linux/drivers/phy/xilinx/phy-zynqmp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
   4 *
   5 * Copyright (C) 2018-2020 Xilinx Inc.
   6 *
   7 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
   8 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
   9 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
  10 *
  11 * This driver is tested for USB, SATA and Display Port currently.
  12 * Other controllers PCIe and SGMII should also work but that is
  13 * experimental as of now.
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/delay.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/phy/phy.h>
  23#include <linux/platform_device.h>
  24#include <linux/slab.h>
  25
  26#include <dt-bindings/phy/phy.h>
  27
  28/*
  29 * Lane Registers
  30 */
  31
  32/* TX De-emphasis parameters */
  33#define L0_TX_ANA_TM_18                 0x0048
  34#define L0_TX_ANA_TM_118                0x01d8
  35#define L0_TX_ANA_TM_118_FORCE_17_0     BIT(0)
  36
  37/* DN Resistor calibration code parameters */
  38#define L0_TXPMA_ST_3                   0x0b0c
  39#define L0_DN_CALIB_CODE                0x3f
  40
  41/* PMA control parameters */
  42#define L0_TXPMD_TM_45                  0x0cb4
  43#define L0_TXPMD_TM_48                  0x0cc0
  44#define L0_TXPMD_TM_45_OVER_DP_MAIN     BIT(0)
  45#define L0_TXPMD_TM_45_ENABLE_DP_MAIN   BIT(1)
  46#define L0_TXPMD_TM_45_OVER_DP_POST1    BIT(2)
  47#define L0_TXPMD_TM_45_ENABLE_DP_POST1  BIT(3)
  48#define L0_TXPMD_TM_45_OVER_DP_POST2    BIT(4)
  49#define L0_TXPMD_TM_45_ENABLE_DP_POST2  BIT(5)
  50
  51/* PCS control parameters */
  52#define L0_TM_DIG_6                     0x106c
  53#define L0_TM_DIS_DESCRAMBLE_DECODER    0x0f
  54#define L0_TX_DIG_61                    0x00f4
  55#define L0_TM_DISABLE_SCRAMBLE_ENCODER  0x0f
  56
  57/* PLL Test Mode register parameters */
  58#define L0_TM_PLL_DIG_37                0x2094
  59#define L0_TM_COARSE_CODE_LIMIT         0x10
  60
  61/* PLL SSC step size offsets */
  62#define L0_PLL_SS_STEPS_0_LSB           0x2368
  63#define L0_PLL_SS_STEPS_1_MSB           0x236c
  64#define L0_PLL_SS_STEP_SIZE_0_LSB       0x2370
  65#define L0_PLL_SS_STEP_SIZE_1           0x2374
  66#define L0_PLL_SS_STEP_SIZE_2           0x2378
  67#define L0_PLL_SS_STEP_SIZE_3_MSB       0x237c
  68#define L0_PLL_STATUS_READ_1            0x23e4
  69
  70/* SSC step size parameters */
  71#define STEP_SIZE_0_MASK                0xff
  72#define STEP_SIZE_1_MASK                0xff
  73#define STEP_SIZE_2_MASK                0xff
  74#define STEP_SIZE_3_MASK                0x3
  75#define STEP_SIZE_SHIFT                 8
  76#define FORCE_STEP_SIZE                 0x10
  77#define FORCE_STEPS                     0x20
  78#define STEPS_0_MASK                    0xff
  79#define STEPS_1_MASK                    0x07
  80
  81/* Reference clock selection parameters */
  82#define L0_Ln_REF_CLK_SEL(n)            (0x2860 + (n) * 4)
  83#define L0_REF_CLK_SEL_MASK             0x8f
  84
  85/* Calibration digital logic parameters */
  86#define L3_TM_CALIB_DIG19               0xec4c
  87#define L3_CALIB_DONE_STATUS            0xef14
  88#define L3_TM_CALIB_DIG18               0xec48
  89#define L3_TM_CALIB_DIG19_NSW           0x07
  90#define L3_TM_CALIB_DIG18_NSW           0xe0
  91#define L3_TM_OVERRIDE_NSW_CODE         0x20
  92#define L3_CALIB_DONE                   0x02
  93#define L3_NSW_SHIFT                    5
  94#define L3_NSW_PIPE_SHIFT               4
  95#define L3_NSW_CALIB_SHIFT              3
  96
  97#define PHY_REG_OFFSET                  0x4000
  98
  99/*
 100 * Global Registers
 101 */
 102
 103/* Refclk selection parameters */
 104#define PLL_REF_SEL(n)                  (0x10000 + (n) * 4)
 105#define PLL_FREQ_MASK                   0x1f
 106#define PLL_STATUS_LOCKED               0x10
 107
 108/* Inter Connect Matrix parameters */
 109#define ICM_CFG0                        0x10010
 110#define ICM_CFG1                        0x10014
 111#define ICM_CFG0_L0_MASK                0x07
 112#define ICM_CFG0_L1_MASK                0x70
 113#define ICM_CFG1_L2_MASK                0x07
 114#define ICM_CFG2_L3_MASK                0x70
 115#define ICM_CFG_SHIFT                   4
 116
 117/* Inter Connect Matrix allowed protocols */
 118#define ICM_PROTOCOL_PD                 0x0
 119#define ICM_PROTOCOL_PCIE               0x1
 120#define ICM_PROTOCOL_SATA               0x2
