linux/drivers/nvme/target/fc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   4 */
   5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   6#include <linux/module.h>
   7#include <linux/slab.h>
   8#include <linux/blk-mq.h>
   9#include <linux/parser.h>
  10#include <linux/random.h>
  11#include <uapi/scsi/fc/fc_fs.h>
  12#include <uapi/scsi/fc/fc_els.h>
  13
  14#include "nvmet.h"
  15#include <linux/nvme-fc-driver.h>
  16#include <linux/nvme-fc.h>
  17#include "../host/fc.h"
  18
  19
  20/* *************************** Data Structures/Defines ****************** */
  21
  22
  23#define NVMET_LS_CTX_COUNT              256
  24
  25struct nvmet_fc_tgtport;
  26struct nvmet_fc_tgt_assoc;
  27
  28struct nvmet_fc_ls_iod {                /* for an LS RQST RCV */
  29        struct nvmefc_ls_rsp            *lsrsp;
  30        struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
  31
  32        struct list_head                ls_rcv_list; /* tgtport->ls_rcv_list */
  33
  34        struct nvmet_fc_tgtport         *tgtport;
  35        struct nvmet_fc_tgt_assoc       *assoc;
  36        void                            *hosthandle;
  37
  38        union nvmefc_ls_requests        *rqstbuf;
  39        union nvmefc_ls_responses       *rspbuf;
  40        u16                             rqstdatalen;
  41        dma_addr_t                      rspdma;
  42
  43        struct scatterlist              sg[2];
  44
  45        struct work_struct              work;
  46} __aligned(sizeof(unsigned long long));
  47
  48struct nvmet_fc_ls_req_op {             /* for an LS RQST XMT */
  49        struct nvmefc_ls_req            ls_req;
  50
  51        struct nvmet_fc_tgtport         *tgtport;
  52        void                            *hosthandle;
  53
  54        int                             ls_error;
  55        struct list_head                lsreq_list; /* tgtport->ls_req_list */
  56        bool                            req_queued;
  57};
  58
  59
  60/* desired maximum for a single sequence - if sg list allows it */
  61#define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
  62
  63enum nvmet_fcp_datadir {
  64        NVMET_FCP_NODATA,
  65        NVMET_FCP_WRITE,
  66        NVMET_FCP_READ,
  67        NVMET_FCP_ABORTED,
  68};
  69
  70struct nvmet_fc_fcp_iod {
  71        struct nvmefc_tgt_fcp_req       *fcpreq;
  72
  73        struct nvme_fc_cmd_iu           cmdiubuf;
  74        struct nvme_fc_ersp_iu          rspiubuf;
  75        dma_addr_t                      rspdma;
  76        struct scatterlist              *next_sg;
  77        struct scatterlist              *data_sg;
  78        int                             data_sg_cnt;
  79        u32                             offset;
  80        enum nvmet_fcp_datadir          io_dir;
  81        bool                            active;
  82        bool                            abort;
  83        bool                            aborted;
  84        bool                            writedataactive;
  85        spinlock_t                      flock;
  86
  87        struct nvmet_req                req;
  88        struct work_struct              defer_work;
  89
  90        struct nvmet_fc_tgtport         *tgtport;
  91        struct nvmet_fc_tgt_queue       *queue;
  92
  93        struct list_head                fcp_list;       /* tgtport->fcp_list */
  94};
  95
  96struct nvmet_fc_tgtport {
  97        struct nvmet_fc_target_port     fc_target_port;
  98
  99        struct list_head                tgt_list; /* nvmet_fc_target_list */
 100        struct device                   *dev;   /* dev for dma mapping */
 101        struct nvmet_fc_target_template *ops;
 102
 103        struct nvmet_fc_ls_iod          *iod;
 104        spinlock_t                      lock;
 105        struct list_head                ls_rcv_list;
 106        struct list_head                ls_req_list;
 107        struct list_head                ls_busylist;
 108        struct list_head                assoc_list;
 109        struct list_head                host_list;
 110        struct ida                      assoc_cnt;
 111        struct nvmet_fc_port_entry      *pe;
 112        struct kref                     ref;
 113        u32                             max_sg_cnt;
 114};
 115
 116struct nvmet_fc_port_entry {
 117        struct nvmet_fc_tgtport         *tgtport;
 118        struct nvmet_port               *port;
 119        u64                             node_name;
 120        u64                             port_name;
 121        struct list_head                pe_list;
 122};
 123
 124struct nvmet_fc_defer_fcp_req {
 125        struct list_head                req_list;
 126        struct nvmefc_tgt_fcp_req       *fcp_req;
 127};
 128
 129struct nvmet_fc_tgt_queue {
 130        bool                            ninetypercent;
 131        u16                             qid;
 132        u16                             sqsize;
 133        u16                             ersp_ratio;
 134        __le16                          sqhd;
 135        atomic_t                        connected;
 136        atomic_t                        sqtail;
 137        atomic_t                        zrspcnt;
 138        atomic_t                        rsn;
 139        spinlock_t                      qlock;
 140        struct nvmet_cq                 nvme_cq;
 141        struct nvmet_sq                 nvme_sq;
 142        struct nvmet_fc_tgt_assoc       *assoc;
 143        struct list_head                fod_list;
 144        struct list_head                pending_cmd_list;
 145        struct list_head                avail_defer_list;
 146        struct workqueue_struct         *work_q;
 147        struct kref                     ref;
 148        struct nvmet_fc_fcp_iod         fod[];          /* array of fcp_iods */
 149} __aligned(sizeof(unsigned long long));
 150
 151struct nvmet_fc_hostport {
 152        struct nvmet_fc_tgtport         *tgtport;
 153        void                            *hosthandle;
 154        struct list_head                host_list;
 155        struct kref                     ref;
 156        u8                              invalid;
 157};
 158
 159struct nvmet_fc_tgt_assoc {
 160        u64                             association_id;
 161        u32                             a_id;
 162        atomic_t                        terminating;
 163        struct nvmet_fc_tgtport         *tgtport;
 164        struct nvmet_fc_hostport        *hostport;
 165        struct nvmet_fc_ls_iod          *rcv_disconn;
 166        struct list_head                a_list;
 167        struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES + 1];
 168        struct kref                     ref;
 169        struct work_struct              del_work;
 170};
 171
 172
 173static inline int
 174nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
 175{
 176        return (iodptr - iodptr->tgtport->iod);
 177}
 178
 179static inline int
 180nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
 181{
 182        return (fodptr - fodptr->queue->fod);
 183}
 184
 185
 186/*
 187 * Association and Connection IDs:
 188 *
 189 * Association ID will have random number in upper 6 bytes and zero
 190 *   in lower 2 bytes
 191 *
 192 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
 193 *
 194 * note: Association ID = Connection ID for queue 0
 195 */
 196#define BYTES_FOR_QID                   sizeof(u16)
 197#define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
 198#define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
 199
 200static inline u64
 201nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
 202{
 203        return (assoc->association_id | qid);
 204}
 205
 206static inline u64
 207nvmet_fc_getassociationid(u64 connectionid)
 208{
 209        return connectionid & ~NVMET_FC_QUEUEID_MASK;
 210}
 211
 212static inline u16
 213nvmet_fc_getqueueid(u64 connectionid)
 214{
 215        return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
 216}
 217
 218static inline struct nvmet_fc_tgtport *
 219targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
 220{
 221        return container_of(targetport, struct nvmet_fc_tgtport,
 222                                 fc_target_port);
 223}
 224
 225static inline struct nvmet_fc_fcp_iod *
 226nvmet_req_to_fod(struct nvmet_req *nvme_req)
 227{
 228        return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
 229}
 230
 231
 232/* *************************** Globals **************************** */
 233
 234
 235static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
 236
 237static LIST_HEAD(nvmet_fc_target_list);
 238static DEFINE_IDA(nvmet_fc_tgtport_cnt);
 239static LIST_HEAD(nvmet_fc_portentry_list);
 240
 241
 242static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
 243static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
 244static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
 245static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
 246static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
 247static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
 248static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
 249static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
 250static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
 251                                        struct nvmet_fc_fcp_iod *fod);
 252static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
 253static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
 254                                struct nvmet_fc_ls_iod *iod);
 255
 256
 257/* *********************** FC-NVME DMA Handling **************************** */
 258
 259/*
 260 * The fcloop device passes in a NULL device pointer. Real LLD's will
 261 * pass in a valid device pointer. If NULL is passed to the dma mapping
 262 * routines, depending on the platform, it may or may not succeed, and
 263 * may crash.
 264 *
 265 * As such:
 266 * Wrapper all the dma routines and check the dev pointer.
 267 *
 268 * If simple mappings (return just a dma address, we'll noop them,
 269 * returning a dma address of 0.
 270 *
 271 * On more complex mappings (dma_map_sg), a pseudo routine fills
 272 * in the scatter list, setting all dma addresses to 0.
 273 */
 274
 275static inline dma_addr_t
 276fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 277                enum dma_data_direction dir)
 278{
 279        return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 280}
 281
 282static inline int
 283fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 284{
 285        return dev ? dma_mapping_error(dev, dma_addr) : 0;
 286}
 287
 288static inline void
 289fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 290        enum dma_data_direction dir)
 291{
 292        if (dev)
 293                dma_unmap_single(dev, addr, size, dir);
 294}
 295
 296static inline void
 297fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 298                enum dma_data_direction dir)
 299{
 300        if (dev)
 301                dma_sync_single_for_cpu(dev, addr, size, dir);
 302}
 303
 304static inline void
 305fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 306                enum dma_data_direction dir)
 307{
 308        if (dev)
 309                dma_sync_single_for_device(dev, addr, size, dir);
 310}
 311
 312/* pseudo dma_map_sg call */
 313static int
 314fc_map_sg(struct scatterlist *sg, int nents)
 315{
 316        struct scatterlist *s;
 317        int i;
 318
 319        WARN_ON(nents == 0 || sg[0].length == 0);
 320
 321        for_each_sg(sg, s, nents, i) {
 322                s->dma_address = 0L;
 323#ifdef CONFIG_NEED_SG_DMA_LENGTH
 324                s->dma_length = s->length;
 325#endif
 326        }
 327        return nents;
 328}
 329
 330static inline int
 331fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 332                enum dma_data_direction dir)
 333{
 334        return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
 335}
 336
 337static inline void
 338fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 339                enum dma_data_direction dir)
 340{
 341        if (dev)
 342                dma_unmap_sg(dev, sg, nents, dir);
 343}
 344
 345
 346/* ********************** FC-NVME LS XMT Handling ************************* */
 347
 348
 349static void
 350__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
 351{
 352        struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
 353        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
 354        unsigned long flags;
 355
 356        spin_lock_irqsave(&tgtport->lock, flags);
 357
 358        if (!lsop->req_queued) {
 359                spin_unlock_irqrestore(&tgtport->lock, flags);
 360                return;
 361        }
 362
 363        list_del(&lsop->lsreq_list);
 364
 365        lsop->req_queued = false;
 366
 367        spin_unlock_irqrestore(&tgtport->lock, flags);
 368
 369        fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
 370                                  (lsreq->rqstlen + lsreq->rsplen),
 371                                  DMA_BIDIRECTIONAL);
 372
 373        nvmet_fc_tgtport_put(tgtport);
 374}
 375
 376static int
 377__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
 378                struct nvmet_fc_ls_req_op *lsop,
 379                void (*done)(struct nvmefc_ls_req *req, int status))
 380{
 381        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
 382        unsigned long flags;
 383        int ret = 0;
 384
 385        if (!tgtport->ops->ls_req)
 386                return -EOPNOTSUPP;
 387
 388        if (!nvmet_fc_tgtport_get(tgtport))
 389                return -ESHUTDOWN;
 390
 391        lsreq->done = done;
 392        lsop->req_queued = false;
 393        INIT_LIST_HEAD(&lsop->lsreq_list);
 394
 395        lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
 396                                  lsreq->rqstlen + lsreq->rsplen,
 397                                  DMA_BIDIRECTIONAL);
 398        if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
 399                ret = -EFAULT;
 400                goto out_puttgtport;
 401        }
 402        lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
 403
 404        spin_lock_irqsave(&tgtport->lock, flags);
 405
 406        list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
 407
 408        lsop->req_queued = true;
 409
 410        spin_unlock_irqrestore(&tgtport->lock, flags);
 411
 412        ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
 413                                   lsreq);
 414        if (ret)
 415                goto out_unlink;
 416
 417        return 0;
 418
 419out_unlink:
 420        lsop->ls_error = ret;
 421        spin_lock_irqsave(&tgtport->lock, flags);
 422        lsop->req_queued = false;
 423        list_del(&lsop->lsreq_list);
 424        spin_unlock_irqrestore(&tgtport->lock, flags);
 425        fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
 426                                  (lsreq->rqstlen + lsreq->rsplen),
 427                                  DMA_BIDIRECTIONAL);
 428out_puttgtport:
 429        nvmet_fc_tgtport_put(tgtport);
 430
 431        return ret;
 432}
 433
 434static int
 435nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
 436                struct nvmet_fc_ls_req_op *lsop,
 437                void (*done)(struct nvmefc_ls_req *req, int status))
 438{
 439        /* don't wait for completion */
 440
 441        return __nvmet_fc_send_ls_req(tgtport, lsop, done);
 442}
 443
 444static void
 445nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
 446{
 447        struct nvmet_fc_ls_req_op *lsop =
 448                container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
 449
 450        __nvmet_fc_finish_ls_req(lsop);
 451
 452        /* fc-nvme target doesn't care about success or failure of cmd */
 453
 454        kfree(lsop);
 455}
 456
 457/*
 458 * This routine sends a FC-NVME LS to disconnect (aka terminate)
 459 * the FC-NVME Association.  Terminating the association also
 460 * terminates the FC-NVME connections (per queue, both admin and io
 461 * queues) that are part of the association. E.g. things are torn
 462 * down, and the related FC-NVME Association ID and Connection IDs
 463 * become invalid.
