linux/drivers/regulator/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
  35
  36#define rdev_crit(rdev, fmt, ...)                                       \
  37        pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  38#define rdev_err(rdev, fmt, ...)                                        \
  39        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  40#define rdev_warn(rdev, fmt, ...)                                       \
  41        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_info(rdev, fmt, ...)                                       \
  43        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_dbg(rdev, fmt, ...)                                        \
  45        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46
  47static DEFINE_WW_CLASS(regulator_ww_class);
  48static DEFINE_MUTEX(regulator_nesting_mutex);
  49static DEFINE_MUTEX(regulator_list_mutex);
  50static LIST_HEAD(regulator_map_list);
  51static LIST_HEAD(regulator_ena_gpio_list);
  52static LIST_HEAD(regulator_supply_alias_list);
  53static LIST_HEAD(regulator_coupler_list);
  54static bool has_full_constraints;
  55
  56static struct dentry *debugfs_root;
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64        struct list_head list;
  65        const char *dev_name;   /* The dev_name() for the consumer */
  66        const char *supply;
  67        struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator_enable_gpio
  72 *
  73 * Management for shared enable GPIO pin
  74 */
  75struct regulator_enable_gpio {
  76        struct list_head list;
  77        struct gpio_desc *gpiod;
  78        u32 enable_count;       /* a number of enabled shared GPIO */
  79        u32 request_count;      /* a number of requested shared GPIO */
  80};
  81
  82/*
  83 * struct regulator_supply_alias
  84 *
  85 * Used to map lookups for a supply onto an alternative device.
  86 */
  87struct regulator_supply_alias {
  88        struct list_head list;
  89        struct device *src_dev;
  90        const char *src_supply;
  91        struct device *alias_dev;
  92        const char *alias_supply;
  93};
  94
  95static int _regulator_is_enabled(struct regulator_dev *rdev);
  96static int _regulator_disable(struct regulator *regulator);
  97static int _regulator_get_current_limit(struct regulator_dev *rdev);
  98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  99static int _notifier_call_chain(struct regulator_dev *rdev,
 100                                  unsigned long event, void *data);
 101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 102                                     int min_uV, int max_uV);
 103static int regulator_balance_voltage(struct regulator_dev *rdev,
 104                                     suspend_state_t state);
 105static struct regulator *create_regulator(struct regulator_dev *rdev,
 106                                          struct device *dev,
 107                                          const char *supply_name);
 108static void destroy_regulator(struct regulator *regulator);
 109static void _regulator_put(struct regulator *regulator);
 110
 111const char *rdev_get_name(struct regulator_dev *rdev)
 112{
 113        if (rdev->constraints && rdev->constraints->name)
 114                return rdev->constraints->name;
 115        else if (rdev->desc->name)
 116                return rdev->desc->name;
 117        else
 118                return "";
 119}
 120
 121static bool have_full_constraints(void)
 122{
 123        return has_full_constraints || of_have_populated_dt();
 124}
 125
 126static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 127{
 128        if (!rdev->constraints) {
 129                rdev_err(rdev, "no constraints\n");
 130                return false;
 131        }
 132
 133        if (rdev->constraints->valid_ops_mask & ops)
 134                return true;
 135
 136        return false;
 137}
 138
 139/**
 140 * regulator_lock_nested - lock a single regulator
 141 * @rdev:               regulator source
 142 * @ww_ctx:             w/w mutex acquire context
 143 *
 144 * This function can be called many times by one task on
 145 * a single regulator and its mutex will be locked only
 146 * once. If a task, which is calling this function is other
 147 * than the one, which initially locked the mutex, it will
 148 * wait on mutex.
 149 */
 150static inline int regulator_lock_nested(struct regulator_dev *rdev,
 151                                        struct ww_acquire_ctx *ww_ctx)
 152{
 153        bool lock = false;
 154        int ret = 0;
 155
 156        mutex_lock(&regulator_nesting_mutex);
 157
 158        if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 159                if (rdev->mutex_owner == current)
 160                        rdev->ref_cnt++;
 161                else
 162                        lock = true;
 163
 164                if (lock) {
 165                        mutex_unlock(&regulator_nesting_mutex);
 166                        ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 167                        mutex_lock(&regulator_nesting_mutex);
 168                }
 169        } else {
 170                lock = true;
 171        }
 172
 173        if (lock && ret != -EDEADLK) {
 174                rdev->ref_cnt++;
 175                rdev->mutex_owner = current;
 176        }
 177
 178        mutex_unlock(&regulator_nesting_mutex);
 179
 180        return ret;
 181}
 182
 183/**
 184 * regulator_lock - lock a single regulator
 185 * @rdev:               regulator source
 186 *
 187 * This function can be called many times by one task on
 188 * a single regulator and its mutex will be locked only
 189 * once. If a task, which is calling this function is other
 190 * than the one, which initially locked the mutex, it will
 191 * wait on mutex.
 192 */
 193static void regulator_lock(struct regulator_dev *rdev)
 194{
 195        regulator_lock_nested(rdev, NULL);
 196}
 197
 198/**
 199 * regulator_unlock - unlock a single regulator
 200 * @rdev:               regulator_source
 201 *
 202 * This function unlocks the mutex when the
 203 * reference counter reaches 0.
 204 */
 205static void regulator_unlock(struct regulator_dev *rdev)
 206{
 207        mutex_lock(&regulator_nesting_mutex);
 208
 209        if (--rdev->ref_cnt == 0) {
 210                rdev->mutex_owner = NULL;
 211                ww_mutex_unlock(&rdev->mutex);
 212        }
 213
 214        WARN_ON_ONCE(rdev->ref_cnt < 0);
 215
 216        mutex_unlock(&regulator_nesting_mutex);
 217}
 218
 219static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 220{
 221        struct regulator_dev *c_rdev;
 222        int i;
 223
 224        for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 225                c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 226
 227                if (rdev->supply->rdev == c_rdev)
 228                        return true;
 229        }
 230
 231        return false;
 232}
 233
 234static void regulator_unlock_recursive(struct regulator_dev *rdev,
 235                                       unsigned int n_coupled)
 236{
 237        struct regulator_dev *c_rdev, *supply_rdev;
 238        int i, supply_n_coupled;
 239
 240        for (i = n_coupled; i > 0; i--) {
 241                c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 242
 243                if (!c_rdev)
 244                        continue;
 245
 246                if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 247                        supply_rdev = c_rdev->supply->rdev;
 248                        supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 249
 250                        regulator_unlock_recursive(supply_rdev,
 251                                                   supply_n_coupled);
 252                }
 253
 254                regulator_unlock(c_rdev);
 255        }
 256}
 257
 258static int regulator_lock_recursive(struct regulator_dev *rdev,
 259                                    struct regulator_dev **new_contended_rdev,
 260                                    struct regulator_dev **old_contended_rdev,
 261                                    struct ww_acquire_ctx *ww_ctx)
 262{
 263        struct regulator_dev *c_rdev;
 264        int i, err;
 265
 266        for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 267                c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 268
 269                if (!c_rdev)
 270                        continue;
 271
 272                if (c_rdev != *old_contended_rdev) {
 273                        err = regulator_lock_nested(c_rdev, ww_ctx);
 274                        if (err) {
 275                                if (err == -EDEADLK) {
 276                                        *new_contended_rdev = c_rdev;
 277                                        goto err_unlock;
 278                                }
 279
 280                                /* shouldn't happen */
 281                                WARN_ON_ONCE(err != -EALREADY);
 282                        }
 283                } else {
 284                        *old_contended_rdev = NULL;
 285                }
 286
 287                if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 288                        err = regulator_lock_recursive(c_rdev->supply->rdev,
 289                                                       new_contended_rdev,
 290                                                       old_contended_rdev,
 291                                                       ww_ctx);
 292                        if (err) {
 293                                regulator_unlock(c_rdev);
 294                                goto err_unlock;
 295                        }
 296                }
 297        }
 298
 299        return 0;
 300
 301err_unlock:
 302        regulator_unlock_recursive(rdev, i);
 303
 304        return err;
 305}
 306
 307/**
 308 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 309 *                              regulators
 310 * @rdev:                       regulator source
 311 * @ww_ctx:                     w/w mutex acquire context
 312 *
 313 * Unlock all regulators related with rdev by coupling or supplying.
 314 */
 315static void regulator_unlock_dependent(struct regulator_dev *rdev,
 316                                       struct ww_acquire_ctx *ww_ctx)
 317{
 318        regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 319        ww_acquire_fini(ww_ctx);
 320}
 321
 322/**
 323 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 324 * @rdev:                       regulator source
 325 * @ww_ctx:                     w/w mutex acquire context
 326 *
 327 * This function as a wrapper on regulator_lock_recursive(), which locks
 328 * all regulators related with rdev by coupling or supplying.
 329 */
 330static void regulator_lock_dependent(struct regulator_dev *rdev,
 331                                     struct ww_acquire_ctx *ww_ctx)
 332{
 333        struct regulator_dev *new_contended_rdev = NULL;
 334        struct regulator_dev *old_contended_rdev = NULL;
 335        int err;
 336
 337        mutex_lock(&regulator_list_mutex);
 338
 339        ww_acquire_init(ww_ctx, &regulator_ww_class);
 340
 341        do {
 342                if (new_contended_rdev) {
 343                        ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 344                        old_contended_rdev = new_contended_rdev;
 345                        old_contended_rdev->ref_cnt++;
 346                }
 347
 348                err = regulator_lock_recursive(rdev,
 349                                               &new_contended_rdev,
 350                                               &old_contended_rdev,
 351                                               ww_ctx);
 352
 353                if (old_contended_rdev)
 354                        regulator_unlock(old_contended_rdev);
 355
 356        } while (err == -EDEADLK);
 357
 358        ww_acquire_done(ww_ctx);
 359
 360        mutex_unlock(&regulator_list_mutex);
 361}
 362
 363/**
 364 * of_get_child_regulator - get a child regulator device node
 365 * based on supply name
 366 * @parent: Parent device node
 367 * @prop_name: Combination regulator supply name and "-supply"
 368 *
 369 * Traverse all child nodes.
 370 * Extract the child regulator device node corresponding to the supply name.
 371 * returns the device node corresponding to the regulator if found, else
 372 * returns NULL.
 373 */
 374static struct device_node *of_get_child_regulator(struct device_node *parent,
 375                                                  const char *prop_name)
 376{
 377        struct device_node *regnode = NULL;
 378        struct device_node *child = NULL;
 379
 380        for_each_child_of_node(parent, child) {
 381                regnode = of_parse_phandle(child, prop_name, 0);
 382
 383                if (!regnode) {
 384                        regnode = of_get_child_regulator(child, prop_name);
 385                        if (regnode)
 386                                goto err_node_put;
 387                } else {
 388                        goto err_node_put;
 389                }
 390        }
 391        return NULL;
 392
 393err_node_put:
 394        of_node_put(child);
 395        return regnode;
 396}
 397
 398/**
 399 * of_get_regulator - get a regulator device node based on supply name
 400 * @dev: Device pointer for the consumer (of regulator) device
 401 * @supply: regulator supply name
 402 *
 403 * Extract the regulator device node corresponding to the supply name.
