        __nvme_rdma_stop_queue(queue);
 688                dev_info(ctrl->ctrl.device,
 689                        "failed to connect queue: %d ret=%d\n", idx, ret);
 690        }
 691        return ret;
 692}
 693
 694static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
 695{
 696        int i, ret = 0;
 697
 698        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 699                ret = nvme_rdma_start_queue(ctrl, i);
 700                if (ret)
 701                        goto out_stop_queues;
 702        }
 703
 704        return 0;
 705
 706out_stop_queues:
 707        for (i--; i >= 1; i--)
 708                nvme_rdma_stop_queue(&ctrl->queues[i]);
 709        return ret;
 710}
 711
 712static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
 713{
 714        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
 715        struct ib_device *ibdev = ctrl->device->dev;
 716        unsigned int nr_io_queues, nr_default_queues;
 717        unsigned int nr_read_queues, nr_poll_queues;
 718        int i, ret;
 719
 720        nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
 721                                min(opts->nr_io_queues, num_online_cpus()));
 722        nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
 723                                min(opts->nr_write_queues, num_online_cpus()));
 724        nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
 725        nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
 726
 727        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
 728        if (ret)
 729                return ret;
 730
 731        ctrl->ctrl.queue_count = nr_io_queues + 1;
 732        if (ctrl->ctrl.queue_count < 2)
 733                return 0;
 734
 735        dev_info(ctrl->ctrl.device,
 736                "creating %d I/O queues.\n", nr_io_queues);
 737
 738        if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
 739                /*
 740                 * separate read/write queues
 741                 * hand out dedicated default queues only after we have
 742                 * sufficient read queues.
 743                 */
 744                ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
 745                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
 746                ctrl->io_queues[HCTX_TYPE_DEFAULT] =
 747                        min(nr_default_queues, nr_io_queues);
 748                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
 749        } else {
 750                /*
 751                 * shared read/write queues
 752                 * either no write queues were requested, or we don't have
 753                 * sufficient queue count to have dedicated default queues.
 754                 */
 755                ctrl->io_queues[HCTX_TYPE_DEFAULT] =
 756                        min(nr_read_queues, nr_io_queues);
 757                nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
 758        }
 759
 760        if (opts->nr_poll_queues && nr_io_queues) {
 761                /* map dedicated poll queues only if we have queues left */
 762                ctrl->io_queues[HCTX_TYPE_POLL] =
 763                        min(nr_poll_queues, nr_io_queues);
 764        }
 765
 766        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 767                ret = nvme_rdma_alloc_queue(ctrl, i,
 768                                ctrl->ctrl.sqsize + 1);
 769                if (ret)
 770                        goto out_free_queues;
 771        }
 772
 773        return 0;
 774
 775out_free_queues:
 776        for (i--; i >= 1; i--)
 777                nvme_rdma_free_queue(&ctrl->queues[i]);
 778
 779        return ret;
 780}
 781
 782static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
 783                bool admin)
 784{
 785        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 786        struct blk_mq_tag_set *set;
 787        int ret;
 788
 789        if (admin) {
 790                set = &ctrl->admin_tag_set;
 791                memset(set, 0, sizeof(*set));
 792                set->ops = &nvme_rdma_admin_mq_ops;
 793                set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
 794                set->reserved_tags = 2; /* connect + keep-alive */
 795                set->numa_node = nctrl->numa_node;
 796                set->cmd_size = sizeof(struct nvme_rdma_request) +
 797                                NVME_RDMA_DATA_SGL_SIZE;
 798                set->driver_data = ctrl;
 799                set->nr_hw_queues = 1;
 800                set->timeout = ADMIN_TIMEOUT;
 801                set->flags = BLK_MQ_F_NO_SCHED;
 802        } else {
 803                set = &ctrl->tag_set;
 804                memset(set, 0, sizeof(*set));
 805                set->ops = &nvme_rdma_mq_ops;
 806                set->queue_depth = nctrl->sqsize + 1;
 807                set->reserved_tags = 1; /* fabric connect */
 808                set->numa_node = nctrl->numa_node;
 809                set->flags = BLK_MQ_F_SHOULD_MERGE;
 810                set->cmd_size = sizeof(struct nvme_rdma_request) +
 811                                NVME_RDMA_DATA_SGL_SIZE;
 812                if (nctrl->max_integrity_segments)
 813                        set->cmd_size += sizeof(struct nvme_rdma_sgl) +
 814                                         NVME_RDMA_METADATA_SGL_SIZE;
 815                set->driver_data = ctrl;
 816                set->nr_hw_queues = nctrl->queue_count - 1;
 817                set->timeout = NVME_IO_TIMEOUT;
 818                set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
 819        }
 820
 821        ret = blk_mq_alloc_tag_set(set);
 822        if (ret)
 823                return ERR_PTR(ret);
 824
 825        return set;
 826}
 827
 828static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
 829                bool remove)
 830{
 831        if (remove) {
 832                blk_cleanup_queue(ctrl->ctrl.admin_q);
 833                blk_cleanup_queue(ctrl->ctrl.fabrics_q);
 834                blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
 835        }
 836        if (ctrl->async_event_sqe.data) {
 837                cancel_work_sync(&ctrl->ctrl.async_event_work);
 838                nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 839                                sizeof(struct nvme_command), DMA_TO_DEVICE);
 840                ctrl->async_event_sqe.data = NULL;
 841        }
 842        nvme_rdma_free_queue(&ctrl->queues[0]);
 843}
 844
 845static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
 846                bool new)
 847{
 848        bool pi_capable = false;
 849        int error;
 850
 851        error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
 852        if (error)
 853                return error;
 854
 855        ctrl->device = ctrl->queues[0].device;
 856        ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
 857
 858        /* T10-PI support */
 859        if (ctrl->device->dev->attrs.device_cap_flags &
 860            IB_DEVICE_INTEGRITY_HANDOVER)
 861                pi_capable = true;
 862
 863        ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
 864                                                        pi_capable);
 865
 866        /*
 867         * Bind the async event SQE DMA mapping to the admin queue lifetime.
 868         * It's safe, since any chage in the underlying RDMA device will issue
 869         * error recovery and queue re-creation.