 464 *
 465 * The behavior of the fc-nvme target is such that it's
 466 * understanding of the association and connections will implicitly
 467 * be torn down. The action is implicit as it may be due to a loss of
 468 * connectivity with the fc-nvme host, so the target may never get a
 469 * response even if it tried.  As such, the action of this routine
 470 * is to asynchronously send the LS, ignore any results of the LS, and
 471 * continue on with terminating the association. If the fc-nvme host
 472 * is present and receives the LS, it too can tear down.
 473 */
 474static void
 475nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
 476{
 477        struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
 478        struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
 479        struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
 480        struct nvmet_fc_ls_req_op *lsop;
 481        struct nvmefc_ls_req *lsreq;
 482        int ret;
 483
 484        /*
 485         * If ls_req is NULL or no hosthandle, it's an older lldd and no
 486         * message is normal. Otherwise, send unless the hostport has
 487         * already been invalidated by the lldd.
 488         */
 489        if (!tgtport->ops->ls_req || !assoc->hostport ||
 490            assoc->hostport->invalid)
 491                return;
 492
 493        lsop = kzalloc((sizeof(*lsop) +
 494                        sizeof(*discon_rqst) + sizeof(*discon_acc) +
 495                        tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
 496        if (!lsop) {
 497                dev_info(tgtport->dev,
 498                        "{%d:%d} send Disconnect Association failed: ENOMEM\n",
 499                        tgtport->fc_target_port.port_num, assoc->a_id);
 500                return;
 501        }
 502
 503        discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
 504        discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
 505        lsreq = &lsop->ls_req;
 506        if (tgtport->ops->lsrqst_priv_sz)
 507                lsreq->private = (void *)&discon_acc[1];
 508        else
 509                lsreq->private = NULL;
 510
 511        lsop->tgtport = tgtport;
 512        lsop->hosthandle = assoc->hostport->hosthandle;
 513
 514        nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
 515                                assoc->association_id);
 516
 517        ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
 518                                nvmet_fc_disconnect_assoc_done);
 519        if (ret) {
 520                dev_info(tgtport->dev,
 521                        "{%d:%d} XMT Disconnect Association failed: %d\n",
 522                        tgtport->fc_target_port.port_num, assoc->a_id, ret);
 523                kfree(lsop);
 524        }
 525}
 526
 527
 528/* *********************** FC-NVME Port Management ************************ */
 529
 530
 531static int
 532nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
 533{
 534        struct nvmet_fc_ls_iod *iod;
 535        int i;
 536
 537        iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
 538                        GFP_KERNEL);
 539        if (!iod)
 540                return -ENOMEM;
 541
 542        tgtport->iod = iod;
 543
 544        for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
 545                INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
 546                iod->tgtport = tgtport;
 547                list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
 548
 549                iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
 550                                       sizeof(union nvmefc_ls_responses),
 551                                       GFP_KERNEL);
 552                if (!iod->rqstbuf)
 553                        goto out_fail;
 554
 555                iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
 556
 557                iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
 558                                                sizeof(*iod->rspbuf),
 559                                                DMA_TO_DEVICE);
 560                if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
 561                        goto out_fail;
 562        }
 563
 564        return 0;
 565
 566out_fail:
 567        kfree(iod->rqstbuf);
 568        list_del(&iod->ls_rcv_list);
 569        for (iod--, i--; i >= 0; iod--, i--) {
 570                fc_dma_unmap_single(tgtport->dev, iod->rspdma,
 571                                sizeof(*iod->rspbuf), DMA_TO_DEVICE);
 572                kfree(iod->rqstbuf);
 573                list_del(&iod->ls_rcv_list);
 574        }
 575
 576        kfree(iod);
 577
 578        return -EFAULT;
 579}
 580
 581static void
 582nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
 583{
 584        struct nvmet_fc_ls_iod *iod = tgtport->iod;
 585        int i;
 586
 587        for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
 588                fc_dma_unmap_single(tgtport->dev,
 589                                iod->rspdma, sizeof(*iod->rspbuf),
 590                                DMA_TO_DEVICE);
 591                kfree(iod->rqstbuf);
 592                list_del(&iod->ls_rcv_list);
 593        }
 594        kfree(tgtport->iod);
 595}
 596
 597static struct nvmet_fc_ls_iod *
 598nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
 599{
 600        struct nvmet_fc_ls_iod *iod;
 601        unsigned long flags;
 602
 603        spin_lock_irqsave(&tgtport->lock, flags);
 604        iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
 605                                        struct nvmet_fc_ls_iod, ls_rcv_list);
 606        if (iod)
 607                list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
 608        spin_unlock_irqrestore(&tgtport->lock, flags);
 609        return iod;
 610}
 611
 612
 613static void
 614nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
 615                        struct nvmet_fc_ls_iod *iod)
 616{
 617        unsigned long flags;
 618
 619        spin_lock_irqsave(&tgtport->lock, flags);
 620        list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
 621        spin_unlock_irqrestore(&tgtport->lock, flags);
 622}
 623
 624static void
 625nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
 626                                struct nvmet_fc_tgt_queue *queue)
 627{
 628        struct nvmet_fc_fcp_iod *fod = queue->fod;
 629        int i;
 630
 631        for (i = 0; i < queue->sqsize; fod++, i++) {
 632                INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
 633                fod->tgtport = tgtport;
 634                fod->queue = queue;
 635                fod->active = false;
 636                fod->abort = false;
 637                fod->aborted = false;
 638                fod->fcpreq = NULL;
 639                list_add_tail(&fod->fcp_list, &queue->fod_list);
 640                spin_lock_init(&fod->flock);
 641
 642                fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
 643                                        sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 644                if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
 645                        list_del(&fod->fcp_list);
 646                        for (fod--, i--; i >= 0; fod--, i--) {
 647                                fc_dma_unmap_single(tgtport->dev, fod->rspdma,
 648                                                sizeof(fod->rspiubuf),
 649                                                DMA_TO_DEVICE);
 650                                fod->rspdma = 0L;
 651                                list_del(&fod->fcp_list);
 652                        }
 653
 654                        return;
 655                }
 656        }
 657}
 658
 659static void
 660nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
 661                                struct nvmet_fc_tgt_queue *queue)
 662{
 663        struct nvmet_fc_fcp_iod *fod = queue->fod;
 664        int i;
 665
 666        for (i = 0; i < queue->sqsize; fod++, i++) {
 667                if (fod->rspdma)
 668                        fc_dma_unmap_single(tgtport->dev, fod->rspdma,
 669                                sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 670        }
 671}
 672
 673static struct nvmet_fc_fcp_iod *
 674nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
 675{
 676        struct nvmet_fc_fcp_iod *fod;
 677
 678        lockdep_assert_held(&queue->qlock);
 679
 680        fod = list_first_entry_or_null(&queue->fod_list,
 681                                        struct nvmet_fc_fcp_iod, fcp_list);
 682        if (fod) {
 683                list_del(&fod->fcp_list);
 684                fod->active = true;
 685                /*
 686                 * no queue reference is taken, as it was taken by the
 687                 * queue lookup just prior to the allocation. The iod
 688                 * will "inherit" that reference.
 689                 */
 690        }
 691        return fod;
 692}
 693
 694
 695static void
 696nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
 697                       struct nvmet_fc_tgt_queue *queue,
 698                       struct nvmefc_tgt_fcp_req *fcpreq)
 699{
 700        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
 701
 702        /*
 703         * put all admin cmds on hw queue id 0. All io commands go to
 704         * the respective hw queue based on a modulo basis
 705         */
 706        fcpreq->hwqid = queue->qid ?
 707                        ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
 708
 709        nvmet_fc_handle_fcp_rqst(tgtport, fod);
 710}
 711
 712static void
 713nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
 714{
 715        struct nvmet_fc_fcp_iod *fod =
 716                container_of(work, struct nvmet_fc_fcp_iod, defer_work);
 717
 718        /* Submit deferred IO for processing */
 719        nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
 720
 721}
 722
 723static void
 724nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
 725                        struct nvmet_fc_fcp_iod *fod)
 726{
 727        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
 728        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
 729        struct nvmet_fc_defer_fcp_req *deferfcp;
 730        unsigned long flags;
 731
 732        fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
 733                                sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 734
 735        fcpreq->nvmet_fc_private = NULL;
 736
 737        fod->active = false;
 738        fod->abort = false;
 739        fod->aborted = false;
 740        fod->writedataactive = false;
 741        fod->fcpreq = NULL;
 742
 743        tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
 744
 745        /* release the queue lookup reference on the completed IO */
 746        nvmet_fc_tgt_q_put(queue);
 747
 748        spin_lock_irqsave(&queue->qlock, flags);
 749        deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
 750                                struct nvmet_fc_defer_fcp_req, req_list);
 751        if (!deferfcp) {
 752                list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
 753                spin_unlock_irqrestore(&queue->qlock, flags);
 754                return;
 755        }
 756
 757        /* Re-use the fod for the next pending cmd that was deferred */
 758        list_del(&deferfcp->req_list);
 759
 760        fcpreq = deferfcp->fcp_req;
 761
 762        /* deferfcp can be reused for another IO at a later date */
 763        list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
 764
 765        spin_unlock_irqrestore(&queue->qlock, flags);
 766
 767        /* Save NVME CMD IO in fod */
 768        memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
 769
 770        /* Setup new fcpreq to be processed */
 771        fcpreq->rspaddr = NULL;
 772        fcpreq->rsplen  = 0;
 773        fcpreq->nvmet_fc_private = fod;
 774        fod->fcpreq = fcpreq;
 775        fod->active = true;
 776
 777        /* inform LLDD IO is now being processed */
 778        tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
 779
 780        /*
 781         * Leave the queue lookup get reference taken when
 782         * fod was originally allocated.