 121#define ICM_PROTOCOL_USB                0x3
 122#define ICM_PROTOCOL_DP                 0x4
 123#define ICM_PROTOCOL_SGMII              0x5
 124
 125/* Test Mode common reset control  parameters */
 126#define TM_CMN_RST                      0x10018
 127#define TM_CMN_RST_EN                   0x1
 128#define TM_CMN_RST_SET                  0x2
 129#define TM_CMN_RST_MASK                 0x3
 130
 131/* Bus width parameters */
 132#define TX_PROT_BUS_WIDTH               0x10040
 133#define RX_PROT_BUS_WIDTH               0x10044
 134#define PROT_BUS_WIDTH_10               0x0
 135#define PROT_BUS_WIDTH_20               0x1
 136#define PROT_BUS_WIDTH_40               0x2
 137#define PROT_BUS_WIDTH_SHIFT            2
 138
 139/* Number of GT lanes */
 140#define NUM_LANES                       4
 141
 142/* SIOU SATA control register */
 143#define SATA_CONTROL_OFFSET             0x0100
 144
 145/* Total number of controllers */
 146#define CONTROLLERS_PER_LANE            5
 147
 148/* Protocol Type parameters */
 149#define XPSGTR_TYPE_USB0                0  /* USB controller 0 */
 150#define XPSGTR_TYPE_USB1                1  /* USB controller 1 */
 151#define XPSGTR_TYPE_SATA_0              2  /* SATA controller lane 0 */
 152#define XPSGTR_TYPE_SATA_1              3  /* SATA controller lane 1 */
 153#define XPSGTR_TYPE_PCIE_0              4  /* PCIe controller lane 0 */
 154#define XPSGTR_TYPE_PCIE_1              5  /* PCIe controller lane 1 */
 155#define XPSGTR_TYPE_PCIE_2              6  /* PCIe controller lane 2 */
 156#define XPSGTR_TYPE_PCIE_3              7  /* PCIe controller lane 3 */
 157#define XPSGTR_TYPE_DP_0                8  /* Display Port controller lane 0 */
 158#define XPSGTR_TYPE_DP_1                9  /* Display Port controller lane 1 */
 159#define XPSGTR_TYPE_SGMII0              10 /* Ethernet SGMII controller 0 */
 160#define XPSGTR_TYPE_SGMII1              11 /* Ethernet SGMII controller 1 */
 161#define XPSGTR_TYPE_SGMII2              12 /* Ethernet SGMII controller 2 */
 162#define XPSGTR_TYPE_SGMII3              13 /* Ethernet SGMII controller 3 */
 163
 164/* Timeout values */
 165#define TIMEOUT_US                      1000
 166
 167struct xpsgtr_dev;
 168
 169/**
 170 * struct xpsgtr_ssc - structure to hold SSC settings for a lane
 171 * @refclk_rate: PLL reference clock frequency
 172 * @pll_ref_clk: value to be written to register for corresponding ref clk rate
 173 * @steps: number of steps of SSC (Spread Spectrum Clock)
 174 * @step_size: step size of each step
 175 */
 176struct xpsgtr_ssc {
 177        u32 refclk_rate;
 178        u8  pll_ref_clk;
 179        u32 steps;
 180        u32 step_size;
 181};
 182
 183/**
 184 * struct xpsgtr_phy - representation of a lane
 185 * @phy: pointer to the kernel PHY device
 186 * @type: controller which uses this lane
 187 * @lane: lane number
 188 * @protocol: protocol in which the lane operates
 189 * @skip_phy_init: skip phy_init() if true
 190 * @dev: pointer to the xpsgtr_dev instance
 191 * @refclk: reference clock index
 192 */
 193struct xpsgtr_phy {
 194        struct phy *phy;
 195        u8 type;
 196        u8 lane;
 197        u8 protocol;
 198        bool skip_phy_init;
 199        struct xpsgtr_dev *dev;
 200        unsigned int refclk;
 201};
 202
 203/**
 204 * struct xpsgtr_dev - representation of a ZynMP GT device
 205 * @dev: pointer to device
 206 * @serdes: serdes base address
 207 * @siou: siou base address
 208 * @gtr_mutex: mutex for locking
 209 * @phys: PHY lanes
 210 * @refclk_sscs: spread spectrum settings for the reference clocks
 211 * @tx_term_fix: fix for GT issue
 212 * @saved_icm_cfg0: stored value of ICM CFG0 register
 213 * @saved_icm_cfg1: stored value of ICM CFG1 register
 214 */
 215struct xpsgtr_dev {
 216        struct device *dev;
 217        void __iomem *serdes;
 218        void __iomem *siou;
 219        struct mutex gtr_mutex; /* mutex for locking */
 220        struct xpsgtr_phy phys[NUM_LANES];
 221        const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
 222        bool tx_term_fix;
 223        unsigned int saved_icm_cfg0;
 224        unsigned int saved_icm_cfg1;
 225};
 226
 227/*
 228 * Configuration Data
 229 */
 230
 231/* lookup table to hold all settings needed for a ref clock frequency */
 232static const struct xpsgtr_ssc ssc_lookup[] = {
 233        {  19200000, 0x05,  608, 264020 },
 234        {  20000000, 0x06,  634, 243454 },
