linux/drivers/nvme/target/rdma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVMe over Fabrics RDMA target.
   4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7#include <linux/atomic.h>
   8#include <linux/ctype.h>
   9#include <linux/delay.h>
  10#include <linux/err.h>
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/nvme.h>
  14#include <linux/slab.h>
  15#include <linux/string.h>
  16#include <linux/wait.h>
  17#include <linux/inet.h>
  18#include <asm/unaligned.h>
  19
  20#include <rdma/ib_verbs.h>
  21#include <rdma/rdma_cm.h>
  22#include <rdma/rw.h>
  23#include <rdma/ib_cm.h>
  24
  25#include <linux/nvme-rdma.h>
  26#include "nvmet.h"
  27
  28/*
  29 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
  30 */
  31#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE     PAGE_SIZE
  32#define NVMET_RDMA_MAX_INLINE_SGE               4
  33#define NVMET_RDMA_MAX_INLINE_DATA_SIZE         max_t(int, SZ_16K, PAGE_SIZE)
  34
  35/* Assume mpsmin == device_page_size == 4KB */
  36#define NVMET_RDMA_MAX_MDTS                     8
  37#define NVMET_RDMA_MAX_METADATA_MDTS            5
  38
  39struct nvmet_rdma_srq;
  40
  41struct nvmet_rdma_cmd {
  42        struct ib_sge           sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
  43        struct ib_cqe           cqe;
  44        struct ib_recv_wr       wr;
  45        struct scatterlist      inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
  46        struct nvme_command     *nvme_cmd;
  47        struct nvmet_rdma_queue *queue;
  48        struct nvmet_rdma_srq   *nsrq;
  49};
  50
  51enum {
  52        NVMET_RDMA_REQ_INLINE_DATA      = (1 << 0),
  53        NVMET_RDMA_REQ_INVALIDATE_RKEY  = (1 << 1),
  54};
  55
  56struct nvmet_rdma_rsp {
  57        struct ib_sge           send_sge;
  58        struct ib_cqe           send_cqe;
  59        struct ib_send_wr       send_wr;
  60
  61        struct nvmet_rdma_cmd   *cmd;
  62        struct nvmet_rdma_queue *queue;
  63
  64        struct ib_cqe           read_cqe;
  65        struct ib_cqe           write_cqe;
  66        struct rdma_rw_ctx      rw;
  67
  68        struct nvmet_req        req;
  69
  70        bool                    allocated;
  71        u8                      n_rdma;
  72        u32                     flags;
  73        u32                     invalidate_rkey;
  74
  75        struct list_head        wait_list;
  76        struct list_head        free_list;
  77};
  78
  79enum nvmet_rdma_queue_state {
  80        NVMET_RDMA_Q_CONNECTING,
  81        NVMET_RDMA_Q_LIVE,
  82        NVMET_RDMA_Q_DISCONNECTING,
  83};
  84
  85struct nvmet_rdma_queue {
  86        struct rdma_cm_id       *cm_id;
  87        struct ib_qp            *qp;
  88        struct nvmet_port       *port;
  89        struct ib_cq            *cq;
  90        atomic_t                sq_wr_avail;
  91        struct nvmet_rdma_device *dev;
  92        struct nvmet_rdma_srq   *nsrq;
  93        spinlock_t              state_lock;
  94        enum nvmet_rdma_queue_state state;
  95        struct nvmet_cq         nvme_cq;
  96        struct nvmet_sq         nvme_sq;
  97
  98        struct nvmet_rdma_rsp   *rsps;
  99        struct list_head        free_rsps;
 100        spinlock_t              rsps_lock;
 101        struct nvmet_rdma_cmd   *cmds;
 102
 103        struct work_struct      release_work;
 104        struct list_head        rsp_wait_list;
 105        struct list_head        rsp_wr_wait_list;
 106        spinlock_t              rsp_wr_wait_lock;
 107
 108        int                     idx;
 109        int                     host_qid;
 110        int                     comp_vector;
 111        int                     recv_queue_size;
 112        int                     send_queue_size;
 113
 114        struct list_head        queue_list;
 115};
 116
 117struct nvmet_rdma_port {
 118        struct nvmet_port       *nport;
 119        struct sockaddr_storage addr;
 120        struct rdma_cm_id       *cm_id;
 121        struct delayed_work     repair_work;
 122};
 123
 124struct nvmet_rdma_srq {
 125        struct ib_srq            *srq;
 126        struct nvmet_rdma_cmd    *cmds;
 127        struct nvmet_rdma_device *ndev;
 128};
 129
 130struct nvmet_rdma_device {
 131        struct ib_device        *device;
 132        struct ib_pd            *pd;
 133        struct nvmet_rdma_srq   **srqs;
 134        int                     srq_count;
 135        size_t                  srq_size;
 136        struct kref             ref;
 137        struct list_head        entry;
 138        int                     inline_data_size;
 139        int                     inline_page_count;
 140};
 141
 142static bool nvmet_rdma_use_srq;
 143module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
 144MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
 145
 146static int srq_size_set(const char *val, const struct kernel_param *kp);
 147static const struct kernel_param_ops srq_size_ops = {
 148        .set = srq_size_set,
 149        .get = param_get_int,
 150};
 151
 152static int nvmet_rdma_srq_size = 1024;
 153module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
 154MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
 155
 156static DEFINE_IDA(nvmet_rdma_queue_ida);
 157static LIST_HEAD(nvmet_rdma_queue_list);
 158static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
 159
 160static LIST_HEAD(device_list);
 161static DEFINE_MUTEX(device_list_mutex);
 162
 163static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
 164static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
 165static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
 166static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
 167static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
 168static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
 169static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
 170static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
 171                                struct nvmet_rdma_rsp *r);
 172static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
 173                                struct nvmet_rdma_rsp *r);
 174
 175static const struct nvmet_fabrics_ops nvmet_rdma_ops;
 176
 177static int srq_size_set(const char *val, const struct kernel_param *kp)
 178{
 179        int n = 0, ret;
 180
 181        ret = kstrtoint(val, 10, &n);
 182        if (ret != 0 || n < 256)
 183                return -EINVAL;
 184
 185        return param_set_int(val, kp);
 186}
 187
 188static int num_pages(int len)
 189{
 190        return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
 191}
 192
 193static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
 194{
 195        return nvme_is_write(rsp->req.cmd) &&
 196                rsp->req.transfer_len &&
 197                !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
 198}
 199
 200static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
 201{
 202        return !nvme_is_write(rsp->req.cmd) &&
 203                rsp->req.transfer_len &&
 204                !rsp->req.cqe->status &&
 205                !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
 206}
 207
 208static inline struct nvmet_rdma_rsp *
 209nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
 210{
 211        struct nvmet_rdma_rsp *rsp;
 212        unsigned long flags;
 213
 214        spin_lock_irqsave(&queue->rsps_lock, flags);
 215        rsp = list_first_entry_or_null(&queue->free_rsps,
 216                                struct nvmet_rdma_rsp, free_list);
 217        if (likely(rsp))
 218                list_del(&rsp->free_list);
 219        spin_unlock_irqrestore(&queue->rsps_lock, flags);
 220
 221        if (unlikely(!rsp)) {
 222                int ret;
 223
 224                rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
 225                if (unlikely(!rsp))
 226                        return NULL;
 227                ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
 228                if (unlikely(ret)) {
 229                        kfree(rsp);
 230                        return NULL;
 231                }
 232
 233                rsp->allocated = true;
 234        }
 235
 236        return rsp;
 237}
 238
 239static inline void
 240nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
 241{
 242        unsigned long flags;
 243
 244        if (unlikely(rsp->allocated)) {
 245                nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
 246                kfree(rsp);
 247                return;
 248        }
 249
 250        spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
 251        list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
 252        spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
 253}
 254
 255static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
 256                                struct nvmet_rdma_cmd *c)
 257{
 258        struct scatterlist *sg;
 259        struct ib_sge *sge;
 260        int i;
 261
 262        if (!ndev->inline_data_size)
 263                return;
 264
 265        sg = c->inline_sg;
 266        sge = &c->sge[1];
 267
 268        for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
 269                if (sge->length)
 270                        ib_dma_unmap_page(ndev->device, sge->addr,
 271                                        sge->length, DMA_FROM_DEVICE);
 272                if (sg_page(sg))
 273                        __free_page(sg_page(sg));
 274        }
 275}
 276
 277static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
 278                                struct nvmet_rdma_cmd *c)