 783         */
 784
 785        queue_work(queue->work_q, &fod->defer_work);
 786}
 787
 788static struct nvmet_fc_tgt_queue *
 789nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
 790                        u16 qid, u16 sqsize)
 791{
 792        struct nvmet_fc_tgt_queue *queue;
 793        unsigned long flags;
 794        int ret;
 795
 796        if (qid > NVMET_NR_QUEUES)
 797                return NULL;
 798
 799        queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
 800        if (!queue)
 801                return NULL;
 802
 803        if (!nvmet_fc_tgt_a_get(assoc))
 804                goto out_free_queue;
 805
 806        queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
 807                                assoc->tgtport->fc_target_port.port_num,
 808                                assoc->a_id, qid);
 809        if (!queue->work_q)
 810                goto out_a_put;
 811
 812        queue->qid = qid;
 813        queue->sqsize = sqsize;
 814        queue->assoc = assoc;
 815        INIT_LIST_HEAD(&queue->fod_list);
 816        INIT_LIST_HEAD(&queue->avail_defer_list);
 817        INIT_LIST_HEAD(&queue->pending_cmd_list);
 818        atomic_set(&queue->connected, 0);
 819        atomic_set(&queue->sqtail, 0);
 820        atomic_set(&queue->rsn, 1);
 821        atomic_set(&queue->zrspcnt, 0);
 822        spin_lock_init(&queue->qlock);
 823        kref_init(&queue->ref);
 824
 825        nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
 826
 827        ret = nvmet_sq_init(&queue->nvme_sq);
 828        if (ret)
 829                goto out_fail_iodlist;
 830
 831        WARN_ON(assoc->queues[qid]);
 832        spin_lock_irqsave(&assoc->tgtport->lock, flags);
 833        assoc->queues[qid] = queue;
 834        spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
 835
 836        return queue;
 837
 838out_fail_iodlist:
 839        nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
 840        destroy_workqueue(queue->work_q);
 841out_a_put:
 842        nvmet_fc_tgt_a_put(assoc);
 843out_free_queue:
 844        kfree(queue);
 845        return NULL;
 846}
 847
 848
 849static void
 850nvmet_fc_tgt_queue_free(struct kref *ref)
 851{
 852        struct nvmet_fc_tgt_queue *queue =
 853                container_of(ref, struct nvmet_fc_tgt_queue, ref);
 854        unsigned long flags;
 855
 856        spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
 857        queue->assoc->queues[queue->qid] = NULL;
 858        spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
 859
 860        nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
 861
 862        nvmet_fc_tgt_a_put(queue->assoc);
 863
 864        destroy_workqueue(queue->work_q);
 865
 866        kfree(queue);
 867}
 868
 869static void
 870nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
 871{
 872        kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
 873}
 874
 875static int
 876nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
 877{
 878        return kref_get_unless_zero(&queue->ref);
 879}
 880
 881
 882static void
 883nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
 884{
 885        struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
 886        struct nvmet_fc_fcp_iod *fod = queue->fod;
 887        struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
 888        unsigned long flags;
 889        int i;
 890        bool disconnect;
 891
 892        disconnect = atomic_xchg(&queue->connected, 0);
 893
 894        /* if not connected, nothing to do */
 895        if (!disconnect)
 896                return;
 897
 898        spin_lock_irqsave(&queue->qlock, flags);
 899        /* abort outstanding io's */
 900        for (i = 0; i < queue->sqsize; fod++, i++) {
 901                if (fod->active) {
 902                        spin_lock(&fod->flock);
 903                        fod->abort = true;
 904                        /*
 905                         * only call lldd abort routine if waiting for
 906                         * writedata. other outstanding ops should finish
 907                         * on their own.
 908                         */
 909                        if (fod->writedataactive) {
 910                                fod->aborted = true;
 911                                spin_unlock(&fod->flock);
 912                                tgtport->ops->fcp_abort(
 913                                        &tgtport->fc_target_port, fod->fcpreq);
 914                        } else
 915                                spin_unlock(&fod->flock);
 916                }
 917        }
 918
 919        /* Cleanup defer'ed IOs in queue */
 920        list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
 921                                req_list) {
 922                list_del(&deferfcp->req_list);
 923                kfree(deferfcp);
 924        }
 925
 926        for (;;) {
 927                deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
 928                                struct nvmet_fc_defer_fcp_req, req_list);
 929                if (!deferfcp)
 930                        break;
 931
 932                list_del(&deferfcp->req_list);
 933                spin_unlock_irqrestore(&queue->qlock, flags);
 934
 935                tgtport->ops->defer_rcv(&tgtport->fc_target_port,
 936                                deferfcp->fcp_req);
 937
 938                tgtport->ops->fcp_abort(&tgtport->fc_target_port,
 939                                deferfcp->fcp_req);
 940
 941                tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
 942                                deferfcp->fcp_req);
 943
 944                /* release the queue lookup reference */
 945                nvmet_fc_tgt_q_put(queue);
 946
 947                kfree(deferfcp);
 948
 949                spin_lock_irqsave(&queue->qlock, flags);
 950        }
 951        spin_unlock_irqrestore(&queue->qlock, flags);
 952
 953        flush_workqueue(queue->work_q);
 954
 955        nvmet_sq_destroy(&queue->nvme_sq);
 956
 957        nvmet_fc_tgt_q_put(queue);
 958}
 959
 960static struct nvmet_fc_tgt_queue *
 961nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
 962                                u64 connection_id)
 963{
 964        struct nvmet_fc_tgt_assoc *assoc;
 965        struct nvmet_fc_tgt_queue *queue;
 966        u64 association_id = nvmet_fc_getassociationid(connection_id);
 967        u16 qid = nvmet_fc_getqueueid(connection_id);
 968        unsigned long flags;
 969
 970        if (qid > NVMET_NR_QUEUES)
 971                return NULL;
 972
 973        spin_lock_irqsave(&tgtport->lock, flags);
 974        list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
 975                if (association_id == assoc->association_id) {
 976                        queue = assoc->queues[qid];
 977                        if (queue &&
 978                            (!atomic_read(&queue->connected) ||
 979                             !nvmet_fc_tgt_q_get(queue)))
 980                                queue = NULL;
 981                        spin_unlock_irqrestore(&tgtport->lock, flags);
 982                        return queue;
 983                }
 984        }
 985        spin_unlock_irqrestore(&tgtport->lock, flags);
 986        return NULL;
 987}
 988
 989static void
 990nvmet_fc_hostport_free(struct kref *ref)
 991{
 992        struct nvmet_fc_hostport *hostport =
 993                container_of(ref, struct nvmet_fc_hostport, ref);
 994        struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
 995        unsigned long flags;
 996
 997        spin_lock_irqsave(&tgtport->lock, flags);
 998        list_del(&hostport->host_list);
 999        spin_unlock_irqrestore(&tgtport->lock, flags);
1000        if (tgtport->ops->host_release && hostport->invalid)
1001                tgtport->ops->host_release(hostport->hosthandle);
1002        kfree(hostport);
1003        nvmet_fc_tgtport_put(tgtport);
1004}
1005
1006static void
1007nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1008{
1009        kref_put(&hostport->ref, nvmet_fc_hostport_free);
1010}
1011
1012static int
1013nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1014{
1015        return kref_get_unless_zero(&hostport->ref);
1016}
1017
1018static void
1019nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1020{
1021        /* if LLDD not implemented, leave as NULL */
1022        if (!hostport || !hostport->hosthandle)
1023                return;
1024
1025        nvmet_fc_hostport_put(hostport);
1026}
1027
1028static struct nvmet_fc_hostport *
1029nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1030{
1031        struct nvmet_fc_hostport *newhost, *host, *match = NULL;
1032        unsigned long flags;
1033
1034        /* if LLDD not implemented, leave as NULL */
1035        if (!hosthandle)
1036                return NULL;
1037
1038        /* take reference for what will be the newly allocated hostport */
1039        if (!nvmet_fc_tgtport_get(tgtport))
1040                return ERR_PTR(-EINVAL);
1041
1042        newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1043        if (!newhost) {
1044                spin_lock_irqsave(&tgtport->lock, flags);
1045                list_for_each_entry(host, &tgtport->host_list, host_list) {
1046                        if (host->hosthandle == hosthandle && !host->invalid) {
1047                                if (nvmet_fc_hostport_get(host)) {
1048                                        match = host;
1049                                        break;
1050                                }
1051                        }
1052                }
1053                spin_unlock_irqrestore(&tgtport->lock, flags);
1054                /* no allocation - release reference */
1055                nvmet_fc_tgtport_put(tgtport);
1056                return (match) ? match : ERR_PTR(-ENOMEM);
1057        }
1058
1059        newhost->tgtport = tgtport;
1060        newhost->hosthandle = hosthandle;
1061        INIT_LIST_HEAD(&newhost->host_list);
1062        kref_init(&newhost->ref);
1063
1064        spin_lock_irqsave(&tgtport->lock, flags);
1065        list_for_each_entry(host, &tgtport->host_list, host_list) {
1066                if (host->hosthandle == hosthandle && !host->invalid) {
1067                        if (nvmet_fc_hostport_get(host)) {
1068                                match = host;
1069                                break;
1070                        }
1071                }
1072        }
1073        if (match) {
1074                kfree(newhost);
1075                newhost = NULL;
1076                /* releasing allocation - release reference */
1077                nvmet_fc_tgtport_put(tgtport);
1078        } else
1079                list_add_tail(&newhost->host_list, &tgtport->host_list);
1080        spin_unlock_irqrestore(&tgtport->lock, flags);
1081
1082        return (match) ? match : newhost;
1083}
1084
1085static void
1086nvmet_fc_delete_assoc(struct work_struct *work)
1087{
1088        struct nvmet_fc_tgt_assoc *assoc =
1089                container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1090
1091        nvmet_fc_delete_target_assoc(assoc);
1092        nvmet_fc_tgt_a_put(assoc);
1093}
1094
1095static struct nvmet_fc_tgt_assoc *
1096nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1097{
1098        struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1099        unsigned long flags;
1100        u64 ran;
1101        int idx;
1102        bool needrandom = true;
1103
1104        assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1105        if (!assoc)
1106                return NULL;
1107
1108        idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
1109        if (idx < 0)
1110                goto out_free_assoc;
1111
1112        if (!nvmet_fc_tgtport_get(tgtport))
1113                goto out_ida;
1114
1115        assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1116        if (IS_ERR(assoc->hostport))
1117                goto out_put;
1118
1119        assoc->tgtport = tgtport;
1120        assoc->a_id = idx;
1121        INIT_LIST_HEAD(&assoc->a_list);
1122        kref_init(&assoc->ref);
1123        INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1124        atomic_set(&assoc->terminating, 0);
1125
1126        while (needrandom) {
1127                get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1128                ran = ran << BYTES_FOR_QID_SHIFT;
1129
1130                spin_lock_irqsave(&tgtport->lock, flags);
1131                needrandom = false;
1132                list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1133                        if (ran == tmpassoc->association_id) {
1134                                needrandom = true;
1135                                break;
1136                        }
1137                }
1138                if (!needrandom) {