 235        {  24000000, 0x07,  760, 168973 },
 236        {  26000000, 0x08,  824, 143860 },
 237        {  27000000, 0x09,  856,  86551 },
 238        {  38400000, 0x0a, 1218,  65896 },
 239        {  40000000, 0x0b,  634, 243454 },
 240        {  52000000, 0x0c,  824, 143860 },
 241        { 100000000, 0x0d, 1058,  87533 },
 242        { 108000000, 0x0e,  856,  86551 },
 243        { 125000000, 0x0f,  992, 119497 },
 244        { 135000000, 0x10, 1070,  55393 },
 245        { 150000000, 0x11,  792, 187091 }
 246};
 247
 248/*
 249 * I/O Accessors
 250 */
 251
 252static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
 253{
 254        return readl(gtr_dev->serdes + reg);
 255}
 256
 257static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
 258{
 259        writel(value, gtr_dev->serdes + reg);
 260}
 261
 262static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
 263                                  u32 clr, u32 set)
 264{
 265        u32 value = xpsgtr_read(gtr_dev, reg);
 266
 267        value &= ~clr;
 268        value |= set;
 269        xpsgtr_write(gtr_dev, reg, value);
 270}
 271
 272static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
 273{
 274        void __iomem *addr = gtr_phy->dev->serdes
 275                           + gtr_phy->lane * PHY_REG_OFFSET + reg;
 276
 277        return readl(addr);
 278}
 279
 280static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
 281                                    u32 reg, u32 value)
 282{
 283        void __iomem *addr = gtr_phy->dev->serdes
 284                           + gtr_phy->lane * PHY_REG_OFFSET + reg;
 285
 286        writel(value, addr);
 287}
 288
 289static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
 290                                      u32 reg, u32 clr, u32 set)
 291{
 292        void __iomem *addr = gtr_phy->dev->serdes
 293                           + gtr_phy->lane * PHY_REG_OFFSET + reg;
 294
 295        writel((readl(addr) & ~clr) | set, addr);
 296}
 297
 298/*
 299 * Hardware Configuration
 300 */
 301
 302/* Wait for the PLL to lock (with a timeout). */
 303static int xpsgtr_wait_pll_lock(struct phy *phy)
 304{
 305        struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
 306        struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 307        unsigned int timeout = TIMEOUT_US;
 308        int ret;
 309
 310        dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
 311
 312        while (1) {
 313                u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
 314
 315                if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
 316                        ret = 0;
 317                        break;
 318                }
 319
 320                if (--timeout == 0) {
 321                        ret = -ETIMEDOUT;
 322                        break;
 323                }
 324
 325                udelay(1);
 326        }
 327
 328        if (ret == -ETIMEDOUT)
 329                dev_err(gtr_dev->dev,
 330                        "lane %u (type %u, protocol %u): PLL lock timeout\n",
 331                        gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
 332
 333        return ret;
 334}
 335
 336/* Configure PLL and spread-sprectrum clock. */
 337static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
 338{
 339        const struct xpsgtr_ssc *ssc;
 340        u32 step_size;
 341
 342        ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
 343        step_size = ssc->step_size;
 344
 345        xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
 346                       PLL_FREQ_MASK, ssc->pll_ref_clk);
 347
 348        /* Enable lane clock sharing, if required */
 349        if (gtr_phy->refclk != gtr_phy->lane) {
 350                /* Lane3 Ref Clock Selection Register */
 351                xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
 352                               L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
 353        }
 354
 355        /* SSC step size [7:0] */
 356        xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
 357                           STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
 358
 359        /* SSC step size [15:8] */
 360        step_size >>= STEP_SIZE_SHIFT;
 361        xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
 362                           STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