 404 * returns the device node corresponding to the regulator if found, else
 405 * returns NULL.
 406 */
 407static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 408{
 409        struct device_node *regnode = NULL;
 410        char prop_name[64]; /* 64 is max size of property name */
 411
 412        dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 413
 414        snprintf(prop_name, 64, "%s-supply", supply);
 415        regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 416
 417        if (!regnode) {
 418                regnode = of_get_child_regulator(dev->of_node, prop_name);
 419                if (regnode)
 420                        return regnode;
 421
 422                dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 423                                prop_name, dev->of_node);
 424                return NULL;
 425        }
 426        return regnode;
 427}
 428
 429/* Platform voltage constraint check */
 430int regulator_check_voltage(struct regulator_dev *rdev,
 431                            int *min_uV, int *max_uV)
 432{
 433        BUG_ON(*min_uV > *max_uV);
 434
 435        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 436                rdev_err(rdev, "voltage operation not allowed\n");
 437                return -EPERM;
 438        }
 439
 440        if (*max_uV > rdev->constraints->max_uV)
 441                *max_uV = rdev->constraints->max_uV;
 442        if (*min_uV < rdev->constraints->min_uV)
 443                *min_uV = rdev->constraints->min_uV;
 444
 445        if (*min_uV > *max_uV) {
 446                rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 447                         *min_uV, *max_uV);
 448                return -EINVAL;
 449        }
 450
 451        return 0;
 452}
 453
 454/* return 0 if the state is valid */
 455static int regulator_check_states(suspend_state_t state)
 456{
 457        return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 458}
 459
 460/* Make sure we select a voltage that suits the needs of all
 461 * regulator consumers
 462 */
 463int regulator_check_consumers(struct regulator_dev *rdev,
 464                              int *min_uV, int *max_uV,
 465                              suspend_state_t state)
 466{
 467        struct regulator *regulator;
 468        struct regulator_voltage *voltage;
 469
 470        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 471                voltage = &regulator->voltage[state];
 472                /*
 473                 * Assume consumers that didn't say anything are OK
 474                 * with anything in the constraint range.
 475                 */
 476                if (!voltage->min_uV && !voltage->max_uV)
 477                        continue;
 478
 479                if (*max_uV > voltage->max_uV)
 480                        *max_uV = voltage->max_uV;
 481                if (*min_uV < voltage->min_uV)
 482                        *min_uV = voltage->min_uV;
 483        }
 484
 485        if (*min_uV > *max_uV) {
 486                rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 487                        *min_uV, *max_uV);
 488                return -EINVAL;
 489        }
 490
 491        return 0;
 492}
 493
 494/* current constraint check */
 495static int regulator_check_current_limit(struct regulator_dev *rdev,
 496                                        int *min_uA, int *max_uA)
 497{
 498        BUG_ON(*min_uA > *max_uA);
 499
 500        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 501                rdev_err(rdev, "current operation not allowed\n");
 502                return -EPERM;
 503        }
 504
 505        if (*max_uA > rdev->constraints->max_uA)
 506                *max_uA = rdev->constraints->max_uA;
 507        if (*min_uA < rdev->constraints->min_uA)
 508                *min_uA = rdev->constraints->min_uA;
 509
 510        if (*min_uA > *max_uA) {
 511                rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 512                         *min_uA, *max_uA);
 513                return -EINVAL;
 514        }
 515
 516        return 0;
 517}
 518
 519/* operating mode constraint check */
 520static int regulator_mode_constrain(struct regulator_dev *rdev,
 521                                    unsigned int *mode)
 522{
 523        switch (*mode) {
 524        case REGULATOR_MODE_FAST:
 525        case REGULATOR_MODE_NORMAL:
 526        case REGULATOR_MODE_IDLE:
 527        case REGULATOR_MODE_STANDBY:
 528                break;
 529        default:
 530                rdev_err(rdev, "invalid mode %x specified\n", *mode);
 531                return -EINVAL;
 532        }
 533
 534        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 535                rdev_err(rdev, "mode operation not allowed\n");
 536                return -EPERM;
 537        }
 538
 539        /* The modes are bitmasks, the most power hungry modes having
 540         * the lowest values. If the requested mode isn't supported
 541         * try higher modes. */
 542        while (*mode) {
 543                if (rdev->constraints->valid_modes_mask & *mode)
 544                        return 0;
 545                *mode /= 2;
 546        }
 547
 548        return -EINVAL;
 549}
 550
 551static inline struct regulator_state *
 552regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 553{
 554        if (rdev->constraints == NULL)
 555                return NULL;
 556
 557        switch (state) {
 558        case PM_SUSPEND_STANDBY:
 559                return &rdev->constraints->state_standby;
 560        case PM_SUSPEND_MEM:
 561                return &rdev->constraints->state_mem;
 562        case PM_SUSPEND_MAX:
 563                return &rdev->constraints->state_disk;
 564        default:
 565                return NULL;
 566        }
 567}
 568
 569static const struct regulator_state *
 570regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 571{
 572        const struct regulator_state *rstate;
 573
 574        rstate = regulator_get_suspend_state(rdev, state);
 575        if (rstate == NULL)
 576                return NULL;
 577
 578        /* If we have no suspend mode configuration don't set anything;
 579         * only warn if the driver implements set_suspend_voltage or
 580         * set_suspend_mode callback.
 581         */
 582        if (rstate->enabled != ENABLE_IN_SUSPEND &&
 583            rstate->enabled != DISABLE_IN_SUSPEND) {
 584                if (rdev->desc->ops->set_suspend_voltage ||
 585                    rdev->desc->ops->set_suspend_mode)
 586                        rdev_warn(rdev, "No configuration\n");
 587                return NULL;
 588        }
 589
 590        return rstate;
 591}
 592
 593static ssize_t regulator_uV_show(struct device *dev,
 594                                struct device_attribute *attr, char *buf)
 595{
 596        struct regulator_dev *rdev = dev_get_drvdata(dev);
 597        int uV;
 598
 599        regulator_lock(rdev);
 600        uV = regulator_get_voltage_rdev(rdev);
 601        regulator_unlock(rdev);
 602
 603        if (uV < 0)
 604                return uV;
 605        return sprintf(buf, "%d\n", uV);
 606}
 607static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 608
 609static ssize_t regulator_uA_show(struct device *dev,
 610                                struct device_attribute *attr, char *buf)
 611{
 612        struct regulator_dev *rdev = dev_get_drvdata(dev);
 613
 614        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 615}
 616static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 617
 618static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 619                         char *buf)
 620{
 621        struct regulator_dev *rdev = dev_get_drvdata(dev);
 622
 623        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 624}
 625static DEVICE_ATTR_RO(name);
 626
 627static const char *regulator_opmode_to_str(int mode)
 628{
 629        switch (mode) {
 630        case REGULATOR_MODE_FAST:
 631                return "fast";
 632        case REGULATOR_MODE_NORMAL:
 633                return "normal";
 634        case REGULATOR_MODE_IDLE:
 635                return "idle";
 636        case REGULATOR_MODE_STANDBY:
 637                return "standby";
 638        }
 639        return "unknown";
 640}
 641
 642static ssize_t regulator_print_opmode(char *buf, int mode)
 643{
 644        return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 645}
 646
 647static ssize_t regulator_opmode_show(struct device *dev,
 648                                    struct device_attribute *attr, char *buf)
 649{
 650        struct regulator_dev *rdev = dev_get_drvdata(dev);
 651
 652        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 653}
 654static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 655
 656static ssize_t regulator_print_state(char *buf, int state)
 657{
 658        if (state > 0)
 659                return sprintf(buf, "enabled\n");
 660        else if (state == 0)
 661                return sprintf(buf, "disabled\n");
 662        else
 663                return sprintf(buf, "unknown\n");
 664}
 665
 666static ssize_t regulator_state_show(struct device *dev,
 667                                   struct device_attribute *attr, char *buf)
 668{
 669        struct regulator_dev *rdev = dev_get_drvdata(dev);
 670        ssize_t ret;
 671
 672        regulator_lock(rdev);
 673        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 674        regulator_unlock(rdev);
 675
 676        return ret;
 677}
 678static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 679
 680static ssize_t regulator_status_show(struct device *dev,
 681                                   struct device_attribute *attr, char *buf)
 682{
 683        struct regulator_dev *rdev = dev_get_drvdata(dev);
 684        int status;
 685        char *label;
 686
 687        status = rdev->desc->ops->get_status(rdev);
 688        if (status < 0)
 689                return status;
 690
 691        switch (status) {
 692        case REGULATOR_STATUS_OFF:
 693                label = "off";
 694                break;
 695        case REGULATOR_STATUS_ON:
 696                label = "on";
 697                break;
 698        case REGULATOR_STATUS_ERROR:
 699                label = "error";
 700                break;
 701        case REGULATOR_STATUS_FAST:
 702                label = "fast";
 703                break;
 704        case REGULATOR_STATUS_NORMAL:
 705                label = "normal";
 706                break;
 707        case REGULATOR_STATUS_IDLE:
 708                label = "idle";
 709                break;
 710        case REGULATOR_STATUS_STANDBY:
 711                label = "standby";
 712                break;
 713        case REGULATOR_STATUS_BYPASS:
 714                label = "bypass";
 715                break;
 716        case REGULATOR_STATUS_UNDEFINED:
 717                label = "undefined";
 718                break;
 719        default:
 720                return -ERANGE;
 721        }
 722
 723        return sprintf(buf, "%s\n", label);
 724}
 725static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 726
 727static ssize_t regulator_min_uA_show(struct device *dev,
 728                                    struct device_attribute *attr, char *buf)
 729{
 730        struct regulator_dev *rdev = dev_get_drvdata(dev);
 731
 732        if (!rdev->constraints)
 733                return sprintf(buf, "constraint not defined\n");
 734
 735        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 736}
 737static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 738
 739static ssize_t regulator_max_uA_show(struct device *dev,
 740                                    struct device_attribute *attr, char *buf)
 741{
 742        struct regulator_dev *rdev = dev_get_drvdata(dev);
 743
 744        if (!rdev->constraints)
 745                return sprintf(buf, "constraint not defined\n");
 746
 747        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 748}
 749static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 750
 751static ssize_t regulator_min_uV_show(struct device *dev,
 752                                    struct device_attribute *attr, char *buf)
 753{
 754        struct regulator_dev *rdev = dev_get_drvdata(dev);
 755
 756        if (!rdev->constraints)
 757                return sprintf(buf, "constraint not defined\n");
 758
 759        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 760}
 761static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 762
 763static ssize_t regulator_max_uV_show(struct device *dev,
 764                                    struct device_attribute *attr, char *buf)
 765{
 766        struct regulator_dev *rdev = dev_get_drvdata(dev);
 767
 768        if (!rdev->constraints)
 769                return sprintf(buf, "constraint not defined\n");
 770
 771        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 772}
 773static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 774
 775static ssize_t regulator_total_uA_show(struct device *dev,
 776                                      struct device_attribute *attr, char *buf)
 777{
 778        struct regulator_dev *rdev = dev_get_drvdata(dev);
 779        struct regulator *regulator;
 780        int uA = 0;
 781
 782        regulator_lock(rdev);
 783        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 784                if (regulator->enable_count)
 785                        uA += regulator->uA_load;
 786        }
 787        regulator_unlock(rdev);
 788        return sprintf(buf, "%d\n", uA);
 789}
 790static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 791
 792static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 793                              char *buf)
 794{
 795        struct regulator_dev *rdev = dev_get_drvdata(dev);
 796        return sprintf(buf, "%d\n", rdev->use_count);
 797}
 798static DEVICE_ATTR_RO(num_users);
 799
 800static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 801                         char *buf)
 802{
 803        struct regulator_dev *rdev = dev_get_drvdata(dev);
 804
 805        switch (rdev->desc->type) {
 806        case REGULATOR_VOLTAGE:
 807                return sprintf(buf, "voltage\n");
 808        case REGULATOR_CURRENT:
 809                return sprintf(buf, "current\n");
 810        }
 811        return sprintf(buf, "unknown\n");
 812}
 813static DEVICE_ATTR_RO(type);
 814
 815static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 816                                struct device_attribute *attr, char *buf)
 817{
 818        struct regulator_dev *rdev = dev_get_drvdata(dev);
 819
 820        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 821}
 822static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 823                regulator_suspend_mem_uV_show, NULL);
 824