 279{
 280        struct scatterlist *sg;
 281        struct ib_sge *sge;
 282        struct page *pg;
 283        int len;
 284        int i;
 285
 286        if (!ndev->inline_data_size)
 287                return 0;
 288
 289        sg = c->inline_sg;
 290        sg_init_table(sg, ndev->inline_page_count);
 291        sge = &c->sge[1];
 292        len = ndev->inline_data_size;
 293
 294        for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
 295                pg = alloc_page(GFP_KERNEL);
 296                if (!pg)
 297                        goto out_err;
 298                sg_assign_page(sg, pg);
 299                sge->addr = ib_dma_map_page(ndev->device,
 300                        pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 301                if (ib_dma_mapping_error(ndev->device, sge->addr))
 302                        goto out_err;
 303                sge->length = min_t(int, len, PAGE_SIZE);
 304                sge->lkey = ndev->pd->local_dma_lkey;
 305                len -= sge->length;
 306        }
 307
 308        return 0;
 309out_err:
 310        for (; i >= 0; i--, sg--, sge--) {
 311                if (sge->length)
 312                        ib_dma_unmap_page(ndev->device, sge->addr,
 313                                        sge->length, DMA_FROM_DEVICE);
 314                if (sg_page(sg))
 315                        __free_page(sg_page(sg));
 316        }
 317        return -ENOMEM;
 318}
 319
 320static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
 321                        struct nvmet_rdma_cmd *c, bool admin)
 322{
 323        /* NVMe command / RDMA RECV */
 324        c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
 325        if (!c->nvme_cmd)
 326                goto out;
 327
 328        c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
 329                        sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
 330        if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
 331                goto out_free_cmd;
 332
 333        c->sge[0].length = sizeof(*c->nvme_cmd);
 334        c->sge[0].lkey = ndev->pd->local_dma_lkey;
 335
 336        if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
 337                goto out_unmap_cmd;
 338
 339        c->cqe.done = nvmet_rdma_recv_done;
 340
 341        c->wr.wr_cqe = &c->cqe;
 342        c->wr.sg_list = c->sge;
 343        c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
 344
 345        return 0;
 346
 347out_unmap_cmd:
 348        ib_dma_unmap_single(ndev->device, c->sge[0].addr,
 349                        sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
 350out_free_cmd:
 351        kfree(c->nvme_cmd);
 352
 353out:
 354        return -ENOMEM;
 355}
 356
 357static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
 358                struct nvmet_rdma_cmd *c, bool admin)
 359{
 360        if (!admin)
 361                nvmet_rdma_free_inline_pages(ndev, c);
 362        ib_dma_unmap_single(ndev->device, c->sge[0].addr,
 363                                sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
 364        kfree(c->nvme_cmd);
 365}
 366
 367static struct nvmet_rdma_cmd *
 368nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
 369                int nr_cmds, bool admin)
 370{
 371        struct nvmet_rdma_cmd *cmds;
 372        int ret = -EINVAL, i;
 373
 374        cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
 375        if (!cmds)
 376                goto out;
 377
 378        for (i = 0; i < nr_cmds; i++) {
 379                ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
 380                if (ret)
 381                        goto out_free;
 382        }
 383
 384        return cmds;
 385
 386out_free:
 387        while (--i >= 0)
 388                nvmet_rdma_free_cmd(ndev, cmds + i, admin);
 389        kfree(cmds);
 390out:
 391        return ERR_PTR(ret);
 392}
 393
 394static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
 395                struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
 396{
 397        int i;
 398
 399        for (i = 0; i < nr_cmds; i++)
 400                nvmet_rdma_free_cmd(ndev, cmds + i, admin);
 401        kfree(cmds);
 402}
 403
 404static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
 405                struct nvmet_rdma_rsp *r)
 406{
 407        /* NVMe CQE / RDMA SEND */
 408        r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
 409        if (!r->req.cqe)
 410                goto out;
 411
 412        r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
 413                        sizeof(*r->req.cqe), DMA_TO_DEVICE);
 414        if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
 415                goto out_free_rsp;
 416
 417        r->req.p2p_client = &ndev->device->dev;
 418        r->send_sge.length = sizeof(*r->req.cqe);
 419        r->send_sge.lkey = ndev->pd->local_dma_lkey;
 420
 421        r->send_cqe.done = nvmet_rdma_send_done;
 422
 423        r->send_wr.wr_cqe = &r->send_cqe;
 424        r->send_wr.sg_list = &r->send_sge;
 425        r->send_wr.num_sge = 1;
 426        r->send_wr.send_flags = IB_SEND_SIGNALED;
 427
 428        /* Data In / RDMA READ */
 429        r->read_cqe.done = nvmet_rdma_read_data_done;
 430        /* Data Out / RDMA WRITE */
 431        r->write_cqe.done = nvmet_rdma_write_data_done;
 432
 433        return 0;
 434
 435out_free_rsp:
 436        kfree(r->req.cqe);
 437out:
 438        return -ENOMEM;
 439}
 440
 441static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
 442                struct nvmet_rdma_rsp *r)
 443{
 444        ib_dma_unmap_single(ndev->device, r->send_sge.addr,
 445                                sizeof(*r->req.cqe), DMA_TO_DEVICE);
 446        kfree(r->req.cqe);
 447}
 448
 449static int
 450nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
 451{
 452        struct nvmet_rdma_device *ndev = queue->dev;
 453        int nr_rsps = queue->recv_queue_size * 2;
 454        int ret = -EINVAL, i;
 455
 456        queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
 457                        GFP_KERNEL);
 458        if (!queue->rsps)
 459                goto out;
 460
 461        for (i = 0; i < nr_rsps; i++) {
 462                struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
 463
 464                ret = nvmet_rdma_alloc_rsp(ndev, rsp);
 465                if (ret)
 466                        goto out_free;
 467
 468                list_add_tail(&rsp->free_list, &queue->free_rsps);
 469        }
 470
 471        return 0;
 472
 473out_free:
 474        while (--i >= 0) {
 475                struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
 476
 477                list_del(&rsp->free_list);
 478                nvmet_rdma_free_rsp(ndev, rsp);
 479        }
 480        kfree(queue->rsps);
 481out:
 482        return ret;
 483}
 484
 485static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
 486{
 487        struct nvmet_rdma_device *ndev = queue->dev;
 488        int i, nr_rsps = queue->recv_queue_size * 2;
 489
 490        for (i = 0; i < nr_rsps; i++) {
 491                struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
 492
 493                list_del(&rsp->free_list);
 494                nvmet_rdma_free_rsp(ndev, rsp);
 495        }
 496        kfree(queue->rsps);
 497}
 498
 499static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
 500                struct nvmet_rdma_cmd *cmd)
 501{
 502        int ret;
 503
 504        ib_dma_sync_single_for_device(ndev->device,
 505                cmd->sge[0].addr, cmd->sge[0].length,
 506                DMA_FROM_DEVICE);
 507
 508        if (cmd->nsrq)
 509                ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
 510        else
 511                ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
 512
 513        if (unlikely(ret))
 514                pr_err("post_recv cmd failed\n");
 515
 516        return ret;
 517}
 518
 519static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
 520{
 521        spin_lock(&queue->rsp_wr_wait_lock);
 522        while (!list_empty(&queue->rsp_wr_wait_list)) {
 523                struct nvmet_rdma_rsp *rsp;
 524                bool ret;
 525
 526                rsp = list_entry(queue->rsp_wr_wait_list.next,
 527                                struct nvmet_rdma_rsp, wait_list);
 528                list_del(&rsp->wait_list);
 529
 530                spin_unlock(&queue->rsp_wr_wait_lock);
 531                ret = nvmet_rdma_execute_command(rsp);
 532                spin_lock(&queue->rsp_wr_wait_lock);
 533
 534                if (!ret) {
 535                        list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
 536                        break;
 537                }
 538        }
 539        spin_unlock(&queue->rsp_wr_wait_lock);
 540}
 541
 542static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
 543{
 544        struct ib_mr_status mr_status;
 545        int ret;
 546        u16 status = 0;
 547
 548        ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
 549        if (ret) {
 550                pr_err("ib_check_mr_status failed, ret %d\n", ret);
 551                return NVME_SC_INVALID_PI;
 552        }
 553
 554        if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
 555                switch (mr_status.sig_err.err_type) {
 556                case IB_SIG_BAD_GUARD:
 557                        status = NVME_SC_GUARD_CHECK;
 558                        break;
 559                case IB_SIG_BAD_REFTAG:
 560                        status = NVME_SC_REFTAG_CHECK;
 561                        break;