 870         */
 871        error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 872                        sizeof(struct nvme_command), DMA_TO_DEVICE);
 873        if (error)
 874                goto out_free_queue;
 875
 876        if (new) {
 877                ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
 878                if (IS_ERR(ctrl->ctrl.admin_tagset)) {
 879                        error = PTR_ERR(ctrl->ctrl.admin_tagset);
 880                        goto out_free_async_qe;
 881                }
 882
 883                ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
 884                if (IS_ERR(ctrl->ctrl.fabrics_q)) {
 885                        error = PTR_ERR(ctrl->ctrl.fabrics_q);
 886                        goto out_free_tagset;
 887                }
 888
 889                ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
 890                if (IS_ERR(ctrl->ctrl.admin_q)) {
 891                        error = PTR_ERR(ctrl->ctrl.admin_q);
 892                        goto out_cleanup_fabrics_q;
 893                }
 894        }
 895
 896        error = nvme_rdma_start_queue(ctrl, 0);
 897        if (error)
 898                goto out_cleanup_queue;
 899
 900        error = nvme_enable_ctrl(&ctrl->ctrl);
 901        if (error)
 902                goto out_stop_queue;
 903
 904        ctrl->ctrl.max_segments = ctrl->max_fr_pages;
 905        ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
 906        if (pi_capable)
 907                ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
 908        else
 909                ctrl->ctrl.max_integrity_segments = 0;
 910
 911        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
 912
 913        error = nvme_init_identify(&ctrl->ctrl);
 914        if (error)
 915                goto out_stop_queue;
 916
 917        return 0;
 918
 919out_stop_queue:
 920        nvme_rdma_stop_queue(&ctrl->queues[0]);
 921out_cleanup_queue:
 922        if (new)
 923                blk_cleanup_queue(ctrl->ctrl.admin_q);
 924out_cleanup_fabrics_q:
 925        if (new)
 926                blk_cleanup_queue(ctrl->ctrl.fabrics_q);
 927out_free_tagset:
 928        if (new)
 929                blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
 930out_free_async_qe:
 931        if (ctrl->async_event_sqe.data) {
 932                nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 933                        sizeof(struct nvme_command), DMA_TO_DEVICE);
 934                ctrl->async_event_sqe.data = NULL;
 935        }
 936out_free_queue:
 937        nvme_rdma_free_queue(&ctrl->queues[0]);
 938        return error;
 939}
 940
 941static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
 942                bool remove)
 943{
 944        if (remove) {
 945                blk_cleanup_queue(ctrl->ctrl.connect_q);
 946                blk_mq_free_tag_set(ctrl->ctrl.tagset);
 947        }
 948        nvme_rdma_free_io_queues(ctrl);
 949}
 950
 951static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
 952{
 953        int ret;
 954
 955        ret = nvme_rdma_alloc_io_queues(ctrl);
 956        if (ret)
 957                return ret;
 958
 959        if (new) {
 960                ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
 961                if (IS_ERR(ctrl->ctrl.tagset)) {
 962                        ret = PTR_ERR(ctrl->ctrl.tagset);
 963                        goto out_free_io_queues;
 964                }
 965
 966                ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
 967                if (IS_ERR(ctrl->ctrl.connect_q)) {
 968                        ret = PTR_ERR(ctrl->ctrl.connect_q);
 969                        goto out_free_tag_set;
 970                }
 971        }
 972
 973        ret = nvme_rdma_start_io_queues(ctrl);
 974        if (ret)
 975                goto out_cleanup_connect_q;
 976
 977        if (!new) {
 978                nvme_start_queues(&ctrl->ctrl);
 979                if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
 980                        /*
 981                         * If we timed out waiting for freeze we are likely to
 982                         * be stuck.  Fail the controller initialization just
 983                         * to be safe.
 984                         */
 985                        ret = -ENODEV;
 986                        goto out_wait_freeze_timed_out;
 987                }
 988                blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
 989                        ctrl->ctrl.queue_count - 1);
 990                nvme_unfreeze(&ctrl->ctrl);
 991        }
 992
 993        return 0;
 994
 995out_wait_freeze_timed_out:
 996        nvme_stop_queues(&ctrl->ctrl);
 997        nvme_rdma_stop_io_queues(ctrl);
 998out_cleanup_connect_q:
 999        if (new)
1000                blk_cleanup_queue(ctrl->ctrl.connect_q);
1001out_free_tag_set:
1002        if (new)
1003                blk_mq_free_tag_set(ctrl->ctrl.tagset);
1004out_free_io_queues:
1005        nvme_rdma_free_io_queues(ctrl);
1006        return ret;
1007}
1008
1009static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1010                bool remove)
1011{
1012        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1013        blk_sync_queue(ctrl->ctrl.admin_q);
1014        nvme_rdma_stop_queue(&ctrl->queues[0]);
1015        if (ctrl->ctrl.admin_tagset) {
1016                blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1017                        nvme_cancel_request, &ctrl->ctrl);
1018                blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1019        }
1020        if (remove)
1021                blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1022        nvme_rdma_destroy_admin_queue(ctrl, remove);
1023}
1024
1025static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1026                bool remove)
1027{
1028        if (ctrl->ctrl.queue_count > 1) {
1029                nvme_start_freeze(&ctrl->ctrl);
1030                nvme_stop_queues(&ctrl->ctrl);
1031                nvme_sync_io_queues(&ctrl->ctrl);
1032                nvme_rdma_stop_io_queues(ctrl);
1033                if (ctrl->ctrl.tagset) {
1034                        blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1035                                nvme_cancel_request, &ctrl->ctrl);
1036                        blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1037                }
1038                if (remove)
1039                        nvme_start_queues(&ctrl->ctrl);
1040                nvme_rdma_destroy_io_queues(ctrl, remove);
1041        }
1042}
1043
1044static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1045{
1046        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1047
1048        if (list_empty(&ctrl->list))
1049                goto free_ctrl;
1050
1051        mutex_lock(&nvme_rdma_ctrl_mutex);
1052        list_del(&ctrl->list);
1053        mutex_unlock(&nvme_rdma_ctrl_mutex);
1054
1055        nvmf_free_options(nctrl->opts);
1056free_ctrl:
1057        kfree(ctrl->queues);
1058        kfree(ctrl);
1059}
1060
1061static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1062{
1063        /* If we are resetting/deleting then do nothing */
1064        if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1065                WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1066                        ctrl->ctrl.state == NVME_CTRL_LIVE);
1067                return;
1068        }
1069
1070        if (nvmf_should_reconnect(&ctrl->ctrl)) {
1071                dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1072                        ctrl->ctrl.opts->reconnect_delay);
1073                queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1074                                ctrl->ctrl.opts->reconnect_delay * HZ);
1075        } else {
1076                nvme_delete_ctrl(&ctrl->ctrl);
1077        }
1078}
1079
1080static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1081{
1082        int ret = -EINVAL;
1083        bool changed;
1084
1085        ret = nvme_rdma_configure_admin_queue(ctrl, new);
1086        if (ret)
1087                return ret;
1088
1089        if (ctrl->ctrl.icdoff) {
1090                dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1091                goto destroy_admin;
1092        }
1093
1094        if (!(ctrl->ctrl.sgls & (1 << 2))) {
1095                dev_err(ctrl->ctrl.device,
1096                        "Mandatory keyed sgls are not supported!\n");
1097                goto destroy_admin;
1098        }
1099
1100        if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1101                dev_warn(ctrl->ctrl.device,
1102                        "queue_size %zu > ctrl sqsize %u, clamping down\n",
1103                        ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1104        }
1105
1106        if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1107                dev_warn(ctrl->ctrl.device,
1108                        "sqsize %u > ctrl maxcmd %u, clamping down\n",
1109                        ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1110                ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1111        }
1112
1113        if (ctrl->ctrl.sgls & (1 << 20))
1114                ctrl->use_inline_data = true;
1115
1116        if (ctrl->ctrl.queue_count > 1) {
1117                ret = nvme_rdma_configure_io_queues(ctrl, new);
1118                if (ret)
1119                        goto destroy_admin;
1120        }
1121
1122        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1123        if (!changed) {
1124                /*
1125                 * state change failure is ok if we started ctrl delete,
1126                 * unless we're during creation of a new controller to
1127                 * avoid races with teardown flow.