 825static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 826                                struct device_attribute *attr, char *buf)
 827{
 828        struct regulator_dev *rdev = dev_get_drvdata(dev);
 829
 830        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 831}
 832static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 833                regulator_suspend_disk_uV_show, NULL);
 834
 835static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 836                                struct device_attribute *attr, char *buf)
 837{
 838        struct regulator_dev *rdev = dev_get_drvdata(dev);
 839
 840        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 841}
 842static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 843                regulator_suspend_standby_uV_show, NULL);
 844
 845static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 846                                struct device_attribute *attr, char *buf)
 847{
 848        struct regulator_dev *rdev = dev_get_drvdata(dev);
 849
 850        return regulator_print_opmode(buf,
 851                rdev->constraints->state_mem.mode);
 852}
 853static DEVICE_ATTR(suspend_mem_mode, 0444,
 854                regulator_suspend_mem_mode_show, NULL);
 855
 856static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 857                                struct device_attribute *attr, char *buf)
 858{
 859        struct regulator_dev *rdev = dev_get_drvdata(dev);
 860
 861        return regulator_print_opmode(buf,
 862                rdev->constraints->state_disk.mode);
 863}
 864static DEVICE_ATTR(suspend_disk_mode, 0444,
 865                regulator_suspend_disk_mode_show, NULL);
 866
 867static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 868                                struct device_attribute *attr, char *buf)
 869{
 870        struct regulator_dev *rdev = dev_get_drvdata(dev);
 871
 872        return regulator_print_opmode(buf,
 873                rdev->constraints->state_standby.mode);
 874}
 875static DEVICE_ATTR(suspend_standby_mode, 0444,
 876                regulator_suspend_standby_mode_show, NULL);
 877
 878static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 879                                   struct device_attribute *attr, char *buf)
 880{
 881        struct regulator_dev *rdev = dev_get_drvdata(dev);
 882
 883        return regulator_print_state(buf,
 884                        rdev->constraints->state_mem.enabled);
 885}
 886static DEVICE_ATTR(suspend_mem_state, 0444,
 887                regulator_suspend_mem_state_show, NULL);
 888
 889static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 890                                   struct device_attribute *attr, char *buf)
 891{
 892        struct regulator_dev *rdev = dev_get_drvdata(dev);
 893
 894        return regulator_print_state(buf,
 895                        rdev->constraints->state_disk.enabled);
 896}
 897static DEVICE_ATTR(suspend_disk_state, 0444,
 898                regulator_suspend_disk_state_show, NULL);
 899
 900static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 901                                   struct device_attribute *attr, char *buf)
 902{
 903        struct regulator_dev *rdev = dev_get_drvdata(dev);
 904
 905        return regulator_print_state(buf,
 906                        rdev->constraints->state_standby.enabled);
 907}
 908static DEVICE_ATTR(suspend_standby_state, 0444,
 909                regulator_suspend_standby_state_show, NULL);
 910
 911static ssize_t regulator_bypass_show(struct device *dev,
 912                                     struct device_attribute *attr, char *buf)
 913{
 914        struct regulator_dev *rdev = dev_get_drvdata(dev);
 915        const char *report;
 916        bool bypass;
 917        int ret;
 918
 919        ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 920
 921        if (ret != 0)
 922                report = "unknown";
 923        else if (bypass)
 924                report = "enabled";
 925        else
 926                report = "disabled";
 927
 928        return sprintf(buf, "%s\n", report);
 929}
 930static DEVICE_ATTR(bypass, 0444,
 931                   regulator_bypass_show, NULL);
 932
 933/* Calculate the new optimum regulator operating mode based on the new total
 934 * consumer load. All locks held by caller */
 935static int drms_uA_update(struct regulator_dev *rdev)
 936{
 937        struct regulator *sibling;
 938        int current_uA = 0, output_uV, input_uV, err;
 939        unsigned int mode;
 940
 941        /*
 942         * first check to see if we can set modes at all, otherwise just
 943         * tell the consumer everything is OK.
 944         */
 945        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 946                rdev_dbg(rdev, "DRMS operation not allowed\n");
 947                return 0;
 948        }
 949
 950        if (!rdev->desc->ops->get_optimum_mode &&
 951            !rdev->desc->ops->set_load)
 952                return 0;
 953
 954        if (!rdev->desc->ops->set_mode &&
 955            !rdev->desc->ops->set_load)
 956                return -EINVAL;
 957
 958        /* calc total requested load */
 959        list_for_each_entry(sibling, &rdev->consumer_list, list) {
 960                if (sibling->enable_count)
 961                        current_uA += sibling->uA_load;
 962        }
 963
 964        current_uA += rdev->constraints->system_load;
 965
 966        if (rdev->desc->ops->set_load) {
 967                /* set the optimum mode for our new total regulator load */
 968                err = rdev->desc->ops->set_load(rdev, current_uA);
 969                if (err < 0)
 970                        rdev_err(rdev, "failed to set load %d: %pe\n",
 971                                 current_uA, ERR_PTR(err));
 972        } else {
 973                /* get output voltage */
 974                output_uV = regulator_get_voltage_rdev(rdev);
 975                if (output_uV <= 0) {
 976                        rdev_err(rdev, "invalid output voltage found\n");
 977                        return -EINVAL;
 978                }
 979
 980                /* get input voltage */
 981                input_uV = 0;
 982                if (rdev->supply)
 983                        input_uV = regulator_get_voltage(rdev->supply);
 984                if (input_uV <= 0)
 985                        input_uV = rdev->constraints->input_uV;
 986                if (input_uV <= 0) {
 987                        rdev_err(rdev, "invalid input voltage found\n");
 988                        return -EINVAL;
 989                }
 990
 991                /* now get the optimum mode for our new total regulator load */
 992                mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 993                                                         output_uV, current_uA);
 994
 995                /* check the new mode is allowed */
 996                err = regulator_mode_constrain(rdev, &mode);
 997                if (err < 0) {
 998                        rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
 999                                 current_uA, input_uV, output_uV, ERR_PTR(err));
1000                        return err;
1001                }
1002
1003                err = rdev->desc->ops->set_mode(rdev, mode);
1004                if (err < 0)
1005                        rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006                                 mode, ERR_PTR(err));
1007        }
1008
1009        return err;
1010}
1011
1012static int __suspend_set_state(struct regulator_dev *rdev,
1013                               const struct regulator_state *rstate)
1014{
1015        int ret = 0;
1016
1017        if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018                rdev->desc->ops->set_suspend_enable)
1019                ret = rdev->desc->ops->set_suspend_enable(rdev);
1020        else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021                rdev->desc->ops->set_suspend_disable)
1022                ret = rdev->desc->ops->set_suspend_disable(rdev);
1023        else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024                ret = 0;
1025
1026        if (ret < 0) {
1027                rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028                return ret;
1029        }
1030
1031        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033                if (ret < 0) {
1034                        rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035                        return ret;
1036                }
1037        }
1038
1039        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041                if (ret < 0) {
1042                        rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043                        return ret;
1044                }
1045        }
1046
1047        return ret;
1048}
1049
1050static int suspend_set_initial_state(struct regulator_dev *rdev)
1051{
1052        const struct regulator_state *rstate;
1053
1054        rstate = regulator_get_suspend_state_check(rdev,
1055                        rdev->constraints->initial_state);
1056        if (!rstate)
1057                return 0;
1058
1059        return __suspend_set_state(rdev, rstate);
1060}
1061
1062#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1063static void print_constraints_debug(struct regulator_dev *rdev)
1064{
1065        struct regulation_constraints *constraints = rdev->constraints;
1066        char buf[160] = "";
1067        size_t len = sizeof(buf) - 1;
1068        int count = 0;
1069        int ret;
1070
1071        if (constraints->min_uV && constraints->max_uV) {
1072                if (constraints->min_uV == constraints->max_uV)
1073                        count += scnprintf(buf + count, len - count, "%d mV ",
1074                                           constraints->min_uV / 1000);
1075                else
1076                        count += scnprintf(buf + count, len - count,
1077                                           "%d <--> %d mV ",
1078                                           constraints->min_uV / 1000,
1079                                           constraints->max_uV / 1000);
1080        }
1081
1082        if (!constraints->min_uV ||
1083            constraints->min_uV != constraints->max_uV) {
1084                ret = regulator_get_voltage_rdev(rdev);
1085                if (ret > 0)
1086                        count += scnprintf(buf + count, len - count,
1087                                           "at %d mV ", ret / 1000);
1088        }
1089
1090        if (constraints->uV_offset)
1091                count += scnprintf(buf + count, len - count, "%dmV offset ",
1092                                   constraints->uV_offset / 1000);
1093
1094        if (constraints->min_uA && constraints->max_uA) {
1095                if (constraints->min_uA == constraints->max_uA)
1096                        count += scnprintf(buf + count, len - count, "%d mA ",
1097                                           constraints->min_uA / 1000);
1098                else
1099                        count += scnprintf(buf + count, len - count,
1100                                           "%d <--> %d mA ",
1101                                           constraints->min_uA / 1000,
1102                                           constraints->max_uA / 1000);
1103        }
1104
1105        if (!constraints->min_uA ||
1106            constraints->min_uA != constraints->max_uA) {
1107                ret = _regulator_get_current_limit(rdev);
1108                if (ret > 0)
1109                        count += scnprintf(buf + count, len - count,
1110                                           "at %d mA ", ret / 1000);
1111        }
1112
1113        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114                count += scnprintf(buf + count, len - count, "fast ");
1115        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116                count += scnprintf(buf + count, len - count, "normal ");
1117        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118                count += scnprintf(buf + count, len - count, "idle ");
1119        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120                count += scnprintf(buf + count, len - count, "standby ");
1121
1122        if (!count)
1123                count = scnprintf(buf, len, "no parameters");
1124        else
1125                --count;
1126
1127        count += scnprintf(buf + count, len - count, ", %s",
1128                _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129
1130        rdev_dbg(rdev, "%s\n", buf);
1131}
1132#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1133static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135
1136static void print_constraints(struct regulator_dev *rdev)
1137{
1138        struct regulation_constraints *constraints = rdev->constraints;
1139
1140        print_constraints_debug(rdev);
1141
1142        if ((constraints->min_uV != constraints->max_uV) &&
1143            !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144                rdev_warn(rdev,
1145                          "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146}
1147
1148static int machine_constraints_voltage(struct regulator_dev *rdev,
1149        struct regulation_constraints *constraints)
1150{
1151        const struct regulator_ops *ops = rdev->desc->ops;
1152        int ret;
1153
1154        /* do we need to apply the constraint voltage */
1155        if (rdev->constraints->apply_uV &&
1156            rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157                int target_min, target_max;
1158                int current_uV = regulator_get_voltage_rdev(rdev);
1159
1160                if (current_uV == -ENOTRECOVERABLE) {
1161                        /* This regulator can't be read and must be initialized */
1162                        rdev_info(rdev, "Setting %d-%duV\n",
1163                                  rdev->constraints->min_uV,
1164                                  rdev->constraints->max_uV);
1165                        _regulator_do_set_voltage(rdev,
1166                                                  rdev->constraints->min_uV,
1167                                                  rdev->constraints->max_uV);
1168                        current_uV = regulator_get_voltage_rdev(rdev);
1169                }
1170
1171                if (current_uV < 0) {
1172                        rdev_err(rdev,
1173                                 "failed to get the current voltage: %pe\n",
1174                                 ERR_PTR(current_uV));
1175                        return current_uV;
1176                }
1177
1178                /*
1179                 * If we're below the minimum voltage move up to the
1180                 * minimum voltage, if we're above the maximum voltage
1181                 * then move down to the maximum.