 562                case IB_SIG_BAD_APPTAG:
 563                        status = NVME_SC_APPTAG_CHECK;
 564                        break;
 565                }
 566                pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
 567                       mr_status.sig_err.err_type,
 568                       mr_status.sig_err.expected,
 569                       mr_status.sig_err.actual);
 570        }
 571
 572        return status;
 573}
 574
 575static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
 576                struct nvme_command *cmd, struct ib_sig_domain *domain,
 577                u16 control, u8 pi_type)
 578{
 579        domain->sig_type = IB_SIG_TYPE_T10_DIF;
 580        domain->sig.dif.bg_type = IB_T10DIF_CRC;
 581        domain->sig.dif.pi_interval = 1 << bi->interval_exp;
 582        domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
 583        if (control & NVME_RW_PRINFO_PRCHK_REF)
 584                domain->sig.dif.ref_remap = true;
 585
 586        domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
 587        domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
 588        domain->sig.dif.app_escape = true;
 589        if (pi_type == NVME_NS_DPS_PI_TYPE3)
 590                domain->sig.dif.ref_escape = true;
 591}
 592
 593static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
 594                                     struct ib_sig_attrs *sig_attrs)
 595{
 596        struct nvme_command *cmd = req->cmd;
 597        u16 control = le16_to_cpu(cmd->rw.control);
 598        u8 pi_type = req->ns->pi_type;
 599        struct blk_integrity *bi;
 600
 601        bi = bdev_get_integrity(req->ns->bdev);
 602
 603        memset(sig_attrs, 0, sizeof(*sig_attrs));
 604
 605        if (control & NVME_RW_PRINFO_PRACT) {
 606                /* for WRITE_INSERT/READ_STRIP no wire domain */
 607                sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
 608                nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
 609                                          pi_type);
 610                /* Clear the PRACT bit since HCA will generate/verify the PI */
 611                control &= ~NVME_RW_PRINFO_PRACT;
 612                cmd->rw.control = cpu_to_le16(control);
 613                /* PI is added by the HW */
 614                req->transfer_len += req->metadata_len;
 615        } else {
 616                /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
 617                nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
 618                                          pi_type);
 619                nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
 620                                          pi_type);
 621        }
 622
 623        if (control & NVME_RW_PRINFO_PRCHK_REF)
 624                sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
 625        if (control & NVME_RW_PRINFO_PRCHK_GUARD)
 626                sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
 627        if (control & NVME_RW_PRINFO_PRCHK_APP)
 628                sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
 629}
 630
 631static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
 632                                  struct ib_sig_attrs *sig_attrs)
 633{
 634        struct rdma_cm_id *cm_id = rsp->queue->cm_id;
 635        struct nvmet_req *req = &rsp->req;
 636        int ret;
 637
 638        if (req->metadata_len)
 639                ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
 640                        cm_id->port_num, req->sg, req->sg_cnt,
 641                        req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
 642                        addr, key, nvmet_data_dir(req));
 643        else
 644                ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
 645                                       req->sg, req->sg_cnt, 0, addr, key,
 646                                       nvmet_data_dir(req));
 647
 648        return ret;
 649}
 650
 651static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
 652{
 653        struct rdma_cm_id *cm_id = rsp->queue->cm_id;
 654        struct nvmet_req *req = &rsp->req;
 655
 656        if (req->metadata_len)
 657                rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
 658                        cm_id->port_num, req->sg, req->sg_cnt,
 659                        req->metadata_sg, req->metadata_sg_cnt,
 660                        nvmet_data_dir(req));
 661        else
 662                rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
 663                                    req->sg, req->sg_cnt, nvmet_data_dir(req));
 664}
 665
 666static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
 667{
 668        struct nvmet_rdma_queue *queue = rsp->queue;
 669
 670        atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
 671
 672        if (rsp->n_rdma)
 673                nvmet_rdma_rw_ctx_destroy(rsp);
 674
 675        if (rsp->req.sg != rsp->cmd->inline_sg)
 676                nvmet_req_free_sgls(&rsp->req);
 677
 678        if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
 679                nvmet_rdma_process_wr_wait_list(queue);
 680
 681        nvmet_rdma_put_rsp(rsp);
 682}
 683
 684static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
 685{
 686        if (queue->nvme_sq.ctrl) {
 687                nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
 688        } else {
 689                /*
 690                 * we didn't setup the controller yet in case
 691                 * of admin connect error, just disconnect and
 692                 * cleanup the queue
 693                 */
 694                nvmet_rdma_queue_disconnect(queue);
 695        }
 696}
 697
 698static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
 699{
 700        struct nvmet_rdma_rsp *rsp =
 701                container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
 702        struct nvmet_rdma_queue *queue = cq->cq_context;
 703
 704        nvmet_rdma_release_rsp(rsp);
 705
 706        if (unlikely(wc->status != IB_WC_SUCCESS &&
 707                     wc->status != IB_WC_WR_FLUSH_ERR)) {
 708                pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
 709                        wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
 710                nvmet_rdma_error_comp(queue);
 711        }
 712}
 713
 714static void nvmet_rdma_queue_response(struct nvmet_req *req)
 715{
 716        struct nvmet_rdma_rsp *rsp =
 717                container_of(req, struct nvmet_rdma_rsp, req);
 718        struct rdma_cm_id *cm_id = rsp->queue->cm_id;
 719        struct ib_send_wr *first_wr;
 720
 721        if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
 722                rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
 723                rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
 724        } else {
 725                rsp->send_wr.opcode = IB_WR_SEND;
 726        }
 727
 728        if (nvmet_rdma_need_data_out(rsp)) {
 729                if (rsp->req.metadata_len)
 730                        first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
 731                                        cm_id->port_num, &rsp->write_cqe, NULL);
 732                else
 733                        first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
 734                                        cm_id->port_num, NULL, &rsp->send_wr);
 735        } else {
 736                first_wr = &rsp->send_wr;
 737        }
 738
 739        nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
 740
 741        ib_dma_sync_single_for_device(rsp->queue->dev->device,
 742                rsp->send_sge.addr, rsp->send_sge.length,
 743                DMA_TO_DEVICE);
 744
 745        if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
 746                pr_err("sending cmd response failed\n");
 747                nvmet_rdma_release_rsp(rsp);
 748        }
 749}
 750
 751static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
 752{
 753        struct nvmet_rdma_rsp *rsp =
 754                container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
 755        struct nvmet_rdma_queue *queue = wc->qp->qp_context;
 756        u16 status = 0;
 757
 758        WARN_ON(rsp->n_rdma <= 0);
 759        atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
 760        rsp->n_rdma = 0;
 761
 762        if (unlikely(wc->status != IB_WC_SUCCESS)) {
 763                nvmet_rdma_rw_ctx_destroy(rsp);
 764                nvmet_req_uninit(&rsp->req);
 765                nvmet_rdma_release_rsp(rsp);
 766                if (wc->status != IB_WC_WR_FLUSH_ERR) {
 767                        pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
 768                                wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
 769                        nvmet_rdma_error_comp(queue);
 770                }
 771                return;
 772        }
 773
 774        if (rsp->req.metadata_len)
 775                status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
 776        nvmet_rdma_rw_ctx_destroy(rsp);
 777
 778        if (unlikely(status))
 779                nvmet_req_complete(&rsp->req, status);
 780        else
 781                rsp->req.execute(&rsp->req);
 782}
 783
 784static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
 785{
 786        struct nvmet_rdma_rsp *rsp =
 787                container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
 788        struct nvmet_rdma_queue *queue = cq->cq_context;
 789        struct rdma_cm_id *cm_id = rsp->queue->cm_id;
 790        u16 status;