1128                 */
1129                WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1130                             ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1131                WARN_ON_ONCE(new);
1132                ret = -EINVAL;
1133                goto destroy_io;
1134        }
1135
1136        nvme_start_ctrl(&ctrl->ctrl);
1137        return 0;
1138
1139destroy_io:
1140        if (ctrl->ctrl.queue_count > 1)
1141                nvme_rdma_destroy_io_queues(ctrl, new);
1142destroy_admin:
1143        nvme_rdma_stop_queue(&ctrl->queues[0]);
1144        nvme_rdma_destroy_admin_queue(ctrl, new);
1145        return ret;
1146}
1147
1148static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1149{
1150        struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1151                        struct nvme_rdma_ctrl, reconnect_work);
1152
1153        ++ctrl->ctrl.nr_reconnects;
1154
1155        if (nvme_rdma_setup_ctrl(ctrl, false))
1156                goto requeue;
1157
1158        dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1159                        ctrl->ctrl.nr_reconnects);
1160
1161        ctrl->ctrl.nr_reconnects = 0;
1162
1163        return;
1164
1165requeue:
1166        dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1167                        ctrl->ctrl.nr_reconnects);
1168        nvme_rdma_reconnect_or_remove(ctrl);
1169}
1170
1171static void nvme_rdma_error_recovery_work(struct work_struct *work)
1172{
1173        struct nvme_rdma_ctrl *ctrl = container_of(work,
1174                        struct nvme_rdma_ctrl, err_work);
1175
1176        nvme_stop_keep_alive(&ctrl->ctrl);
1177        nvme_rdma_teardown_io_queues(ctrl, false);
1178        nvme_start_queues(&ctrl->ctrl);
1179        nvme_rdma_teardown_admin_queue(ctrl, false);
1180        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1181
1182        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1183                /* state change failure is ok if we started ctrl delete */
1184                WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1185                             ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1186                return;
1187        }
1188
1189        nvme_rdma_reconnect_or_remove(ctrl);
1190}
1191
1192static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1193{
1194        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1195                return;
1196
1197        dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1198        queue_work(nvme_reset_wq, &ctrl->err_work);
1199}
1200
1201static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1202{
1203        struct request *rq = blk_mq_rq_from_pdu(req);
1204
1205        if (!refcount_dec_and_test(&req->ref))
1206                return;
1207        if (!nvme_try_complete_req(rq, req->status, req->result))
1208                nvme_rdma_complete_rq(rq);
1209}
1210
1211static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1212                const char *op)
1213{
1214        struct nvme_rdma_queue *queue = wc->qp->qp_context;
1215        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1216
1217        if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1218                dev_info(ctrl->ctrl.device,
1219                             "%s for CQE 0x%p failed with status %s (%d)\n",
1220                             op, wc->wr_cqe,
1221                             ib_wc_status_msg(wc->status), wc->status);
1222        nvme_rdma_error_recovery(ctrl);
1223}
1224
1225static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1226{
1227        if (unlikely(wc->status != IB_WC_SUCCESS))
1228                nvme_rdma_wr_error(cq, wc, "MEMREG");
1229}
1230
1231static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1232{
1233        struct nvme_rdma_request *req =
1234                container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1235
1236        if (unlikely(wc->status != IB_WC_SUCCESS))
1237                nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1238        else
1239                nvme_rdma_end_request(req);
1240}
1241
1242static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1243                struct nvme_rdma_request *req)
1244{
1245        struct ib_send_wr wr = {
1246                .opcode             = IB_WR_LOCAL_INV,
1247                .next               = NULL,
1248                .num_sge            = 0,
1249                .send_flags         = IB_SEND_SIGNALED,
1250                .ex.invalidate_rkey = req->mr->rkey,
1251        };
1252
1253        req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1254        wr.wr_cqe = &req->reg_cqe;
1255
1256        return ib_post_send(queue->qp, &wr, NULL);
1257}
1258
1259static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1260                struct request *rq)
1261{
1262        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1263        struct nvme_rdma_device *dev = queue->device;
1264        struct ib_device *ibdev = dev->dev;
1265        struct list_head *pool = &queue->qp->rdma_mrs;
1266
1267        if (!blk_rq_nr_phys_segments(rq))
1268                return;
1269
1270        if (blk_integrity_rq(rq)) {
1271                ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1272                                req->metadata_sgl->nents, rq_dma_dir(rq));
1273                sg_free_table_chained(&req->metadata_sgl->sg_table,
1274                                      NVME_INLINE_METADATA_SG_CNT);
1275        }
1276
1277        if (req->use_sig_mr)
1278                pool = &queue->qp->sig_mrs;
1279
1280        if (req->mr) {
1281                ib_mr_pool_put(queue->qp, pool, req->mr);
1282                req->mr = NULL;
1283        }
1284
1285        ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1286                        rq_dma_dir(rq));
1287        sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1288}
1289
1290static int nvme_rdma_set_sg_null(struct nvme_command *c)
1291{
1292        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1293
1294        sg->addr = 0;
1295        put_unaligned_le24(0, sg->length);
1296        put_unaligned_le32(0, sg->key);
1297        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1298        return 0;
1299}
1300
1301static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1302                struct nvme_rdma_request *req, struct nvme_command *c,
1303                int count)
1304{
1305        struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1306        struct scatterlist *sgl = req->data_sgl.sg_table.sgl;
1307        struct ib_sge *sge = &req->sge[1];
1308        u32 len = 0;
1309        int i;
1310
1311        for (i = 0; i < count; i++, sgl++, sge++) {
1312                sge->addr = sg_dma_address(sgl);
1313                sge->length = sg_dma_len(sgl);
1314                sge->lkey = queue->device->pd->local_dma_lkey;
1315                len += sge->length;
1316        }
1317
1318        sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1319        sg->length = cpu_to_le32(len);
1320        sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1321
1322        req->num_sge += count;
1323        return 0;
1324}
1325
1326static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1327                struct nvme_rdma_request *req, struct nvme_command *c)
1328{
1329        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1330
1331        sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1332        put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1333        put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1334        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1335        return 0;
1336}
1337
1338static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1339                struct nvme_rdma_request *req, struct nvme_command *c,
1340                int count)
1341{
1342        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1343        int nr;
1344
1345        req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1346        if (WARN_ON_ONCE(!req->mr))
1347                return -EAGAIN;
1348
1349        /*
1350         * Align the MR to a 4K page size to match the ctrl page size and
1351         * the block virtual boundary.