1182                 */
1183                target_min = current_uV;
1184                target_max = current_uV;
1185
1186                if (current_uV < rdev->constraints->min_uV) {
1187                        target_min = rdev->constraints->min_uV;
1188                        target_max = rdev->constraints->min_uV;
1189                }
1190
1191                if (current_uV > rdev->constraints->max_uV) {
1192                        target_min = rdev->constraints->max_uV;
1193                        target_max = rdev->constraints->max_uV;
1194                }
1195
1196                if (target_min != current_uV || target_max != current_uV) {
1197                        rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198                                  current_uV, target_min, target_max);
1199                        ret = _regulator_do_set_voltage(
1200                                rdev, target_min, target_max);
1201                        if (ret < 0) {
1202                                rdev_err(rdev,
1203                                        "failed to apply %d-%duV constraint: %pe\n",
1204                                        target_min, target_max, ERR_PTR(ret));
1205                                return ret;
1206                        }
1207                }
1208        }
1209
1210        /* constrain machine-level voltage specs to fit
1211         * the actual range supported by this regulator.
1212         */
1213        if (ops->list_voltage && rdev->desc->n_voltages) {
1214                int     count = rdev->desc->n_voltages;
1215                int     i;
1216                int     min_uV = INT_MAX;
1217                int     max_uV = INT_MIN;
1218                int     cmin = constraints->min_uV;
1219                int     cmax = constraints->max_uV;
1220
1221                /* it's safe to autoconfigure fixed-voltage supplies
1222                   and the constraints are used by list_voltage. */
1223                if (count == 1 && !cmin) {
1224                        cmin = 1;
1225                        cmax = INT_MAX;
1226                        constraints->min_uV = cmin;
1227                        constraints->max_uV = cmax;
1228                }
1229
1230                /* voltage constraints are optional */
1231                if ((cmin == 0) && (cmax == 0))
1232                        return 0;
1233
1234                /* else require explicit machine-level constraints */
1235                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236                        rdev_err(rdev, "invalid voltage constraints\n");
1237                        return -EINVAL;
1238                }
1239
1240                /* no need to loop voltages if range is continuous */
1241                if (rdev->desc->continuous_voltage_range)
1242                        return 0;
1243
1244                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245                for (i = 0; i < count; i++) {
1246                        int     value;
1247
1248                        value = ops->list_voltage(rdev, i);
1249                        if (value <= 0)
1250                                continue;
1251
1252                        /* maybe adjust [min_uV..max_uV] */
1253                        if (value >= cmin && value < min_uV)
1254                                min_uV = value;
1255                        if (value <= cmax && value > max_uV)
1256                                max_uV = value;
1257                }
1258
1259                /* final: [min_uV..max_uV] valid iff constraints valid */
1260                if (max_uV < min_uV) {
1261                        rdev_err(rdev,
1262                                 "unsupportable voltage constraints %u-%uuV\n",
1263                                 min_uV, max_uV);
1264                        return -EINVAL;
1265                }
1266
1267                /* use regulator's subset of machine constraints */
1268                if (constraints->min_uV < min_uV) {
1269                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270                                 constraints->min_uV, min_uV);
1271                        constraints->min_uV = min_uV;
1272                }
1273                if (constraints->max_uV > max_uV) {
1274                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275                                 constraints->max_uV, max_uV);
1276                        constraints->max_uV = max_uV;
1277                }
1278        }
1279
1280        return 0;
1281}
1282
1283static int machine_constraints_current(struct regulator_dev *rdev,
1284        struct regulation_constraints *constraints)
1285{
1286        const struct regulator_ops *ops = rdev->desc->ops;
1287        int ret;
1288
1289        if (!constraints->min_uA && !constraints->max_uA)
1290                return 0;
1291
1292        if (constraints->min_uA > constraints->max_uA) {
1293                rdev_err(rdev, "Invalid current constraints\n");
1294                return -EINVAL;
1295        }
1296
1297        if (!ops->set_current_limit || !ops->get_current_limit) {
1298                rdev_warn(rdev, "Operation of current configuration missing\n");
1299                return 0;
1300        }
1301
1302        /* Set regulator current in constraints range */
1303        ret = ops->set_current_limit(rdev, constraints->min_uA,
1304                        constraints->max_uA);
1305        if (ret < 0) {
1306                rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307                return ret;
1308        }
1309
1310        return 0;
1311}
1312
1313static int _regulator_do_enable(struct regulator_dev *rdev);
1314
1315/**
1316 * set_machine_constraints - sets regulator constraints
1317 * @rdev: regulator source
1318 *
1319 * Allows platform initialisation code to define and constrain
1320 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1321 * Constraints *must* be set by platform code in order for some
1322 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1323 * set_mode.
1324 */
1325static int set_machine_constraints(struct regulator_dev *rdev)
1326{
1327        int ret = 0;
1328        const struct regulator_ops *ops = rdev->desc->ops;
1329
1330        ret = machine_constraints_voltage(rdev, rdev->constraints);
1331        if (ret != 0)
1332                return ret;
1333
1334        ret = machine_constraints_current(rdev, rdev->constraints);
1335        if (ret != 0)
1336                return ret;
1337
1338        if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1339                ret = ops->set_input_current_limit(rdev,
1340                                                   rdev->constraints->ilim_uA);
1341                if (ret < 0) {
1342                        rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343                        return ret;
1344                }
1345        }
1346
1347        /* do we need to setup our suspend state */
1348        if (rdev->constraints->initial_state) {
1349                ret = suspend_set_initial_state(rdev);
1350                if (ret < 0) {
1351                        rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352                        return ret;
1353                }
1354        }
1355
1356        if (rdev->constraints->initial_mode) {
1357                if (!ops->set_mode) {
1358                        rdev_err(rdev, "no set_mode operation\n");
1359                        return -EINVAL;
1360                }
1361
1362                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363                if (ret < 0) {
1364                        rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365                        return ret;
1366                }
1367        } else if (rdev->constraints->system_load) {
1368                /*
1369                 * We'll only apply the initial system load if an
1370                 * initial mode wasn't specified.
1371                 */
1372                drms_uA_update(rdev);
1373        }
1374
1375        if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1376                && ops->set_ramp_delay) {
1377                ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1378                if (ret < 0) {
1379                        rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380                        return ret;
1381                }
1382        }
1383
1384        if (rdev->constraints->pull_down && ops->set_pull_down) {
1385                ret = ops->set_pull_down(rdev);
1386                if (ret < 0) {
1387                        rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388                        return ret;
1389                }
1390        }
1391
1392        if (rdev->constraints->soft_start && ops->set_soft_start) {
1393                ret = ops->set_soft_start(rdev);
1394                if (ret < 0) {
1395                        rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396                        return ret;
1397                }
1398        }
1399
1400        if (rdev->constraints->over_current_protection
1401                && ops->set_over_current_protection) {
1402                ret = ops->set_over_current_protection(rdev);
1403                if (ret < 0) {
1404                        rdev_err(rdev, "failed to set over current protection: %pe\n",
1405                                 ERR_PTR(ret));
1406                        return ret;
1407                }
1408        }
1409
1410        if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1411                bool ad_state = (rdev->constraints->active_discharge ==
1412                              REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1413
1414                ret = ops->set_active_discharge(rdev, ad_state);
1415                if (ret < 0) {
1416                        rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417                        return ret;
1418                }
1419        }
1420
1421        /* If the constraints say the regulator should be on at this point
1422         * and we have control then make sure it is enabled.
1423         */
1424        if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425                if (rdev->supply) {
1426                        ret = regulator_enable(rdev->supply);
1427                        if (ret < 0) {
1428                                _regulator_put(rdev->supply);
1429                                rdev->supply = NULL;
1430                                return ret;
1431                        }
1432                }
1433
1434                ret = _regulator_do_enable(rdev);
1435                if (ret < 0 && ret != -EINVAL) {
1436                        rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1437                        return ret;
1438                }
1439
1440                if (rdev->constraints->always_on)
1441                        rdev->use_count++;
1442        }
1443
1444        print_constraints(rdev);
1445        return 0;
1446}
1447
1448/**
1449 * set_supply - set regulator supply regulator
1450 * @rdev: regulator name
1451 * @supply_rdev: supply regulator name
1452 *
1453 * Called by platform initialisation code to set the supply regulator for this
1454 * regulator. This ensures that a regulators supply will also be enabled by the
1455 * core if it's child is enabled.
1456 */
1457static int set_supply(struct regulator_dev *rdev,
1458                      struct regulator_dev *supply_rdev)
1459{
1460        int err;
1461
1462        rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1463
1464        if (!try_module_get(supply_rdev->owner))
1465                return -ENODEV;
1466
1467        rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1468        if (rdev->supply == NULL) {
1469                err = -ENOMEM;
1470                return err;
1471        }
1472        supply_rdev->open_count++;
1473
1474        return 0;
1475}
1476
1477/**
1478 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1479 * @rdev:         regulator source
1480 * @consumer_dev_name: dev_name() string for device supply applies to
1481 * @supply:       symbolic name for supply
1482 *
1483 * Allows platform initialisation code to map physical regulator
1484 * sources to symbolic names for supplies for use by devices.  Devices
1485 * should use these symbolic names to request regulators, avoiding the
1486 * need to provide board-specific regulator names as platform data.