 363
 364        /* SSC step size [23:16] */
 365        step_size >>= STEP_SIZE_SHIFT;
 366        xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
 367                           STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
 368
 369        /* SSC steps [7:0] */
 370        xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
 371                           STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
 372
 373        /* SSC steps [10:8] */
 374        xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
 375                           STEPS_1_MASK,
 376                           (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
 377
 378        /* SSC step size [24:25] */
 379        step_size >>= STEP_SIZE_SHIFT;
 380        xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
 381                           STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
 382                           FORCE_STEP_SIZE | FORCE_STEPS);
 383}
 384
 385/* Configure the lane protocol. */
 386static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
 387{
 388        struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 389        u8 protocol = gtr_phy->protocol;
 390
 391        switch (gtr_phy->lane) {
 392        case 0:
 393                xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
 394                break;
 395        case 1:
 396                xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
 397                               protocol << ICM_CFG_SHIFT);
 398                break;
 399        case 2:
 400                xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
 401                break;
 402        case 3:
 403                xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
 404                               protocol << ICM_CFG_SHIFT);
 405                break;
 406        default:
 407                /* We already checked 0 <= lane <= 3 */
 408                break;
 409        }
 410}
 411
 412/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
 413static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
 414{
 415        xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
 416        xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
 417}
 418
 419/* DP-specific initialization. */
 420static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
 421{
 422        xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
 423                         L0_TXPMD_TM_45_OVER_DP_MAIN |
 424                         L0_TXPMD_TM_45_ENABLE_DP_MAIN |
 425                         L0_TXPMD_TM_45_OVER_DP_POST1 |
 426                         L0_TXPMD_TM_45_OVER_DP_POST2 |
 427                         L0_TXPMD_TM_45_ENABLE_DP_POST2);
 428        xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
 429                         L0_TX_ANA_TM_118_FORCE_17_0);
 430}
 431
 432/* SATA-specific initialization. */
 433static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
 434{
 435        struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 436
 437        xpsgtr_bypass_scrambler_8b10b(gtr_phy);
 438
 439        writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
 440}
 441
 442/* SGMII-specific initialization. */
 443static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
 444{
 445        struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 446
 447        /* Set SGMII protocol TX and RX bus width to 10 bits. */
 448        xpsgtr_write(gtr_dev, TX_PROT_BUS_WIDTH,
 449                     PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT));
 450        xpsgtr_write(gtr_dev, RX_PROT_BUS_WIDTH,
 451                     PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT));
 452
 453        xpsgtr_bypass_scrambler_8b10b(gtr_phy);
 454}
 455
 456/* Configure TX de-emphasis and margining for DP. */
 457static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
 458                                    unsigned int voltage)
 459{
 460        static const u8 voltage_swing[4][4] = {
 461                { 0x2a, 0x27, 0x24, 0x20 },
 462                { 0x27, 0x23, 0x20, 0xff },
 463                { 0x24, 0x20, 0xff, 0xff },
 464                { 0xff, 0xff, 0xff, 0xff }
 465        };
 466        static const u8 pre_emphasis[4][4] = {
 467                { 0x02, 0x02, 0x02, 0x02 },
 468                { 0x01, 0x01, 0x01, 0xff },
 469                { 0x00, 0x00, 0xff, 0xff },