 791
 792        if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
 793                return;
 794
 795        WARN_ON(rsp->n_rdma <= 0);
 796        atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
 797        rsp->n_rdma = 0;
 798
 799        if (unlikely(wc->status != IB_WC_SUCCESS)) {
 800                nvmet_rdma_rw_ctx_destroy(rsp);
 801                nvmet_req_uninit(&rsp->req);
 802                nvmet_rdma_release_rsp(rsp);
 803                if (wc->status != IB_WC_WR_FLUSH_ERR) {
 804                        pr_info("RDMA WRITE for CQE 0x%p failed with status %s (%d).\n",
 805                                wc->wr_cqe, ib_wc_status_msg(wc->status),
 806                                wc->status);
 807                        nvmet_rdma_error_comp(queue);
 808                }
 809                return;
 810        }
 811
 812        /*
 813         * Upon RDMA completion check the signature status
 814         * - if succeeded send good NVMe response
 815         * - if failed send bad NVMe response with appropriate error
 816         */
 817        status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
 818        if (unlikely(status))
 819                rsp->req.cqe->status = cpu_to_le16(status << 1);
 820        nvmet_rdma_rw_ctx_destroy(rsp);
 821
 822        if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
 823                pr_err("sending cmd response failed\n");
 824                nvmet_rdma_release_rsp(rsp);
 825        }
 826}
 827
 828static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
 829                u64 off)
 830{
 831        int sg_count = num_pages(len);
 832        struct scatterlist *sg;
 833        int i;
 834
 835        sg = rsp->cmd->inline_sg;
 836        for (i = 0; i < sg_count; i++, sg++) {
 837                if (i < sg_count - 1)
 838                        sg_unmark_end(sg);
 839                else
 840                        sg_mark_end(sg);
 841                sg->offset = off;
 842                sg->length = min_t(int, len, PAGE_SIZE - off);
 843                len -= sg->length;
 844                if (!i)
 845                        off = 0;
 846        }
 847
 848        rsp->req.sg = rsp->cmd->inline_sg;
 849        rsp->req.sg_cnt = sg_count;
 850}
 851
 852static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
 853{
 854        struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
 855        u64 off = le64_to_cpu(sgl->addr);
 856        u32 len = le32_to_cpu(sgl->length);
 857
 858        if (!nvme_is_write(rsp->req.cmd)) {
 859                rsp->req.error_loc =
 860                        offsetof(struct nvme_common_command, opcode);
 861                return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
 862        }
 863
 864        if (off + len > rsp->queue->dev->inline_data_size) {
 865                pr_err("invalid inline data offset!\n");
 866                return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
 867        }
 868
 869        /* no data command? */
 870        if (!len)
 871                return 0;
 872
 873        nvmet_rdma_use_inline_sg(rsp, len, off);
 874        rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
 875        rsp->req.transfer_len += len;
 876        return 0;
 877}
 878
 879static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
 880                struct nvme_keyed_sgl_desc *sgl, bool invalidate)
 881{
 882        u64 addr = le64_to_cpu(sgl->addr);
 883        u32 key = get_unaligned_le32(sgl->key);
 884        struct ib_sig_attrs sig_attrs;
 885        int ret;
 886
 887        rsp->req.transfer_len = get_unaligned_le24(sgl->length);
 888
 889        /* no data command? */
 890        if (!rsp->req.transfer_len)
 891                return 0;
 892
 893        if (rsp->req.metadata_len)
 894                nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
 895
 896        ret = nvmet_req_alloc_sgls(&rsp->req);
 897        if (unlikely(ret < 0))
 898                goto error_out;
 899
 900        ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
 901        if (unlikely(ret < 0))
 902                goto error_out;
 903        rsp->n_rdma += ret;
 904
 905        if (invalidate) {
 906                rsp->invalidate_rkey = key;
 907                rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
 908        }
 909
 910        return 0;
 911
 912error_out:
 913        rsp->req.transfer_len = 0;
 914        return NVME_SC_INTERNAL;
 915}
 916
 917static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
 918{
 919        struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
 920
 921        switch (sgl->type >> 4) {
 922        case NVME_SGL_FMT_DATA_DESC:
 923                switch (sgl->type & 0xf) {
 924                case NVME_SGL_FMT_OFFSET:
 925                        return nvmet_rdma_map_sgl_inline(rsp);
 926                default:
 927                        pr_err("invalid SGL subtype: %#x\n", sgl->type);
 928                        rsp->req.error_loc =
 929                                offsetof(struct nvme_common_command, dptr);
 930                        return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
 931                }
 932        case NVME_KEY_SGL_FMT_DATA_DESC:
 933                switch (sgl->type & 0xf) {
 934                case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
 935                        return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
 936                case NVME_SGL_FMT_ADDRESS:
 937                        return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
 938                default:
 939                        pr_err("invalid SGL subtype: %#x\n", sgl->type);
 940                        rsp->req.error_loc =
 941                                offsetof(struct nvme_common_command, dptr);
 942                        return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
 943                }
 944        default:
 945                pr_err("invalid SGL type: %#x\n", sgl->type);
 946                rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
 947                return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
 948        }
 949}
 950
 951static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
 952{
 953        struct nvmet_rdma_queue *queue = rsp->queue;
 954
 955        if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
 956                        &queue->sq_wr_avail) < 0)) {
 957                pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
 958                                1 + rsp->n_rdma, queue->idx,
 959                                queue->nvme_sq.ctrl->cntlid);
 960                atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
 961                return false;
 962        }
 963
 964        if (nvmet_rdma_need_data_in(rsp)) {
 965                if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
 966                                queue->cm_id->port_num, &rsp->read_cqe, NULL))
 967                        nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
 968        } else {
 969                rsp->req.execute(&rsp->req);
 970        }
 971
 972        return true;
 973}
 974
 975static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
 976                struct nvmet_rdma_rsp *cmd)
 977{
 978        u16 status;
 979
 980        ib_dma_sync_single_for_cpu(queue->dev->device,
 981                cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
 982                DMA_FROM_DEVICE);
 983        ib_dma_sync_single_for_cpu(queue->dev->device,
 984                cmd->send_sge.addr, cmd->send_sge.length,
 985                DMA_TO_DEVICE);
 986
 987        if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
 988                        &queue->nvme_sq, &nvmet_rdma_ops))
 989                return;
 990
 991        status = nvmet_rdma_map_sgl(cmd);
 992        if (status)
 993                goto out_err;
 994
 995        if (unlikely(!nvmet_rdma_execute_command(cmd))) {
 996                spin_lock(&queue->rsp_wr_wait_lock);
 997                list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
 998                spin_unlock(&queue->rsp_wr_wait_lock);
 999        }
1000
1001        return;
1002
1003out_err:
1004        nvmet_req_complete(&cmd->req, status);
1005}
1006
1007static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1008{
1009        struct nvmet_rdma_cmd *cmd =
1010                container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1011        struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1012        struct nvmet_rdma_rsp *rsp;
1013
1014        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1015                if (wc->status != IB_WC_WR_FLUSH_ERR) {
1016                        pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1017                                wc->wr_cqe, ib_wc_status_msg(wc->status),
1018                                wc->status);
1019                        nvmet_rdma_error_comp(queue);
1020                }
1021                return;
1022        }
1023
1024        if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1025                pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1026                nvmet_rdma_error_comp(queue);
1027                return;
1028        }
1029
1030        cmd->queue = queue;
1031        rsp = nvmet_rdma_get_rsp(queue);
1032        if (unlikely(!rsp)) {
1033                /*
1034                 * we get here only under memory pressure,
1035                 * silently drop and have the host retry
1036                 * as we can't even fail it.