1352         */
1353        nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1354                          SZ_4K);
1355        if (unlikely(nr < count)) {
1356                ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1357                req->mr = NULL;
1358                if (nr < 0)
1359                        return nr;
1360                return -EINVAL;
1361        }
1362
1363        ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1364
1365        req->reg_cqe.done = nvme_rdma_memreg_done;
1366        memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1367        req->reg_wr.wr.opcode = IB_WR_REG_MR;
1368        req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1369        req->reg_wr.wr.num_sge = 0;
1370        req->reg_wr.mr = req->mr;
1371        req->reg_wr.key = req->mr->rkey;
1372        req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1373                             IB_ACCESS_REMOTE_READ |
1374                             IB_ACCESS_REMOTE_WRITE;
1375
1376        sg->addr = cpu_to_le64(req->mr->iova);
1377        put_unaligned_le24(req->mr->length, sg->length);
1378        put_unaligned_le32(req->mr->rkey, sg->key);
1379        sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1380                        NVME_SGL_FMT_INVALIDATE;
1381
1382        return 0;
1383}
1384
1385static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1386                struct nvme_command *cmd, struct ib_sig_domain *domain,
1387                u16 control, u8 pi_type)
1388{
1389        domain->sig_type = IB_SIG_TYPE_T10_DIF;
1390        domain->sig.dif.bg_type = IB_T10DIF_CRC;
1391        domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1392        domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1393        if (control & NVME_RW_PRINFO_PRCHK_REF)
1394                domain->sig.dif.ref_remap = true;
1395
1396        domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1397        domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1398        domain->sig.dif.app_escape = true;
1399        if (pi_type == NVME_NS_DPS_PI_TYPE3)
1400                domain->sig.dif.ref_escape = true;
1401}
1402
1403static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1404                struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1405                u8 pi_type)
1406{
1407        u16 control = le16_to_cpu(cmd->rw.control);
1408
1409        memset(sig_attrs, 0, sizeof(*sig_attrs));
1410        if (control & NVME_RW_PRINFO_PRACT) {
1411                /* for WRITE_INSERT/READ_STRIP no memory domain */
1412                sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1413                nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1414                                         pi_type);
1415                /* Clear the PRACT bit since HCA will generate/verify the PI */
1416                control &= ~NVME_RW_PRINFO_PRACT;
1417                cmd->rw.control = cpu_to_le16(control);
1418        } else {
1419                /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1420                nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1421                                         pi_type);
1422                nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1423                                         pi_type);
1424        }
1425}
1426
1427static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1428{
1429        *mask = 0;
1430        if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1431                *mask |= IB_SIG_CHECK_REFTAG;
1432        if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1433                *mask |= IB_SIG_CHECK_GUARD;
1434}
1435
1436static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1437{
1438        if (unlikely(wc->status != IB_WC_SUCCESS))
1439                nvme_rdma_wr_error(cq, wc, "SIG");
1440}
1441
1442static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1443                struct nvme_rdma_request *req, struct nvme_command *c,
1444                int count, int pi_count)
1445{
1446        struct nvme_rdma_sgl *sgl = &req->data_sgl;
1447        struct ib_reg_wr *wr = &req->reg_wr;
1448        struct request *rq = blk_mq_rq_from_pdu(req);
1449        struct nvme_ns *ns = rq->q->queuedata;
1450        struct bio *bio = rq->bio;
1451        struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1452        int nr;
1453
1454        req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1455        if (WARN_ON_ONCE(!req->mr))
1456                return -EAGAIN;
1457
1458        nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1459                             req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1460                             SZ_4K);
1461        if (unlikely(nr))
1462                goto mr_put;
1463
1464        nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1465                                req->mr->sig_attrs, ns->pi_type);
1466        nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1467
1468        ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1469
1470        req->reg_cqe.done = nvme_rdma_sig_done;
1471        memset(wr, 0, sizeof(*wr));
1472        wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1473        wr->wr.wr_cqe = &req->reg_cqe;
1474        wr->wr.num_sge = 0;
1475        wr->wr.send_flags = 0;
1476        wr->mr = req->mr;
1477        wr->key = req->mr->rkey;
1478        wr->access = IB_ACCESS_LOCAL_WRITE |
1479                     IB_ACCESS_REMOTE_READ |
1480                     IB_ACCESS_REMOTE_WRITE;
1481
1482        sg->addr = cpu_to_le64(req->mr->iova);
1483        put_unaligned_le24(req->mr->length, sg->length);
1484        put_unaligned_le32(req->mr->rkey, sg->key);
1485        sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1486
1487        return 0;
1488
1489mr_put:
1490        ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1491        req->mr = NULL;
1492        if (nr < 0)
1493                return nr;
1494        return -EINVAL;
1495}
1496
1497static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1498                struct request *rq, struct nvme_command *c)
1499{
1500        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1501        struct nvme_rdma_device *dev = queue->device;
1502        struct ib_device *ibdev = dev->dev;
1503        int pi_count = 0;
1504        int count, ret;
1505
1506        req->num_sge = 1;
1507        refcount_set(&req->ref, 2); /* send and recv completions */
1508
1509        c->common.flags |= NVME_CMD_SGL_METABUF;
1510
1511        if (!blk_rq_nr_phys_segments(rq))
1512                return nvme_rdma_set_sg_null(c);
1513
1514        req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1515        ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1516                        blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1517                        NVME_INLINE_SG_CNT);
1518        if (ret)
1519                return -ENOMEM;
1520
1521        req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1522                                            req->data_sgl.sg_table.sgl);
1523
1524        count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1525                              req->data_sgl.nents, rq_dma_dir(rq));
1526        if (unlikely(count <= 0)) {
1527                ret = -EIO;
1528                goto out_free_table;
1529        }
1530
1531        if (blk_integrity_rq(rq)) {
1532                req->metadata_sgl->sg_table.sgl =
1533                        (struct scatterlist *)(req->metadata_sgl + 1);
1534                ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1535                                blk_rq_count_integrity_sg(rq->q, rq->bio),
1536                                req->metadata_sgl->sg_table.sgl,
1537                                NVME_INLINE_METADATA_SG_CNT);
1538                if (unlikely(ret)) {
1539                        ret = -ENOMEM;
1540                        goto out_unmap_sg;
1541                }
1542
1543                req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1544                                rq->bio, req->metadata_sgl->sg_table.sgl);
1545                pi_count = ib_dma_map_sg(ibdev,
1546                                         req->metadata_sgl->sg_table.sgl,
1547                                         req->metadata_sgl->nents,
1548                                         rq_dma_dir(rq));
1549                if (unlikely(pi_count <= 0)) {
1550                        ret = -EIO;
1551                        goto out_free_pi_table;
1552                }
1553        }
1554
1555        if (req->use_sig_mr) {