1139                        assoc->association_id = ran;
1140                        list_add_tail(&assoc->a_list, &tgtport->assoc_list);
1141                }
1142                spin_unlock_irqrestore(&tgtport->lock, flags);
1143        }
1144
1145        return assoc;
1146
1147out_put:
1148        nvmet_fc_tgtport_put(tgtport);
1149out_ida:
1150        ida_simple_remove(&tgtport->assoc_cnt, idx);
1151out_free_assoc:
1152        kfree(assoc);
1153        return NULL;
1154}
1155
1156static void
1157nvmet_fc_target_assoc_free(struct kref *ref)
1158{
1159        struct nvmet_fc_tgt_assoc *assoc =
1160                container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1161        struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1162        struct nvmet_fc_ls_iod  *oldls;
1163        unsigned long flags;
1164
1165        /* Send Disconnect now that all i/o has completed */
1166        nvmet_fc_xmt_disconnect_assoc(assoc);
1167
1168        nvmet_fc_free_hostport(assoc->hostport);
1169        spin_lock_irqsave(&tgtport->lock, flags);
1170        list_del(&assoc->a_list);
1171        oldls = assoc->rcv_disconn;
1172        spin_unlock_irqrestore(&tgtport->lock, flags);
1173        /* if pending Rcv Disconnect Association LS, send rsp now */
1174        if (oldls)
1175                nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1176        ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
1177        dev_info(tgtport->dev,
1178                "{%d:%d} Association freed\n",
1179                tgtport->fc_target_port.port_num, assoc->a_id);
1180        kfree(assoc);
1181        nvmet_fc_tgtport_put(tgtport);
1182}
1183
1184static void
1185nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1186{
1187        kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1188}
1189
1190static int
1191nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1192{
1193        return kref_get_unless_zero(&assoc->ref);
1194}
1195
1196static void
1197nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1198{
1199        struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1200        struct nvmet_fc_tgt_queue *queue;
1201        unsigned long flags;
1202        int i, terminating;
1203
1204        terminating = atomic_xchg(&assoc->terminating, 1);
1205
1206        /* if already terminating, do nothing */
1207        if (terminating)
1208                return;
1209
1210        spin_lock_irqsave(&tgtport->lock, flags);
1211        for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1212                queue = assoc->queues[i];
1213                if (queue) {
1214                        if (!nvmet_fc_tgt_q_get(queue))
1215                                continue;
1216                        spin_unlock_irqrestore(&tgtport->lock, flags);
1217                        nvmet_fc_delete_target_queue(queue);
1218                        nvmet_fc_tgt_q_put(queue);
1219                        spin_lock_irqsave(&tgtport->lock, flags);
1220                }
1221        }
1222        spin_unlock_irqrestore(&tgtport->lock, flags);
1223
1224        dev_info(tgtport->dev,
1225                "{%d:%d} Association deleted\n",
1226                tgtport->fc_target_port.port_num, assoc->a_id);
1227
1228        nvmet_fc_tgt_a_put(assoc);
1229}
1230
1231static struct nvmet_fc_tgt_assoc *
1232nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1233                                u64 association_id)
1234{
1235        struct nvmet_fc_tgt_assoc *assoc;
1236        struct nvmet_fc_tgt_assoc *ret = NULL;
1237        unsigned long flags;
1238
1239        spin_lock_irqsave(&tgtport->lock, flags);
1240        list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1241                if (association_id == assoc->association_id) {
1242                        ret = assoc;
1243                        if (!nvmet_fc_tgt_a_get(assoc))
1244                                ret = NULL;
1245                        break;
1246                }
1247        }
1248        spin_unlock_irqrestore(&tgtport->lock, flags);
1249
1250        return ret;
1251}
1252
1253static void
1254nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1255                        struct nvmet_fc_port_entry *pe,
1256                        struct nvmet_port *port)
1257{
1258        lockdep_assert_held(&nvmet_fc_tgtlock);
1259
1260        pe->tgtport = tgtport;
1261        tgtport->pe = pe;
1262
1263        pe->port = port;
1264        port->priv = pe;
1265
1266        pe->node_name = tgtport->fc_target_port.node_name;
1267        pe->port_name = tgtport->fc_target_port.port_name;
1268        INIT_LIST_HEAD(&pe->pe_list);
1269
1270        list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1271}
1272
1273static void
1274nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1275{
1276        unsigned long flags;
1277
1278        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1279        if (pe->tgtport)
1280                pe->tgtport->pe = NULL;
1281        list_del(&pe->pe_list);
1282        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1283}
1284
1285/*
1286 * called when a targetport deregisters. Breaks the relationship
1287 * with the nvmet port, but leaves the port_entry in place so that
1288 * re-registration can resume operation.
1289 */
1290static void
1291nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1292{
1293        struct nvmet_fc_port_entry *pe;
1294        unsigned long flags;
1295
1296        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1297        pe = tgtport->pe;
1298        if (pe)
1299                pe->tgtport = NULL;
1300        tgtport->pe = NULL;
1301        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1302}
1303
1304/*
1305 * called when a new targetport is registered. Looks in the
1306 * existing nvmet port_entries to see if the nvmet layer is
1307 * configured for the targetport's wwn's. (the targetport existed,
1308 * nvmet configured, the lldd unregistered the tgtport, and is now
1309 * reregistering the same targetport).  If so, set the nvmet port
1310 * port entry on the targetport.
1311 */
1312static void
1313nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1314{
1315        struct nvmet_fc_port_entry *pe;
1316        unsigned long flags;
1317
1318        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1319        list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1320                if (tgtport->fc_target_port.node_name == pe->node_name &&
1321                    tgtport->fc_target_port.port_name == pe->port_name) {
1322                        WARN_ON(pe->tgtport);
1323                        tgtport->pe = pe;
1324                        pe->tgtport = tgtport;
1325                        break;
1326                }
1327        }
1328        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1329}
1330
1331/**
1332 * nvme_fc_register_targetport - transport entry point called by an
1333 *                              LLDD to register the existence of a local
1334 *                              NVME subystem FC port.
1335 * @pinfo:     pointer to information about the port to be registered
1336 * @template:  LLDD entrypoints and operational parameters for the port
1337 * @dev:       physical hardware device node port corresponds to. Will be
1338 *             used for DMA mappings
1339 * @portptr:   pointer to a local port pointer. Upon success, the routine
1340 *             will allocate a nvme_fc_local_port structure and place its
1341 *             address in the local port pointer. Upon failure, local port
1342 *             pointer will be set to NULL.
1343 *
1344 * Returns:
1345 * a completion status. Must be 0 upon success; a negative errno
1346 * (ex: -ENXIO) upon failure.
1347 */
1348int
1349nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1350                        struct nvmet_fc_target_template *template,
1351                        struct device *dev,
1352                        struct nvmet_fc_target_port **portptr)
1353{
1354        struct nvmet_fc_tgtport *newrec;
1355        unsigned long flags;
1356        int ret, idx;
1357
1358        if (!template->xmt_ls_rsp || !template->fcp_op ||
1359            !template->fcp_abort ||
1360            !template->fcp_req_release || !template->targetport_delete ||
1361            !template->max_hw_queues || !template->max_sgl_segments ||
1362            !template->max_dif_sgl_segments || !template->dma_boundary) {
1363                ret = -EINVAL;
1364                goto out_regtgt_failed;
1365        }
1366
1367        newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1368                         GFP_KERNEL);
1369        if (!newrec) {
1370                ret = -ENOMEM;
1371                goto out_regtgt_failed;
1372        }
1373
1374        idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1375        if (idx < 0) {
1376                ret = -ENOSPC;
1377                goto out_fail_kfree;
1378        }
1379
1380        if (!get_device(dev) && dev) {
1381                ret = -ENODEV;
1382                goto out_ida_put;
1383        }
1384
1385        newrec->fc_target_port.node_name = pinfo->node_name;
1386        newrec->fc_target_port.port_name = pinfo->port_name;
1387        if (template->target_priv_sz)
1388                newrec->fc_target_port.private = &newrec[1];
1389        else
1390                newrec->fc_target_port.private = NULL;
1391        newrec->fc_target_port.port_id = pinfo->port_id;
1392        newrec->fc_target_port.port_num = idx;
1393        INIT_LIST_HEAD(&newrec->tgt_list);
1394        newrec->dev = dev;
1395        newrec->ops = template;
1396        spin_lock_init(&newrec->lock);
1397        INIT_LIST_HEAD(&newrec->ls_rcv_list);
1398        INIT_LIST_HEAD(&newrec->ls_req_list);
1399        INIT_LIST_HEAD(&newrec->ls_busylist);
1400        INIT_LIST_HEAD(&newrec->assoc_list);
1401        INIT_LIST_HEAD(&newrec->host_list);
1402        kref_init(&newrec->ref);
1403        ida_init(&newrec->assoc_cnt);
1404        newrec->max_sg_cnt = template->max_sgl_segments;
1405
1406        ret = nvmet_fc_alloc_ls_iodlist(newrec);
1407        if (ret) {
1408                ret = -ENOMEM;
1409                goto out_free_newrec;
1410        }
1411
1412        nvmet_fc_portentry_rebind_tgt(newrec);
1413
1414        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1415        list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1416        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1417
1418        *portptr = &newrec->fc_target_port;
1419        return 0;
1420
1421out_free_newrec:
1422        put_device(dev);
1423out_ida_put:
1424        ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1425out_fail_kfree:
1426        kfree(newrec);
1427out_regtgt_failed:
1428        *portptr = NULL;
1429        return ret;
1430}
1431EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1432
1433
1434static void
1435nvmet_fc_free_tgtport(struct kref *ref)
1436{
1437        struct nvmet_fc_tgtport *tgtport =
1438                container_of(ref, struct nvmet_fc_tgtport, ref);
1439        struct device *dev = tgtport->dev;
1440        unsigned long flags;
1441
1442        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1443        list_del(&tgtport->tgt_list);
1444        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1445
1446        nvmet_fc_free_ls_iodlist(tgtport);
1447
1448        /* let the LLDD know we've finished tearing it down */
1449        tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1450
1451        ida_simple_remove(&nvmet_fc_tgtport_cnt,
1452                        tgtport->fc_target_port.port_num);
1453
1454        ida_destroy(&tgtport->assoc_cnt);
1455
1456        kfree(tgtport);
1457
1458        put_device(dev);
1459}
1460
1461static void
1462nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1463{
1464        kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1465}
1466
1467static int
1468nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1469{
1470        return kref_get_unless_zero(&tgtport->ref);
1471}
1472
1473static void
1474__nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1475{
1476        struct nvmet_fc_tgt_assoc *assoc, *next;
1477        unsigned long flags;
1478
1479        spin_lock_irqsave(&tgtport->lock, flags);
1480        list_for_each_entry_safe(assoc, next,
1481                                &tgtport->assoc_list, a_list) {
1482                if (!nvmet_fc_tgt_a_get(assoc))
1483                        continue;
1484                if (!schedule_work(&assoc->del_work))
1485                        /* already deleting - release local reference */
1486                        nvmet_fc_tgt_a_put(assoc);
1487        }
1488        spin_unlock_irqrestore(&tgtport->lock, flags);
1489}
1490
1491/**
1492 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1493 *                       to remove references to a hosthandle for LS's.