1037                 */
1038                nvmet_rdma_post_recv(queue->dev, cmd);
1039                return;
1040        }
1041        rsp->queue = queue;
1042        rsp->cmd = cmd;
1043        rsp->flags = 0;
1044        rsp->req.cmd = cmd->nvme_cmd;
1045        rsp->req.port = queue->port;
1046        rsp->n_rdma = 0;
1047
1048        if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1049                unsigned long flags;
1050
1051                spin_lock_irqsave(&queue->state_lock, flags);
1052                if (queue->state == NVMET_RDMA_Q_CONNECTING)
1053                        list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1054                else
1055                        nvmet_rdma_put_rsp(rsp);
1056                spin_unlock_irqrestore(&queue->state_lock, flags);
1057                return;
1058        }
1059
1060        nvmet_rdma_handle_command(queue, rsp);
1061}
1062
1063static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1064{
1065        nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1066                             false);
1067        ib_destroy_srq(nsrq->srq);
1068
1069        kfree(nsrq);
1070}
1071
1072static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1073{
1074        int i;
1075
1076        if (!ndev->srqs)
1077                return;
1078
1079        for (i = 0; i < ndev->srq_count; i++)
1080                nvmet_rdma_destroy_srq(ndev->srqs[i]);
1081
1082        kfree(ndev->srqs);
1083}
1084
1085static struct nvmet_rdma_srq *
1086nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1087{
1088        struct ib_srq_init_attr srq_attr = { NULL, };
1089        size_t srq_size = ndev->srq_size;
1090        struct nvmet_rdma_srq *nsrq;
1091        struct ib_srq *srq;
1092        int ret, i;
1093
1094        nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1095        if (!nsrq)
1096                return ERR_PTR(-ENOMEM);
1097
1098        srq_attr.attr.max_wr = srq_size;
1099        srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1100        srq_attr.attr.srq_limit = 0;
1101        srq_attr.srq_type = IB_SRQT_BASIC;
1102        srq = ib_create_srq(ndev->pd, &srq_attr);
1103        if (IS_ERR(srq)) {
1104                ret = PTR_ERR(srq);
1105                goto out_free;
1106        }
1107
1108        nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1109        if (IS_ERR(nsrq->cmds)) {
1110                ret = PTR_ERR(nsrq->cmds);
1111                goto out_destroy_srq;
1112        }
1113
1114        nsrq->srq = srq;
1115        nsrq->ndev = ndev;
1116
1117        for (i = 0; i < srq_size; i++) {
1118                nsrq->cmds[i].nsrq = nsrq;
1119                ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1120                if (ret)
1121                        goto out_free_cmds;
1122        }
1123
1124        return nsrq;
1125
1126out_free_cmds:
1127        nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1128out_destroy_srq:
1129        ib_destroy_srq(srq);
1130out_free:
1131        kfree(nsrq);
1132        return ERR_PTR(ret);
1133}
1134
1135static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1136{
1137        int i, ret;
1138
1139        if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1140                /*
1141                 * If SRQs aren't supported we just go ahead and use normal
1142                 * non-shared receive queues.
1143                 */
1144                pr_info("SRQ requested but not supported.\n");
1145                return 0;
1146        }
1147
1148        ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1149                             nvmet_rdma_srq_size);
1150        ndev->srq_count = min(ndev->device->num_comp_vectors,
1151                              ndev->device->attrs.max_srq);
1152
1153        ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1154        if (!ndev->srqs)
1155                return -ENOMEM;
1156
1157        for (i = 0; i < ndev->srq_count; i++) {
1158                ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1159                if (IS_ERR(ndev->srqs[i])) {
1160                        ret = PTR_ERR(ndev->srqs[i]);
1161                        goto err_srq;
1162                }
1163        }
1164
1165        return 0;
1166
1167err_srq:
1168        while (--i >= 0)
1169                nvmet_rdma_destroy_srq(ndev->srqs[i]);
1170        kfree(ndev->srqs);
1171        return ret;
1172}
1173
1174static void nvmet_rdma_free_dev(struct kref *ref)
1175{
1176        struct nvmet_rdma_device *ndev =
1177                container_of(ref, struct nvmet_rdma_device, ref);
1178
1179        mutex_lock(&device_list_mutex);
1180        list_del(&ndev->entry);
1181        mutex_unlock(&device_list_mutex);
1182
1183        nvmet_rdma_destroy_srqs(ndev);
1184        ib_dealloc_pd(ndev->pd);
1185
1186        kfree(ndev);
1187}
1188
1189static struct nvmet_rdma_device *
1190nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1191{
1192        struct nvmet_rdma_port *port = cm_id->context;
1193        struct nvmet_port *nport = port->nport;
1194        struct nvmet_rdma_device *ndev;
1195        int inline_page_count;
1196        int inline_sge_count;
1197        int ret;
1198
1199        mutex_lock(&device_list_mutex);
1200        list_for_each_entry(ndev, &device_list, entry) {
1201                if (ndev->device->node_guid == cm_id->device->node_guid &&
1202                    kref_get_unless_zero(&ndev->ref))
1203                        goto out_unlock;
1204        }
1205
1206        ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1207        if (!ndev)
1208                goto out_err;
1209
1210        inline_page_count = num_pages(nport->inline_data_size);
1211        inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1212                                cm_id->device->attrs.max_recv_sge) - 1;
1213        if (inline_page_count > inline_sge_count) {
1214                pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1215                        nport->inline_data_size, cm_id->device->name,
1216                        inline_sge_count * PAGE_SIZE);
1217                nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1218                inline_page_count = inline_sge_count;
1219        }
1220        ndev->inline_data_size = nport->inline_data_size;
1221        ndev->inline_page_count = inline_page_count;
1222        ndev->device = cm_id->device;
1223        kref_init(&ndev->ref);
1224
1225        ndev->pd = ib_alloc_pd(ndev->device, 0);
1226        if (IS_ERR(ndev->pd))
1227                goto out_free_dev;
1228
1229        if (nvmet_rdma_use_srq) {
1230                ret = nvmet_rdma_init_srqs(ndev);
1231                if (ret)
1232                        goto out_free_pd;
1233        }
1234
1235        list_add(&ndev->entry, &device_list);
1236out_unlock:
1237        mutex_unlock(&device_list_mutex);
1238        pr_debug("added %s.\n", ndev->device->name);
1239        return ndev;
1240
1241out_free_pd:
1242        ib_dealloc_pd(ndev->pd);
1243out_free_dev:
1244        kfree(ndev);
1245out_err:
1246        mutex_unlock(&device_list_mutex);
1247        return NULL;
1248}
1249
1250static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1251{
1252        struct ib_qp_init_attr qp_attr;
1253        struct nvmet_rdma_device *ndev = queue->dev;
1254        int nr_cqe, ret, i, factor;
1255
1256        /*
1257         * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1258         */
1259        nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1260
1261        queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1262                                   queue->comp_vector, IB_POLL_WORKQUEUE);
1263        if (IS_ERR(queue->cq)) {
1264                ret = PTR_ERR(queue->cq);
1265                pr_err("failed to create CQ cqe= %d ret= %d\n",
1266                       nr_cqe + 1, ret);
1267                goto out;
1268        }
1269
1270        memset(&qp_attr, 0, sizeof(qp_attr));
1271        qp_attr.qp_context = queue;
1272        qp_attr.event_handler = nvmet_rdma_qp_event;
1273        qp_attr.send_cq = queue->cq;
1274        qp_attr.recv_cq = queue->cq;
1275        qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1276        qp_attr.qp_type = IB_QPT_RC;
1277        /* +1 for drain */
1278        qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1279        factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1280                                   1 << NVMET_RDMA_MAX_MDTS);
1281        qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1282        qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1283                                        ndev->device->attrs.max_send_sge);
1284
1285        if (queue->nsrq) {
1286                qp_attr.srq = queue->nsrq->srq;
1287        } else {
1288                /* +1 for drain */
1289                qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1290                qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1291        }
1292
1293        if (queue->port->pi_enable && queue->host_qid)
1294                qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1295
1296        ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1297        if (ret) {
1298                pr_err("failed to create_qp ret= %d\n", ret);
1299                goto err_destroy_cq;
1300        }
1301        queue->qp = queue->cm_id->qp;
1302
1303        atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1304
1305        pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1306                 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1307                 qp_attr.cap.max_send_wr, queue->cm_id);
1308
1309        if (!queue->nsrq) {
1310                for (i = 0; i < queue->recv_queue_size; i++) {
1311                        queue->cmds[i].queue = queue;