1556                ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1557                goto out;
1558        }
1559
1560        if (count <= dev->num_inline_segments) {
1561                if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1562                    queue->ctrl->use_inline_data &&
1563                    blk_rq_payload_bytes(rq) <=
1564                                nvme_rdma_inline_data_size(queue)) {
1565                        ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1566                        goto out;
1567                }
1568
1569                if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1570                        ret = nvme_rdma_map_sg_single(queue, req, c);
1571                        goto out;
1572                }
1573        }
1574
1575        ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1576out:
1577        if (unlikely(ret))
1578                goto out_unmap_pi_sg;
1579
1580        return 0;
1581
1582out_unmap_pi_sg:
1583        if (blk_integrity_rq(rq))
1584                ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1585                                req->metadata_sgl->nents, rq_dma_dir(rq));
1586out_free_pi_table:
1587        if (blk_integrity_rq(rq))
1588                sg_free_table_chained(&req->metadata_sgl->sg_table,
1589                                      NVME_INLINE_METADATA_SG_CNT);
1590out_unmap_sg:
1591        ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1592                        rq_dma_dir(rq));
1593out_free_table:
1594        sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1595        return ret;
1596}
1597
1598static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1599{
1600        struct nvme_rdma_qe *qe =
1601                container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1602        struct nvme_rdma_request *req =
1603                container_of(qe, struct nvme_rdma_request, sqe);
1604
1605        if (unlikely(wc->status != IB_WC_SUCCESS))
1606                nvme_rdma_wr_error(cq, wc, "SEND");
1607        else
1608                nvme_rdma_end_request(req);
1609}
1610
1611static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1612                struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1613                struct ib_send_wr *first)
1614{
1615        struct ib_send_wr wr;
1616        int ret;
1617
1618        sge->addr   = qe->dma;
1619        sge->length = sizeof(struct nvme_command);
1620        sge->lkey   = queue->device->pd->local_dma_lkey;
1621
1622        wr.next       = NULL;
1623        wr.wr_cqe     = &qe->cqe;
1624        wr.sg_list    = sge;
1625        wr.num_sge    = num_sge;
1626        wr.opcode     = IB_WR_SEND;
1627        wr.send_flags = IB_SEND_SIGNALED;
1628
1629        if (first)
1630                first->next = &wr;
1631        else
1632                first = &wr;
1633
1634        ret = ib_post_send(queue->qp, first, NULL);
1635        if (unlikely(ret)) {
1636                dev_err(queue->ctrl->ctrl.device,
1637                             "%s failed with error code %d\n", __func__, ret);
1638        }
1639        return ret;
1640}
1641
1642static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1643                struct nvme_rdma_qe *qe)
1644{
1645        struct ib_recv_wr wr;
1646        struct ib_sge list;
1647        int ret;
1648
1649        list.addr   = qe->dma;
1650        list.length = sizeof(struct nvme_completion);
1651        list.lkey   = queue->device->pd->local_dma_lkey;
1652
1653        qe->cqe.done = nvme_rdma_recv_done;
1654
1655        wr.next     = NULL;
1656        wr.wr_cqe   = &qe->cqe;
1657        wr.sg_list  = &list;
1658        wr.num_sge  = 1;
1659
1660        ret = ib_post_recv(queue->qp, &wr, NULL);
1661        if (unlikely(ret)) {
1662                dev_err(queue->ctrl->ctrl.device,
1663                        "%s failed with error code %d\n", __func__, ret);
1664        }
1665        return ret;
1666}
1667
1668static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1669{
1670        u32 queue_idx = nvme_rdma_queue_idx(queue);
1671
1672        if (queue_idx == 0)
1673                return queue->ctrl->admin_tag_set.tags[queue_idx];
1674        return queue->ctrl->tag_set.tags[queue_idx - 1];
1675}
1676
1677static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1678{
1679        if (unlikely(wc->status != IB_WC_SUCCESS))
1680                nvme_rdma_wr_error(cq, wc, "ASYNC");
1681}
1682
1683static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1684{
1685        struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1686        struct nvme_rdma_queue *queue = &ctrl->queues[0];
1687        struct ib_device *dev = queue->device->dev;
1688        struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1689        struct nvme_command *cmd = sqe->data;
1690        struct ib_sge sge;
1691        int ret;
1692
1693        ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1694
1695        memset(cmd, 0, sizeof(*cmd));
1696        cmd->common.opcode = nvme_admin_async_event;
1697        cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1698        cmd->common.flags |= NVME_CMD_SGL_METABUF;
1699        nvme_rdma_set_sg_null(cmd);
1700
1701        sqe->cqe.done = nvme_rdma_async_done;
1702
1703        ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1704                        DMA_TO_DEVICE);
1705
1706        ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1707        WARN_ON_ONCE(ret);
1708}
1709
1710static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1711                struct nvme_completion *cqe, struct ib_wc *wc)
1712{
1713        struct request *rq;
1714        struct nvme_rdma_request *req;
1715
1716        rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1717        if (!rq) {
1718                dev_err(queue->ctrl->ctrl.device,
1719                        "tag 0x%x on QP %#x not found\n",
1720                        cqe->command_id, queue->qp->qp_num);
1721                nvme_rdma_error_recovery(queue->ctrl);
1722                return;
1723        }
1724        req = blk_mq_rq_to_pdu(rq);
1725
1726        req->status = cqe->status;
1727        req->result = cqe->result;
1728
1729        if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1730                if (unlikely(!req->mr ||
1731                             wc->ex.invalidate_rkey != req->mr->rkey)) {
1732                        dev_err(queue->ctrl->ctrl.device,
1733                                "Bogus remote invalidation for rkey %#x\n",
1734                                req->mr ? req->mr->rkey : 0);
1735                        nvme_rdma_error_recovery(queue->ctrl);
1736                }
1737        } else if (req->mr) {
1738                int ret;
1739
1740                ret = nvme_rdma_inv_rkey(queue, req);
1741                if (unlikely(ret < 0)) {
1742                        dev_err(queue->ctrl->ctrl.device,
1743                                "Queueing INV WR for rkey %#x failed (%d)\n",
1744                                req->mr->rkey, ret);
1745                        nvme_rdma_error_recovery(queue->ctrl);
1746                }
1747                /* the local invalidation completion will end the request */
1748                return;
1749        }
1750
1751        nvme_rdma_end_request(req);
1752}
1753
1754static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1755{
1756        struct nvme_rdma_qe *qe =
1757                container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1758        struct nvme_rdma_queue *queue = wc->qp->qp_context;
1759        struct ib_device *ibdev = queue->device->dev;
1760        struct nvme_completion *cqe = qe->data;
1761        const size_t len = sizeof(struct nvme_completion);
1762
1763        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1764                nvme_rdma_wr_error(cq, wc, "RECV");
1765                return;
1766        }
1767
1768        /* sanity checking for received data length */
1769        if (unlikely(wc->byte_len < len)) {
1770                dev_err(queue->ctrl->ctrl.device,
1771                        "Unexpected nvme completion length(%d)\n", wc->byte_len);
1772                nvme_rdma_error_recovery(queue->ctrl);
1773                return;
1774        }
1775
1776        ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1777        /*
1778         * AEN requests are special as they don't time out and can
1779         * survive any kind of queue freeze and often don't respond to
1780         * aborts.  We don't even bother to allocate a struct request
1781         * for them but rather special case them here.
