linux/drivers/of/base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras       August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)     "OF: " fmt
  18
  19#include <linux/bitmap.h>
  20#include <linux/console.h>
  21#include <linux/ctype.h>
  22#include <linux/cpu.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26#include <linux/of_graph.h>
  27#include <linux/spinlock.h>
  28#include <linux/slab.h>
  29#include <linux/string.h>
  30#include <linux/proc_fs.h>
  31
  32#include "of_private.h"
  33
  34LIST_HEAD(aliases_lookup);
  35
  36struct device_node *of_root;
  37EXPORT_SYMBOL(of_root);
  38struct device_node *of_chosen;
  39struct device_node *of_aliases;
  40struct device_node *of_stdout;
  41static const char *of_stdout_options;
  42
  43struct kset *of_kset;
  44
  45/*
  46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  47 * This mutex must be held whenever modifications are being made to the
  48 * device tree. The of_{attach,detach}_node() and
  49 * of_{add,remove,update}_property() helpers make sure this happens.
  50 */
  51DEFINE_MUTEX(of_mutex);
  52
  53/* use when traversing tree through the child, sibling,
  54 * or parent members of struct device_node.
  55 */
  56DEFINE_RAW_SPINLOCK(devtree_lock);
  57
  58bool of_node_name_eq(const struct device_node *np, const char *name)
  59{
  60        const char *node_name;
  61        size_t len;
  62
  63        if (!np)
  64                return false;
  65
  66        node_name = kbasename(np->full_name);
  67        len = strchrnul(node_name, '@') - node_name;
  68
  69        return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
  70}
  71EXPORT_SYMBOL(of_node_name_eq);
  72
  73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
  74{
  75        if (!np)
  76                return false;
  77
  78        return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
  79}
  80EXPORT_SYMBOL(of_node_name_prefix);
  81
  82static bool __of_node_is_type(const struct device_node *np, const char *type)
  83{
  84        const char *match = __of_get_property(np, "device_type", NULL);
  85
  86        return np && match && type && !strcmp(match, type);
  87}
  88
  89int of_bus_n_addr_cells(struct device_node *np)
  90{
  91        u32 cells;
  92
  93        for (; np; np = np->parent)
  94                if (!of_property_read_u32(np, "#address-cells", &cells))
  95                        return cells;
  96
  97        /* No #address-cells property for the root node */
  98        return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  99}
 100
 101int of_n_addr_cells(struct device_node *np)
 102{
 103        if (np->parent)
 104                np = np->parent;
 105
 106        return of_bus_n_addr_cells(np);
 107}
 108EXPORT_SYMBOL(of_n_addr_cells);
 109
 110int of_bus_n_size_cells(struct device_node *np)
 111{
 112        u32 cells;
 113
 114        for (; np; np = np->parent)
 115                if (!of_property_read_u32(np, "#size-cells", &cells))
 116                        return cells;
 117
 118        /* No #size-cells property for the root node */
 119        return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 120}
 121
 122int of_n_size_cells(struct device_node *np)
 123{
 124        if (np->parent)
 125                np = np->parent;
 126
 127        return of_bus_n_size_cells(np);
 128}
 129EXPORT_SYMBOL(of_n_size_cells);
 130
 131#ifdef CONFIG_NUMA
 132int __weak of_node_to_nid(struct device_node *np)
 133{
 134        return NUMA_NO_NODE;
 135}
 136#endif
 137
 138#define OF_PHANDLE_CACHE_BITS   7
 139#define OF_PHANDLE_CACHE_SZ     BIT(OF_PHANDLE_CACHE_BITS)
 140
 141static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
 142
 143static u32 of_phandle_cache_hash(phandle handle)
 144{
 145        return hash_32(handle, OF_PHANDLE_CACHE_BITS);
 146}
 147
 148/*
 149 * Caller must hold devtree_lock.
 150 */
 151void __of_phandle_cache_inv_entry(phandle handle)
 152{
 153        u32 handle_hash;
 154        struct device_node *np;
 155
 156        if (!handle)
 157                return;
 158
 159        handle_hash = of_phandle_cache_hash(handle);
 160
 161        np = phandle_cache[handle_hash];
 162        if (np && handle == np->phandle)
 163                phandle_cache[handle_hash] = NULL;
 164}
 165
 166void __init of_core_init(void)
 167{
 168        struct device_node *np;
 169
 170
 171        /* Create the kset, and register existing nodes */
 172        mutex_lock(&of_mutex);
 173        of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 174        if (!of_kset) {
 175                mutex_unlock(&of_mutex);
 176                pr_err("failed to register existing nodes\n");
 177                return;
 178        }
 179        for_each_of_allnodes(np) {
 180                __of_attach_node_sysfs(np);
 181                if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
 182                        phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
 183        }
 184        mutex_unlock(&of_mutex);
 185
 186        /* Symlink in /proc as required by userspace ABI */
 187        if (of_root)
 188                proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 189}
 190
 191static struct property *__of_find_property(const struct device_node *np,
 192                                           const char *name, int *lenp)
 193{
 194        struct property *pp;
 195
 196        if (!np)
 197                return NULL;
 198
 199        for (pp = np->properties; pp; pp = pp->next) {
 200                if (of_prop_cmp(pp->name, name) == 0) {
 201                        if (lenp)
 202                                *lenp = pp->length;
 203                        break;
 204                }
 205        }
 206
 207        return pp;
 208}
 209
 210struct property *of_find_property(const struct device_node *np,
 211                                  const char *name,
 212                                  int *lenp)
 213{
 214        struct property *pp;
 215        unsigned long flags;
 216
 217        raw_spin_lock_irqsave(&devtree_lock, flags);
 218        pp = __of_find_property(np, name, lenp);
 219        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 220
 221        return pp;
 222}
 223EXPORT_SYMBOL(of_find_property);
 224
 225struct device_node *__of_find_all_nodes(struct device_node *prev)
 226{
 227        struct device_node *np;
 228        if (!prev) {
 229                np = of_root;
 230        } else if (prev->child) {
 231                np = prev->child;
 232        } else {
 233                /* Walk back up looking for a sibling, or the end of the structure */
 234                np = prev;
 235                while (np->parent && !np->sibling)
 236                        np = np->parent;
 237                np = np->sibling; /* Might be null at the end of the tree */
 238        }
 239        return np;
 240}
 241
 242/**
 243 * of_find_all_nodes - Get next node in global list
 244 * @prev:       Previous node or NULL to start iteration
 245 *              of_node_put() will be called on it
 246 *
 247 * Returns a node pointer with refcount incremented, use
 248 * of_node_put() on it when done.
 249 */
 250struct device_node *of_find_all_nodes(struct device_node *prev)
 251{
 252        struct device_node *np;
 253        unsigned long flags;
 254
 255        raw_spin_lock_irqsave(&devtree_lock, flags);
 256        np = __of_find_all_nodes(prev);
 257        of_node_get(np);
 258        of_node_put(prev);
 259        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 260        return np;
 261}
 262EXPORT_SYMBOL(of_find_all_nodes);
 263
 264/*
 265 * Find a property with a given name for a given node
 266 * and return the value.
 267 */
 268const void *__of_get_property(const struct device_node *np,
 269                              const char *name, int *lenp)
 270{
 271        struct property *pp = __of_find_property(np, name, lenp);
 272
 273        return pp ? pp->value : NULL;
 274}
 275
 276/*
 277 * Find a property with a given name for a given node
 278 * and return the value.
 279 */
 280const void *of_get_property(const struct device_node *np, const char *name,
 281                            int *lenp)
 282{
 283        struct property *pp = of_find_property(np, name, lenp);
 284
 285        return pp ? pp->value : NULL;
 286}
 287EXPORT_SYMBOL(of_get_property);
 288
 289/*
 290 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 291 *
 292 * @cpu: logical cpu index of a core/thread
 293 * @phys_id: physical identifier of a core/thread
 294 *
 295 * CPU logical to physical index mapping is architecture specific.
 296 * However this __weak function provides a default match of physical
 297 * id to logical cpu index. phys_id provided here is usually values read
 298 * from the device tree which must match the hardware internal registers.
 299 *
 300 * Returns true if the physical identifier and the logical cpu index
 301 * correspond to the same core/thread, false otherwise.
 302 */
 303bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 304{
 305        return (u32)phys_id == cpu;
 306}
 307
 308/**
 309 * Checks if the given "prop_name" property holds the physical id of the
 310 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 311 * NULL, local thread number within the core is returned in it.