1312                        ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1313                        if (ret)
1314                                goto err_destroy_qp;
1315                }
1316        }
1317
1318out:
1319        return ret;
1320
1321err_destroy_qp:
1322        rdma_destroy_qp(queue->cm_id);
1323err_destroy_cq:
1324        ib_cq_pool_put(queue->cq, nr_cqe + 1);
1325        goto out;
1326}
1327
1328static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1329{
1330        ib_drain_qp(queue->qp);
1331        if (queue->cm_id)
1332                rdma_destroy_id(queue->cm_id);
1333        ib_destroy_qp(queue->qp);
1334        ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1335                       queue->send_queue_size + 1);
1336}
1337
1338static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1339{
1340        pr_debug("freeing queue %d\n", queue->idx);
1341
1342        nvmet_sq_destroy(&queue->nvme_sq);
1343
1344        nvmet_rdma_destroy_queue_ib(queue);
1345        if (!queue->nsrq) {
1346                nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1347                                queue->recv_queue_size,
1348                                !queue->host_qid);
1349        }
1350        nvmet_rdma_free_rsps(queue);
1351        ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1352        kfree(queue);
1353}
1354
1355static void nvmet_rdma_release_queue_work(struct work_struct *w)
1356{
1357        struct nvmet_rdma_queue *queue =
1358                container_of(w, struct nvmet_rdma_queue, release_work);
1359        struct nvmet_rdma_device *dev = queue->dev;
1360
1361        nvmet_rdma_free_queue(queue);
1362
1363        kref_put(&dev->ref, nvmet_rdma_free_dev);
1364}
1365
1366static int
1367nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1368                                struct nvmet_rdma_queue *queue)
1369{
1370        struct nvme_rdma_cm_req *req;
1371
1372        req = (struct nvme_rdma_cm_req *)conn->private_data;
1373        if (!req || conn->private_data_len == 0)
1374                return NVME_RDMA_CM_INVALID_LEN;
1375
1376        if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1377                return NVME_RDMA_CM_INVALID_RECFMT;
1378
1379        queue->host_qid = le16_to_cpu(req->qid);
1380
1381        /*
1382         * req->hsqsize corresponds to our recv queue size plus 1
1383         * req->hrqsize corresponds to our send queue size
1384         */
1385        queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1386        queue->send_queue_size = le16_to_cpu(req->hrqsize);
1387
1388        if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1389                return NVME_RDMA_CM_INVALID_HSQSIZE;
1390
1391        /* XXX: Should we enforce some kind of max for IO queues? */
1392
1393        return 0;
1394}
1395
1396static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1397                                enum nvme_rdma_cm_status status)
1398{
1399        struct nvme_rdma_cm_rej rej;
1400
1401        pr_debug("rejecting connect request: status %d (%s)\n",
1402                 status, nvme_rdma_cm_msg(status));
1403
1404        rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1405        rej.sts = cpu_to_le16(status);
1406
1407        return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1408                           IB_CM_REJ_CONSUMER_DEFINED);
1409}
1410
1411static struct nvmet_rdma_queue *
1412nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1413                struct rdma_cm_id *cm_id,
1414                struct rdma_cm_event *event)
1415{
1416        struct nvmet_rdma_port *port = cm_id->context;
1417        struct nvmet_rdma_queue *queue;
1418        int ret;
1419
1420        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1421        if (!queue) {
1422                ret = NVME_RDMA_CM_NO_RSC;
1423                goto out_reject;
1424        }
1425
1426        ret = nvmet_sq_init(&queue->nvme_sq);
1427        if (ret) {
1428                ret = NVME_RDMA_CM_NO_RSC;
1429                goto out_free_queue;
1430        }
1431
1432        ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1433        if (ret)
1434                goto out_destroy_sq;
1435
1436        /*
1437         * Schedules the actual release because calling rdma_destroy_id from
1438         * inside a CM callback would trigger a deadlock. (great API design..)
1439         */
1440        INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1441        queue->dev = ndev;
1442        queue->cm_id = cm_id;
1443        queue->port = port->nport;
1444
1445        spin_lock_init(&queue->state_lock);
1446        queue->state = NVMET_RDMA_Q_CONNECTING;
1447        INIT_LIST_HEAD(&queue->rsp_wait_list);
1448        INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1449        spin_lock_init(&queue->rsp_wr_wait_lock);
1450        INIT_LIST_HEAD(&queue->free_rsps);
1451        spin_lock_init(&queue->rsps_lock);
1452        INIT_LIST_HEAD(&queue->queue_list);
1453
1454        queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1455        if (queue->idx < 0) {
1456                ret = NVME_RDMA_CM_NO_RSC;
1457                goto out_destroy_sq;
1458        }
1459
1460        /*
1461         * Spread the io queues across completion vectors,
1462         * but still keep all admin queues on vector 0.
1463         */
1464        queue->comp_vector = !queue->host_qid ? 0 :
1465                queue->idx % ndev->device->num_comp_vectors;
1466
1467
1468        ret = nvmet_rdma_alloc_rsps(queue);
1469        if (ret) {
1470                ret = NVME_RDMA_CM_NO_RSC;
1471                goto out_ida_remove;
1472        }
1473
1474        if (ndev->srqs) {
1475                queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1476        } else {
1477                queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1478                                queue->recv_queue_size,
1479                                !queue->host_qid);
1480                if (IS_ERR(queue->cmds)) {
1481                        ret = NVME_RDMA_CM_NO_RSC;
1482                        goto out_free_responses;
1483                }
1484        }
1485
1486        ret = nvmet_rdma_create_queue_ib(queue);
1487        if (ret) {
1488                pr_err("%s: creating RDMA queue failed (%d).\n",
1489                        __func__, ret);
1490                ret = NVME_RDMA_CM_NO_RSC;
1491                goto out_free_cmds;
1492        }
1493
1494        return queue;
1495
1496out_free_cmds:
1497        if (!queue->nsrq) {
1498                nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1499                                queue->recv_queue_size,
1500                                !queue->host_qid);
1501        }
1502out_free_responses:
1503        nvmet_rdma_free_rsps(queue);
1504out_ida_remove:
1505        ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1506out_destroy_sq:
1507        nvmet_sq_destroy(&queue->nvme_sq);
1508out_free_queue:
1509        kfree(queue);
1510out_reject:
1511        nvmet_rdma_cm_reject(cm_id, ret);
1512        return NULL;
1513}
1514
1515static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1516{
1517        struct nvmet_rdma_queue *queue = priv;
1518
1519        switch (event->event) {
1520        case IB_EVENT_COMM_EST:
1521                rdma_notify(queue->cm_id, event->event);
1522                break;
1523        case IB_EVENT_QP_LAST_WQE_REACHED:
1524                pr_debug("received last WQE reached event for queue=0x%p\n",
1525                         queue);
1526                break;
1527        default:
1528                pr_err("received IB QP event: %s (%d)\n",
1529                       ib_event_msg(event->event), event->event);
1530                break;
1531        }
1532}
1533
1534static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1535                struct nvmet_rdma_queue *queue,
1536                struct rdma_conn_param *p)
1537{
1538        struct rdma_conn_param  param = { };
1539        struct nvme_rdma_cm_rep priv = { };
1540        int ret = -ENOMEM;
1541
1542        param.rnr_retry_count = 7;
1543        param.flow_control = 1;
1544        param.initiator_depth = min_t(u8, p->initiator_depth,
1545                queue->dev->device->attrs.max_qp_init_rd_atom);
1546        param.private_data = &priv;
1547        param.private_data_len = sizeof(priv);
1548        priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1549        priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1550
1551        ret = rdma_accept(cm_id, &param);
1552        if (ret)
1553                pr_err("rdma_accept failed (error code = %d)\n", ret);
1554
1555        return ret;
1556}
1557
1558static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1559                struct rdma_cm_event *event)
1560{
1561        struct nvmet_rdma_device *ndev;
1562        struct nvmet_rdma_queue *queue;
1563        int ret = -EINVAL;
1564
1565        ndev = nvmet_rdma_find_get_device(cm_id);
1566        if (!ndev) {
1567                nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1568                return -ECONNREFUSED;
1569        }
1570
1571        queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1572        if (!queue) {
1573                ret = -ENOMEM;
1574                goto put_device;
1575        }
1576
1577        if (queue->host_qid == 0) {
1578                /* Let inflight controller teardown complete */
1579                flush_scheduled_work();
1580        }
1581
1582        ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1583        if (ret) {
1584                /*
1585                 * Don't destroy the cm_id in free path, as we implicitly
1586                 * destroy the cm_id here with non-zero ret code.