1487 */
1488static int set_consumer_device_supply(struct regulator_dev *rdev,
1489                                      const char *consumer_dev_name,
1490                                      const char *supply)
1491{
1492        struct regulator_map *node, *new_node;
1493        int has_dev;
1494
1495        if (supply == NULL)
1496                return -EINVAL;
1497
1498        if (consumer_dev_name != NULL)
1499                has_dev = 1;
1500        else
1501                has_dev = 0;
1502
1503        new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1504        if (new_node == NULL)
1505                return -ENOMEM;
1506
1507        new_node->regulator = rdev;
1508        new_node->supply = supply;
1509
1510        if (has_dev) {
1511                new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1512                if (new_node->dev_name == NULL) {
1513                        kfree(new_node);
1514                        return -ENOMEM;
1515                }
1516        }
1517
1518        mutex_lock(&regulator_list_mutex);
1519        list_for_each_entry(node, &regulator_map_list, list) {
1520                if (node->dev_name && consumer_dev_name) {
1521                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
1522                                continue;
1523                } else if (node->dev_name || consumer_dev_name) {
1524                        continue;
1525                }
1526
1527                if (strcmp(node->supply, supply) != 0)
1528                        continue;
1529
1530                pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1531                         consumer_dev_name,
1532                         dev_name(&node->regulator->dev),
1533                         node->regulator->desc->name,
1534                         supply,
1535                         dev_name(&rdev->dev), rdev_get_name(rdev));
1536                goto fail;
1537        }
1538
1539        list_add(&new_node->list, &regulator_map_list);
1540        mutex_unlock(&regulator_list_mutex);
1541
1542        return 0;
1543
1544fail:
1545        mutex_unlock(&regulator_list_mutex);
1546        kfree(new_node->dev_name);
1547        kfree(new_node);
1548        return -EBUSY;
1549}
1550
1551static void unset_regulator_supplies(struct regulator_dev *rdev)
1552{
1553        struct regulator_map *node, *n;
1554
1555        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1556                if (rdev == node->regulator) {
1557                        list_del(&node->list);
1558                        kfree(node->dev_name);
1559                        kfree(node);
1560                }
1561        }
1562}
1563
1564#ifdef CONFIG_DEBUG_FS
1565static ssize_t constraint_flags_read_file(struct file *file,
1566                                          char __user *user_buf,
1567                                          size_t count, loff_t *ppos)
1568{
1569        const struct regulator *regulator = file->private_data;
1570        const struct regulation_constraints *c = regulator->rdev->constraints;
1571        char *buf;
1572        ssize_t ret;
1573
1574        if (!c)
1575                return 0;
1576
1577        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1578        if (!buf)
1579                return -ENOMEM;
1580
1581        ret = snprintf(buf, PAGE_SIZE,
1582                        "always_on: %u\n"
1583                        "boot_on: %u\n"
1584                        "apply_uV: %u\n"
1585                        "ramp_disable: %u\n"
1586                        "soft_start: %u\n"
1587                        "pull_down: %u\n"
1588                        "over_current_protection: %u\n",
1589                        c->always_on,
1590                        c->boot_on,
1591                        c->apply_uV,
1592                        c->ramp_disable,
1593                        c->soft_start,
1594                        c->pull_down,
1595                        c->over_current_protection);
1596
1597        ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1598        kfree(buf);
1599
1600        return ret;
1601}
1602
1603#endif
1604
1605static const struct file_operations constraint_flags_fops = {
1606#ifdef CONFIG_DEBUG_FS
1607        .open = simple_open,
1608        .read = constraint_flags_read_file,
1609        .llseek = default_llseek,
1610#endif
1611};
1612
1613#define REG_STR_SIZE    64
1614
1615static struct regulator *create_regulator(struct regulator_dev *rdev,
1616                                          struct device *dev,
1617                                          const char *supply_name)
1618{
1619        struct regulator *regulator;
1620        int err;
1621
1622        if (dev) {
1623                char buf[REG_STR_SIZE];
1624                int size;
1625
1626                size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1627                                dev->kobj.name, supply_name);
1628                if (size >= REG_STR_SIZE)
1629                        return NULL;
1630
1631                supply_name = kstrdup(buf, GFP_KERNEL);
1632                if (supply_name == NULL)
1633                        return NULL;
1634        } else {
1635                supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1636                if (supply_name == NULL)
1637                        return NULL;
1638        }
1639
1640        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1641        if (regulator == NULL) {
1642                kfree(supply_name);
1643                return NULL;
1644        }
1645
1646        regulator->rdev = rdev;
1647        regulator->supply_name = supply_name;
1648
1649        regulator_lock(rdev);
1650        list_add(&regulator->list, &rdev->consumer_list);
1651        regulator_unlock(rdev);
1652
1653        if (dev) {
1654                regulator->dev = dev;
1655
1656                /* Add a link to the device sysfs entry */
1657                err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1658                                               supply_name);
1659                if (err) {
1660                        rdev_dbg(rdev, "could not add device link %s: %pe\n",
1661                                  dev->kobj.name, ERR_PTR(err));
1662                        /* non-fatal */
1663                }
1664        }
1665
1666        regulator->debugfs = debugfs_create_dir(supply_name,
1667                                                rdev->debugfs);
1668        if (!regulator->debugfs) {
1669                rdev_dbg(rdev, "Failed to create debugfs directory\n");
1670        } else {
1671                debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1672                                   &regulator->uA_load);
1673                debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1674                                   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1675                debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1676                                   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1677                debugfs_create_file("constraint_flags", 0444,
1678                                    regulator->debugfs, regulator,
1679                                    &constraint_flags_fops);
1680        }
1681
1682        /*
1683         * Check now if the regulator is an always on regulator - if
1684         * it is then we don't need to do nearly so much work for
1685         * enable/disable calls.
1686         */
1687        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1688            _regulator_is_enabled(rdev))
1689                regulator->always_on = true;
1690
1691        return regulator;
1692}
1693
1694static int _regulator_get_enable_time(struct regulator_dev *rdev)
1695{
1696        if (rdev->constraints && rdev->constraints->enable_time)
1697                return rdev->constraints->enable_time;
1698        if (rdev->desc->ops->enable_time)
1699                return rdev->desc->ops->enable_time(rdev);
1700        return rdev->desc->enable_time;
1701}
1702
1703static struct regulator_supply_alias *regulator_find_supply_alias(
1704                struct device *dev, const char *supply)
1705{
1706        struct regulator_supply_alias *map;
1707
1708        list_for_each_entry(map, &regulator_supply_alias_list, list)
1709                if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1710                        return map;
1711
1712        return NULL;
1713}
1714
1715static void regulator_supply_alias(struct device **dev, const char **supply)
1716{
1717        struct regulator_supply_alias *map;
1718
1719        map = regulator_find_supply_alias(*dev, *supply);
1720        if (map) {
1721                dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1722                                *supply, map->alias_supply,
1723                                dev_name(map->alias_dev));
1724                *dev = map->alias_dev;
1725                *supply = map->alias_supply;
1726        }
1727}
1728
1729static int regulator_match(struct device *dev, const void *data)
1730{
1731        struct regulator_dev *r = dev_to_rdev(dev);
1732
1733        return strcmp(rdev_get_name(r), data) == 0;
1734}
1735
1736static struct regulator_dev *regulator_lookup_by_name(const char *name)
1737{
1738        struct device *dev;
1739
1740        dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1741
1742        return dev ? dev_to_rdev(dev) : NULL;
1743}
1744
1745/**
1746 * regulator_dev_lookup - lookup a regulator device.
1747 * @dev: device for regulator "consumer".
1748 * @supply: Supply name or regulator ID.
1749 *
1750 * If successful, returns a struct regulator_dev that corresponds to the name
1751 * @supply and with the embedded struct device refcount incremented by one.
1752 * The refcount must be dropped by calling put_device().
1753 * On failure one of the following ERR-PTR-encoded values is returned:
1754 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1755 * in the future.
1756 */
1757static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1758                                                  const char *supply)
1759{
1760        struct regulator_dev *r = NULL;
1761        struct device_node *node;
1762        struct regulator_map *map;
1763        const char *devname = NULL;
1764
1765        regulator_supply_alias(&dev, &supply);
1766
1767        /* first do a dt based lookup */
1768        if (dev && dev->of_node) {
1769                node = of_get_regulator(dev, supply);
1770                if (node) {
1771                        r = of_find_regulator_by_node(node);
1772                        if (r)
1773                                return r;
1774
1775                        /*
1776                         * We have a node, but there is no device.
1777                         * assume it has not registered yet.
1778                         */
1779                        return ERR_PTR(-EPROBE_DEFER);
1780                }
1781        }
1782
1783        /* if not found, try doing it non-dt way */
1784        if (dev)
1785                devname = dev_name(dev);
1786
1787        mutex_lock(&regulator_list_mutex);
1788        list_for_each_entry(map, &regulator_map_list, list) {
1789                /* If the mapping has a device set up it must match */
1790                if (map->dev_name &&
1791                    (!devname || strcmp(map->dev_name, devname)))
1792                        continue;
1793
1794                if (strcmp(map->supply, supply) == 0 &&
1795                    get_device(&map->regulator->dev)) {
1796                        r = map->regulator;
1797                        break;
1798                }
1799        }
1800        mutex_unlock(&regulator_list_mutex);
1801
1802        if (r)
1803                return r;
1804
1805        r = regulator_lookup_by_name(supply);
1806        if (r)
1807                return r;
1808
1809        return ERR_PTR(-ENODEV);
1810}
1811
1812static int regulator_resolve_supply(struct regulator_dev *rdev)
1813{
1814        struct regulator_dev *r;
1815        struct device *dev = rdev->dev.parent;
1816        int ret;
1817
1818        /* No supply to resolve? */
1819        if (!rdev->supply_name)
1820                return 0;
1821
1822        /* Supply already resolved? */
1823        if (rdev->supply)
1824                return 0;
1825
1826        r = regulator_dev_lookup(dev, rdev->supply_name);
1827        if (IS_ERR(r)) {
1828                ret = PTR_ERR(r);
1829
1830                /* Did the lookup explicitly defer for us? */
1831                if (ret == -EPROBE_DEFER)
1832                        return ret;
1833
1834                if (have_full_constraints()) {
1835                        r = dummy_regulator_rdev;
1836                        get_device(&r->dev);
1837                } else {
1838                        dev_err(dev, "Failed to resolve %s-supply for %s\n",
1839                                rdev->supply_name, rdev->desc->name);
1840                        return -EPROBE_DEFER;
1841                }
1842        }
1843
1844        if (r == rdev) {
1845                dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1846                        rdev->desc->name, rdev->supply_name);
1847                if (!have_full_constraints())
1848                        return -EINVAL;
1849                r = dummy_regulator_rdev;
1850                get_device(&r->dev);
1851        }
1852
1853        /*
1854         * If the supply's parent device is not the same as the
1855         * regulator's parent device, then ensure the parent device
1856         * is bound before we resolve the supply, in case the parent
1857         * device get probe deferred and unregisters the supply.