 312 */
 313static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 314                        const char *prop_name, int cpu, unsigned int *thread)
 315{
 316        const __be32 *cell;
 317        int ac, prop_len, tid;
 318        u64 hwid;
 319
 320        ac = of_n_addr_cells(cpun);
 321        cell = of_get_property(cpun, prop_name, &prop_len);
 322        if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
 323                return true;
 324        if (!cell || !ac)
 325                return false;
 326        prop_len /= sizeof(*cell) * ac;
 327        for (tid = 0; tid < prop_len; tid++) {
 328                hwid = of_read_number(cell, ac);
 329                if (arch_match_cpu_phys_id(cpu, hwid)) {
 330                        if (thread)
 331                                *thread = tid;
 332                        return true;
 333                }
 334                cell += ac;
 335        }
 336        return false;
 337}
 338
 339/*
 340 * arch_find_n_match_cpu_physical_id - See if the given device node is
 341 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 342 * else false.  If 'thread' is non-NULL, the local thread number within the
 343 * core is returned in it.
 344 */
 345bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 346                                              int cpu, unsigned int *thread)
 347{
 348        /* Check for non-standard "ibm,ppc-interrupt-server#s" property
 349         * for thread ids on PowerPC. If it doesn't exist fallback to
 350         * standard "reg" property.
 351         */
 352        if (IS_ENABLED(CONFIG_PPC) &&
 353            __of_find_n_match_cpu_property(cpun,
 354                                           "ibm,ppc-interrupt-server#s",
 355                                           cpu, thread))
 356                return true;
 357
 358        return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 359}
 360
 361/**
 362 * of_get_cpu_node - Get device node associated with the given logical CPU
 363 *
 364 * @cpu: CPU number(logical index) for which device node is required
 365 * @thread: if not NULL, local thread number within the physical core is
 366 *          returned
 367 *
 368 * The main purpose of this function is to retrieve the device node for the
 369 * given logical CPU index. It should be used to initialize the of_node in
 370 * cpu device. Once of_node in cpu device is populated, all the further
 371 * references can use that instead.
 372 *
 373 * CPU logical to physical index mapping is architecture specific and is built
 374 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 375 * which can be overridden by architecture specific implementation.
 376 *
 377 * Returns a node pointer for the logical cpu with refcount incremented, use
 378 * of_node_put() on it when done. Returns NULL if not found.
 379 */
 380struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 381{
 382        struct device_node *cpun;
 383
 384        for_each_of_cpu_node(cpun) {
 385                if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 386                        return cpun;
 387        }
 388        return NULL;
 389}
 390EXPORT_SYMBOL(of_get_cpu_node);
 391
 392/**
 393 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 394 *
 395 * @cpu_node: Pointer to the device_node for CPU.
 396 *
 397 * Returns the logical CPU number of the given CPU device_node.
 398 * Returns -ENODEV if the CPU is not found.
 399 */
 400int of_cpu_node_to_id(struct device_node *cpu_node)
 401{
 402        int cpu;
 403        bool found = false;
 404        struct device_node *np;
 405
 406        for_each_possible_cpu(cpu) {
 407                np = of_cpu_device_node_get(cpu);
 408                found = (cpu_node == np);
 409                of_node_put(np);
 410                if (found)
 411                        return cpu;
 412        }
 413
 414        return -ENODEV;
 415}
 416EXPORT_SYMBOL(of_cpu_node_to_id);
 417
 418/**
 419 * of_get_cpu_state_node - Get CPU's idle state node at the given index
 420 *
 421 * @cpu_node: The device node for the CPU
 422 * @index: The index in the list of the idle states
 423 *
 424 * Two generic methods can be used to describe a CPU's idle states, either via
 425 * a flattened description through the "cpu-idle-states" binding or via the
 426 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
 427 * bindings. This function check for both and returns the idle state node for
 428 * the requested index.
 429 *
 430 * In case an idle state node is found at @index, the refcount is incremented
 431 * for it, so call of_node_put() on it when done. Returns NULL if not found.
 432 */
 433struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
 434                                          int index)
 435{
 436        struct of_phandle_args args;
 437        int err;
 438
 439        err = of_parse_phandle_with_args(cpu_node, "power-domains",
 440                                        "#power-domain-cells", 0, &args);
 441        if (!err) {
 442                struct device_node *state_node =
 443                        of_parse_phandle(args.np, "domain-idle-states", index);
 444
 445                of_node_put(args.np);
 446                if (state_node)
 447                        return state_node;
 448        }
 449
 450        return of_parse_phandle(cpu_node, "cpu-idle-states", index);
 451}
 452EXPORT_SYMBOL(of_get_cpu_state_node);
 453
 454/**
 455 * __of_device_is_compatible() - Check if the node matches given constraints
 456 * @device: pointer to node
 457 * @compat: required compatible string, NULL or "" for any match
 458 * @type: required device_type value, NULL or "" for any match
 459 * @name: required node name, NULL or "" for any match
 460 *
 461 * Checks if the given @compat, @type and @name strings match the
 462 * properties of the given @device. A constraints can be skipped by
 463 * passing NULL or an empty string as the constraint.
 464 *
 465 * Returns 0 for no match, and a positive integer on match. The return
 466 * value is a relative score with larger values indicating better
 467 * matches. The score is weighted for the most specific compatible value
 468 * to get the highest score. Matching type is next, followed by matching
 469 * name. Practically speaking, this results in the following priority
 470 * order for matches:
 471 *
 472 * 1. specific compatible && type && name
 473 * 2. specific compatible && type
 474 * 3. specific compatible && name
 475 * 4. specific compatible
 476 * 5. general compatible && type && name
 477 * 6. general compatible && type
 478 * 7. general compatible && name
 479 * 8. general compatible
 480 * 9. type && name
 481 * 10. type
 482 * 11. name
 483 */
 484static int __of_device_is_compatible(const struct device_node *device,
 485                                     const char *compat, const char *type, const char *name)
 486{
 487        struct property *prop;
 488        const char *cp;
 489        int index = 0, score = 0;
 490
 491        /* Compatible match has highest priority */
 492        if (compat && compat[0]) {
 493                prop = __of_find_property(device, "compatible", NULL);
 494                for (cp = of_prop_next_string(prop, NULL); cp;
 495                     cp = of_prop_next_string(prop, cp), index++) {
 496                        if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 497                                score = INT_MAX/2 - (index << 2);
 498                                break;
 499                        }
 500                }
 501                if (!score)
 502                        return 0;
 503        }
 504
 505        /* Matching type is better than matching name */
 506        if (type && type[0]) {
 507                if (!__of_node_is_type(device, type))
 508                        return 0;
 509                score += 2;
 510        }
 511
 512        /* Matching name is a bit better than not */
 513        if (name && name[0]) {
 514                if (!of_node_name_eq(device, name))
 515                        return 0;
 516                score++;
 517        }
 518
 519        return score;
 520}
 521
 522/** Checks if the given "compat" string matches one of the strings in
 523 * the device's "compatible" property
 524 */
 525int of_device_is_compatible(const struct device_node *device,
 526                const char *compat)
 527{
 528        unsigned long flags;
 529        int res;
 530
 531        raw_spin_lock_irqsave(&devtree_lock, flags);
 532        res = __of_device_is_compatible(device, compat, NULL, NULL);
 533        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 534        return res;
 535}
 536EXPORT_SYMBOL(of_device_is_compatible);
 537
 538/** Checks if the device is compatible with any of the entries in
 539 *  a NULL terminated array of strings. Returns the best match
 540 *  score or 0.
 541 */
 542int of_device_compatible_match(struct device_node *device,
 543                               const char *const *compat)
 544{
 545        unsigned int tmp, score = 0;
 546
 547        if (!compat)
 548                return 0;
 549
 550        while (*compat) {
 551                tmp = of_device_is_compatible(device, *compat);
 552                if (tmp > score)
 553                        score = tmp;
 554                compat++;
 555        }
 556
 557        return score;
 558}
 559
 560/**
 561 * of_machine_is_compatible - Test root of device tree for a given compatible value
 562 * @compat: compatible string to look for in root node's compatible property.
 563 *
 564 * Returns a positive integer if the root node has the given value in its
 565 * compatible property.
 566 */
 567int of_machine_is_compatible(const char *compat)
 568{
 569        struct device_node *root;
 570        int rc = 0;
 571
 572        root = of_find_node_by_path("/");
 573        if (root) {
 574                rc = of_device_is_compatible(root, compat);
 575                of_node_put(root);
 576        }
 577        return rc;
 578}
 579EXPORT_SYMBOL(of_machine_is_compatible);
 580
 581/**
 582 *  __of_device_is_available - check if a device is available for use
 583 *
 584 *  @device: Node to check for availability, with locks already held
 585 *
 586 *  Returns true if the status property is absent or set to "okay" or "ok",
 587 *  false otherwise
 588 */
 589static bool __of_device_is_available(const struct device_node *device)
 590{
 591        const char *status;
 592        int statlen;
 593
 594        if (!device)
 595                return false;
 596
 597        status = __of_get_property(device, "status", &statlen);
 598        if (status == NULL)
 599                return true;
 600
 601        if (statlen > 0) {
 602                if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 603                        return true;
 604        }
 605
 606        return false;
 607}
 608
 609/**
 610 *  of_device_is_available - check if a device is available for use
 611 *
 612 *  @device: Node to check for availability
 613 *
 614 *  Returns true if the status property is absent or set to "okay" or "ok",
 615 *  false otherwise
 616 */
 617bool of_device_is_available(const struct device_node *device)
 618{
 619        unsigned long flags;
 620        bool res;
 621
 622        raw_spin_lock_irqsave(&devtree_lock, flags);
 623        res = __of_device_is_available(device);
 624        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 625        return res;
 626
 627}
 628EXPORT_SYMBOL(of_device_is_available);
 629
 630/**
 631 *  of_device_is_big_endian - check if a device has BE registers
 632 *
 633 *  @device: Node to check for endianness
 634 *
 635 *  Returns true if the device has a "big-endian" property, or if the kernel
 636 *  was compiled for BE *and* the device has a "native-endian" property.