1782         */
1783        if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1784                                     cqe->command_id)))
1785                nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1786                                &cqe->result);
1787        else
1788                nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1789        ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1790
1791        nvme_rdma_post_recv(queue, qe);
1792}
1793
1794static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1795{
1796        int ret, i;
1797
1798        for (i = 0; i < queue->queue_size; i++) {
1799                ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1800                if (ret)
1801                        goto out_destroy_queue_ib;
1802        }
1803
1804        return 0;
1805
1806out_destroy_queue_ib:
1807        nvme_rdma_destroy_queue_ib(queue);
1808        return ret;
1809}
1810
1811static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1812                struct rdma_cm_event *ev)
1813{
1814        struct rdma_cm_id *cm_id = queue->cm_id;
1815        int status = ev->status;
1816        const char *rej_msg;
1817        const struct nvme_rdma_cm_rej *rej_data;
1818        u8 rej_data_len;
1819
1820        rej_msg = rdma_reject_msg(cm_id, status);
1821        rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1822
1823        if (rej_data && rej_data_len >= sizeof(u16)) {
1824                u16 sts = le16_to_cpu(rej_data->sts);
1825
1826                dev_err(queue->ctrl->ctrl.device,
1827                      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1828                      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1829        } else {
1830                dev_err(queue->ctrl->ctrl.device,
1831                        "Connect rejected: status %d (%s).\n", status, rej_msg);
1832        }
1833
1834        return -ECONNRESET;
1835}
1836
1837static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1838{
1839        struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1840        int ret;
1841
1842        ret = nvme_rdma_create_queue_ib(queue);
1843        if (ret)
1844                return ret;
1845
1846        if (ctrl->opts->tos >= 0)
1847                rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1848        ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1849        if (ret) {
1850                dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1851                        queue->cm_error);
1852                goto out_destroy_queue;
1853        }
1854
1855        return 0;
1856
1857out_destroy_queue:
1858        nvme_rdma_destroy_queue_ib(queue);
1859        return ret;
1860}
1861
1862static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1863{
1864        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1865        struct rdma_conn_param param = { };
1866        struct nvme_rdma_cm_req priv = { };
1867        int ret;
1868
1869        param.qp_num = queue->qp->qp_num;
1870        param.flow_control = 1;
1871
1872        param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1873        /* maximum retry count */
1874        param.retry_count = 7;
1875        param.rnr_retry_count = 7;
1876        param.private_data = &priv;
1877        param.private_data_len = sizeof(priv);
1878
1879        priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1880        priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1881        /*
1882         * set the admin queue depth to the minimum size
1883         * specified by the Fabrics standard.
1884         */
1885        if (priv.qid == 0) {
1886                priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1887                priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1888        } else {
1889                /*
1890                 * current interpretation of the fabrics spec
1891                 * is at minimum you make hrqsize sqsize+1, or a
1892                 * 1's based representation of sqsize.
1893                 */
1894                priv.hrqsize = cpu_to_le16(queue->queue_size);
1895                priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1896        }
1897
1898        ret = rdma_connect_locked(queue->cm_id, &param);
1899        if (ret) {
1900                dev_err(ctrl->ctrl.device,
1901                        "rdma_connect_locked failed (%d).\n", ret);
1902                goto out_destroy_queue_ib;
1903        }
1904
1905        return 0;
1906
1907out_destroy_queue_ib:
1908        nvme_rdma_destroy_queue_ib(queue);
1909        return ret;
1910}
1911
1912static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1913                struct rdma_cm_event *ev)
1914{
1915        struct nvme_rdma_queue *queue = cm_id->context;
1916        int cm_error = 0;
1917
1918        dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1919                rdma_event_msg(ev->event), ev->event,
1920                ev->status, cm_id);
1921
1922        switch (ev->event) {
1923        case RDMA_CM_EVENT_ADDR_RESOLVED:
1924                cm_error = nvme_rdma_addr_resolved(queue);
1925                break;
1926        case RDMA_CM_EVENT_ROUTE_RESOLVED:
1927                cm_error = nvme_rdma_route_resolved(queue);
1928                break;
1929        case RDMA_CM_EVENT_ESTABLISHED:
1930                queue->cm_error = nvme_rdma_conn_established(queue);
1931                /* complete cm_done regardless of success/failure */
1932                complete(&queue->cm_done);
1933                return 0;
1934        case RDMA_CM_EVENT_REJECTED:
1935                cm_error = nvme_rdma_conn_rejected(queue, ev);
1936                break;
1937        case RDMA_CM_EVENT_ROUTE_ERROR:
1938        case RDMA_CM_EVENT_CONNECT_ERROR:
1939        case RDMA_CM_EVENT_UNREACHABLE:
1940                nvme_rdma_destroy_queue_ib(queue);
1941                fallthrough;
1942        case RDMA_CM_EVENT_ADDR_ERROR:
1943                dev_dbg(queue->ctrl->ctrl.device,
1944                        "CM error event %d\n", ev->event);
1945                cm_error = -ECONNRESET;
1946                break;
1947        case RDMA_CM_EVENT_DISCONNECTED:
1948        case RDMA_CM_EVENT_ADDR_CHANGE:
1949        case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1950                dev_dbg(queue->ctrl->ctrl.device,
1951                        "disconnect received - connection closed\n");
1952                nvme_rdma_error_recovery(queue->ctrl);
1953                break;
1954        case RDMA_CM_EVENT_DEVICE_REMOVAL:
1955                /* device removal is handled via the ib_client API */
1956                break;
1957        default:
1958                dev_err(queue->ctrl->ctrl.device,
1959                        "Unexpected RDMA CM event (%d)\n", ev->event);
1960                nvme_rdma_error_recovery(queue->ctrl);
1961                break;
1962        }
1963
1964        if (cm_error) {
1965                queue->cm_error = cm_error;
1966                complete(&queue->cm_done);
1967        }
1968
1969        return 0;
1970}
1971
1972static void nvme_rdma_complete_timed_out(struct request *rq)
1973{
1974        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1975        struct nvme_rdma_queue *queue = req->queue;
1976
1977        nvme_rdma_stop_queue(queue);
1978        if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
1979                nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
1980                blk_mq_complete_request(rq);
1981        }
1982}
1983
1984static enum blk_eh_timer_return
1985nvme_rdma_timeout(struct request *rq, bool reserved)
1986{
1987        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1988        struct nvme_rdma_queue *queue = req->queue;
1989        struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1990
1991        dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1992                 rq->tag, nvme_rdma_queue_idx(queue));
1993
1994        if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1995                /*
1996                 * If we are resetting, connecting or deleting we should
1997                 * complete immediately because we may block controller
1998                 * teardown or setup sequence
1999                 * - ctrl disable/shutdown fabrics requests
2000                 * - connect requests
2001                 * - initialization admin requests
2002                 * - I/O requests that entered after unquiescing and
2003                 *   the controller stopped responding
2004                 *
2005                 * All other requests should be cancelled by the error
2006                 * recovery work, so it's fine that we fail it here.
2007                 */
2008                nvme_rdma_complete_timed_out(rq);
2009                return BLK_EH_DONE;
2010        }
2011
2012        /*
2013         * LIVE state should trigger the normal error recovery which will
2014         * handle completing this request.