 470                { 0xff, 0xff, 0xff, 0xff }
 471        };
 472
 473        xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
 474        xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
 475}
 476
 477/*
 478 * PHY Operations
 479 */
 480
 481static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
 482{
 483        /*
 484         * As USB may save the snapshot of the states during hibernation, doing
 485         * phy_init() will put the USB controller into reset, resulting in the
 486         * losing of the saved snapshot. So try to avoid phy_init() for USB
 487         * except when gtr_phy->skip_phy_init is false (this happens when FPD is
 488         * shutdown during suspend or when gt lane is changed from current one)
 489         */
 490        if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
 491                return false;
 492        else
 493                return true;
 494}
 495
 496/*
 497 * There is a functional issue in the GT. The TX termination resistance can be
 498 * out of spec due to a issue in the calibration logic. This is the workaround
 499 * to fix it, required for XCZU9EG silicon.
 500 */
 501static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
 502{
 503        struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 504        u32 timeout = TIMEOUT_US;
 505        u32 nsw;
 506
 507        /* Enabling Test Mode control for CMN Rest */
 508        xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
 509
 510        /* Set Test Mode reset */
 511        xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
 512
 513        xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
 514        xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
 515
 516        /*
 517         * As a part of work around sequence for PMOS calibration fix,
 518         * we need to configure any lane ICM_CFG to valid protocol. This
 519         * will deassert the CMN_Resetn signal.
 520         */
 521        xpsgtr_lane_set_protocol(gtr_phy);
 522
 523        /* Clear Test Mode reset */
 524        xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
 525
 526        dev_dbg(gtr_dev->dev, "calibrating...\n");
 527
 528        do {
 529                u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
 530
 531                if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
 532                        break;
 533
 534                if (!--timeout) {
 535                        dev_err(gtr_dev->dev, "calibration time out\n");
 536                        return -ETIMEDOUT;
 537                }
 538
 539                udelay(1);
 540        } while (timeout > 0);
 541
 542        dev_dbg(gtr_dev->dev, "calibration done\n");
 543
 544        /* Reading NMOS Register Code */
 545        nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
 546
 547        /* Set Test Mode reset */
 548        xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
 549
 550        /* Writing NMOS register values back [5:3] */
 551        xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
 552
 553        /* Writing NMOS register value [2:0] */
 554        xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
 555                     ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
 556                     (1 << L3_NSW_PIPE_SHIFT));
 557
 558        /* Clear Test Mode reset */
 559        xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
 560
 561        return 0;
 562}
 563
 564static int xpsgtr_phy_init(struct phy *phy)
 565{
 566        struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
 567        struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
 568        int ret = 0;
 569
 570        mutex_lock(&gtr_dev->gtr_mutex);
 571
 572        /* Skip initialization if not required. */
 573        if (!xpsgtr_phy_init_required(gtr_phy))
 574                goto out;
 575
 576        if (gtr_dev->tx_term_fix) {
 577                ret = xpsgtr_phy_tx_term_fix(gtr_phy);
 578                if (ret < 0)
 579                        goto out;
 580
 581                gtr_dev->tx_term_fix = false;
 582        }
 583
 584        /* Enable coarse code saturation limiting logic. */
 585        xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
 586
 587        /*
 588         * Configure the PLL, the lane protocol, and perform protocol-specific
 589         * initialization.