 637 *  Returns false otherwise.
 638 *
 639 *  Callers would nominally use ioread32be/iowrite32be if
 640 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 641 */
 642bool of_device_is_big_endian(const struct device_node *device)
 643{
 644        if (of_property_read_bool(device, "big-endian"))
 645                return true;
 646        if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 647            of_property_read_bool(device, "native-endian"))
 648                return true;
 649        return false;
 650}
 651EXPORT_SYMBOL(of_device_is_big_endian);
 652
 653/**
 654 *      of_get_parent - Get a node's parent if any
 655 *      @node:  Node to get parent
 656 *
 657 *      Returns a node pointer with refcount incremented, use
 658 *      of_node_put() on it when done.
 659 */
 660struct device_node *of_get_parent(const struct device_node *node)
 661{
 662        struct device_node *np;
 663        unsigned long flags;
 664
 665        if (!node)
 666                return NULL;
 667
 668        raw_spin_lock_irqsave(&devtree_lock, flags);
 669        np = of_node_get(node->parent);
 670        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 671        return np;
 672}
 673EXPORT_SYMBOL(of_get_parent);
 674
 675/**
 676 *      of_get_next_parent - Iterate to a node's parent
 677 *      @node:  Node to get parent of
 678 *
 679 *      This is like of_get_parent() except that it drops the
 680 *      refcount on the passed node, making it suitable for iterating
 681 *      through a node's parents.
 682 *
 683 *      Returns a node pointer with refcount incremented, use
 684 *      of_node_put() on it when done.
 685 */
 686struct device_node *of_get_next_parent(struct device_node *node)
 687{
 688        struct device_node *parent;
 689        unsigned long flags;
 690
 691        if (!node)
 692                return NULL;
 693
 694        raw_spin_lock_irqsave(&devtree_lock, flags);
 695        parent = of_node_get(node->parent);
 696        of_node_put(node);
 697        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 698        return parent;
 699}
 700EXPORT_SYMBOL(of_get_next_parent);
 701
 702static struct device_node *__of_get_next_child(const struct device_node *node,
 703                                                struct device_node *prev)
 704{
 705        struct device_node *next;
 706
 707        if (!node)
 708                return NULL;
 709
 710        next = prev ? prev->sibling : node->child;
 711        for (; next; next = next->sibling)
 712                if (of_node_get(next))
 713                        break;
 714        of_node_put(prev);
 715        return next;
 716}
 717#define __for_each_child_of_node(parent, child) \
 718        for (child = __of_get_next_child(parent, NULL); child != NULL; \
 719             child = __of_get_next_child(parent, child))
 720
 721/**
 722 *      of_get_next_child - Iterate a node childs
 723 *      @node:  parent node
 724 *      @prev:  previous child of the parent node, or NULL to get first
 725 *
 726 *      Returns a node pointer with refcount incremented, use of_node_put() on
 727 *      it when done. Returns NULL when prev is the last child. Decrements the
 728 *      refcount of prev.
 729 */
 730struct device_node *of_get_next_child(const struct device_node *node,
 731        struct device_node *prev)
 732{
 733        struct device_node *next;
 734        unsigned long flags;
 735
 736        raw_spin_lock_irqsave(&devtree_lock, flags);
 737        next = __of_get_next_child(node, prev);
 738        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 739        return next;
 740}
 741EXPORT_SYMBOL(of_get_next_child);
 742
 743/**
 744 *      of_get_next_available_child - Find the next available child node
 745 *      @node:  parent node
 746 *      @prev:  previous child of the parent node, or NULL to get first
 747 *
 748 *      This function is like of_get_next_child(), except that it
 749 *      automatically skips any disabled nodes (i.e. status = "disabled").
 750 */
 751struct device_node *of_get_next_available_child(const struct device_node *node,
 752        struct device_node *prev)
 753{
 754        struct device_node *next;
 755        unsigned long flags;
 756
 757        if (!node)
 758                return NULL;
 759
 760        raw_spin_lock_irqsave(&devtree_lock, flags);
 761        next = prev ? prev->sibling : node->child;
 762        for (; next; next = next->sibling) {
 763                if (!__of_device_is_available(next))
 764                        continue;
 765                if (of_node_get(next))
 766                        break;
 767        }
 768        of_node_put(prev);
 769        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 770        return next;
 771}
 772EXPORT_SYMBOL(of_get_next_available_child);
 773
 774/**
 775 *      of_get_next_cpu_node - Iterate on cpu nodes
 776 *      @prev:  previous child of the /cpus node, or NULL to get first
 777 *
 778 *      Returns a cpu node pointer with refcount incremented, use of_node_put()
 779 *      on it when done. Returns NULL when prev is the last child. Decrements
 780 *      the refcount of prev.
 781 */
 782struct device_node *of_get_next_cpu_node(struct device_node *prev)
 783{
 784        struct device_node *next = NULL;
 785        unsigned long flags;
 786        struct device_node *node;
 787
 788        if (!prev)
 789                node = of_find_node_by_path("/cpus");
 790
 791        raw_spin_lock_irqsave(&devtree_lock, flags);
 792        if (prev)
 793                next = prev->sibling;
 794        else if (node) {
 795                next = node->child;
 796                of_node_put(node);
 797        }
 798        for (; next; next = next->sibling) {
 799                if (!(of_node_name_eq(next, "cpu") ||
 800                      __of_node_is_type(next, "cpu")))
 801                        continue;
 802                if (of_node_get(next))
 803                        break;
 804        }
 805        of_node_put(prev);
 806        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 807        return next;
 808}
 809EXPORT_SYMBOL(of_get_next_cpu_node);
 810
 811/**
 812 * of_get_compatible_child - Find compatible child node
 813 * @parent:     parent node
 814 * @compatible: compatible string
 815 *
 816 * Lookup child node whose compatible property contains the given compatible
 817 * string.
 818 *
 819 * Returns a node pointer with refcount incremented, use of_node_put() on it
 820 * when done; or NULL if not found.
 821 */
 822struct device_node *of_get_compatible_child(const struct device_node *parent,
 823                                const char *compatible)
 824{
 825        struct device_node *child;
 826
 827        for_each_child_of_node(parent, child) {
 828                if (of_device_is_compatible(child, compatible))
 829                        break;
 830        }
 831
 832        return child;
 833}
 834EXPORT_SYMBOL(of_get_compatible_child);
 835
 836/**
 837 *      of_get_child_by_name - Find the child node by name for a given parent
 838 *      @node:  parent node
 839 *      @name:  child name to look for.
 840 *
 841 *      This function looks for child node for given matching name
 842 *
 843 *      Returns a node pointer if found, with refcount incremented, use
 844 *      of_node_put() on it when done.
 845 *      Returns NULL if node is not found.
 846 */
 847struct device_node *of_get_child_by_name(const struct device_node *node,
 848                                const char *name)
 849{
 850        struct device_node *child;
 851
 852        for_each_child_of_node(node, child)
 853                if (of_node_name_eq(child, name))
 854                        break;
 855        return child;
 856}
 857EXPORT_SYMBOL(of_get_child_by_name);
 858
 859struct device_node *__of_find_node_by_path(struct device_node *parent,
 860                                                const char *path)
 861{
 862        struct device_node *child;
 863        int len;
 864
 865        len = strcspn(path, "/:");
 866        if (!len)
 867                return NULL;
 868
 869        __for_each_child_of_node(parent, child) {
 870                const char *name = kbasename(child->full_name);
 871                if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 872                        return child;
 873        }
 874        return NULL;
 875}
 876
 877struct device_node *__of_find_node_by_full_path(struct device_node *node,
 878                                                const char *path)
 879{
 880        const char *separator = strchr(path, ':');
 881
 882        while (node && *path == '/') {
 883                struct device_node *tmp = node;
 884
 885                path++; /* Increment past '/' delimiter */
 886                node = __of_find_node_by_path(node, path);
 887                of_node_put(tmp);
 888                path = strchrnul(path, '/');
 889                if (separator && separator < path)
 890                        break;
 891        }
 892        return node;
 893}
 894
 895/**
 896 *      of_find_node_opts_by_path - Find a node matching a full OF path
 897 *      @path: Either the full path to match, or if the path does not
 898 *             start with '/', the name of a property of the /aliases
 899 *             node (an alias).  In the case of an alias, the node
 900 *             matching the alias' value will be returned.