1494 *
1495 * The nvmet-fc layer ensures that any references to the hosthandle
1496 * on the targetport are forgotten (set to NULL).  The LLDD will
1497 * typically call this when a login with a remote host port has been
1498 * lost, thus LS's for the remote host port are no longer possible.
1499 *
1500 * If an LS request is outstanding to the targetport/hosthandle (or
1501 * issued concurrently with the call to invalidate the host), the
1502 * LLDD is responsible for terminating/aborting the LS and completing
1503 * the LS request. It is recommended that these terminations/aborts
1504 * occur after calling to invalidate the host handle to avoid additional
1505 * retries by the nvmet-fc transport. The nvmet-fc transport may
1506 * continue to reference host handle while it cleans up outstanding
1507 * NVME associations. The nvmet-fc transport will call the
1508 * ops->host_release() callback to notify the LLDD that all references
1509 * are complete and the related host handle can be recovered.
1510 * Note: if there are no references, the callback may be called before
1511 * the invalidate host call returns.
1512 *
1513 * @target_port: pointer to the (registered) target port that a prior
1514 *              LS was received on and which supplied the transport the
1515 *              hosthandle.
1516 * @hosthandle: the handle (pointer) that represents the host port
1517 *              that no longer has connectivity and that LS's should
1518 *              no longer be directed to.
1519 */
1520void
1521nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1522                        void *hosthandle)
1523{
1524        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1525        struct nvmet_fc_tgt_assoc *assoc, *next;
1526        unsigned long flags;
1527        bool noassoc = true;
1528
1529        spin_lock_irqsave(&tgtport->lock, flags);
1530        list_for_each_entry_safe(assoc, next,
1531                                &tgtport->assoc_list, a_list) {
1532                if (!assoc->hostport ||
1533                    assoc->hostport->hosthandle != hosthandle)
1534                        continue;
1535                if (!nvmet_fc_tgt_a_get(assoc))
1536                        continue;
1537                assoc->hostport->invalid = 1;
1538                noassoc = false;
1539                if (!schedule_work(&assoc->del_work))
1540                        /* already deleting - release local reference */
1541                        nvmet_fc_tgt_a_put(assoc);
1542        }
1543        spin_unlock_irqrestore(&tgtport->lock, flags);
1544
1545        /* if there's nothing to wait for - call the callback */
1546        if (noassoc && tgtport->ops->host_release)
1547                tgtport->ops->host_release(hosthandle);
1548}
1549EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1550
1551/*
1552 * nvmet layer has called to terminate an association
1553 */
1554static void
1555nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1556{
1557        struct nvmet_fc_tgtport *tgtport, *next;
1558        struct nvmet_fc_tgt_assoc *assoc;
1559        struct nvmet_fc_tgt_queue *queue;
1560        unsigned long flags;
1561        bool found_ctrl = false;
1562
1563        /* this is a bit ugly, but don't want to make locks layered */
1564        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1565        list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1566                        tgt_list) {
1567                if (!nvmet_fc_tgtport_get(tgtport))
1568                        continue;
1569                spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1570
1571                spin_lock_irqsave(&tgtport->lock, flags);
1572                list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1573                        queue = assoc->queues[0];
1574                        if (queue && queue->nvme_sq.ctrl == ctrl) {
1575                                if (nvmet_fc_tgt_a_get(assoc))
1576                                        found_ctrl = true;
1577                                break;
1578                        }
1579                }
1580                spin_unlock_irqrestore(&tgtport->lock, flags);
1581
1582                nvmet_fc_tgtport_put(tgtport);
1583
1584                if (found_ctrl) {
1585                        if (!schedule_work(&assoc->del_work))
1586                                /* already deleting - release local reference */
1587                                nvmet_fc_tgt_a_put(assoc);
1588                        return;
1589                }
1590
1591                spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1592        }
1593        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1594}
1595
1596/**
1597 * nvme_fc_unregister_targetport - transport entry point called by an
1598 *                              LLDD to deregister/remove a previously
1599 *                              registered a local NVME subsystem FC port.
1600 * @target_port: pointer to the (registered) target port that is to be
1601 *               deregistered.
1602 *
1603 * Returns:
1604 * a completion status. Must be 0 upon success; a negative errno
1605 * (ex: -ENXIO) upon failure.
1606 */
1607int
1608nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1609{
1610        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1611
1612        nvmet_fc_portentry_unbind_tgt(tgtport);
1613
1614        /* terminate any outstanding associations */
1615        __nvmet_fc_free_assocs(tgtport);
1616
1617        /*
1618         * should terminate LS's as well. However, LS's will be generated
1619         * at the tail end of association termination, so they likely don't
1620         * exist yet. And even if they did, it's worthwhile to just let
1621         * them finish and targetport ref counting will clean things up.
1622         */
1623
1624        nvmet_fc_tgtport_put(tgtport);
1625
1626        return 0;
1627}
1628EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1629
1630
1631/* ********************** FC-NVME LS RCV Handling ************************* */
1632
1633
1634static void
1635nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1636                        struct nvmet_fc_ls_iod *iod)
1637{
1638        struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1639        struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1640        struct nvmet_fc_tgt_queue *queue;
1641        int ret = 0;
1642
1643        memset(acc, 0, sizeof(*acc));
1644
1645        /*
1646         * FC-NVME spec changes. There are initiators sending different
1647         * lengths as padding sizes for Create Association Cmd descriptor
1648         * was incorrect.
1649         * Accept anything of "minimum" length. Assume format per 1.15
1650         * spec (with HOSTID reduced to 16 bytes), ignore how long the
1651         * trailing pad length is.
1652         */
1653        if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1654                ret = VERR_CR_ASSOC_LEN;
1655        else if (be32_to_cpu(rqst->desc_list_len) <
1656                        FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1657                ret = VERR_CR_ASSOC_RQST_LEN;
1658        else if (rqst->assoc_cmd.desc_tag !=
1659                        cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1660                ret = VERR_CR_ASSOC_CMD;
1661        else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1662                        FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1663                ret = VERR_CR_ASSOC_CMD_LEN;
1664        else if (!rqst->assoc_cmd.ersp_ratio ||
1665                 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1666                                be16_to_cpu(rqst->assoc_cmd.sqsize)))
1667                ret = VERR_ERSP_RATIO;
1668
1669        else {
1670                /* new association w/ admin queue */
1671                iod->assoc = nvmet_fc_alloc_target_assoc(
1672                                                tgtport, iod->hosthandle);
1673                if (!iod->assoc)
1674                        ret = VERR_ASSOC_ALLOC_FAIL;
1675                else {
1676                        queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1677                                        be16_to_cpu(rqst->assoc_cmd.sqsize));
1678                        if (!queue)
1679                                ret = VERR_QUEUE_ALLOC_FAIL;
1680                }
1681        }
1682
1683        if (ret) {
1684                dev_err(tgtport->dev,
1685                        "Create Association LS failed: %s\n",
1686                        validation_errors[ret]);
1687                iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1688                                sizeof(*acc), rqst->w0.ls_cmd,
1689                                FCNVME_RJT_RC_LOGIC,
1690                                FCNVME_RJT_EXP_NONE, 0);
1691                return;
1692        }
1693
1694        queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1695        atomic_set(&queue->connected, 1);
1696        queue->sqhd = 0;        /* best place to init value */
1697
1698        dev_info(tgtport->dev,
1699                "{%d:%d} Association created\n",
1700                tgtport->fc_target_port.port_num, iod->assoc->a_id);
1701
1702        /* format a response */
1703
1704        iod->lsrsp->rsplen = sizeof(*acc);
1705
1706        nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1707                        fcnvme_lsdesc_len(
1708                                sizeof(struct fcnvme_ls_cr_assoc_acc)),
1709                        FCNVME_LS_CREATE_ASSOCIATION);
1710        acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1711        acc->associd.desc_len =
1712                        fcnvme_lsdesc_len(
1713                                sizeof(struct fcnvme_lsdesc_assoc_id));
1714        acc->associd.association_id =
1715                        cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1716        acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1717        acc->connectid.desc_len =
1718                        fcnvme_lsdesc_len(
1719                                sizeof(struct fcnvme_lsdesc_conn_id));
1720        acc->connectid.connection_id = acc->associd.association_id;
1721}
1722
1723static void
1724nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1725                        struct nvmet_fc_ls_iod *iod)
1726{
1727        struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1728        struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1729        struct nvmet_fc_tgt_queue *queue;
1730        int ret = 0;
1731
1732        memset(acc, 0, sizeof(*acc));
1733
1734        if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1735                ret = VERR_CR_CONN_LEN;
1736        else if (rqst->desc_list_len !=
1737                        fcnvme_lsdesc_len(
1738                                sizeof(struct fcnvme_ls_cr_conn_rqst)))
1739                ret = VERR_CR_CONN_RQST_LEN;
1740        else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1741                ret = VERR_ASSOC_ID;
1742        else if (rqst->associd.desc_len !=
1743                        fcnvme_lsdesc_len(
1744                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1745                ret = VERR_ASSOC_ID_LEN;
1746        else if (rqst->connect_cmd.desc_tag !=
1747                        cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1748                ret = VERR_CR_CONN_CMD;
1749        else if (rqst->connect_cmd.desc_len !=
1750                        fcnvme_lsdesc_len(
1751                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1752                ret = VERR_CR_CONN_CMD_LEN;
1753        else if (!rqst->connect_cmd.ersp_ratio ||
1754                 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1755                                be16_to_cpu(rqst->connect_cmd.sqsize)))
1756                ret = VERR_ERSP_RATIO;
1757
1758        else {
1759                /* new io queue */
1760                iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1761                                be64_to_cpu(rqst->associd.association_id));
1762                if (!iod->assoc)
1763                        ret = VERR_NO_ASSOC;
1764                else {
1765                        queue = nvmet_fc_alloc_target_queue(iod->assoc,
1766                                        be16_to_cpu(rqst->connect_cmd.qid),
1767                                        be16_to_cpu(rqst->connect_cmd.sqsize));
1768                        if (!queue)
1769                                ret = VERR_QUEUE_ALLOC_FAIL;
1770
1771                        /* release get taken in nvmet_fc_find_target_assoc */
1772                        nvmet_fc_tgt_a_put(iod->assoc);
1773                }
1774        }
1775
1776        if (ret) {
1777                dev_err(tgtport->dev,
1778                        "Create Connection LS failed: %s\n",
1779                        validation_errors[ret]);
1780                iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1781                                sizeof(*acc), rqst->w0.ls_cmd,
1782                                (ret == VERR_NO_ASSOC) ?