1858         */
1859        if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1860                if (!device_is_bound(r->dev.parent)) {
1861                        put_device(&r->dev);
1862                        return -EPROBE_DEFER;
1863                }
1864        }
1865
1866        /* Recursively resolve the supply of the supply */
1867        ret = regulator_resolve_supply(r);
1868        if (ret < 0) {
1869                put_device(&r->dev);
1870                return ret;
1871        }
1872
1873        ret = set_supply(rdev, r);
1874        if (ret < 0) {
1875                put_device(&r->dev);
1876                return ret;
1877        }
1878
1879        /*
1880         * In set_machine_constraints() we may have turned this regulator on
1881         * but we couldn't propagate to the supply if it hadn't been resolved
1882         * yet.  Do it now.
1883         */
1884        if (rdev->use_count) {
1885                ret = regulator_enable(rdev->supply);
1886                if (ret < 0) {
1887                        _regulator_put(rdev->supply);
1888                        rdev->supply = NULL;
1889                        return ret;
1890                }
1891        }
1892
1893        return 0;
1894}
1895
1896/* Internal regulator request function */
1897struct regulator *_regulator_get(struct device *dev, const char *id,
1898                                 enum regulator_get_type get_type)
1899{
1900        struct regulator_dev *rdev;
1901        struct regulator *regulator;
1902        struct device_link *link;
1903        int ret;
1904
1905        if (get_type >= MAX_GET_TYPE) {
1906                dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1907                return ERR_PTR(-EINVAL);
1908        }
1909
1910        if (id == NULL) {
1911                pr_err("get() with no identifier\n");
1912                return ERR_PTR(-EINVAL);
1913        }
1914
1915        rdev = regulator_dev_lookup(dev, id);
1916        if (IS_ERR(rdev)) {
1917                ret = PTR_ERR(rdev);
1918
1919                /*
1920                 * If regulator_dev_lookup() fails with error other
1921                 * than -ENODEV our job here is done, we simply return it.
1922                 */
1923                if (ret != -ENODEV)
1924                        return ERR_PTR(ret);
1925
1926                if (!have_full_constraints()) {
1927                        dev_warn(dev,
1928                                 "incomplete constraints, dummy supplies not allowed\n");
1929                        return ERR_PTR(-ENODEV);
1930                }
1931
1932                switch (get_type) {
1933                case NORMAL_GET:
1934                        /*
1935                         * Assume that a regulator is physically present and
1936                         * enabled, even if it isn't hooked up, and just
1937                         * provide a dummy.
1938                         */
1939                        dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1940                        rdev = dummy_regulator_rdev;
1941                        get_device(&rdev->dev);
1942                        break;
1943
1944                case EXCLUSIVE_GET:
1945                        dev_warn(dev,
1946                                 "dummy supplies not allowed for exclusive requests\n");
1947                        fallthrough;
1948
1949                default:
1950                        return ERR_PTR(-ENODEV);
1951                }
1952        }
1953
1954        if (rdev->exclusive) {
1955                regulator = ERR_PTR(-EPERM);
1956                put_device(&rdev->dev);
1957                return regulator;
1958        }
1959
1960        if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1961                regulator = ERR_PTR(-EBUSY);
1962                put_device(&rdev->dev);
1963                return regulator;
1964        }
1965
1966        mutex_lock(&regulator_list_mutex);
1967        ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1968        mutex_unlock(&regulator_list_mutex);
1969
1970        if (ret != 0) {
1971                regulator = ERR_PTR(-EPROBE_DEFER);
1972                put_device(&rdev->dev);
1973                return regulator;
1974        }
1975
1976        ret = regulator_resolve_supply(rdev);
1977        if (ret < 0) {
1978                regulator = ERR_PTR(ret);
1979                put_device(&rdev->dev);
1980                return regulator;
1981        }
1982
1983        if (!try_module_get(rdev->owner)) {
1984                regulator = ERR_PTR(-EPROBE_DEFER);
1985                put_device(&rdev->dev);
1986                return regulator;
1987        }
1988
1989        regulator = create_regulator(rdev, dev, id);
1990        if (regulator == NULL) {
1991                regulator = ERR_PTR(-ENOMEM);
1992                module_put(rdev->owner);
1993                put_device(&rdev->dev);
1994                return regulator;
1995        }
1996
1997        rdev->open_count++;
1998        if (get_type == EXCLUSIVE_GET) {
1999                rdev->exclusive = 1;
2000
2001                ret = _regulator_is_enabled(rdev);
2002                if (ret > 0)
2003                        rdev->use_count = 1;
2004                else
2005                        rdev->use_count = 0;
2006        }
2007
2008        link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2009        if (!IS_ERR_OR_NULL(link))
2010                regulator->device_link = true;
2011
2012        return regulator;
2013}
2014
2015/**
2016 * regulator_get - lookup and obtain a reference to a regulator.
2017 * @dev: device for regulator "consumer"
2018 * @id: Supply name or regulator ID.
2019 *
2020 * Returns a struct regulator corresponding to the regulator producer,
2021 * or IS_ERR() condition containing errno.
2022 *
2023 * Use of supply names configured via regulator_set_device_supply() is
2024 * strongly encouraged.  It is recommended that the supply name used
2025 * should match the name used for the supply and/or the relevant
2026 * device pins in the datasheet.
2027 */
2028struct regulator *regulator_get(struct device *dev, const char *id)
2029{
2030        return _regulator_get(dev, id, NORMAL_GET);
2031}
2032EXPORT_SYMBOL_GPL(regulator_get);
2033
2034/**
2035 * regulator_get_exclusive - obtain exclusive access to a regulator.
2036 * @dev: device for regulator "consumer"
2037 * @id: Supply name or regulator ID.
2038 *
2039 * Returns a struct regulator corresponding to the regulator producer,
2040 * or IS_ERR() condition containing errno.  Other consumers will be
2041 * unable to obtain this regulator while this reference is held and the
2042 * use count for the regulator will be initialised to reflect the current
2043 * state of the regulator.
2044 *
2045 * This is intended for use by consumers which cannot tolerate shared
2046 * use of the regulator such as those which need to force the
2047 * regulator off for correct operation of the hardware they are
2048 * controlling.
2049 *
2050 * Use of supply names configured via regulator_set_device_supply() is
2051 * strongly encouraged.  It is recommended that the supply name used
2052 * should match the name used for the supply and/or the relevant
2053 * device pins in the datasheet.
2054 */
2055struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2056{
2057        return _regulator_get(dev, id, EXCLUSIVE_GET);
2058}
2059EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2060
2061/**
2062 * regulator_get_optional - obtain optional access to a regulator.
2063 * @dev: device for regulator "consumer"
2064 * @id: Supply name or regulator ID.
2065 *
2066 * Returns a struct regulator corresponding to the regulator producer,
2067 * or IS_ERR() condition containing errno.
2068 *
2069 * This is intended for use by consumers for devices which can have
2070 * some supplies unconnected in normal use, such as some MMC devices.
2071 * It can allow the regulator core to provide stub supplies for other
2072 * supplies requested using normal regulator_get() calls without
2073 * disrupting the operation of drivers that can handle absent
2074 * supplies.
2075 *
2076 * Use of supply names configured via regulator_set_device_supply() is
2077 * strongly encouraged.  It is recommended that the supply name used
2078 * should match the name used for the supply and/or the relevant
2079 * device pins in the datasheet.
2080 */
2081struct regulator *regulator_get_optional(struct device *dev, const char *id)
2082{
2083        return _regulator_get(dev, id, OPTIONAL_GET);
2084}
2085EXPORT_SYMBOL_GPL(regulator_get_optional);
2086
2087static void destroy_regulator(struct regulator *regulator)
2088{
2089        struct regulator_dev *rdev = regulator->rdev;
2090
2091        debugfs_remove_recursive(regulator->debugfs);
2092
2093        if (regulator->dev) {
2094                if (regulator->device_link)
2095                        device_link_remove(regulator->dev, &rdev->dev);
2096
2097                /* remove any sysfs entries */
2098                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2099        }
2100
2101        regulator_lock(rdev);
2102        list_del(&regulator->list);
2103
2104        rdev->open_count--;
2105        rdev->exclusive = 0;
2106        regulator_unlock(rdev);
2107
2108        kfree_const(regulator->supply_name);
2109        kfree(regulator);
2110}
2111
2112/* regulator_list_mutex lock held by regulator_put() */
2113static void _regulator_put(struct regulator *regulator)
2114{
2115        struct regulator_dev *rdev;
2116
2117        if (IS_ERR_OR_NULL(regulator))
2118                return;
2119
2120        lockdep_assert_held_once(&regulator_list_mutex);
2121
2122        /* Docs say you must disable before calling regulator_put() */
2123        WARN_ON(regulator->enable_count);
2124
2125        rdev = regulator->rdev;
2126
2127        destroy_regulator(regulator);
2128
2129        module_put(rdev->owner);
2130        put_device(&rdev->dev);
2131}
2132
2133/**
2134 * regulator_put - "free" the regulator source
2135 * @regulator: regulator source
2136 *
2137 * Note: drivers must ensure that all regulator_enable calls made on this
2138 * regulator source are balanced by regulator_disable calls prior to calling
2139 * this function.
2140 */
2141void regulator_put(struct regulator *regulator)
2142{
2143        mutex_lock(&regulator_list_mutex);
2144        _regulator_put(regulator);
2145        mutex_unlock(&regulator_list_mutex);
2146}
2147EXPORT_SYMBOL_GPL(regulator_put);
2148
2149/**
2150 * regulator_register_supply_alias - Provide device alias for supply lookup
2151 *
2152 * @dev: device that will be given as the regulator "consumer"
2153 * @id: Supply name or regulator ID
2154 * @alias_dev: device that should be used to lookup the supply
2155 * @alias_id: Supply name or regulator ID that should be used to lookup the
2156 * supply
2157 *
2158 * All lookups for id on dev will instead be conducted for alias_id on
2159 * alias_dev.
2160 */
2161int regulator_register_supply_alias(struct device *dev, const char *id,
2162                                    struct device *alias_dev,
2163                                    const char *alias_id)
2164{
2165        struct regulator_supply_alias *map;
2166
2167        map = regulator_find_supply_alias(dev, id);
2168        if (map)
2169                return -EEXIST;
2170
2171        map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2172        if (!map)
2173                return -ENOMEM;
2174
2175        map->src_dev = dev;
2176        map->src_supply = id;
2177        map->alias_dev = alias_dev;
2178        map->alias_supply = alias_id;
2179
2180        list_add(&map->list, &regulator_supply_alias_list);
2181
2182        pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2183                id, dev_name(dev), alias_id, dev_name(alias_dev));
2184
2185        return 0;
2186}
2187EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2188
2189/**
2190 * regulator_unregister_supply_alias - Remove device alias
2191 *
2192 * @dev: device that will be given as the regulator "consumer"
2193 * @id: Supply name or regulator ID
2194 *
2195 * Remove a lookup alias if one exists for id on dev.
2196 */
2197void regulator_unregister_supply_alias(struct device *dev, const char *id)
2198{
2199        struct regulator_supply_alias *map;
2200
2201        map = regulator_find_supply_alias(dev, id);
2202        if (map) {
2203                list_del(&map->list);
2204                kfree(map);
2205        }
2206}
2207EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2208
2209/**
2210 * regulator_bulk_register_supply_alias - register multiple aliases
2211 *
2212 * @dev: device that will be given as the regulator "consumer"
2213 * @id: List of supply names or regulator IDs
2214 * @alias_dev: device that should be used to lookup the supply
2215 * @alias_id: List of supply names or regulator IDs that should be used to
2216 * lookup the supply
2217 * @num_id: Number of aliases to register
2218 *
2219 * @return 0 on success, an errno on failure.