 901 *      @opts: Address of a pointer into which to store the start of
 902 *             an options string appended to the end of the path with
 903 *             a ':' separator.
 904 *
 905 *      Valid paths:
 906 *              /foo/bar        Full path
 907 *              foo             Valid alias
 908 *              foo/bar         Valid alias + relative path
 909 *
 910 *      Returns a node pointer with refcount incremented, use
 911 *      of_node_put() on it when done.
 912 */
 913struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 914{
 915        struct device_node *np = NULL;
 916        struct property *pp;
 917        unsigned long flags;
 918        const char *separator = strchr(path, ':');
 919
 920        if (opts)
 921                *opts = separator ? separator + 1 : NULL;
 922
 923        if (strcmp(path, "/") == 0)
 924                return of_node_get(of_root);
 925
 926        /* The path could begin with an alias */
 927        if (*path != '/') {
 928                int len;
 929                const char *p = separator;
 930
 931                if (!p)
 932                        p = strchrnul(path, '/');
 933                len = p - path;
 934
 935                /* of_aliases must not be NULL */
 936                if (!of_aliases)
 937                        return NULL;
 938
 939                for_each_property_of_node(of_aliases, pp) {
 940                        if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 941                                np = of_find_node_by_path(pp->value);
 942                                break;
 943                        }
 944                }
 945                if (!np)
 946                        return NULL;
 947                path = p;
 948        }
 949
 950        /* Step down the tree matching path components */
 951        raw_spin_lock_irqsave(&devtree_lock, flags);
 952        if (!np)
 953                np = of_node_get(of_root);
 954        np = __of_find_node_by_full_path(np, path);
 955        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 956        return np;
 957}
 958EXPORT_SYMBOL(of_find_node_opts_by_path);
 959
 960/**
 961 *      of_find_node_by_name - Find a node by its "name" property
 962 *      @from:  The node to start searching from or NULL; the node
 963 *              you pass will not be searched, only the next one
 964 *              will. Typically, you pass what the previous call
 965 *              returned. of_node_put() will be called on @from.
 966 *      @name:  The name string to match against
 967 *
 968 *      Returns a node pointer with refcount incremented, use
 969 *      of_node_put() on it when done.
 970 */
 971struct device_node *of_find_node_by_name(struct device_node *from,
 972        const char *name)
 973{
 974        struct device_node *np;
 975        unsigned long flags;
 976
 977        raw_spin_lock_irqsave(&devtree_lock, flags);
 978        for_each_of_allnodes_from(from, np)
 979                if (of_node_name_eq(np, name) && of_node_get(np))
 980                        break;
 981        of_node_put(from);
 982        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 983        return np;
 984}
 985EXPORT_SYMBOL(of_find_node_by_name);
 986
 987/**
 988 *      of_find_node_by_type - Find a node by its "device_type" property
 989 *      @from:  The node to start searching from, or NULL to start searching
 990 *              the entire device tree. The node you pass will not be
 991 *              searched, only the next one will; typically, you pass
 992 *              what the previous call returned. of_node_put() will be
 993 *              called on from for you.
 994 *      @type:  The type string to match against
 995 *
 996 *      Returns a node pointer with refcount incremented, use
 997 *      of_node_put() on it when done.
 998 */
 999struct device_node *of_find_node_by_type(struct device_node *from,
1000        const char *type)
1001{
1002        struct device_node *np;
1003        unsigned long flags;
1004
1005        raw_spin_lock_irqsave(&devtree_lock, flags);
1006        for_each_of_allnodes_from(from, np)
1007                if (__of_node_is_type(np, type) && of_node_get(np))
1008                        break;
1009        of_node_put(from);
1010        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1011        return np;
1012}
1013EXPORT_SYMBOL(of_find_node_by_type);
1014
1015/**
1016 *      of_find_compatible_node - Find a node based on type and one of the
1017 *                                tokens in its "compatible" property
1018 *      @from:          The node to start searching from or NULL, the node
1019 *                      you pass will not be searched, only the next one
1020 *                      will; typically, you pass what the previous call
1021 *                      returned. of_node_put() will be called on it
1022 *      @type:          The type string to match "device_type" or NULL to ignore
1023 *      @compatible:    The string to match to one of the tokens in the device
1024 *                      "compatible" list.
1025 *
1026 *      Returns a node pointer with refcount incremented, use
1027 *      of_node_put() on it when done.
1028 */
1029struct device_node *of_find_compatible_node(struct device_node *from,
1030        const char *type, const char *compatible)
1031{
1032        struct device_node *np;
1033        unsigned long flags;
1034
1035        raw_spin_lock_irqsave(&devtree_lock, flags);
1036        for_each_of_allnodes_from(from, np)
1037                if (__of_device_is_compatible(np, compatible, type, NULL) &&
1038                    of_node_get(np))
1039                        break;
1040        of_node_put(from);
1041        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1042        return np;
1043}
1044EXPORT_SYMBOL(of_find_compatible_node);
1045
1046/**
1047 *      of_find_node_with_property - Find a node which has a property with
1048 *                                   the given name.
1049 *      @from:          The node to start searching from or NULL, the node
1050 *                      you pass will not be searched, only the next one
1051 *                      will; typically, you pass what the previous call
1052 *                      returned. of_node_put() will be called on it
1053 *      @prop_name:     The name of the property to look for.
1054 *
1055 *      Returns a node pointer with refcount incremented, use
1056 *      of_node_put() on it when done.
1057 */
1058struct device_node *of_find_node_with_property(struct device_node *from,
1059        const char *prop_name)
1060{
1061        struct device_node *np;
1062        struct property *pp;
1063        unsigned long flags;
1064
1065        raw_spin_lock_irqsave(&devtree_lock, flags);
1066        for_each_of_allnodes_from(from, np) {
1067                for (pp = np->properties; pp; pp = pp->next) {
1068                        if (of_prop_cmp(pp->name, prop_name) == 0) {
1069                                of_node_get(np);
1070                                goto out;
1071                        }
1072                }
1073        }
1074out:
1075        of_node_put(from);
1076        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1077        return np;
1078}
1079EXPORT_SYMBOL(of_find_node_with_property);
1080
1081static
1082const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1083                                           const struct device_node *node)
1084{
1085        const struct of_device_id *best_match = NULL;
1086        int score, best_score = 0;
1087
1088        if (!matches)
1089                return NULL;
1090
1091        for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1092                score = __of_device_is_compatible(node, matches->compatible,
1093                                                  matches->type, matches->name);
1094                if (score > best_score) {
1095                        best_match = matches;
1096                        best_score = score;
1097                }
1098        }
1099
1100        return best_match;
1101}
1102
1103/**
1104 * of_match_node - Tell if a device_node has a matching of_match structure
1105 *      @matches:       array of of device match structures to search in
1106 *      @node:          the of device structure to match against
1107 *
1108 *      Low level utility function used by device matching.
1109 */
1110const struct of_device_id *of_match_node(const struct of_device_id *matches,
1111                                         const struct device_node *node)
1112{
1113        const struct of_device_id *match;
1114        unsigned long flags;
1115
1116        raw_spin_lock_irqsave(&devtree_lock, flags);
1117        match = __of_match_node(matches, node);
1118        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1119        return match;
1120}
1121EXPORT_SYMBOL(of_match_node);
1122
1123/**
1124 *      of_find_matching_node_and_match - Find a node based on an of_device_id
1125 *                                        match table.
1126 *      @from:          The node to start searching from or NULL, the node
1127 *                      you pass will not be searched, only the next one
1128 *                      will; typically, you pass what the previous call
1129 *                      returned. of_node_put() will be called on it
1130 *      @matches:       array of of device match structures to search in
1131 *      @match          Updated to point at the matches entry which matched
1132 *
1133 *      Returns a node pointer with refcount incremented, use
1134 *      of_node_put() on it when done.
1135 */
1136struct device_node *of_find_matching_node_and_match(struct device_node *from,
1137                                        const struct of_device_id *matches,
1138                                        const struct of_device_id **match)
1139{
1140        struct device_node *np;
1141        const struct of_device_id *m;
1142        unsigned long flags;
1143
1144        if (match)
1145                *match = NULL;
1146
1147        raw_spin_lock_irqsave(&devtree_lock, flags);
1148        for_each_of_allnodes_from(from, np) {
1149                m = __of_match_node(matches, np);
1150                if (m && of_node_get(np)) {
1151                        if (match)
1152                                *match = m;
1153                        break;
1154                }
1155        }
1156        of_node_put(from);
1157        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1158        return np;
1159}
1160EXPORT_SYMBOL(of_find_matching_node_and_match);
1161
1162/**
1163 * of_modalias_node - Lookup appropriate modalias for a device node
1164 * @node:       pointer to a device tree node
1165 * @modalias:   Pointer to buffer that modalias value will be copied into
1166 * @len:        Length of modalias value
1167 *
1168 * Based on the value of the compatible property, this routine will attempt
1169 * to choose an appropriate modalias value for a particular device tree node.