1783                                        FCNVME_RJT_RC_INV_ASSOC :
1784                                        FCNVME_RJT_RC_LOGIC,
1785                                FCNVME_RJT_EXP_NONE, 0);
1786                return;
1787        }
1788
1789        queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1790        atomic_set(&queue->connected, 1);
1791        queue->sqhd = 0;        /* best place to init value */
1792
1793        /* format a response */
1794
1795        iod->lsrsp->rsplen = sizeof(*acc);
1796
1797        nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1798                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1799                        FCNVME_LS_CREATE_CONNECTION);
1800        acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1801        acc->connectid.desc_len =
1802                        fcnvme_lsdesc_len(
1803                                sizeof(struct fcnvme_lsdesc_conn_id));
1804        acc->connectid.connection_id =
1805                        cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1806                                be16_to_cpu(rqst->connect_cmd.qid)));
1807}
1808
1809/*
1810 * Returns true if the LS response is to be transmit
1811 * Returns false if the LS response is to be delayed
1812 */
1813static int
1814nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1815                        struct nvmet_fc_ls_iod *iod)
1816{
1817        struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1818                                                &iod->rqstbuf->rq_dis_assoc;
1819        struct fcnvme_ls_disconnect_assoc_acc *acc =
1820                                                &iod->rspbuf->rsp_dis_assoc;
1821        struct nvmet_fc_tgt_assoc *assoc = NULL;
1822        struct nvmet_fc_ls_iod *oldls = NULL;
1823        unsigned long flags;
1824        int ret = 0;
1825
1826        memset(acc, 0, sizeof(*acc));
1827
1828        ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1829        if (!ret) {
1830                /* match an active association - takes an assoc ref if !NULL */
1831                assoc = nvmet_fc_find_target_assoc(tgtport,
1832                                be64_to_cpu(rqst->associd.association_id));
1833                iod->assoc = assoc;
1834                if (!assoc)
1835                        ret = VERR_NO_ASSOC;
1836        }
1837
1838        if (ret || !assoc) {
1839                dev_err(tgtport->dev,
1840                        "Disconnect LS failed: %s\n",
1841                        validation_errors[ret]);
1842                iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1843                                sizeof(*acc), rqst->w0.ls_cmd,
1844                                (ret == VERR_NO_ASSOC) ?
1845                                        FCNVME_RJT_RC_INV_ASSOC :
1846                                        FCNVME_RJT_RC_LOGIC,
1847                                FCNVME_RJT_EXP_NONE, 0);
1848                return true;
1849        }
1850
1851        /* format a response */
1852
1853        iod->lsrsp->rsplen = sizeof(*acc);
1854
1855        nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1856                        fcnvme_lsdesc_len(
1857                                sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1858                        FCNVME_LS_DISCONNECT_ASSOC);
1859
1860        /* release get taken in nvmet_fc_find_target_assoc */
1861        nvmet_fc_tgt_a_put(assoc);
1862
1863        /*
1864         * The rules for LS response says the response cannot
1865         * go back until ABTS's have been sent for all outstanding
1866         * I/O and a Disconnect Association LS has been sent.
1867         * So... save off the Disconnect LS to send the response
1868         * later. If there was a prior LS already saved, replace
1869         * it with the newer one and send a can't perform reject
1870         * on the older one.
1871         */
1872        spin_lock_irqsave(&tgtport->lock, flags);
1873        oldls = assoc->rcv_disconn;
1874        assoc->rcv_disconn = iod;
1875        spin_unlock_irqrestore(&tgtport->lock, flags);
1876
1877        nvmet_fc_delete_target_assoc(assoc);
1878
1879        if (oldls) {
1880                dev_info(tgtport->dev,
1881                        "{%d:%d} Multiple Disconnect Association LS's "
1882                        "received\n",
1883                        tgtport->fc_target_port.port_num, assoc->a_id);
1884                /* overwrite good response with bogus failure */
1885                oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1886                                                sizeof(*iod->rspbuf),
1887                                                /* ok to use rqst, LS is same */
1888                                                rqst->w0.ls_cmd,
1889                                                FCNVME_RJT_RC_UNAB,
1890                                                FCNVME_RJT_EXP_NONE, 0);
1891                nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1892        }
1893
1894        return false;
1895}
1896
1897
1898/* *********************** NVME Ctrl Routines **************************** */
1899
1900
1901static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1902
1903static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1904
1905static void
1906nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1907{
1908        struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1909        struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1910
1911        fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1912                                sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1913        nvmet_fc_free_ls_iod(tgtport, iod);
1914        nvmet_fc_tgtport_put(tgtport);
1915}
1916
1917static void
1918nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1919                                struct nvmet_fc_ls_iod *iod)
1920{
1921        int ret;
1922
1923        fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1924                                  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1925
1926        ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1927        if (ret)
1928                nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1929}
1930
1931/*
1932 * Actual processing routine for received FC-NVME LS Requests from the LLD
1933 */
1934static void
1935nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1936                        struct nvmet_fc_ls_iod *iod)
1937{
1938        struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1939        bool sendrsp = true;
1940
1941        iod->lsrsp->nvme_fc_private = iod;
1942        iod->lsrsp->rspbuf = iod->rspbuf;
1943        iod->lsrsp->rspdma = iod->rspdma;
1944        iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1945        /* Be preventative. handlers will later set to valid length */
1946        iod->lsrsp->rsplen = 0;
1947
1948        iod->assoc = NULL;
1949
1950        /*
1951         * handlers:
1952         *   parse request input, execute the request, and format the
1953         *   LS response
1954         */
1955        switch (w0->ls_cmd) {
1956        case FCNVME_LS_CREATE_ASSOCIATION:
1957                /* Creates Association and initial Admin Queue/Connection */
1958                nvmet_fc_ls_create_association(tgtport, iod);
1959                break;
1960        case FCNVME_LS_CREATE_CONNECTION:
1961                /* Creates an IO Queue/Connection */
1962                nvmet_fc_ls_create_connection(tgtport, iod);
1963                break;
1964        case FCNVME_LS_DISCONNECT_ASSOC:
1965                /* Terminate a Queue/Connection or the Association */
1966                sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1967                break;
1968        default:
1969                iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1970                                sizeof(*iod->rspbuf), w0->ls_cmd,
1971                                FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1972        }
1973
1974        if (sendrsp)
1975                nvmet_fc_xmt_ls_rsp(tgtport, iod);
1976}
1977
1978/*
1979 * Actual processing routine for received FC-NVME LS Requests from the LLD
1980 */
1981static void
1982nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1983{
1984        struct nvmet_fc_ls_iod *iod =
1985                container_of(work, struct nvmet_fc_ls_iod, work);
1986        struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1987
1988        nvmet_fc_handle_ls_rqst(tgtport, iod);
1989}
1990
1991
1992/**
1993 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1994 *                       upon the reception of a NVME LS request.
1995 *
1996 * The nvmet-fc layer will copy payload to an internal structure for
1997 * processing.  As such, upon completion of the routine, the LLDD may
1998 * immediately free/reuse the LS request buffer passed in the call.
1999 *
2000 * If this routine returns error, the LLDD should abort the exchange.
2001 *
2002 * @target_port: pointer to the (registered) target port the LS was
2003 *              received on.
2004 * @lsrsp:      pointer to a lsrsp structure to be used to reference
2005 *              the exchange corresponding to the LS.
2006 * @lsreqbuf:   pointer to the buffer containing the LS Request
2007 * @lsreqbuf_len: length, in bytes, of the received LS request
2008 */
2009int
2010nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2011                        void *hosthandle,
2012                        struct nvmefc_ls_rsp *lsrsp,
2013                        void *lsreqbuf, u32 lsreqbuf_len)
2014{
2015        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2016        struct nvmet_fc_ls_iod *iod;
2017        struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2018
2019        if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2020                dev_info(tgtport->dev,
2021                        "RCV %s LS failed: payload too large (%d)\n",
2022                        (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2023                                nvmefc_ls_names[w0->ls_cmd] : "",
2024                        lsreqbuf_len);
2025                return -E2BIG;
2026        }
2027
2028        if (!nvmet_fc_tgtport_get(tgtport)) {
2029                dev_info(tgtport->dev,
2030                        "RCV %s LS failed: target deleting\n",
2031                        (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2032                                nvmefc_ls_names[w0->ls_cmd] : "");
2033                return -ESHUTDOWN;
2034        }
2035
2036        iod = nvmet_fc_alloc_ls_iod(tgtport);
2037        if (!iod) {
2038                dev_info(tgtport->dev,
2039                        "RCV %s LS failed: context allocation failed\n",
2040                        (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2041                                nvmefc_ls_names[w0->ls_cmd] : "");
2042                nvmet_fc_tgtport_put(tgtport);
2043                return -ENOENT;
2044        }
2045
2046        iod->lsrsp = lsrsp;
2047        iod->fcpreq = NULL;
2048        memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2049        iod->rqstdatalen = lsreqbuf_len;
2050        iod->hosthandle = hosthandle;
2051
2052        schedule_work(&iod->work);
2053
2054        return 0;
2055}
2056EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2057
2058
2059/*
2060 * **********************
2061 * Start of FCP handling
2062 * **********************
2063 */
2064
2065static int
2066nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2067{
2068        struct scatterlist *sg;
2069        unsigned int nent;
2070
2071        sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2072        if (!sg)
2073                goto out;
2074
2075        fod->data_sg = sg;
2076        fod->data_sg_cnt = nent;
2077        fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2078                                ((fod->io_dir == NVMET_FCP_WRITE) ?
2079                                        DMA_FROM_DEVICE : DMA_TO_DEVICE));
2080                                /* note: write from initiator perspective */
2081        fod->next_sg = fod->data_sg;
2082
2083        return 0;
2084
2085out:
2086        return NVME_SC_INTERNAL;
2087}
2088
2089static void
2090nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2091{
2092        if (!fod->data_sg || !fod->data_sg_cnt)
2093                return;
2094
2095        fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2096                                ((fod->io_dir == NVMET_FCP_WRITE) ?
2097                                        DMA_FROM_DEVICE : DMA_TO_DEVICE));
2098        sgl_free(fod->data_sg);
2099        fod->data_sg = NULL;
2100        fod->data_sg_cnt = 0;
2101}
2102
2103
2104static bool
2105queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2106{
2107        u32 sqtail, used;
2108
2109        /* egad, this is ugly. And sqtail is just a best guess */
2110        sqtail = atomic_read(&q->sqtail) % q->sqsize;
2111
2112        used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2113        return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2114}
2115
2116/*
2117 * Prep RSP payload.
2118 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2119 */
2120static void
2121nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2122                                struct nvmet_fc_fcp_iod *fod)
2123{
2124        struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2125        struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2126        struct nvme_completion *cqe = &ersp->cqe;
2127        u32 *cqewd = (u32 *)cqe;
2128        bool send_ersp = false;
2129        u32 rsn, rspcnt, xfr_length;
2130
2131        if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2132                xfr_length = fod->req.transfer_len;
2133        else
2134                xfr_length = fod->offset;
2135
2136        /*
2137         * check to see if we can send a 0's rsp.
2138         *   Note: to send a 0's response, the NVME-FC host transport will
2139         *   recreate the CQE. The host transport knows: sq id, SQHD (last
2140         *   seen in an ersp), and command_id. Thus it will create a
2141         *   zero-filled CQE with those known fields filled in. Transport
2142         *   must send an ersp for any condition where the cqe won't match
2143         *   this.
2144         *
2145         * Here are the FC-NVME mandated cases where we must send an ersp:
2146         *  every N responses, where N=ersp_ratio
2147         *  force fabric commands to send ersp's (not in FC-NVME but good
2148         *    practice)
2149         *  normal cmds: any time status is non-zero, or status is zero
2150         *     but words 0 or 1 are non-zero.