2015         */
2016        nvme_rdma_error_recovery(ctrl);
2017        return BLK_EH_RESET_TIMER;
2018}
2019
2020static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2021                const struct blk_mq_queue_data *bd)
2022{
2023        struct nvme_ns *ns = hctx->queue->queuedata;
2024        struct nvme_rdma_queue *queue = hctx->driver_data;
2025        struct request *rq = bd->rq;
2026        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2027        struct nvme_rdma_qe *sqe = &req->sqe;
2028        struct nvme_command *c = sqe->data;
2029        struct ib_device *dev;
2030        bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2031        blk_status_t ret;
2032        int err;
2033
2034        WARN_ON_ONCE(rq->tag < 0);
2035
2036        if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2037                return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2038
2039        dev = queue->device->dev;
2040
2041        req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2042                                         sizeof(struct nvme_command),
2043                                         DMA_TO_DEVICE);
2044        err = ib_dma_mapping_error(dev, req->sqe.dma);
2045        if (unlikely(err))
2046                return BLK_STS_RESOURCE;
2047
2048        ib_dma_sync_single_for_cpu(dev, sqe->dma,
2049                        sizeof(struct nvme_command), DMA_TO_DEVICE);
2050
2051        ret = nvme_setup_cmd(ns, rq, c);
2052        if (ret)
2053                goto unmap_qe;
2054
2055        blk_mq_start_request(rq);
2056
2057        if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2058            queue->pi_support &&
2059            (c->common.opcode == nvme_cmd_write ||
2060             c->common.opcode == nvme_cmd_read) &&
2061            nvme_ns_has_pi(ns))
2062                req->use_sig_mr = true;
2063        else
2064                req->use_sig_mr = false;
2065
2066        err = nvme_rdma_map_data(queue, rq, c);
2067        if (unlikely(err < 0)) {
2068                dev_err(queue->ctrl->ctrl.device,
2069                             "Failed to map data (%d)\n", err);
2070                goto err;
2071        }
2072
2073        sqe->cqe.done = nvme_rdma_send_done;
2074
2075        ib_dma_sync_single_for_device(dev, sqe->dma,
2076                        sizeof(struct nvme_command), DMA_TO_DEVICE);
2077
2078        err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2079                        req->mr ? &req->reg_wr.wr : NULL);
2080        if (unlikely(err))
2081                goto err_unmap;
2082
2083        return BLK_STS_OK;
2084
2085err_unmap:
2086        nvme_rdma_unmap_data(queue, rq);
2087err:
2088        if (err == -ENOMEM || err == -EAGAIN)
2089                ret = BLK_STS_RESOURCE;
2090        else
2091                ret = BLK_STS_IOERR;
2092        nvme_cleanup_cmd(rq);
2093unmap_qe:
2094        ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2095                            DMA_TO_DEVICE);
2096        return ret;
2097}
2098
2099static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2100{
2101        struct nvme_rdma_queue *queue = hctx->driver_data;
2102
2103        return ib_process_cq_direct(queue->ib_cq, -1);
2104}
2105
2106static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2107{
2108        struct request *rq = blk_mq_rq_from_pdu(req);
2109        struct ib_mr_status mr_status;
2110        int ret;
2111
2112        ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2113        if (ret) {
2114                pr_err("ib_check_mr_status failed, ret %d\n", ret);
2115                nvme_req(rq)->status = NVME_SC_INVALID_PI;
2116                return;
2117        }
2118
2119        if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2120                switch (mr_status.sig_err.err_type) {
2121                case IB_SIG_BAD_GUARD:
2122                        nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2123                        break;
2124                case IB_SIG_BAD_REFTAG:
2125                        nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2126                        break;
2127                case IB_SIG_BAD_APPTAG:
2128                        nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2129                        break;
2130                }
2131                pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2132                       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2133                       mr_status.sig_err.actual);
2134        }
2135}
2136
2137static void nvme_rdma_complete_rq(struct request *rq)
2138{
2139        struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2140        struct nvme_rdma_queue *queue = req->queue;
2141        struct ib_device *ibdev = queue->device->dev;
2142
2143        if (req->use_sig_mr)
2144                nvme_rdma_check_pi_status(req);
2145
2146        nvme_rdma_unmap_data(queue, rq);
2147        ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2148                            DMA_TO_DEVICE);
2149        nvme_complete_rq(rq);
2150}
2151
2152static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2153{
2154        struct nvme_rdma_ctrl *ctrl = set->driver_data;
2155        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2156
2157        if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2158                /* separate read/write queues */
2159                set->map[HCTX_TYPE_DEFAULT].nr_queues =
2160                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2161                set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2162                set->map[HCTX_TYPE_READ].nr_queues =
2163                        ctrl->io_queues[HCTX_TYPE_READ];
2164                set->map[HCTX_TYPE_READ].queue_offset =
2165                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2166        } else {
2167                /* shared read/write queues */
2168                set->map[HCTX_TYPE_DEFAULT].nr_queues =
2169                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2170                set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2171                set->map[HCTX_TYPE_READ].nr_queues =
2172                        ctrl->io_queues[HCTX_TYPE_DEFAULT];
2173                set->map[HCTX_TYPE_READ].queue_offset = 0;
2174        }
2175        blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2176                        ctrl->device->dev, 0);
2177        blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2178                        ctrl->device->dev, 0);
2179
2180        if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2181                /* map dedicated poll queues only if we have queues left */
2182                set->map[HCTX_TYPE_POLL].nr_queues =
2183                                ctrl->io_queues[HCTX_TYPE_POLL];
2184                set->map[HCTX_TYPE_POLL].queue_offset =
2185                        ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2186                        ctrl->io_queues[HCTX_TYPE_READ];
2187                blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2188        }
2189
2190        dev_info(ctrl->ctrl.device,
2191                "mapped %d/%d/%d default/read/poll queues.\n",
2192                ctrl->io_queues[HCTX_TYPE_DEFAULT],
2193                ctrl->io_queues[HCTX_TYPE_READ],
2194                ctrl->io_queues[HCTX_TYPE_POLL]);
2195
2196        return 0;
2197}
2198
2199static const struct blk_mq_ops nvme_rdma_mq_ops = {
2200        .queue_rq       = nvme_rdma_queue_rq,
2201        .complete       = nvme_rdma_complete_rq,
2202        .init_request   = nvme_rdma_init_request,
2203        .exit_request   = nvme_rdma_exit_request,
2204        .init_hctx      = nvme_rdma_init_hctx,
2205        .timeout        = nvme_rdma_timeout,
2206        .map_queues     = nvme_rdma_map_queues,
2207        .poll           = nvme_rdma_poll,
2208};
2209
2210static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2211        .queue_rq       = nvme_rdma_queue_rq,
2212        .complete       = nvme_rdma_complete_rq,
2213        .init_request   = nvme_rdma_init_request,
2214        .exit_request   = nvme_rdma_exit_request,
2215        .init_hctx      = nvme_rdma_init_admin_hctx,
2216        .timeout        = nvme_rdma_timeout,
2217};
2218
2219static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2220{
2221        cancel_work_sync(&ctrl->err_work);
2222        cancel_delayed_work_sync(&ctrl->reconnect_work);
2223
2224        nvme_rdma_teardown_io_queues(ctrl, shutdown);
2225        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2226        if (shutdown)
2227                nvme_shutdown_ctrl(&ctrl->ctrl);
2228        else
2229                nvme_disable_ctrl(&ctrl->ctrl);
2230        nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2231}
2232
2233static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2234{
2235        nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2236}
2237
2238static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2239{
2240        struct nvme_rdma_ctrl *ctrl =
2241                container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2242
2243        nvme_stop_ctrl(&ctrl->ctrl);
2244        nvme_rdma_shutdown_ctrl(ctrl, false);
2245
2246        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2247                /* state change failure should never happen */
2248                WARN_ON_ONCE(1);
2249                return;
2250        }
2251
2252        if (nvme_rdma_setup_ctrl(ctrl, false))
2253                goto out_fail;
2254
2255        return;
2256
2257out_fail:
2258        ++ctrl->ctrl.nr_reconnects;
2259        nvme_rdma_reconnect_or_remove(ctrl);
2260}
2261
2262static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2263        .name                   = "rdma",
2264        .module                 = THIS_MODULE,
2265        .flags                  = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2266        .reg_read32             = nvmf_reg_read32,
2267        .reg_read64             = nvmf_reg_read64,
2268        .reg_write32            = nvmf_reg_write32,
2269        .free_ctrl              = nvme_rdma_free_ctrl,
2270        .submit_async_event     = nvme_rdma_submit_async_event,
2271        .delete_ctrl            = nvme_rdma_delete_ctrl,
2272        .get_address            = nvmf_get_address,
2273};
2274
2275/*
2276 * Fails a connection request if it matches an existing controller
2277 * (association) with the same tuple:
2278 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2279 *
2280 * if local address is not specified in the request, it will match an
2281 * existing controller with all the other parameters the same and no
2282 * local port address specified as well.