1170 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1171 * from the first entry in the compatible list property.
1172 *
1173 * This routine returns 0 on success, <0 on failure.
1174 */
1175int of_modalias_node(struct device_node *node, char *modalias, int len)
1176{
1177        const char *compatible, *p;
1178        int cplen;
1179
1180        compatible = of_get_property(node, "compatible", &cplen);
1181        if (!compatible || strlen(compatible) > cplen)
1182                return -ENODEV;
1183        p = strchr(compatible, ',');
1184        strlcpy(modalias, p ? p + 1 : compatible, len);
1185        return 0;
1186}
1187EXPORT_SYMBOL_GPL(of_modalias_node);
1188
1189/**
1190 * of_find_node_by_phandle - Find a node given a phandle
1191 * @handle:     phandle of the node to find
1192 *
1193 * Returns a node pointer with refcount incremented, use
1194 * of_node_put() on it when done.
1195 */
1196struct device_node *of_find_node_by_phandle(phandle handle)
1197{
1198        struct device_node *np = NULL;
1199        unsigned long flags;
1200        u32 handle_hash;
1201
1202        if (!handle)
1203                return NULL;
1204
1205        handle_hash = of_phandle_cache_hash(handle);
1206
1207        raw_spin_lock_irqsave(&devtree_lock, flags);
1208
1209        if (phandle_cache[handle_hash] &&
1210            handle == phandle_cache[handle_hash]->phandle)
1211                np = phandle_cache[handle_hash];
1212
1213        if (!np) {
1214                for_each_of_allnodes(np)
1215                        if (np->phandle == handle &&
1216                            !of_node_check_flag(np, OF_DETACHED)) {
1217                                phandle_cache[handle_hash] = np;
1218                                break;
1219                        }
1220        }
1221
1222        of_node_get(np);
1223        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1224        return np;
1225}
1226EXPORT_SYMBOL(of_find_node_by_phandle);
1227
1228void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1229{
1230        int i;
1231        printk("%s %pOF", msg, args->np);
1232        for (i = 0; i < args->args_count; i++) {
1233                const char delim = i ? ',' : ':';
1234
1235                pr_cont("%c%08x", delim, args->args[i]);
1236        }
1237        pr_cont("\n");
1238}
1239
1240int of_phandle_iterator_init(struct of_phandle_iterator *it,
1241                const struct device_node *np,
1242                const char *list_name,
1243                const char *cells_name,
1244                int cell_count)
1245{
1246        const __be32 *list;
1247        int size;
1248
1249        memset(it, 0, sizeof(*it));
1250
1251        /*
1252         * one of cell_count or cells_name must be provided to determine the
1253         * argument length.
1254         */
1255        if (cell_count < 0 && !cells_name)
1256                return -EINVAL;
1257
1258        list = of_get_property(np, list_name, &size);
1259        if (!list)
1260                return -ENOENT;
1261
1262        it->cells_name = cells_name;
1263        it->cell_count = cell_count;
1264        it->parent = np;
1265        it->list_end = list + size / sizeof(*list);
1266        it->phandle_end = list;
1267        it->cur = list;
1268
1269        return 0;
1270}
1271EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1272
1273int of_phandle_iterator_next(struct of_phandle_iterator *it)
1274{
1275        uint32_t count = 0;
1276
1277        if (it->node) {
1278                of_node_put(it->node);
1279                it->node = NULL;
1280        }
1281
1282        if (!it->cur || it->phandle_end >= it->list_end)
1283                return -ENOENT;
1284
1285        it->cur = it->phandle_end;
1286
1287        /* If phandle is 0, then it is an empty entry with no arguments. */
1288        it->phandle = be32_to_cpup(it->cur++);
1289
1290        if (it->phandle) {
1291
1292                /*
1293                 * Find the provider node and parse the #*-cells property to
1294                 * determine the argument length.
1295                 */
1296                it->node = of_find_node_by_phandle(it->phandle);
1297
1298                if (it->cells_name) {
1299                        if (!it->node) {
1300                                pr_err("%pOF: could not find phandle\n",
1301                                       it->parent);
1302                                goto err;
1303                        }
1304
1305                        if (of_property_read_u32(it->node, it->cells_name,
1306                                                 &count)) {
1307                                /*
1308                                 * If both cell_count and cells_name is given,
1309                                 * fall back to cell_count in absence
1310                                 * of the cells_name property
1311                                 */
1312                                if (it->cell_count >= 0) {
1313                                        count = it->cell_count;
1314                                } else {
1315                                        pr_err("%pOF: could not get %s for %pOF\n",
1316                                               it->parent,
1317                                               it->cells_name,
1318                                               it->node);
1319                                        goto err;
1320                                }
1321                        }
1322                } else {
1323                        count = it->cell_count;
1324                }
1325
1326                /*
1327                 * Make sure that the arguments actually fit in the remaining
1328                 * property data length
1329                 */
1330                if (it->cur + count > it->list_end) {
1331                        pr_err("%pOF: %s = %d found %d\n",
1332                               it->parent, it->cells_name,
1333                               count, it->cell_count);
1334                        goto err;
1335                }
1336        }
1337
1338        it->phandle_end = it->cur + count;
1339        it->cur_count = count;
1340
1341        return 0;
1342
1343err:
1344        if (it->node) {
1345                of_node_put(it->node);
1346                it->node = NULL;
1347        }
1348
1349        return -EINVAL;
1350}
1351EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1352
1353int of_phandle_iterator_args(struct of_phandle_iterator *it,
1354                             uint32_t *args,
1355                             int size)
1356{
1357        int i, count;
1358
1359        count = it->cur_count;
1360
1361        if (WARN_ON(size < count))
1362                count = size;
1363
1364        for (i = 0; i < count; i++)
1365                args[i] = be32_to_cpup(it->cur++);
1366
1367        return count;
1368}
1369
1370static int __of_parse_phandle_with_args(const struct device_node *np,
1371                                        const char *list_name,
1372                                        const char *cells_name,
1373                                        int cell_count, int index,
1374                                        struct of_phandle_args *out_args)
1375{
1376        struct of_phandle_iterator it;
1377        int rc, cur_index = 0;
1378
1379        /* Loop over the phandles until all the requested entry is found */
1380        of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1381                /*
1382                 * All of the error cases bail out of the loop, so at
1383                 * this point, the parsing is successful. If the requested
1384                 * index matches, then fill the out_args structure and return,
1385                 * or return -ENOENT for an empty entry.
1386                 */
1387                rc = -ENOENT;
1388                if (cur_index == index) {
1389                        if (!it.phandle)
1390                                goto err;
1391
1392                        if (out_args) {
1393                                int c;
1394
1395                                c = of_phandle_iterator_args(&it,
1396                                                             out_args->args,
1397                                                             MAX_PHANDLE_ARGS);
1398                                out_args->np = it.node;
1399                                out_args->args_count = c;
1400                        } else {
1401                                of_node_put(it.node);
1402                        }
1403
1404                        /* Found it! return success */
1405                        return 0;
1406                }
1407
1408                cur_index++;
1409        }
1410
1411        /*
1412         * Unlock node before returning result; will be one of:
1413         * -ENOENT : index is for empty phandle
1414         * -EINVAL : parsing error on data
1415         */
1416
1417 err:
1418        of_node_put(it.node);
1419        return rc;
1420}
1421
1422/**
1423 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1424 * @np: Pointer to device node holding phandle property
1425 * @phandle_name: Name of property holding a phandle value
1426 * @index: For properties holding a table of phandles, this is the index into
1427 *         the table
1428 *
1429 * Returns the device_node pointer with refcount incremented.  Use
1430 * of_node_put() on it when done.
1431 */
1432struct device_node *of_parse_phandle(const struct device_node *np,
1433                                     const char *phandle_name, int index)
1434{
1435        struct of_phandle_args args;
1436
1437        if (index < 0)
1438                return NULL;
1439
1440        if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1441                                         index, &args))
1442                return NULL;
1443
1444        return args.np;
1445}
1446EXPORT_SYMBOL(of_parse_phandle);
1447
1448/**
1449 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1450 * @np:         pointer to a device tree node containing a list
1451 * @list_name:  property name that contains a list
1452 * @cells_name: property name that specifies phandles' arguments count
1453 * @index:      index of a phandle to parse out
1454 * @out_args:   optional pointer to output arguments structure (will be filled)
1455 *
1456 * This function is useful to parse lists of phandles and their arguments.
1457 * Returns 0 on success and fills out_args, on error returns appropriate
1458 * errno value.
1459 *
1460 * Caller is responsible to call of_node_put() on the returned out_args->np
1461 * pointer.