2151         *  the SQ is 90% or more full
2152         *  the cmd is a fused command
2153         *  transferred data length not equal to cmd iu length
2154         */
2155        rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2156        if (!(rspcnt % fod->queue->ersp_ratio) ||
2157            nvme_is_fabrics((struct nvme_command *) sqe) ||
2158            xfr_length != fod->req.transfer_len ||
2159            (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2160            (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2161            queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2162                send_ersp = true;
2163
2164        /* re-set the fields */
2165        fod->fcpreq->rspaddr = ersp;
2166        fod->fcpreq->rspdma = fod->rspdma;
2167
2168        if (!send_ersp) {
2169                memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2170                fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2171        } else {
2172                ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2173                rsn = atomic_inc_return(&fod->queue->rsn);
2174                ersp->rsn = cpu_to_be32(rsn);
2175                ersp->xfrd_len = cpu_to_be32(xfr_length);
2176                fod->fcpreq->rsplen = sizeof(*ersp);
2177        }
2178
2179        fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2180                                  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2181}
2182
2183static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2184
2185static void
2186nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2187                                struct nvmet_fc_fcp_iod *fod)
2188{
2189        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2190
2191        /* data no longer needed */
2192        nvmet_fc_free_tgt_pgs(fod);
2193
2194        /*
2195         * if an ABTS was received or we issued the fcp_abort early
2196         * don't call abort routine again.
2197         */
2198        /* no need to take lock - lock was taken earlier to get here */
2199        if (!fod->aborted)
2200                tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2201
2202        nvmet_fc_free_fcp_iod(fod->queue, fod);
2203}
2204
2205static void
2206nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2207                                struct nvmet_fc_fcp_iod *fod)
2208{
2209        int ret;
2210
2211        fod->fcpreq->op = NVMET_FCOP_RSP;
2212        fod->fcpreq->timeout = 0;
2213
2214        nvmet_fc_prep_fcp_rsp(tgtport, fod);
2215
2216        ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2217        if (ret)
2218                nvmet_fc_abort_op(tgtport, fod);
2219}
2220
2221static void
2222nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2223                                struct nvmet_fc_fcp_iod *fod, u8 op)
2224{
2225        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2226        struct scatterlist *sg = fod->next_sg;
2227        unsigned long flags;
2228        u32 remaininglen = fod->req.transfer_len - fod->offset;
2229        u32 tlen = 0;
2230        int ret;
2231
2232        fcpreq->op = op;
2233        fcpreq->offset = fod->offset;
2234        fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2235
2236        /*
2237         * for next sequence:
2238         *  break at a sg element boundary
2239         *  attempt to keep sequence length capped at
2240         *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2241         *    be longer if a single sg element is larger
2242         *    than that amount. This is done to avoid creating
2243         *    a new sg list to use for the tgtport api.
2244         */
2245        fcpreq->sg = sg;
2246        fcpreq->sg_cnt = 0;
2247        while (tlen < remaininglen &&
2248               fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2249               tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2250                fcpreq->sg_cnt++;
2251                tlen += sg_dma_len(sg);
2252                sg = sg_next(sg);
2253        }
2254        if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2255                fcpreq->sg_cnt++;
2256                tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2257                sg = sg_next(sg);
2258        }
2259        if (tlen < remaininglen)
2260                fod->next_sg = sg;
2261        else
2262                fod->next_sg = NULL;
2263
2264        fcpreq->transfer_length = tlen;
2265        fcpreq->transferred_length = 0;
2266        fcpreq->fcp_error = 0;
2267        fcpreq->rsplen = 0;
2268
2269        /*
2270         * If the last READDATA request: check if LLDD supports
2271         * combined xfr with response.
2272         */
2273        if ((op == NVMET_FCOP_READDATA) &&
2274            ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2275            (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2276                fcpreq->op = NVMET_FCOP_READDATA_RSP;
2277                nvmet_fc_prep_fcp_rsp(tgtport, fod);
2278        }
2279
2280        ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2281        if (ret) {
2282                /*
2283                 * should be ok to set w/o lock as its in the thread of
2284                 * execution (not an async timer routine) and doesn't
2285                 * contend with any clearing action
2286                 */
2287                fod->abort = true;
2288
2289                if (op == NVMET_FCOP_WRITEDATA) {
2290                        spin_lock_irqsave(&fod->flock, flags);
2291                        fod->writedataactive = false;
2292                        spin_unlock_irqrestore(&fod->flock, flags);
2293                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2294                } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2295                        fcpreq->fcp_error = ret;
2296                        fcpreq->transferred_length = 0;
2297                        nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2298                }
2299        }
2300}
2301
2302static inline bool
2303__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2304{
2305        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2306        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2307
2308        /* if in the middle of an io and we need to tear down */
2309        if (abort) {
2310                if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2311                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2312                        return true;
2313                }
2314
2315                nvmet_fc_abort_op(tgtport, fod);
2316                return true;
2317        }
2318
2319        return false;
2320}
2321
2322/*
2323 * actual done handler for FCP operations when completed by the lldd
2324 */
2325static void
2326nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2327{
2328        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2329        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2330        unsigned long flags;
2331        bool abort;
2332
2333        spin_lock_irqsave(&fod->flock, flags);
2334        abort = fod->abort;
2335        fod->writedataactive = false;
2336        spin_unlock_irqrestore(&fod->flock, flags);
2337
2338        switch (fcpreq->op) {
2339
2340        case NVMET_FCOP_WRITEDATA:
2341                if (__nvmet_fc_fod_op_abort(fod, abort))
2342                        return;
2343                if (fcpreq->fcp_error ||
2344                    fcpreq->transferred_length != fcpreq->transfer_length) {
2345                        spin_lock_irqsave(&fod->flock, flags);
2346                        fod->abort = true;
2347                        spin_unlock_irqrestore(&fod->flock, flags);
2348
2349                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2350                        return;
2351                }
2352
2353                fod->offset += fcpreq->transferred_length;
2354                if (fod->offset != fod->req.transfer_len) {
2355                        spin_lock_irqsave(&fod->flock, flags);
2356                        fod->writedataactive = true;
2357                        spin_unlock_irqrestore(&fod->flock, flags);
2358
2359                        /* transfer the next chunk */
2360                        nvmet_fc_transfer_fcp_data(tgtport, fod,
2361                                                NVMET_FCOP_WRITEDATA);
2362                        return;
2363                }
2364
2365                /* data transfer complete, resume with nvmet layer */
2366                fod->req.execute(&fod->req);
2367                break;
2368
2369        case NVMET_FCOP_READDATA:
2370        case NVMET_FCOP_READDATA_RSP:
2371                if (__nvmet_fc_fod_op_abort(fod, abort))
2372                        return;
2373                if (fcpreq->fcp_error ||
2374                    fcpreq->transferred_length != fcpreq->transfer_length) {
2375                        nvmet_fc_abort_op(tgtport, fod);
2376                        return;
2377                }
2378
2379                /* success */
2380
2381                if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2382                        /* data no longer needed */
2383                        nvmet_fc_free_tgt_pgs(fod);
2384                        nvmet_fc_free_fcp_iod(fod->queue, fod);
2385                        return;
2386                }
2387
2388                fod->offset += fcpreq->transferred_length;
2389                if (fod->offset != fod->req.transfer_len) {
2390                        /* transfer the next chunk */
2391                        nvmet_fc_transfer_fcp_data(tgtport, fod,
2392                                                NVMET_FCOP_READDATA);
2393                        return;
2394                }
2395
2396                /* data transfer complete, send response */
2397
2398                /* data no longer needed */
2399                nvmet_fc_free_tgt_pgs(fod);
2400
2401                nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2402
2403                break;
2404
2405        case NVMET_FCOP_RSP:
2406                if (__nvmet_fc_fod_op_abort(fod, abort))
2407                        return;
2408                nvmet_fc_free_fcp_iod(fod->queue, fod);
2409                break;
2410
2411        default:
2412                break;
2413        }
2414}
2415
2416static void
2417nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2418{
2419        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2420
2421        nvmet_fc_fod_op_done(fod);
2422}
2423
2424/*
2425 * actual completion handler after execution by the nvmet layer
2426 */
2427static void
2428__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2429                        struct nvmet_fc_fcp_iod *fod, int status)
2430{
2431        struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2432        struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2433        unsigned long flags;
2434        bool abort;
2435
2436        spin_lock_irqsave(&fod->flock, flags);
2437        abort = fod->abort;
2438        spin_unlock_irqrestore(&fod->flock, flags);
2439
2440        /* if we have a CQE, snoop the last sq_head value */
2441        if (!status)
2442                fod->queue->sqhd = cqe->sq_head;
2443
2444        if (abort) {
2445                nvmet_fc_abort_op(tgtport, fod);
2446                return;
2447        }
2448
2449        /* if an error handling the cmd post initial parsing */
2450        if (status) {
2451                /* fudge up a failed CQE status for our transport error */
2452                memset(cqe, 0, sizeof(*cqe));
2453                cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2454                cqe->sq_id = cpu_to_le16(fod->queue->qid);
2455                cqe->command_id = sqe->command_id;
2456                cqe->status = cpu_to_le16(status);
2457        } else {
2458
2459                /*
2460                 * try to push the data even if the SQE status is non-zero.
2461                 * There may be a status where data still was intended to
2462                 * be moved
2463                 */
2464                if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2465                        /* push the data over before sending rsp */
2466                        nvmet_fc_transfer_fcp_data(tgtport, fod,
2467                                                NVMET_FCOP_READDATA);
2468                        return;
2469                }
2470
2471                /* writes & no data - fall thru */
2472        }
2473
2474        /* data no longer needed */
2475        nvmet_fc_free_tgt_pgs(fod);
2476
2477        nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2478}
2479
2480
2481static void
2482nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2483{
2484        struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2485        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2486
2487        __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2488}
2489
2490
2491/*
2492 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2493 */
2494static void
2495nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2496                        struct nvmet_fc_fcp_iod *fod)
2497{
2498        struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2499        u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2500        int ret;
2501
2502        /*
2503         * if there is no nvmet mapping to the targetport there
2504         * shouldn't be requests. just terminate them.
2505         */
2506        if (!tgtport->pe)
2507                goto transport_error;
2508
2509        /*
2510         * Fused commands are currently not supported in the linux
2511         * implementation.
2512         *
2513         * As such, the implementation of the FC transport does not
2514         * look at the fused commands and order delivery to the upper
2515         * layer until we have both based on csn.
2516         */
2517
2518        fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2519
2520        if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2521                fod->io_dir = NVMET_FCP_WRITE;
2522                if (!nvme_is_write(&cmdiu->sqe))
2523                        goto transport_error;
2524        } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2525                fod->io_dir = NVMET_FCP_READ;
2526                if (nvme_is_write(&cmdiu->sqe))
2527                        goto transport_error;
2528        } else {
2529                fod->io_dir = NVMET_FCP_NODATA;
2530                if (xfrlen)
2531                        goto transport_error;
2532        }
2533
2534        fod->req.cmd = &fod->cmdiubuf.sqe;
2535        fod->req.cqe = &fod->rspiubuf.cqe;
2536        fod->req.port = tgtport->pe->port;
2537
2538        /* clear any response payload */
2539        memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2540
2541        fod->data_sg = NULL;
2542        fod->data_sg_cnt = 0;
2543
2544        ret = nvmet_req_init(&fod->req,
2545                                &fod->queue->nvme_cq,
2546                                &fod->queue->nvme_sq,
2547                                &nvmet_fc_tgt_fcp_ops);
2548        if (!ret) {
2549                /* bad SQE content or invalid ctrl state */
2550                /* nvmet layer has already called op done to send rsp. */
2551                return;
2552        }
2553
2554        fod->req.transfer_len = xfrlen;
2555
2556        /* keep a running counter of tail position */
2557        atomic_inc(&fod->queue->sqtail);
2558
2559        if (fod->req.transfer_len) {
2560                ret = nvmet_fc_alloc_tgt_pgs(fod);
2561                if (ret) {
2562                        nvmet_req_complete(&fod->req, ret);
2563                        return;
2564                }
2565        }
2566        fod->req.sg = fod->data_sg;
2567        fod->req.sg_cnt = fod->data_sg_cnt;
2568        fod->offset = 0;
2569
2570        if (fod->io_dir == NVMET_FCP_WRITE) {
2571                /* pull the data over before invoking nvmet layer */
2572                nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2573                return;
2574        }
2575
2576        /*
2577         * Reads or no data:
2578         *
2579         * can invoke the nvmet_layer now. If read data, cmd completion will
2580         * push the data
2581         */
2582        fod->req.execute(&fod->req);
2583        return;
2584
2585transport_error:
2586        nvmet_fc_abort_op(tgtport, fod);
2587}
2588
2589/**
2590 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2591 *                       upon the reception of a NVME FCP CMD IU.