1587                 */
1588                queue->cm_id = NULL;
1589                goto free_queue;
1590        }
1591
1592        mutex_lock(&nvmet_rdma_queue_mutex);
1593        list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1594        mutex_unlock(&nvmet_rdma_queue_mutex);
1595
1596        return 0;
1597
1598free_queue:
1599        nvmet_rdma_free_queue(queue);
1600put_device:
1601        kref_put(&ndev->ref, nvmet_rdma_free_dev);
1602
1603        return ret;
1604}
1605
1606static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1607{
1608        unsigned long flags;
1609
1610        spin_lock_irqsave(&queue->state_lock, flags);
1611        if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1612                pr_warn("trying to establish a connected queue\n");
1613                goto out_unlock;
1614        }
1615        queue->state = NVMET_RDMA_Q_LIVE;
1616
1617        while (!list_empty(&queue->rsp_wait_list)) {
1618                struct nvmet_rdma_rsp *cmd;
1619
1620                cmd = list_first_entry(&queue->rsp_wait_list,
1621                                        struct nvmet_rdma_rsp, wait_list);
1622                list_del(&cmd->wait_list);
1623
1624                spin_unlock_irqrestore(&queue->state_lock, flags);
1625                nvmet_rdma_handle_command(queue, cmd);
1626                spin_lock_irqsave(&queue->state_lock, flags);
1627        }
1628
1629out_unlock:
1630        spin_unlock_irqrestore(&queue->state_lock, flags);
1631}
1632
1633static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1634{
1635        bool disconnect = false;
1636        unsigned long flags;
1637
1638        pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1639
1640        spin_lock_irqsave(&queue->state_lock, flags);
1641        switch (queue->state) {
1642        case NVMET_RDMA_Q_CONNECTING:
1643        case NVMET_RDMA_Q_LIVE:
1644                queue->state = NVMET_RDMA_Q_DISCONNECTING;
1645                disconnect = true;
1646                break;
1647        case NVMET_RDMA_Q_DISCONNECTING:
1648                break;
1649        }
1650        spin_unlock_irqrestore(&queue->state_lock, flags);
1651
1652        if (disconnect) {
1653                rdma_disconnect(queue->cm_id);
1654                schedule_work(&queue->release_work);
1655        }
1656}
1657
1658static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1659{
1660        bool disconnect = false;
1661
1662        mutex_lock(&nvmet_rdma_queue_mutex);
1663        if (!list_empty(&queue->queue_list)) {
1664                list_del_init(&queue->queue_list);
1665                disconnect = true;
1666        }
1667        mutex_unlock(&nvmet_rdma_queue_mutex);
1668
1669        if (disconnect)
1670                __nvmet_rdma_queue_disconnect(queue);
1671}
1672
1673static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1674                struct nvmet_rdma_queue *queue)
1675{
1676        WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1677
1678        mutex_lock(&nvmet_rdma_queue_mutex);
1679        if (!list_empty(&queue->queue_list))
1680                list_del_init(&queue->queue_list);
1681        mutex_unlock(&nvmet_rdma_queue_mutex);
1682
1683        pr_err("failed to connect queue %d\n", queue->idx);
1684        schedule_work(&queue->release_work);
1685}
1686
1687/**
1688 * nvme_rdma_device_removal() - Handle RDMA device removal
1689 * @cm_id:      rdma_cm id, used for nvmet port
1690 * @queue:      nvmet rdma queue (cm id qp_context)
1691 *
1692 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1693 * to unplug. Note that this event can be generated on a normal
1694 * queue cm_id and/or a device bound listener cm_id (where in this
1695 * case queue will be null).
1696 *
1697 * We registered an ib_client to handle device removal for queues,
1698 * so we only need to handle the listening port cm_ids. In this case
1699 * we nullify the priv to prevent double cm_id destruction and destroying
1700 * the cm_id implicitely by returning a non-zero rc to the callout.
1701 */
1702static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1703                struct nvmet_rdma_queue *queue)
1704{
1705        struct nvmet_rdma_port *port;
1706
1707        if (queue) {
1708                /*
1709                 * This is a queue cm_id. we have registered
1710                 * an ib_client to handle queues removal
1711                 * so don't interfear and just return.
1712                 */
1713                return 0;
1714        }
1715
1716        port = cm_id->context;
1717
1718        /*
1719         * This is a listener cm_id. Make sure that
1720         * future remove_port won't invoke a double
1721         * cm_id destroy. use atomic xchg to make sure
1722         * we don't compete with remove_port.
1723         */
1724        if (xchg(&port->cm_id, NULL) != cm_id)
1725                return 0;
1726
1727        /*
1728         * We need to return 1 so that the core will destroy
1729         * it's own ID.  What a great API design..
1730         */
1731        return 1;
1732}
1733
1734static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1735                struct rdma_cm_event *event)
1736{
1737        struct nvmet_rdma_queue *queue = NULL;
1738        int ret = 0;
1739
1740        if (cm_id->qp)
1741                queue = cm_id->qp->qp_context;
1742
1743        pr_debug("%s (%d): status %d id %p\n",
1744                rdma_event_msg(event->event), event->event,
1745                event->status, cm_id);
1746
1747        switch (event->event) {
1748        case RDMA_CM_EVENT_CONNECT_REQUEST:
1749                ret = nvmet_rdma_queue_connect(cm_id, event);
1750                break;
1751        case RDMA_CM_EVENT_ESTABLISHED:
1752                nvmet_rdma_queue_established(queue);
1753                break;
1754        case RDMA_CM_EVENT_ADDR_CHANGE:
1755                if (!queue) {
1756                        struct nvmet_rdma_port *port = cm_id->context;
1757
1758                        schedule_delayed_work(&port->repair_work, 0);
1759                        break;
1760                }
1761                fallthrough;
1762        case RDMA_CM_EVENT_DISCONNECTED:
1763        case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1764                nvmet_rdma_queue_disconnect(queue);
1765                break;
1766        case RDMA_CM_EVENT_DEVICE_REMOVAL:
1767                ret = nvmet_rdma_device_removal(cm_id, queue);
1768                break;
1769        case RDMA_CM_EVENT_REJECTED:
1770                pr_debug("Connection rejected: %s\n",
1771                         rdma_reject_msg(cm_id, event->status));
1772                fallthrough;
1773        case RDMA_CM_EVENT_UNREACHABLE:
1774        case RDMA_CM_EVENT_CONNECT_ERROR:
1775                nvmet_rdma_queue_connect_fail(cm_id, queue);
1776                break;
1777        default:
1778                pr_err("received unrecognized RDMA CM event %d\n",
1779                        event->event);
1780                break;
1781        }
1782
1783        return ret;
1784}
1785
1786static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1787{
1788        struct nvmet_rdma_queue *queue;
1789
1790restart:
1791        mutex_lock(&nvmet_rdma_queue_mutex);
1792        list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1793                if (queue->nvme_sq.ctrl == ctrl) {
1794                        list_del_init(&queue->queue_list);
1795                        mutex_unlock(&nvmet_rdma_queue_mutex);
1796
1797                        __nvmet_rdma_queue_disconnect(queue);
1798                        goto restart;
1799                }
1800        }
1801        mutex_unlock(&nvmet_rdma_queue_mutex);
1802}
1803
1804static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1805{
1806        struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1807
1808        if (cm_id)
1809                rdma_destroy_id(cm_id);
1810}
1811
1812static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1813{
1814        struct sockaddr *addr = (struct sockaddr *)&port->addr;
1815        struct rdma_cm_id *cm_id;
1816        int ret;
1817
1818        cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1819                        RDMA_PS_TCP, IB_QPT_RC);
1820        if (IS_ERR(cm_id)) {
1821                pr_err("CM ID creation failed\n");
1822                return PTR_ERR(cm_id);
1823        }
1824
1825        /*
1826         * Allow both IPv4 and IPv6 sockets to bind a single port
1827         * at the same time.