1462 *
1463 * Example:
1464 *
1465 * phandle1: node1 {
1466 *      #list-cells = <2>;
1467 * }
1468 *
1469 * phandle2: node2 {
1470 *      #list-cells = <1>;
1471 * }
1472 *
1473 * node3 {
1474 *      list = <&phandle1 1 2 &phandle2 3>;
1475 * }
1476 *
1477 * To get a device_node of the `node2' node you may call this:
1478 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1479 */
1480int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1481                                const char *cells_name, int index,
1482                                struct of_phandle_args *out_args)
1483{
1484        int cell_count = -1;
1485
1486        if (index < 0)
1487                return -EINVAL;
1488
1489        /* If cells_name is NULL we assume a cell count of 0 */
1490        if (!cells_name)
1491                cell_count = 0;
1492
1493        return __of_parse_phandle_with_args(np, list_name, cells_name,
1494                                            cell_count, index, out_args);
1495}
1496EXPORT_SYMBOL(of_parse_phandle_with_args);
1497
1498/**
1499 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1500 * @np:         pointer to a device tree node containing a list
1501 * @list_name:  property name that contains a list
1502 * @stem_name:  stem of property names that specify phandles' arguments count
1503 * @index:      index of a phandle to parse out
1504 * @out_args:   optional pointer to output arguments structure (will be filled)
1505 *
1506 * This function is useful to parse lists of phandles and their arguments.
1507 * Returns 0 on success and fills out_args, on error returns appropriate errno
1508 * value. The difference between this function and of_parse_phandle_with_args()
1509 * is that this API remaps a phandle if the node the phandle points to has
1510 * a <@stem_name>-map property.
1511 *
1512 * Caller is responsible to call of_node_put() on the returned out_args->np
1513 * pointer.
1514 *
1515 * Example:
1516 *
1517 * phandle1: node1 {
1518 *      #list-cells = <2>;
1519 * }
1520 *
1521 * phandle2: node2 {
1522 *      #list-cells = <1>;
1523 * }
1524 *
1525 * phandle3: node3 {
1526 *      #list-cells = <1>;
1527 *      list-map = <0 &phandle2 3>,
1528 *                 <1 &phandle2 2>,
1529 *                 <2 &phandle1 5 1>;
1530 *      list-map-mask = <0x3>;
1531 * };
1532 *
1533 * node4 {
1534 *      list = <&phandle1 1 2 &phandle3 0>;
1535 * }
1536 *
1537 * To get a device_node of the `node2' node you may call this:
1538 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1539 */
1540int of_parse_phandle_with_args_map(const struct device_node *np,
1541                                   const char *list_name,
1542                                   const char *stem_name,
1543                                   int index, struct of_phandle_args *out_args)
1544{
1545        char *cells_name, *map_name = NULL, *mask_name = NULL;
1546        char *pass_name = NULL;
1547        struct device_node *cur, *new = NULL;
1548        const __be32 *map, *mask, *pass;
1549        static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1550        static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1551        __be32 initial_match_array[MAX_PHANDLE_ARGS];
1552        const __be32 *match_array = initial_match_array;
1553        int i, ret, map_len, match;
1554        u32 list_size, new_size;
1555
1556        if (index < 0)
1557                return -EINVAL;
1558
1559        cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1560        if (!cells_name)
1561                return -ENOMEM;
1562
1563        ret = -ENOMEM;
1564        map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1565        if (!map_name)
1566                goto free;
1567
1568        mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1569        if (!mask_name)
1570                goto free;
1571
1572        pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1573        if (!pass_name)
1574                goto free;
1575
1576        ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1577                                           out_args);
1578        if (ret)
1579                goto free;
1580
1581        /* Get the #<list>-cells property */
1582        cur = out_args->np;
1583        ret = of_property_read_u32(cur, cells_name, &list_size);
1584        if (ret < 0)
1585                goto put;
1586
1587        /* Precalculate the match array - this simplifies match loop */
1588        for (i = 0; i < list_size; i++)
1589                initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1590
1591        ret = -EINVAL;
1592        while (cur) {
1593                /* Get the <list>-map property */
1594                map = of_get_property(cur, map_name, &map_len);
1595                if (!map) {
1596                        ret = 0;
1597                        goto free;
1598                }
1599                map_len /= sizeof(u32);
1600
1601                /* Get the <list>-map-mask property (optional) */
1602                mask = of_get_property(cur, mask_name, NULL);
1603                if (!mask)
1604                        mask = dummy_mask;
1605                /* Iterate through <list>-map property */
1606                match = 0;
1607                while (map_len > (list_size + 1) && !match) {
1608                        /* Compare specifiers */
1609                        match = 1;
1610                        for (i = 0; i < list_size; i++, map_len--)
1611                                match &= !((match_array[i] ^ *map++) & mask[i]);
1612
1613                        of_node_put(new);
1614                        new = of_find_node_by_phandle(be32_to_cpup(map));
1615                        map++;
1616                        map_len--;
1617
1618                        /* Check if not found */
1619                        if (!new)
1620                                goto put;
1621
1622                        if (!of_device_is_available(new))
1623                                match = 0;
1624
1625                        ret = of_property_read_u32(new, cells_name, &new_size);
1626                        if (ret)
1627                                goto put;
1628
1629                        /* Check for malformed properties */
1630                        if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1631                                goto put;
1632                        if (map_len < new_size)
1633                                goto put;
1634
1635                        /* Move forward by new node's #<list>-cells amount */
1636                        map += new_size;
1637                        map_len -= new_size;
1638                }
1639                if (!match)
1640                        goto put;
1641
1642                /* Get the <list>-map-pass-thru property (optional) */
1643                pass = of_get_property(cur, pass_name, NULL);
1644                if (!pass)
1645                        pass = dummy_pass;
1646
1647                /*
1648                 * Successfully parsed a <list>-map translation; copy new
1649                 * specifier into the out_args structure, keeping the
1650                 * bits specified in <list>-map-pass-thru.
1651                 */
1652                match_array = map - new_size;
1653                for (i = 0; i < new_size; i++) {
1654                        __be32 val = *(map - new_size + i);
1655
1656                        if (i < list_size) {
1657                                val &= ~pass[i];
1658                                val |= cpu_to_be32(out_args->args[i]) & pass[i];
1659                        }
1660
1661                        out_args->args[i] = be32_to_cpu(val);
1662                }
1663                out_args->args_count = list_size = new_size;
1664                /* Iterate again with new provider */
1665                out_args->np = new;
1666                of_node_put(cur);
1667                cur = new;
1668        }
1669put:
1670        of_node_put(cur);
1671        of_node_put(new);
1672free:
1673        kfree(mask_name);
1674        kfree(map_name);
1675        kfree(cells_name);
1676        kfree(pass_name);
1677
1678        return ret;
1679}
1680EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1681
1682/**
1683 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1684 * @np:         pointer to a device tree node containing a list
1685 * @list_name:  property name that contains a list
1686 * @cell_count: number of argument cells following the phandle
1687 * @index:      index of a phandle to parse out
1688 * @out_args:   optional pointer to output arguments structure (will be filled)
1689 *
1690 * This function is useful to parse lists of phandles and their arguments.
1691 * Returns 0 on success and fills out_args, on error returns appropriate
1692 * errno value.
1693 *
1694 * Caller is responsible to call of_node_put() on the returned out_args->np
1695 * pointer.
1696 *
1697 * Example:
1698 *
1699 * phandle1: node1 {
1700 * }
1701 *
1702 * phandle2: node2 {
1703 * }
1704 *
1705 * node3 {
1706 *      list = <&phandle1 0 2 &phandle2 2 3>;
1707 * }
1708 *
1709 * To get a device_node of the `node2' node you may call this:
1710 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1711 */
1712int of_parse_phandle_with_fixed_args(const struct device_node *np,
1713                                const char *list_name, int cell_count,
1714                                int index, struct of_phandle_args *out_args)
1715{
1716        if (index < 0)
1717                return -EINVAL;
1718        return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1719                                           index, out_args);
1720}
1721EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1722
1723/**
1724 * of_count_phandle_with_args() - Find the number of phandles references in a property
1725 * @np:         pointer to a device tree node containing a list
1726 * @list_name:  property name that contains a list
1727 * @cells_name: property name that specifies phandles' arguments count
1728 *
1729 * Returns the number of phandle + argument tuples within a property. It
1730 * is a typical pattern to encode a list of phandle and variable
1731 * arguments into a single property. The number of arguments is encoded
1732 * by a property in the phandle-target node. For example, a gpios
1733 * property would contain a list of GPIO specifies consisting of a
1734 * phandle and 1 or more arguments. The number of arguments are
1735 * determined by the #gpio-cells property in the node pointed to by the
1736 * phandle.