2220 *
2221 * This helper function allows drivers to register several supply
2222 * aliases in one operation.  If any of the aliases cannot be
2223 * registered any aliases that were registered will be removed
2224 * before returning to the caller.
2225 */
2226int regulator_bulk_register_supply_alias(struct device *dev,
2227                                         const char *const *id,
2228                                         struct device *alias_dev,
2229                                         const char *const *alias_id,
2230                                         int num_id)
2231{
2232        int i;
2233        int ret;
2234
2235        for (i = 0; i < num_id; ++i) {
2236                ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2237                                                      alias_id[i]);
2238                if (ret < 0)
2239                        goto err;
2240        }
2241
2242        return 0;
2243
2244err:
2245        dev_err(dev,
2246                "Failed to create supply alias %s,%s -> %s,%s\n",
2247                id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2248
2249        while (--i >= 0)
2250                regulator_unregister_supply_alias(dev, id[i]);
2251
2252        return ret;
2253}
2254EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2255
2256/**
2257 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2258 *
2259 * @dev: device that will be given as the regulator "consumer"
2260 * @id: List of supply names or regulator IDs
2261 * @num_id: Number of aliases to unregister
2262 *
2263 * This helper function allows drivers to unregister several supply
2264 * aliases in one operation.
2265 */
2266void regulator_bulk_unregister_supply_alias(struct device *dev,
2267                                            const char *const *id,
2268                                            int num_id)
2269{
2270        int i;
2271
2272        for (i = 0; i < num_id; ++i)
2273                regulator_unregister_supply_alias(dev, id[i]);
2274}
2275EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2276
2277
2278/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2279static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2280                                const struct regulator_config *config)
2281{
2282        struct regulator_enable_gpio *pin, *new_pin;
2283        struct gpio_desc *gpiod;
2284
2285        gpiod = config->ena_gpiod;
2286        new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2287
2288        mutex_lock(&regulator_list_mutex);
2289
2290        list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2291                if (pin->gpiod == gpiod) {
2292                        rdev_dbg(rdev, "GPIO is already used\n");
2293                        goto update_ena_gpio_to_rdev;
2294                }
2295        }
2296
2297        if (new_pin == NULL) {
2298                mutex_unlock(&regulator_list_mutex);
2299                return -ENOMEM;
2300        }
2301
2302        pin = new_pin;
2303        new_pin = NULL;
2304
2305        pin->gpiod = gpiod;
2306        list_add(&pin->list, &regulator_ena_gpio_list);
2307
2308update_ena_gpio_to_rdev:
2309        pin->request_count++;
2310        rdev->ena_pin = pin;
2311
2312        mutex_unlock(&regulator_list_mutex);
2313        kfree(new_pin);
2314
2315        return 0;
2316}
2317
2318static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2319{
2320        struct regulator_enable_gpio *pin, *n;
2321
2322        if (!rdev->ena_pin)
2323                return;
2324
2325        /* Free the GPIO only in case of no use */
2326        list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2327                if (pin != rdev->ena_pin)
2328                        continue;
2329
2330                if (--pin->request_count)
2331                        break;
2332
2333                gpiod_put(pin->gpiod);
2334                list_del(&pin->list);
2335                kfree(pin);
2336                break;
2337        }
2338
2339        rdev->ena_pin = NULL;
2340}
2341
2342/**
2343 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2344 * @rdev: regulator_dev structure
2345 * @enable: enable GPIO at initial use?
2346 *
2347 * GPIO is enabled in case of initial use. (enable_count is 0)
2348 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2349 */
2350static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2351{
2352        struct regulator_enable_gpio *pin = rdev->ena_pin;
2353
2354        if (!pin)
2355                return -EINVAL;
2356
2357        if (enable) {
2358                /* Enable GPIO at initial use */
2359                if (pin->enable_count == 0)
2360                        gpiod_set_value_cansleep(pin->gpiod, 1);
2361
2362                pin->enable_count++;
2363        } else {
2364                if (pin->enable_count > 1) {
2365                        pin->enable_count--;
2366                        return 0;
2367                }
2368
2369                /* Disable GPIO if not used */
2370                if (pin->enable_count <= 1) {
2371                        gpiod_set_value_cansleep(pin->gpiod, 0);
2372                        pin->enable_count = 0;
2373                }
2374        }
2375
2376        return 0;
2377}
2378
2379/**
2380 * _regulator_enable_delay - a delay helper function
2381 * @delay: time to delay in microseconds
2382 *
2383 * Delay for the requested amount of time as per the guidelines in:
2384 *
2385 *     Documentation/timers/timers-howto.rst
2386 *
2387 * The assumption here is that regulators will never be enabled in
2388 * atomic context and therefore sleeping functions can be used.
2389 */
2390static void _regulator_enable_delay(unsigned int delay)
2391{
2392        unsigned int ms = delay / 1000;
2393        unsigned int us = delay % 1000;
2394
2395        if (ms > 0) {
2396                /*
2397                 * For small enough values, handle super-millisecond
2398                 * delays in the usleep_range() call below.
2399                 */
2400                if (ms < 20)
2401                        us += ms * 1000;
2402                else
2403                        msleep(ms);
2404        }
2405
2406        /*
2407         * Give the scheduler some room to coalesce with any other
2408         * wakeup sources. For delays shorter than 10 us, don't even
2409         * bother setting up high-resolution timers and just busy-
2410         * loop.
2411         */
2412        if (us >= 10)
2413                usleep_range(us, us + 100);
2414        else
2415                udelay(us);
2416}
2417
2418/**
2419 * _regulator_check_status_enabled
2420 *
2421 * A helper function to check if the regulator status can be interpreted
2422 * as 'regulator is enabled'.
2423 * @rdev: the regulator device to check
2424 *
2425 * Return:
2426 * * 1                  - if status shows regulator is in enabled state
2427 * * 0                  - if not enabled state
2428 * * Error Value        - as received from ops->get_status()
2429 */
2430static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2431{
2432        int ret = rdev->desc->ops->get_status(rdev);
2433
2434        if (ret < 0) {
2435                rdev_info(rdev, "get_status returned error: %d\n", ret);
2436                return ret;
2437        }
2438
2439        switch (ret) {
2440        case REGULATOR_STATUS_OFF:
2441        case REGULATOR_STATUS_ERROR:
2442        case REGULATOR_STATUS_UNDEFINED:
2443                return 0;
2444        default:
2445                return 1;
2446        }
2447}
2448
2449static int _regulator_do_enable(struct regulator_dev *rdev)
2450{
2451        int ret, delay;
2452
2453        /* Query before enabling in case configuration dependent.  */
2454        ret = _regulator_get_enable_time(rdev);
2455        if (ret >= 0) {
2456                delay = ret;
2457        } else {
2458                rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2459                delay = 0;
2460        }
2461
2462        trace_regulator_enable(rdev_get_name(rdev));
2463
2464        if (rdev->desc->off_on_delay) {
2465                /* if needed, keep a distance of off_on_delay from last time
2466                 * this regulator was disabled.
2467                 */
2468                unsigned long start_jiffy = jiffies;
2469                unsigned long intended, max_delay, remaining;
2470
2471                max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2472                intended = rdev->last_off_jiffy + max_delay;
2473
2474                if (time_before(start_jiffy, intended)) {
2475                        /* calc remaining jiffies to deal with one-time
2476                         * timer wrapping.
2477                         * in case of multiple timer wrapping, either it can be
2478                         * detected by out-of-range remaining, or it cannot be
2479                         * detected and we get a penalty of
2480                         * _regulator_enable_delay().
2481                         */
2482                        remaining = intended - start_jiffy;
2483                        if (remaining <= max_delay)
2484                                _regulator_enable_delay(
2485                                                jiffies_to_usecs(remaining));
2486                }
2487        }
2488
2489        if (rdev->ena_pin) {
2490                if (!rdev->ena_gpio_state) {
2491                        ret = regulator_ena_gpio_ctrl(rdev, true);
2492                        if (ret < 0)
2493                                return ret;
2494                        rdev->ena_gpio_state = 1;
2495                }
2496        } else if (rdev->desc->ops->enable) {
2497                ret = rdev->desc->ops->enable(rdev);
2498                if (ret < 0)
2499                        return ret;
2500        } else {
2501                return -EINVAL;
2502        }
2503
2504        /* Allow the regulator to ramp; it would be useful to extend
2505         * this for bulk operations so that the regulators can ramp
2506         * together.  */
2507        trace_regulator_enable_delay(rdev_get_name(rdev));
2508
2509        /* If poll_enabled_time is set, poll upto the delay calculated
2510         * above, delaying poll_enabled_time uS to check if the regulator
2511         * actually got enabled.
2512         * If the regulator isn't enabled after enable_delay has
2513         * expired, return -ETIMEDOUT.
2514         */
2515        if (rdev->desc->poll_enabled_time) {
2516                unsigned int time_remaining = delay;
2517
2518                while (time_remaining > 0) {
2519                        _regulator_enable_delay(rdev->desc->poll_enabled_time);
2520
2521                        if (rdev->desc->ops->get_status) {
2522                                ret = _regulator_check_status_enabled(rdev);
2523                                if (ret < 0)
2524                                        return ret;
2525                                else if (ret)
2526                                        break;
2527                        } else if (rdev->desc->ops->is_enabled(rdev))
2528                                break;
2529
2530                        time_remaining -= rdev->desc->poll_enabled_time;
2531                }
2532
2533                if (time_remaining <= 0) {
2534                        rdev_err(rdev, "Enabled check timed out\n");
2535                        return -ETIMEDOUT;
2536                }
2537        } else {
2538                _regulator_enable_delay(delay);
2539        }
2540
2541        trace_regulator_enable_complete(rdev_get_name(rdev));
2542
2543        return 0;
2544}
2545
2546/**
2547 * _regulator_handle_consumer_enable - handle that a consumer enabled
2548 * @regulator: regulator source
2549 *
2550 * Some things on a regulator consumer (like the contribution towards total
2551 * load on the regulator) only have an effect when the consumer wants the
2552 * regulator enabled.  Explained in example with two consumers of the same
2553 * regulator:
2554 *   consumer A: set_load(100);       => total load = 0
2555 *   consumer A: regulator_enable();  => total load = 100
2556 *   consumer B: set_load(1000);      => total load = 100
2557 *   consumer B: regulator_enable();  => total load = 1100
2558 *   consumer A: regulator_disable(); => total_load = 1000
2559 *
2560 * This function (together with _regulator_handle_consumer_disable) is
2561 * responsible for keeping track of the refcount for a given regulator consumer
2562 * and applying / unapplying these things.
2563 *
2564 * Returns 0 upon no error; -error upon error.