1828         */
1829        ret = rdma_set_afonly(cm_id, 1);
1830        if (ret) {
1831                pr_err("rdma_set_afonly failed (%d)\n", ret);
1832                goto out_destroy_id;
1833        }
1834
1835        ret = rdma_bind_addr(cm_id, addr);
1836        if (ret) {
1837                pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1838                goto out_destroy_id;
1839        }
1840
1841        ret = rdma_listen(cm_id, 128);
1842        if (ret) {
1843                pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1844                goto out_destroy_id;
1845        }
1846
1847        if (port->nport->pi_enable &&
1848            !(cm_id->device->attrs.device_cap_flags &
1849              IB_DEVICE_INTEGRITY_HANDOVER)) {
1850                pr_err("T10-PI is not supported for %pISpcs\n", addr);
1851                ret = -EINVAL;
1852                goto out_destroy_id;
1853        }
1854
1855        port->cm_id = cm_id;
1856        return 0;
1857
1858out_destroy_id:
1859        rdma_destroy_id(cm_id);
1860        return ret;
1861}
1862
1863static void nvmet_rdma_repair_port_work(struct work_struct *w)
1864{
1865        struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1866                        struct nvmet_rdma_port, repair_work);
1867        int ret;
1868
1869        nvmet_rdma_disable_port(port);
1870        ret = nvmet_rdma_enable_port(port);
1871        if (ret)
1872                schedule_delayed_work(&port->repair_work, 5 * HZ);
1873}
1874
1875static int nvmet_rdma_add_port(struct nvmet_port *nport)
1876{
1877        struct nvmet_rdma_port *port;
1878        __kernel_sa_family_t af;
1879        int ret;
1880
1881        port = kzalloc(sizeof(*port), GFP_KERNEL);
1882        if (!port)
1883                return -ENOMEM;
1884
1885        nport->priv = port;
1886        port->nport = nport;
1887        INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1888
1889        switch (nport->disc_addr.adrfam) {
1890        case NVMF_ADDR_FAMILY_IP4:
1891                af = AF_INET;
1892                break;
1893        case NVMF_ADDR_FAMILY_IP6:
1894                af = AF_INET6;
1895                break;
1896        default:
1897                pr_err("address family %d not supported\n",
1898                        nport->disc_addr.adrfam);
1899                ret = -EINVAL;
1900                goto out_free_port;
1901        }
1902
1903        if (nport->inline_data_size < 0) {
1904                nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1905        } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1906                pr_warn("inline_data_size %u is too large, reducing to %u\n",
1907                        nport->inline_data_size,
1908                        NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1909                nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1910        }
1911
1912        ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1913                        nport->disc_addr.trsvcid, &port->addr);
1914        if (ret) {
1915                pr_err("malformed ip/port passed: %s:%s\n",
1916                        nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1917                goto out_free_port;
1918        }
1919
1920        ret = nvmet_rdma_enable_port(port);
1921        if (ret)
1922                goto out_free_port;
1923
1924        pr_info("enabling port %d (%pISpcs)\n",
1925                le16_to_cpu(nport->disc_addr.portid),
1926                (struct sockaddr *)&port->addr);
1927
1928        return 0;
1929
1930out_free_port:
1931        kfree(port);
1932        return ret;
1933}
1934
1935static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1936{
1937        struct nvmet_rdma_port *port = nport->priv;
1938
1939        cancel_delayed_work_sync(&port->repair_work);
1940        nvmet_rdma_disable_port(port);
1941        kfree(port);
1942}
1943
1944static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1945                struct nvmet_port *nport, char *traddr)
1946{
1947        struct nvmet_rdma_port *port = nport->priv;
1948        struct rdma_cm_id *cm_id = port->cm_id;
1949
1950        if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1951                struct nvmet_rdma_rsp *rsp =
1952                        container_of(req, struct nvmet_rdma_rsp, req);
1953                struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1954                struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1955
1956                sprintf(traddr, "%pISc", addr);
1957        } else {
1958                memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1959        }
1960}
1961
1962static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1963{
1964        if (ctrl->pi_support)
1965                return NVMET_RDMA_MAX_METADATA_MDTS;
1966        return NVMET_RDMA_MAX_MDTS;
1967}
1968
1969static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1970        .owner                  = THIS_MODULE,
1971        .type                   = NVMF_TRTYPE_RDMA,
1972        .msdbd                  = 1,
1973        .flags                  = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
1974        .add_port               = nvmet_rdma_add_port,
1975        .remove_port            = nvmet_rdma_remove_port,
1976        .queue_response         = nvmet_rdma_queue_response,
1977        .delete_ctrl            = nvmet_rdma_delete_ctrl,
1978        .disc_traddr            = nvmet_rdma_disc_port_addr,
1979        .get_mdts               = nvmet_rdma_get_mdts,
1980};
1981
1982static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1983{
1984        struct nvmet_rdma_queue *queue, *tmp;
1985        struct nvmet_rdma_device *ndev;
1986        bool found = false;
1987
1988        mutex_lock(&device_list_mutex);
1989        list_for_each_entry(ndev, &device_list, entry) {
1990                if (ndev->device == ib_device) {
1991                        found = true;
1992                        break;
1993                }
1994        }
1995        mutex_unlock(&device_list_mutex);
1996
1997        if (!found)
1998                return;
1999
2000        /*
2001         * IB Device that is used by nvmet controllers is being removed,
2002         * delete all queues using this device.
2003         */
2004        mutex_lock(&nvmet_rdma_queue_mutex);
2005        list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2006                                 queue_list) {
2007                if (queue->dev->device != ib_device)
2008                        continue;
2009
2010                pr_info("Removing queue %d\n", queue->idx);
2011                list_del_init(&queue->queue_list);
2012                __nvmet_rdma_queue_disconnect(queue);
2013        }
2014        mutex_unlock(&nvmet_rdma_queue_mutex);
2015
2016        flush_scheduled_work();
2017}
2018
2019static struct ib_client nvmet_rdma_ib_client = {
2020        .name   = "nvmet_rdma",
2021        .remove = nvmet_rdma_remove_one
2022};
2023
2024static int __init nvmet_rdma_init(void)
2025{
2026        int ret;
2027
2028        ret = ib_register_client(&nvmet_rdma_ib_client);
2029        if (ret)
2030                return ret;
2031
2032        ret = nvmet_register_transport(&nvmet_rdma_ops);
2033        if (ret)
2034                goto err_ib_client;
2035
2036        return 0;
2037
2038err_ib_client:
2039        ib_unregister_client(&nvmet_rdma_ib_client);
2040        return ret;
2041}
2042
2043static void __exit nvmet_rdma_exit(void)
2044{
2045        nvmet_unregister_transport(&nvmet_rdma_ops);
2046        ib_unregister_client(&nvmet_rdma_ib_client);
2047        WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2048        ida_destroy(&nvmet_rdma_queue_ida);
2049}
2050
2051module_init(nvmet_rdma_init);
2052module_exit(nvmet_rdma_exit);
2053
2054MODULE_LICENSE("GPL v2");
2055MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2056