1737 */
1738int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1739                                const char *cells_name)
1740{
1741        struct of_phandle_iterator it;
1742        int rc, cur_index = 0;
1743
1744        /*
1745         * If cells_name is NULL we assume a cell count of 0. This makes
1746         * counting the phandles trivial as each 32bit word in the list is a
1747         * phandle and no arguments are to consider. So we don't iterate through
1748         * the list but just use the length to determine the phandle count.
1749         */
1750        if (!cells_name) {
1751                const __be32 *list;
1752                int size;
1753
1754                list = of_get_property(np, list_name, &size);
1755                if (!list)
1756                        return -ENOENT;
1757
1758                return size / sizeof(*list);
1759        }
1760
1761        rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1762        if (rc)
1763                return rc;
1764
1765        while ((rc = of_phandle_iterator_next(&it)) == 0)
1766                cur_index += 1;
1767
1768        if (rc != -ENOENT)
1769                return rc;
1770
1771        return cur_index;
1772}
1773EXPORT_SYMBOL(of_count_phandle_with_args);
1774
1775/**
1776 * __of_add_property - Add a property to a node without lock operations
1777 */
1778int __of_add_property(struct device_node *np, struct property *prop)
1779{
1780        struct property **next;
1781
1782        prop->next = NULL;
1783        next = &np->properties;
1784        while (*next) {
1785                if (strcmp(prop->name, (*next)->name) == 0)
1786                        /* duplicate ! don't insert it */
1787                        return -EEXIST;
1788
1789                next = &(*next)->next;
1790        }
1791        *next = prop;
1792
1793        return 0;
1794}
1795
1796/**
1797 * of_add_property - Add a property to a node
1798 */
1799int of_add_property(struct device_node *np, struct property *prop)
1800{
1801        unsigned long flags;
1802        int rc;
1803
1804        mutex_lock(&of_mutex);
1805
1806        raw_spin_lock_irqsave(&devtree_lock, flags);
1807        rc = __of_add_property(np, prop);
1808        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1809
1810        if (!rc)
1811                __of_add_property_sysfs(np, prop);
1812
1813        mutex_unlock(&of_mutex);
1814
1815        if (!rc)
1816                of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1817
1818        return rc;
1819}
1820
1821int __of_remove_property(struct device_node *np, struct property *prop)
1822{
1823        struct property **next;
1824
1825        for (next = &np->properties; *next; next = &(*next)->next) {
1826                if (*next == prop)
1827                        break;
1828        }
1829        if (*next == NULL)
1830                return -ENODEV;
1831
1832        /* found the node */
1833        *next = prop->next;
1834        prop->next = np->deadprops;
1835        np->deadprops = prop;
1836
1837        return 0;
1838}
1839
1840/**
1841 * of_remove_property - Remove a property from a node.
1842 *
1843 * Note that we don't actually remove it, since we have given out
1844 * who-knows-how-many pointers to the data using get-property.
1845 * Instead we just move the property to the "dead properties"
1846 * list, so it won't be found any more.
1847 */
1848int of_remove_property(struct device_node *np, struct property *prop)
1849{
1850        unsigned long flags;
1851        int rc;
1852
1853        if (!prop)
1854                return -ENODEV;
1855
1856        mutex_lock(&of_mutex);
1857
1858        raw_spin_lock_irqsave(&devtree_lock, flags);
1859        rc = __of_remove_property(np, prop);
1860        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1861
1862        if (!rc)
1863                __of_remove_property_sysfs(np, prop);
1864
1865        mutex_unlock(&of_mutex);
1866
1867        if (!rc)
1868                of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1869
1870        return rc;
1871}
1872EXPORT_SYMBOL_GPL(of_remove_property);
1873
1874int __of_update_property(struct device_node *np, struct property *newprop,
1875                struct property **oldpropp)
1876{
1877        struct property **next, *oldprop;
1878
1879        for (next = &np->properties; *next; next = &(*next)->next) {
1880                if (of_prop_cmp((*next)->name, newprop->name) == 0)
1881                        break;
1882        }
1883        *oldpropp = oldprop = *next;
1884
1885        if (oldprop) {
1886                /* replace the node */
1887                newprop->next = oldprop->next;
1888                *next = newprop;
1889                oldprop->next = np->deadprops;
1890                np->deadprops = oldprop;
1891        } else {
1892                /* new node */
1893                newprop->next = NULL;
1894                *next = newprop;
1895        }
1896
1897        return 0;
1898}
1899
1900/*
1901 * of_update_property - Update a property in a node, if the property does
1902 * not exist, add it.
1903 *
1904 * Note that we don't actually remove it, since we have given out
1905 * who-knows-how-many pointers to the data using get-property.
1906 * Instead we just move the property to the "dead properties" list,
1907 * and add the new property to the property list
1908 */
1909int of_update_property(struct device_node *np, struct property *newprop)
1910{
1911        struct property *oldprop;
1912        unsigned long flags;
1913        int rc;
1914
1915        if (!newprop->name)
1916                return -EINVAL;
1917
1918        mutex_lock(&of_mutex);
1919
1920        raw_spin_lock_irqsave(&devtree_lock, flags);
1921        rc = __of_update_property(np, newprop, &oldprop);
1922        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1923
1924        if (!rc)
1925                __of_update_property_sysfs(np, newprop, oldprop);
1926
1927        mutex_unlock(&of_mutex);
1928
1929        if (!rc)
1930                of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1931
1932        return rc;
1933}
1934
1935static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1936                         int id, const char *stem, int stem_len)
1937{
1938        ap->np = np;
1939        ap->id = id;
1940        strncpy(ap->stem, stem, stem_len);
1941        ap->stem[stem_len] = 0;
1942        list_add_tail(&ap->link, &aliases_lookup);
1943        pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1944                 ap->alias, ap->stem, ap->id, np);
1945}
1946
1947/**
1948 * of_alias_scan - Scan all properties of the 'aliases' node
1949 *
1950 * The function scans all the properties of the 'aliases' node and populates
1951 * the global lookup table with the properties.  It returns the
1952 * number of alias properties found, or an error code in case of failure.
1953 *
1954 * @dt_alloc:   An allocator that provides a virtual address to memory
1955 *              for storing the resulting tree
1956 */
1957void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1958{
1959        struct property *pp;
1960
1961        of_aliases = of_find_node_by_path("/aliases");
1962        of_chosen = of_find_node_by_path("/chosen");
1963        if (of_chosen == NULL)
1964                of_chosen = of_find_node_by_path("/chosen@0");
1965
1966        if (of_chosen) {
1967                /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1968                const char *name = NULL;
1969
1970                if (of_property_read_string(of_chosen, "stdout-path", &name))
1971                        of_property_read_string(of_chosen, "linux,stdout-path",
1972                                                &name);
1973                if (IS_ENABLED(CONFIG_PPC) && !name)
1974                        of_property_read_string(of_aliases, "stdout", &name);
1975                if (name)
1976                        of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1977        }
1978
1979        if (!of_aliases)
1980                return;
1981
1982        for_each_property_of_node(of_aliases, pp) {
1983                const char *start = pp->name;
1984                const char *end = start + strlen(start);
1985                struct device_node *np;
1986                struct alias_prop *ap;
1987                int id, len;
1988
1989                /* Skip those we do not want to proceed */
1990                if (!strcmp(pp->name, "name") ||
1991                    !strcmp(pp->name, "phandle") ||
1992                    !strcmp(pp->name, "linux,phandle"))
1993                        continue;
1994
1995                np = of_find_node_by_path(pp->value);
1996                if (!np)
1997                        continue;
1998
1999                /* walk the alias backwards to extract the id and work out
2000                 * the 'stem' string */
2001                while (isdigit(*(end-1)) && end > start)
2002                        end--;
2003                len = end - start;
2004
2005                if (kstrtoint(end, 10, &id) < 0)
2006                        continue;
2007
2008                /* Allocate an alias_prop with enough space for the stem */
2009                ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2010                if (!ap)
2011                        continue;
2012                memset(ap, 0, sizeof(*ap) + len + 1);
2013                ap->alias = start;
2014                of_alias_add(ap, np, id, start, len);
2015        }
2016}
2017
2018/**
2019 * of_alias_get_id - Get alias id for the given device_node
2020 * @np:         Pointer to the given device_node
2021 * @stem:       Alias stem of the given device_node
2022 *
2023 * The function travels the lookup table to get the alias id for the given
2024 * device_node and alias stem.  It returns the alias id if found.
2025 */
2026int of_alias_get_id(struct device_node *np, const char *stem)
2027{
2028        struct alias_prop *app;
2029        int id = -ENODEV;
2030
2031        mutex_lock(&of_mutex);
2032        list_for_each_entry(app, &aliases_lookup, link) {
2033                if (strcmp(app->stem, stem) != 0)
2034                        continue;
2035
2036                if (np == app->np) {
2037                        id = app->id;
2038                        break;
2039                }
2040        }
2041        mutex_unlock(&of_mutex);
2042
2043        return id;
2044}
2045EXPORT_SYMBOL_GPL(of_alias_get_id);
2046
2047/**
2048 * of_alias_get_alias_list - Get alias list for the given device driver
2049 * @matches:    Array of OF device match structures to search in
2050 * @stem:       Alias stem of the given device_node
2051 * @bitmap:     Bitmap field pointer
2052 * @nbits:      Maximum number of alias IDs which can be recorded in bitmap
2053 *
2054 * The function travels the lookup table to record alias ids for the given
2055 * device match structures and alias stem.