 590         */
 591        xpsgtr_configure_pll(gtr_phy);
 592        xpsgtr_lane_set_protocol(gtr_phy);
 593
 594        switch (gtr_phy->protocol) {
 595        case ICM_PROTOCOL_DP:
 596                xpsgtr_phy_init_dp(gtr_phy);
 597                break;
 598
 599        case ICM_PROTOCOL_SATA:
 600                xpsgtr_phy_init_sata(gtr_phy);
 601                break;
 602
 603        case ICM_PROTOCOL_SGMII:
 604                xpsgtr_phy_init_sgmii(gtr_phy);
 605                break;
 606        }
 607
 608out:
 609        mutex_unlock(&gtr_dev->gtr_mutex);
 610        return ret;
 611}
 612
 613static int xpsgtr_phy_exit(struct phy *phy)
 614{
 615        struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
 616
 617        gtr_phy->skip_phy_init = false;
 618
 619        return 0;
 620}
 621
 622static int xpsgtr_phy_power_on(struct phy *phy)
 623{
 624        struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
 625        int ret = 0;
 626
 627        /*
 628         * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
 629         * cumulating waits for both lanes. The user is expected to initialize
 630         * lane 0 last.
 631         */
 632        if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
 633            gtr_phy->type == XPSGTR_TYPE_DP_0)
 634                ret = xpsgtr_wait_pll_lock(phy);
 635
 636        return ret;
 637}
 638
 639static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
 640{
 641        struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
 642
 643        if (gtr_phy->protocol != ICM_PROTOCOL_DP)
 644                return 0;
 645
 646        xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
 647
 648        return 0;
 649}
 650
 651static const struct phy_ops xpsgtr_phyops = {
 652        .init           = xpsgtr_phy_init,
 653        .exit           = xpsgtr_phy_exit,
 654        .power_on       = xpsgtr_phy_power_on,
 655        .configure      = xpsgtr_phy_configure,
 656        .owner          = THIS_MODULE,
 657};
 658
 659/*
 660 * OF Xlate Support
 661 */
 662
 663/* Set the lane type and protocol based on the PHY type and instance number. */
 664static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
 665                                unsigned int phy_instance)
 666{
 667        unsigned int num_phy_types;
 668        const int *phy_types;
 669
 670        switch (phy_type) {
 671        case PHY_TYPE_SATA: {
 672                static const int types[] = {
 673                        XPSGTR_TYPE_SATA_0,
 674                        XPSGTR_TYPE_SATA_1,
 675                };
 676
 677                phy_types = types;
 678                num_phy_types = ARRAY_SIZE(types);
 679                gtr_phy->protocol = ICM_PROTOCOL_SATA;
 680                break;
 681        }
 682        case PHY_TYPE_USB3: {
 683                static const int types[] = {
 684                        XPSGTR_TYPE_USB0,
 685                        XPSGTR_TYPE_USB1,
 686                };
 687
 688                phy_types = types;
 689                num_phy_types = ARRAY_SIZE(types);
 690                gtr_phy->protocol = ICM_PROTOCOL_USB;
 691                break;
 692        }
 693        case PHY_TYPE_DP: {
 694                static const int types[] = {
 695                        XPSGTR_TYPE_DP_0,
 696                        XPSGTR_TYPE_DP_1,
 697                };
 698
 699                phy_types = types;
 700                num_phy_types = ARRAY_SIZE(types);
 701                gtr_phy->protocol = ICM_PROTOCOL_DP;
 702                break;
 703        }
 704        case PHY_TYPE_PCIE: {
 705                static const int types[] = {
 706                        XPSGTR_TYPE_PCIE_0,
 707                        XPSGTR_TYPE_PCIE_1,
 708                        XPSGTR_TYPE_PCIE_2,
 709                        XPSGTR_TYPE_PCIE_3,
 710                };
 711
 712                phy_types = types;
 713                num_phy_types = ARRAY_SIZE(types);
 714                gtr_phy->protocol = ICM_PROTOCOL_PCIE;
 715                break;
 716        }
 717        case PHY_TYPE_SGMII: {
 718                static const int types[] = {
 719                        XPSGTR_TYPE_SGMII0,
 720                        XPSGTR_TYPE_SGMII1,
 721                        XPSGTR_TYPE_SGMII2,
 722                        XPSGTR_TYPE_SGMII3,
 723                };
 724
 725                phy_types = types;
 726                num_phy_types = ARRAY_SIZE(types);
 727                gtr_phy->protocol = ICM_PROTOCOL_SGMII;
 728                break;
 729        }
 730        default:
 731                return -EINVAL;
 732        }
 733
 734        if (phy_instance >= num_phy_types)
 735                return -EINVAL;
 736
 737        gtr_phy->type = phy_types[phy_instance];
 738        return 0;
 739}
 740
 741/*
 742 * Valid combinations of controllers and lanes (Interconnect Matrix).