2592 *
2593 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2594 * layer for processing.
2595 *
2596 * The nvmet_fc layer allocates a local job structure (struct
2597 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2598 * CMD IU buffer to the job structure. As such, on a successful
2599 * completion (returns 0), the LLDD may immediately free/reuse
2600 * the CMD IU buffer passed in the call.
2601 *
2602 * However, in some circumstances, due to the packetized nature of FC
2603 * and the api of the FC LLDD which may issue a hw command to send the
2604 * response, but the LLDD may not get the hw completion for that command
2605 * and upcall the nvmet_fc layer before a new command may be
2606 * asynchronously received - its possible for a command to be received
2607 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2608 * the appearance of more commands received than fits in the sq.
2609 * To alleviate this scenario, a temporary queue is maintained in the
2610 * transport for pending LLDD requests waiting for a queue job structure.
2611 * In these "overrun" cases, a temporary queue element is allocated
2612 * the LLDD request and CMD iu buffer information remembered, and the
2613 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2614 * structure is freed, it is immediately reallocated for anything on the
2615 * pending request list. The LLDDs defer_rcv() callback is called,
2616 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2617 * is then started normally with the transport.
2618 *
2619 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2620 * the completion as successful but must not reuse the CMD IU buffer
2621 * until the LLDD's defer_rcv() callback has been called for the
2622 * corresponding struct nvmefc_tgt_fcp_req pointer.
2623 *
2624 * If there is any other condition in which an error occurs, the
2625 * transport will return a non-zero status indicating the error.
2626 * In all cases other than -EOVERFLOW, the transport has not accepted the
2627 * request and the LLDD should abort the exchange.
2628 *
2629 * @target_port: pointer to the (registered) target port the FCP CMD IU
2630 *              was received on.
2631 * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2632 *              the exchange corresponding to the FCP Exchange.
2633 * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2634 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2635 */
2636int
2637nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2638                        struct nvmefc_tgt_fcp_req *fcpreq,
2639                        void *cmdiubuf, u32 cmdiubuf_len)
2640{
2641        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2642        struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2643        struct nvmet_fc_tgt_queue *queue;
2644        struct nvmet_fc_fcp_iod *fod;
2645        struct nvmet_fc_defer_fcp_req *deferfcp;
2646        unsigned long flags;
2647
2648        /* validate iu, so the connection id can be used to find the queue */
2649        if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2650                        (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2651                        (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2652                        (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2653                return -EIO;
2654
2655        queue = nvmet_fc_find_target_queue(tgtport,
2656                                be64_to_cpu(cmdiu->connection_id));
2657        if (!queue)
2658                return -ENOTCONN;
2659
2660        /*
2661         * note: reference taken by find_target_queue
2662         * After successful fod allocation, the fod will inherit the
2663         * ownership of that reference and will remove the reference
2664         * when the fod is freed.
2665         */
2666
2667        spin_lock_irqsave(&queue->qlock, flags);
2668
2669        fod = nvmet_fc_alloc_fcp_iod(queue);
2670        if (fod) {
2671                spin_unlock_irqrestore(&queue->qlock, flags);
2672
2673                fcpreq->nvmet_fc_private = fod;
2674                fod->fcpreq = fcpreq;
2675
2676                memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2677
2678                nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2679
2680                return 0;
2681        }
2682
2683        if (!tgtport->ops->defer_rcv) {
2684                spin_unlock_irqrestore(&queue->qlock, flags);
2685                /* release the queue lookup reference */
2686                nvmet_fc_tgt_q_put(queue);
2687                return -ENOENT;
2688        }
2689
2690        deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2691                        struct nvmet_fc_defer_fcp_req, req_list);
2692        if (deferfcp) {
2693                /* Just re-use one that was previously allocated */
2694                list_del(&deferfcp->req_list);
2695        } else {
2696                spin_unlock_irqrestore(&queue->qlock, flags);
2697
2698                /* Now we need to dynamically allocate one */
2699                deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2700                if (!deferfcp) {
2701                        /* release the queue lookup reference */
2702                        nvmet_fc_tgt_q_put(queue);
2703                        return -ENOMEM;
2704                }
2705                spin_lock_irqsave(&queue->qlock, flags);
2706        }
2707
2708        /* For now, use rspaddr / rsplen to save payload information */
2709        fcpreq->rspaddr = cmdiubuf;
2710        fcpreq->rsplen  = cmdiubuf_len;
2711        deferfcp->fcp_req = fcpreq;
2712
2713        /* defer processing till a fod becomes available */
2714        list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2715
2716        /* NOTE: the queue lookup reference is still valid */
2717
2718        spin_unlock_irqrestore(&queue->qlock, flags);
2719
2720        return -EOVERFLOW;
2721}
2722EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2723
2724/**
2725 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2726 *                       upon the reception of an ABTS for a FCP command
2727 *
2728 * Notify the transport that an ABTS has been received for a FCP command
2729 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2730 * LLDD believes the command is still being worked on
2731 * (template_ops->fcp_req_release() has not been called).
2732 *
2733 * The transport will wait for any outstanding work (an op to the LLDD,
2734 * which the lldd should complete with error due to the ABTS; or the
2735 * completion from the nvmet layer of the nvme command), then will
2736 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2737 * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2738 * to the ABTS either after return from this function (assuming any
2739 * outstanding op work has been terminated) or upon the callback being
2740 * called.
2741 *
2742 * @target_port: pointer to the (registered) target port the FCP CMD IU
2743 *              was received on.
2744 * @fcpreq:     pointer to the fcpreq request structure that corresponds
2745 *              to the exchange that received the ABTS.
2746 */
2747void
2748nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2749                        struct nvmefc_tgt_fcp_req *fcpreq)
2750{
2751        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2752        struct nvmet_fc_tgt_queue *queue;
2753        unsigned long flags;
2754
2755        if (!fod || fod->fcpreq != fcpreq)
2756                /* job appears to have already completed, ignore abort */
2757                return;
2758
2759        queue = fod->queue;
2760
2761        spin_lock_irqsave(&queue->qlock, flags);
2762        if (fod->active) {
2763                /*
2764                 * mark as abort. The abort handler, invoked upon completion
2765                 * of any work, will detect the aborted status and do the
2766                 * callback.
2767                 */
2768                spin_lock(&fod->flock);
2769                fod->abort = true;
2770                fod->aborted = true;
2771                spin_unlock(&fod->flock);
2772        }
2773        spin_unlock_irqrestore(&queue->qlock, flags);
2774}
2775EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2776
2777
2778struct nvmet_fc_traddr {
2779        u64     nn;
2780        u64     pn;
2781};
2782
2783static int
2784__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2785{
2786        u64 token64;
2787
2788        if (match_u64(sstr, &token64))
2789                return -EINVAL;
2790        *val = token64;
2791
2792        return 0;
2793}
2794
2795/*
2796 * This routine validates and extracts the WWN's from the TRADDR string.
2797 * As kernel parsers need the 0x to determine number base, universally
2798 * build string to parse with 0x prefix before parsing name strings.
2799 */
2800static int
2801nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2802{
2803        char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2804        substring_t wwn = { name, &name[sizeof(name)-1] };
2805        int nnoffset, pnoffset;
2806
2807        /* validate if string is one of the 2 allowed formats */
2808        if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2809                        !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2810                        !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2811                                "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2812                nnoffset = NVME_FC_TRADDR_OXNNLEN;
2813                pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2814                                                NVME_FC_TRADDR_OXNNLEN;
2815        } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2816                        !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2817                        !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2818                                "pn-", NVME_FC_TRADDR_NNLEN))) {
2819                nnoffset = NVME_FC_TRADDR_NNLEN;
2820                pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2821        } else
2822                goto out_einval;
2823
2824        name[0] = '0';
2825        name[1] = 'x';
2826        name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2827
2828        memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2829        if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2830                goto out_einval;
2831
2832        memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2833        if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2834                goto out_einval;
2835
2836        return 0;
2837
2838out_einval:
2839        pr_warn("%s: bad traddr string\n", __func__);
2840        return -EINVAL;
2841}
2842
2843static int
2844nvmet_fc_add_port(struct nvmet_port *port)
2845{
2846        struct nvmet_fc_tgtport *tgtport;
2847        struct nvmet_fc_port_entry *pe;
2848        struct nvmet_fc_traddr traddr = { 0L, 0L };
2849        unsigned long flags;
2850        int ret;
2851
2852        /* validate the address info */
2853        if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2854            (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2855                return -EINVAL;
2856
2857        /* map the traddr address info to a target port */
2858
2859        ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2860                        sizeof(port->disc_addr.traddr));
2861        if (ret)
2862                return ret;
2863
2864        pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2865        if (!pe)
2866                return -ENOMEM;
2867
2868        ret = -ENXIO;
2869        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2870        list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2871                if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2872                    (tgtport->fc_target_port.port_name == traddr.pn)) {
2873                        /* a FC port can only be 1 nvmet port id */
2874                        if (!tgtport->pe) {
2875                                nvmet_fc_portentry_bind(tgtport, pe, port);
2876                                ret = 0;
2877                        } else
2878                                ret = -EALREADY;
2879                        break;
2880                }
2881        }
2882        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2883
2884        if (ret)
2885                kfree(pe);
2886
2887        return ret;
2888}
2889
2890static void
2891nvmet_fc_remove_port(struct nvmet_port *port)
2892{
2893        struct nvmet_fc_port_entry *pe = port->priv;
2894
2895        nvmet_fc_portentry_unbind(pe);
2896
2897        kfree(pe);
2898}
2899
2900static void
2901nvmet_fc_discovery_chg(struct nvmet_port *port)
2902{
2903        struct nvmet_fc_port_entry *pe = port->priv;
2904        struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2905
2906        if (tgtport && tgtport->ops->discovery_event)
2907                tgtport->ops->discovery_event(&tgtport->fc_target_port);
2908}
2909
2910static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2911        .owner                  = THIS_MODULE,
2912        .type                   = NVMF_TRTYPE_FC,
2913        .msdbd                  = 1,
2914        .add_port               = nvmet_fc_add_port,
2915        .remove_port            = nvmet_fc_remove_port,
2916        .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2917        .delete_ctrl            = nvmet_fc_delete_ctrl,
2918        .discovery_chg          = nvmet_fc_discovery_chg,
2919};
2920
2921static int __init nvmet_fc_init_module(void)
2922{
2923        return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2924}
2925
2926static void __exit nvmet_fc_exit_module(void)
2927{
2928        /* sanity check - all lports should be removed */
2929        if (!list_empty(&nvmet_fc_target_list))
2930                pr_warn("%s: targetport list not empty\n", __func__);
2931
2932        nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2933
2934        ida_destroy(&nvmet_fc_tgtport_cnt);
2935}
2936
2937module_init(nvmet_fc_init_module);
2938module_exit(nvmet_fc_exit_module);
2939
2940MODULE_LICENSE("GPL v2");
2941