2056 *
2057 * Return:      0 or -ENOSYS when !CONFIG_OF or
2058 *              -EOVERFLOW if alias ID is greater then allocated nbits
2059 */
2060int of_alias_get_alias_list(const struct of_device_id *matches,
2061                             const char *stem, unsigned long *bitmap,
2062                             unsigned int nbits)
2063{
2064        struct alias_prop *app;
2065        int ret = 0;
2066
2067        /* Zero bitmap field to make sure that all the time it is clean */
2068        bitmap_zero(bitmap, nbits);
2069
2070        mutex_lock(&of_mutex);
2071        pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2072        list_for_each_entry(app, &aliases_lookup, link) {
2073                pr_debug("%s: stem: %s, id: %d\n",
2074                         __func__, app->stem, app->id);
2075
2076                if (strcmp(app->stem, stem) != 0) {
2077                        pr_debug("%s: stem comparison didn't pass %s\n",
2078                                 __func__, app->stem);
2079                        continue;
2080                }
2081
2082                if (of_match_node(matches, app->np)) {
2083                        pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2084
2085                        if (app->id >= nbits) {
2086                                pr_warn("%s: ID %d >= than bitmap field %d\n",
2087                                        __func__, app->id, nbits);
2088                                ret = -EOVERFLOW;
2089                        } else {
2090                                set_bit(app->id, bitmap);
2091                        }
2092                }
2093        }
2094        mutex_unlock(&of_mutex);
2095
2096        return ret;
2097}
2098EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2099
2100/**
2101 * of_alias_get_highest_id - Get highest alias id for the given stem
2102 * @stem:       Alias stem to be examined
2103 *
2104 * The function travels the lookup table to get the highest alias id for the
2105 * given alias stem.  It returns the alias id if found.
2106 */
2107int of_alias_get_highest_id(const char *stem)
2108{
2109        struct alias_prop *app;
2110        int id = -ENODEV;
2111
2112        mutex_lock(&of_mutex);
2113        list_for_each_entry(app, &aliases_lookup, link) {
2114                if (strcmp(app->stem, stem) != 0)
2115                        continue;
2116
2117                if (app->id > id)
2118                        id = app->id;
2119        }
2120        mutex_unlock(&of_mutex);
2121
2122        return id;
2123}
2124EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2125
2126/**
2127 * of_console_check() - Test and setup console for DT setup
2128 * @dn - Pointer to device node
2129 * @name - Name to use for preferred console without index. ex. "ttyS"
2130 * @index - Index to use for preferred console.
2131 *
2132 * Check if the given device node matches the stdout-path property in the
2133 * /chosen node. If it does then register it as the preferred console and return
2134 * TRUE. Otherwise return FALSE.
2135 */
2136bool of_console_check(struct device_node *dn, char *name, int index)
2137{
2138        if (!dn || dn != of_stdout || console_set_on_cmdline)
2139                return false;
2140
2141        /*
2142         * XXX: cast `options' to char pointer to suppress complication
2143         * warnings: printk, UART and console drivers expect char pointer.
2144         */
2145        return !add_preferred_console(name, index, (char *)of_stdout_options);
2146}
2147EXPORT_SYMBOL_GPL(of_console_check);
2148
2149/**
2150 *      of_find_next_cache_node - Find a node's subsidiary cache
2151 *      @np:    node of type "cpu" or "cache"
2152 *
2153 *      Returns a node pointer with refcount incremented, use
2154 *      of_node_put() on it when done.  Caller should hold a reference
2155 *      to np.
2156 */
2157struct device_node *of_find_next_cache_node(const struct device_node *np)
2158{
2159        struct device_node *child, *cache_node;
2160
2161        cache_node = of_parse_phandle(np, "l2-cache", 0);
2162        if (!cache_node)
2163                cache_node = of_parse_phandle(np, "next-level-cache", 0);
2164
2165        if (cache_node)
2166                return cache_node;
2167
2168        /* OF on pmac has nodes instead of properties named "l2-cache"
2169         * beneath CPU nodes.
2170         */
2171        if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2172                for_each_child_of_node(np, child)
2173                        if (of_node_is_type(child, "cache"))
2174                                return child;
2175
2176        return NULL;
2177}
2178
2179/**
2180 * of_find_last_cache_level - Find the level at which the last cache is
2181 *              present for the given logical cpu
2182 *
2183 * @cpu: cpu number(logical index) for which the last cache level is needed
2184 *
2185 * Returns the the level at which the last cache is present. It is exactly
2186 * same as  the total number of cache levels for the given logical cpu.
2187 */
2188int of_find_last_cache_level(unsigned int cpu)
2189{
2190        u32 cache_level = 0;
2191        struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2192
2193        while (np) {
2194                prev = np;
2195                of_node_put(np);
2196                np = of_find_next_cache_node(np);
2197        }
2198
2199        of_property_read_u32(prev, "cache-level", &cache_level);
2200
2201        return cache_level;
2202}
2203
2204/**
2205 * of_map_id - Translate an ID through a downstream mapping.
2206 * @np: root complex device node.
2207 * @id: device ID to map.
2208 * @map_name: property name of the map to use.
2209 * @map_mask_name: optional property name of the mask to use.
2210 * @target: optional pointer to a target device node.
2211 * @id_out: optional pointer to receive the translated ID.
2212 *
2213 * Given a device ID, look up the appropriate implementation-defined
2214 * platform ID and/or the target device which receives transactions on that
2215 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2216 * @id_out may be NULL if only the other is required. If @target points to
2217 * a non-NULL device node pointer, only entries targeting that node will be
2218 * matched; if it points to a NULL value, it will receive the device node of
2219 * the first matching target phandle, with a reference held.
2220 *
2221 * Return: 0 on success or a standard error code on failure.
2222 */
2223int of_map_id(struct device_node *np, u32 id,
2224               const char *map_name, const char *map_mask_name,
2225               struct device_node **target, u32 *id_out)
2226{
2227        u32 map_mask, masked_id;
2228        int map_len;
2229        const __be32 *map = NULL;
2230
2231        if (!np || !map_name || (!target && !id_out))
2232                return -EINVAL;
2233
2234        map = of_get_property(np, map_name, &map_len);
2235        if (!map) {
2236                if (target)
2237                        return -ENODEV;
2238                /* Otherwise, no map implies no translation */
2239                *id_out = id;
2240                return 0;
2241        }
2242
2243        if (!map_len || map_len % (4 * sizeof(*map))) {
2244                pr_err("%pOF: Error: Bad %s length: %d\n", np,
2245                        map_name, map_len);
2246                return -EINVAL;
2247        }
2248
2249        /* The default is to select all bits. */
2250        map_mask = 0xffffffff;
2251
2252        /*
2253         * Can be overridden by "{iommu,msi}-map-mask" property.
2254         * If of_property_read_u32() fails, the default is used.
2255         */
2256        if (map_mask_name)
2257                of_property_read_u32(np, map_mask_name, &map_mask);
2258
2259        masked_id = map_mask & id;
2260        for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2261                struct device_node *phandle_node;
2262                u32 id_base = be32_to_cpup(map + 0);
2263                u32 phandle = be32_to_cpup(map + 1);
2264                u32 out_base = be32_to_cpup(map + 2);
2265                u32 id_len = be32_to_cpup(map + 3);
2266
2267                if (id_base & ~map_mask) {
2268                        pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2269                                np, map_name, map_name,
2270                                map_mask, id_base);
2271                        return -EFAULT;
2272                }
2273
2274                if (masked_id < id_base || masked_id >= id_base + id_len)
2275                        continue;
2276
2277                phandle_node = of_find_node_by_phandle(phandle);
2278                if (!phandle_node)
2279                        return -ENODEV;
2280
2281                if (target) {
2282                        if (*target)
2283                                of_node_put(phandle_node);
2284                        else
2285                                *target = phandle_node;
2286
2287                        if (*target != phandle_node)
2288                                continue;
2289                }
2290
2291                if (id_out)
2292                        *id_out = masked_id - id_base + out_base;
2293
2294                pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2295                        np, map_name, map_mask, id_base, out_base,
2296                        id_len, id, masked_id - id_base + out_base);
2297                return 0;
2298        }
2299
2300        pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2301                id, target && *target ? *target : NULL);
2302
2303        /* Bypasses translation */
2304        if (id_out)
2305                *id_out = id;
2306        return 0;
2307}
2308EXPORT_SYMBOL_GPL(of_map_id);
2309