2283 *
2284 * The ports don't need to be compared as they are intrinsically
2285 * already matched by the port pointers supplied.
2286 */
2287static bool
2288nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2289{
2290        struct nvme_rdma_ctrl *ctrl;
2291        bool found = false;
2292
2293        mutex_lock(&nvme_rdma_ctrl_mutex);
2294        list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2295                found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2296                if (found)
2297                        break;
2298        }
2299        mutex_unlock(&nvme_rdma_ctrl_mutex);
2300
2301        return found;
2302}
2303
2304static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2305                struct nvmf_ctrl_options *opts)
2306{
2307        struct nvme_rdma_ctrl *ctrl;
2308        int ret;
2309        bool changed;
2310
2311        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2312        if (!ctrl)
2313                return ERR_PTR(-ENOMEM);
2314        ctrl->ctrl.opts = opts;
2315        INIT_LIST_HEAD(&ctrl->list);
2316
2317        if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2318                opts->trsvcid =
2319                        kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2320                if (!opts->trsvcid) {
2321                        ret = -ENOMEM;
2322                        goto out_free_ctrl;
2323                }
2324                opts->mask |= NVMF_OPT_TRSVCID;
2325        }
2326
2327        ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2328                        opts->traddr, opts->trsvcid, &ctrl->addr);
2329        if (ret) {
2330                pr_err("malformed address passed: %s:%s\n",
2331                        opts->traddr, opts->trsvcid);
2332                goto out_free_ctrl;
2333        }
2334
2335        if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2336                ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2337                        opts->host_traddr, NULL, &ctrl->src_addr);
2338                if (ret) {
2339                        pr_err("malformed src address passed: %s\n",
2340                               opts->host_traddr);
2341                        goto out_free_ctrl;
2342                }
2343        }
2344
2345        if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2346                ret = -EALREADY;
2347                goto out_free_ctrl;
2348        }
2349
2350        INIT_DELAYED_WORK(&ctrl->reconnect_work,
2351                        nvme_rdma_reconnect_ctrl_work);
2352        INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2353        INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2354
2355        ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2356                                opts->nr_poll_queues + 1;
2357        ctrl->ctrl.sqsize = opts->queue_size - 1;
2358        ctrl->ctrl.kato = opts->kato;
2359
2360        ret = -ENOMEM;
2361        ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2362                                GFP_KERNEL);
2363        if (!ctrl->queues)
2364                goto out_free_ctrl;
2365
2366        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2367                                0 /* no quirks, we're perfect! */);
2368        if (ret)
2369                goto out_kfree_queues;
2370
2371        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2372        WARN_ON_ONCE(!changed);
2373
2374        ret = nvme_rdma_setup_ctrl(ctrl, true);
2375        if (ret)
2376                goto out_uninit_ctrl;
2377
2378        dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2379                ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2380
2381        mutex_lock(&nvme_rdma_ctrl_mutex);
2382        list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2383        mutex_unlock(&nvme_rdma_ctrl_mutex);
2384
2385        return &ctrl->ctrl;
2386
2387out_uninit_ctrl:
2388        nvme_uninit_ctrl(&ctrl->ctrl);
2389        nvme_put_ctrl(&ctrl->ctrl);
2390        if (ret > 0)
2391                ret = -EIO;
2392        return ERR_PTR(ret);
2393out_kfree_queues:
2394        kfree(ctrl->queues);
2395out_free_ctrl:
2396        kfree(ctrl);
2397        return ERR_PTR(ret);
2398}
2399
2400static struct nvmf_transport_ops nvme_rdma_transport = {
2401        .name           = "rdma",
2402        .module         = THIS_MODULE,
2403        .required_opts  = NVMF_OPT_TRADDR,
2404        .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2405                          NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2406                          NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2407                          NVMF_OPT_TOS,
2408        .create_ctrl    = nvme_rdma_create_ctrl,
2409};
2410
2411static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2412{
2413        struct nvme_rdma_ctrl *ctrl;
2414        struct nvme_rdma_device *ndev;
2415        bool found = false;
2416
2417        mutex_lock(&device_list_mutex);
2418        list_for_each_entry(ndev, &device_list, entry) {
2419                if (ndev->dev == ib_device) {
2420                        found = true;
2421                        break;
2422                }
2423        }
2424        mutex_unlock(&device_list_mutex);
2425
2426        if (!found)
2427                return;
2428
2429        /* Delete all controllers using this device */
2430        mutex_lock(&nvme_rdma_ctrl_mutex);
2431        list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2432                if (ctrl->device->dev != ib_device)
2433                        continue;
2434                nvme_delete_ctrl(&ctrl->ctrl);
2435        }
2436        mutex_unlock(&nvme_rdma_ctrl_mutex);
2437
2438        flush_workqueue(nvme_delete_wq);
2439}
2440
2441static struct ib_client nvme_rdma_ib_client = {
2442        .name   = "nvme_rdma",
2443        .remove = nvme_rdma_remove_one
2444};
2445
2446static int __init nvme_rdma_init_module(void)
2447{
2448        int ret;
2449
2450        ret = ib_register_client(&nvme_rdma_ib_client);
2451        if (ret)
2452                return ret;
2453
2454        ret = nvmf_register_transport(&nvme_rdma_transport);
2455        if (ret)
2456                goto err_unreg_client;
2457
2458        return 0;
2459
2460err_unreg_client:
2461        ib_unregister_client(&nvme_rdma_ib_client);
2462        return ret;
2463}
2464
2465static void __exit nvme_rdma_cleanup_module(void)
2466{
2467        struct nvme_rdma_ctrl *ctrl;
2468
2469        nvmf_unregister_transport(&nvme_rdma_transport);
2470        ib_unregister_client(&nvme_rdma_ib_client);
2471
2472        mutex_lock(&nvme_rdma_ctrl_mutex);
2473        list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2474                nvme_delete_ctrl(&ctrl->ctrl);
2475        mutex_unlock(&nvme_rdma_ctrl_mutex);
2476        flush_workqueue(nvme_delete_wq);
2477}
2478
2479module_init(nvme_rdma_init_module);
2480module_exit(nvme_rdma_cleanup_module);
2481
2482MODULE_LICENSE("GPL v2");
2483