 743 */
 744static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
 745        { XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
 746                XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
 747        { XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
 748                XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
 749        { XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
 750                XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
 751        { XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
 752                XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
 753};
 754
 755/* Translate OF phandle and args to PHY instance. */
 756static struct phy *xpsgtr_xlate(struct device *dev,
 757                                struct of_phandle_args *args)
 758{
 759        struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
 760        struct xpsgtr_phy *gtr_phy;
 761        unsigned int phy_instance;
 762        unsigned int phy_lane;
 763        unsigned int phy_type;
 764        unsigned int refclk;
 765        unsigned int i;
 766        int ret;
 767
 768        if (args->args_count != 4) {
 769                dev_err(dev, "Invalid number of cells in 'phy' property\n");
 770                return ERR_PTR(-EINVAL);
 771        }
 772
 773        /*
 774         * Get the PHY parameters from the OF arguments and derive the lane
 775         * type.
 776         */
 777        phy_lane = args->args[0];
 778        if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
 779                dev_err(dev, "Invalid lane number %u\n", phy_lane);
 780                return ERR_PTR(-ENODEV);
 781        }
 782
 783        gtr_phy = &gtr_dev->phys[phy_lane];
 784        phy_type = args->args[1];
 785        phy_instance = args->args[2];
 786
 787        ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
 788        if (ret < 0) {
 789                dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
 790                return ERR_PTR(ret);
 791        }
 792
 793        refclk = args->args[3];
 794        if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
 795            !gtr_dev->refclk_sscs[refclk]) {
 796                dev_err(dev, "Invalid reference clock number %u\n", refclk);
 797                return ERR_PTR(-EINVAL);
 798        }
 799
 800        gtr_phy->refclk = refclk;
 801
 802        /*
 803         * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
 804         * is allowed to operate on the lane.
 805         */
 806        for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
 807                if (icm_matrix[phy_lane][i] == gtr_phy->type)
 808                        return gtr_phy->phy;
 809        }
 810
 811        return ERR_PTR(-EINVAL);
 812}
 813
 814/*
 815 * Power Management
 816 */
 817
 818static int __maybe_unused xpsgtr_suspend(struct device *dev)
 819{
 820        struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
 821
 822        /* Save the snapshot ICM_CFG registers. */
 823        gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
 824        gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
 825
 826        return 0;
 827}
 828
 829static int __maybe_unused xpsgtr_resume(struct device *dev)
 830{
 831        struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
 832        unsigned int icm_cfg0, icm_cfg1;
 833        unsigned int i;
 834        bool skip_phy_init;
 835
 836        icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
 837        icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
 838
 839        /* Return if no GT lanes got configured before suspend. */
 840        if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
 841                return 0;
 842
 843        /* Check if the ICM configurations changed after suspend. */
 844        if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
 845            icm_cfg1 == gtr_dev->saved_icm_cfg1)
 846                skip_phy_init = true;
 847        else
 848                skip_phy_init = false;
 849
 850        /* Update the skip_phy_init for all gtr_phy instances. */
 851        for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
 852                gtr_dev->phys[i].skip_phy_init = skip_phy_init;
 853
 854        return 0;
 855}
 856
 857static const struct dev_pm_ops xpsgtr_pm_ops = {
 858        SET_SYSTEM_SLEEP_PM_OPS(xpsgtr_suspend, xpsgtr_resume)
 859};
 860
 861/*
 862 * Probe & Platform Driver
 863 */
 864
 865static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
 866{
 867        unsigned int refclk;
 868
 869        for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
 870                unsigned long rate;
 871                unsigned int i;
 872                struct clk *clk;
 873                char name[8];
 874
 875                snprintf(name, sizeof(name), "ref%u", refclk);
 876                clk = devm_clk_get_optional(gtr_dev->dev, name);
 877                if (IS_ERR(clk)) {
 878                        if (PTR_ERR(clk) != -EPROBE_DEFER)
 879                                dev_err(gtr_dev->dev,
 880                                        "Failed to get reference clock %u: %ld\n",
 881                                        refclk, PTR_ERR(clk));
 882                        return PTR_ERR(clk);
 883                }
 884
 885                if (!clk)
 886                        continue;
 887
 888                /*
 889                 * Get the spread spectrum (SSC) settings for the reference
 890                 * clock rate.
 891                 */
 892                rate = clk_get_rate(clk);
 893
 894                for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
 895                        if (rate == ssc_lookup[i].refclk_rate) {
 896                                gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
 897                                break;
 898                        }
 899                }
 900
 901                if (i == ARRAY_SIZE(ssc_lookup)) {
 902                        dev_err(gtr_dev->dev,
 903                                "Invalid rate %lu for reference clock %u\n",
 904                                rate, refclk);
 905                        return -EINVAL;
 906                }
 907        }
 908
 909        return 0;
 910}
 911
 912static int xpsgtr_probe(struct platform_device *pdev)
 913{
 914        struct device_node *np = pdev->dev.of_node;
 915        struct xpsgtr_dev *gtr_dev;
 916        struct phy_provider *provider;
 917        unsigned int port;
 918        int ret;
 919
 920        gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
 921        if (!gtr_dev)
 922                return -ENOMEM;
 923
 924        gtr_dev->dev = &pdev->dev;
 925        platform_set_drvdata(pdev, gtr_dev);
 926
 927        mutex_init(&gtr_dev->gtr_mutex);
 928
 929        if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
 930                gtr_dev->tx_term_fix =
 931                        of_property_read_bool(np, "xlnx,tx-termination-fix");
 932
 933        /* Acquire resources. */
 934        gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
 935        if (IS_ERR(gtr_dev->serdes))
 936                return PTR_ERR(gtr_dev->serdes);
 937
 938        gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
 939        if (IS_ERR(gtr_dev->siou))
 940                return PTR_ERR(gtr_dev->siou);
 941
 942        ret = xpsgtr_get_ref_clocks(gtr_dev);
 943        if (ret)
 944                return ret;
 945
 946        /* Create PHYs. */
 947        for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
 948                struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
 949                struct phy *phy;
 950
 951                gtr_phy->lane = port;
 952                gtr_phy->dev = gtr_dev;
 953
 954                phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
 955                if (IS_ERR(phy)) {
 956                        dev_err(&pdev->dev, "failed to create PHY\n");
 957                        return PTR_ERR(phy);
 958                }
 959
 960                gtr_phy->phy = phy;
 961                phy_set_drvdata(phy, gtr_phy);
 962        }
 963
 964        /* Register the PHY provider. */
 965        provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
 966        if (IS_ERR(provider)) {
 967                dev_err(&pdev->dev, "registering provider failed\n");
 968                return PTR_ERR(provider);
 969        }
 970        return 0;
 971}
 972
 973static const struct of_device_id xpsgtr_of_match[] = {
 974        { .compatible = "xlnx,zynqmp-psgtr", },
 975        { .compatible = "xlnx,zynqmp-psgtr-v1.1", },
 976        {},
 977};
 978MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
 979
 980static struct platform_driver xpsgtr_driver = {
 981        .probe = xpsgtr_probe,
 982        .driver = {
 983                .name = "xilinx-psgtr",
 984                .of_match_table = xpsgtr_of_match,
 985                .pm =  &xpsgtr_pm_ops,
 986        },
 987};
 988
 989module_platform_driver(xpsgtr_driver);
 990
 991MODULE_AUTHOR("Xilinx Inc.");
 992MODULE_LICENSE("GPL v2");
 993MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");
 994