2565 */
2566static int _regulator_handle_consumer_enable(struct regulator *regulator)
2567{
2568        struct regulator_dev *rdev = regulator->rdev;
2569
2570        lockdep_assert_held_once(&rdev->mutex.base);
2571
2572        regulator->enable_count++;
2573        if (regulator->uA_load && regulator->enable_count == 1)
2574                return drms_uA_update(rdev);
2575
2576        return 0;
2577}
2578
2579/**
2580 * _regulator_handle_consumer_disable - handle that a consumer disabled
2581 * @regulator: regulator source
2582 *
2583 * The opposite of _regulator_handle_consumer_enable().
2584 *
2585 * Returns 0 upon no error; -error upon error.
2586 */
2587static int _regulator_handle_consumer_disable(struct regulator *regulator)
2588{
2589        struct regulator_dev *rdev = regulator->rdev;
2590
2591        lockdep_assert_held_once(&rdev->mutex.base);
2592
2593        if (!regulator->enable_count) {
2594                rdev_err(rdev, "Underflow of regulator enable count\n");
2595                return -EINVAL;
2596        }
2597
2598        regulator->enable_count--;
2599        if (regulator->uA_load && regulator->enable_count == 0)
2600                return drms_uA_update(rdev);
2601
2602        return 0;
2603}
2604
2605/* locks held by regulator_enable() */
2606static int _regulator_enable(struct regulator *regulator)
2607{
2608        struct regulator_dev *rdev = regulator->rdev;
2609        int ret;
2610
2611        lockdep_assert_held_once(&rdev->mutex.base);
2612
2613        if (rdev->use_count == 0 && rdev->supply) {
2614                ret = _regulator_enable(rdev->supply);
2615                if (ret < 0)
2616                        return ret;
2617        }
2618
2619        /* balance only if there are regulators coupled */
2620        if (rdev->coupling_desc.n_coupled > 1) {
2621                ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2622                if (ret < 0)
2623                        goto err_disable_supply;
2624        }
2625
2626        ret = _regulator_handle_consumer_enable(regulator);
2627        if (ret < 0)
2628                goto err_disable_supply;
2629
2630        if (rdev->use_count == 0) {
2631                /* The regulator may on if it's not switchable or left on */
2632                ret = _regulator_is_enabled(rdev);
2633                if (ret == -EINVAL || ret == 0) {
2634                        if (!regulator_ops_is_valid(rdev,
2635                                        REGULATOR_CHANGE_STATUS)) {
2636                                ret = -EPERM;
2637                                goto err_consumer_disable;
2638                        }
2639
2640                        ret = _regulator_do_enable(rdev);
2641                        if (ret < 0)
2642                                goto err_consumer_disable;
2643
2644                        _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2645                                             NULL);
2646                } else if (ret < 0) {
2647                        rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2648                        goto err_consumer_disable;
2649                }
2650                /* Fallthrough on positive return values - already enabled */
2651        }
2652
2653        rdev->use_count++;
2654
2655        return 0;
2656
2657err_consumer_disable:
2658        _regulator_handle_consumer_disable(regulator);
2659
2660err_disable_supply:
2661        if (rdev->use_count == 0 && rdev->supply)
2662                _regulator_disable(rdev->supply);
2663
2664        return ret;
2665}
2666
2667/**
2668 * regulator_enable - enable regulator output
2669 * @regulator: regulator source
2670 *
2671 * Request that the regulator be enabled with the regulator output at
2672 * the predefined voltage or current value.  Calls to regulator_enable()
2673 * must be balanced with calls to regulator_disable().
2674 *
2675 * NOTE: the output value can be set by other drivers, boot loader or may be
2676 * hardwired in the regulator.
2677 */
2678int regulator_enable(struct regulator *regulator)
2679{
2680        struct regulator_dev *rdev = regulator->rdev;
2681        struct ww_acquire_ctx ww_ctx;
2682        int ret;
2683
2684        regulator_lock_dependent(rdev, &ww_ctx);
2685        ret = _regulator_enable(regulator);
2686        regulator_unlock_dependent(rdev, &ww_ctx);
2687
2688        return ret;
2689}
2690EXPORT_SYMBOL_GPL(regulator_enable);
2691
2692static int _regulator_do_disable(struct regulator_dev *rdev)
2693{
2694        int ret;
2695
2696        trace_regulator_disable(rdev_get_name(rdev));
2697
2698        if (rdev->ena_pin) {
2699                if (rdev->ena_gpio_state) {
2700                        ret = regulator_ena_gpio_ctrl(rdev, false);
2701                        if (ret < 0)
2702                                return ret;
2703                        rdev->ena_gpio_state = 0;
2704                }
2705
2706        } else if (rdev->desc->ops->disable) {
2707                ret = rdev->desc->ops->disable(rdev);
2708                if (ret != 0)
2709                        return ret;
2710        }
2711
2712        /* cares about last_off_jiffy only if off_on_delay is required by
2713         * device.
2714         */
2715        if (rdev->desc->off_on_delay)
2716                rdev->last_off_jiffy = jiffies;
2717
2718        trace_regulator_disable_complete(rdev_get_name(rdev));
2719
2720        return 0;
2721}
2722
2723/* locks held by regulator_disable() */
2724static int _regulator_disable(struct regulator *regulator)
2725{
2726        struct regulator_dev *rdev = regulator->rdev;
2727        int ret = 0;
2728
2729        lockdep_assert_held_once(&rdev->mutex.base);
2730
2731        if (WARN(rdev->use_count <= 0,
2732                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2733                return -EIO;
2734
2735        /* are we the last user and permitted to disable ? */
2736        if (rdev->use_count == 1 &&
2737            (rdev->constraints && !rdev->constraints->always_on)) {
2738
2739                /* we are last user */
2740                if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2741                        ret = _notifier_call_chain(rdev,
2742                                                   REGULATOR_EVENT_PRE_DISABLE,
2743                                                   NULL);
2744                        if (ret & NOTIFY_STOP_MASK)
2745                                return -EINVAL;
2746
2747                        ret = _regulator_do_disable(rdev);
2748                        if (ret < 0) {
2749                                rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2750                                _notifier_call_chain(rdev,
2751                                                REGULATOR_EVENT_ABORT_DISABLE,
2752                                                NULL);
2753                                return ret;
2754                        }
2755                        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2756                                        NULL);
2757                }
2758
2759                rdev->use_count = 0;
2760        } else if (rdev->use_count > 1) {
2761                rdev->use_count--;
2762        }
2763
2764        if (ret == 0)
2765                ret = _regulator_handle_consumer_disable(regulator);
2766
2767        if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2768                ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2769
2770        if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2771                ret = _regulator_disable(rdev->supply);
2772
2773        return ret;
2774}
2775
2776/**
2777 * regulator_disable - disable regulator output
2778 * @regulator: regulator source
2779 *
2780 * Disable the regulator output voltage or current.  Calls to
2781 * regulator_enable() must be balanced with calls to
2782 * regulator_disable().
2783 *
2784 * NOTE: this will only disable the regulator output if no other consumer
2785 * devices have it enabled, the regulator device supports disabling and
2786 * machine constraints permit this operation.
2787 */
2788int regulator_disable(struct regulator *regulator)
2789{
2790        struct regulator_dev *rdev = regulator->rdev;
2791        struct ww_acquire_ctx ww_ctx;
2792        int ret;
2793
2794        regulator_lock_dependent(rdev, &ww_ctx);
2795        ret = _regulator_disable(regulator);
2796        regulator_unlock_dependent(rdev, &ww_ctx);
2797
2798        return ret;
2799}
2800EXPORT_SYMBOL_GPL(regulator_disable);
2801
2802/* locks held by regulator_force_disable() */
2803static int _regulator_force_disable(struct regulator_dev *rdev)
2804{
2805        int ret = 0;
2806
2807        lockdep_assert_held_once(&rdev->mutex.base);
2808
2809        ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2810                        REGULATOR_EVENT_PRE_DISABLE, NULL);
2811        if (ret & NOTIFY_STOP_MASK)
2812                return -EINVAL;
2813
2814        ret = _regulator_do_disable(rdev);
2815        if (ret < 0) {
2816                rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2817                _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2818                                REGULATOR_EVENT_ABORT_DISABLE, NULL);
2819                return ret;
2820        }
2821
2822        _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2823                        REGULATOR_EVENT_DISABLE, NULL);
2824
2825        return 0;
2826}
2827
2828/**
2829 * regulator_force_disable - force disable regulator output
2830 * @regulator: regulator source
2831 *
2832 * Forcibly disable the regulator output voltage or current.
2833 * NOTE: this *will* disable the regulator output even if other consumer
2834 * devices have it enabled. This should be used for situations when device
2835 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2836 */
2837int regulator_force_disable(struct regulator *regulator)
2838{
2839        struct regulator_dev *rdev = regulator->rdev;
2840        struct ww_acquire_ctx ww_ctx;
2841        int ret;
2842
2843        regulator_lock_dependent(rdev, &ww_ctx);
2844
2845        ret = _regulator_force_disable(regulator->rdev);
2846
2847        if (rdev->coupling_desc.n_coupled > 1)
2848                regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2849
2850        if (regulator->uA_load) {
2851                regulator->uA_load = 0;
2852                ret = drms_uA_update(rdev);
2853        }
2854
2855        if (rdev->use_count != 0 && rdev->supply)
2856                _regulator_disable(rdev->supply);
2857
2858        regulator_unlock_dependent(rdev, &ww_ctx);
2859
2860        return ret;
2861}
2862EXPORT_SYMBOL_GPL(regulator_force_disable);
2863
2864static void regulator_disable_work(struct work_struct *work)
2865{
2866        struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2867                                                  disable_work.work);
2868        struct ww_acquire_ctx ww_ctx;
2869        int count, i, ret;
2870        struct regulator *regulator;
2871        int total_count = 0;
2872
2873        regulator_lock_dependent(rdev, &ww_ctx);
2874
2875        /*
2876         * Workqueue functions queue the new work instance while the previous
2877         * work instance is being processed. Cancel the queued work instance
2878         * as the work instance under processing does the job of the queued
2879         * work instance.
2880         */
2881        cancel_delayed_work(&rdev->disable_work);
2882
2883        list_for_each_entry(regulator, &rdev->consumer_list, list) {
2884                count = regulator->deferred_disables;
2885
2886                if (!count)
2887                        continue;
2888
2889                total_count += count;
2890                regulator->deferred_disables = 0;
2891
2892                for (i = 0; i < count; i++) {
2893                        ret = _regulator_disable(regulator);
2894                        if (ret != 0)
2895                                rdev_err(rdev, "Deferred disable failed: %pe\n",
2896                                         ERR_PTR(ret));
2897                }
2898        }
2899        WARN_ON(!total_count);
2900
2901        if (rdev->coupling_desc.n_coupled > 1)
2902                regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2903
2904        regulator_unlock_dependent(rdev, &ww_ctx);
2905}
2906
2907/**
2908 * regulator_disable_deferred - disable regulator output with delay
2909 * @regulator: regulator source
2910 * @ms: milliseconds until the regulator is disabled
2911 *
2912 * Execute regulator_disable() on the regulator after a delay.  This
2913 * is intended for use with devices that require some time to quiesce.
2914 *
2915 * NOTE: this will only disable the regulator output if no other consumer
2916 * devices have it enabled, the regulator device supports disabling and
2917 * machine constraints permit this operation.
2918 */
2919int regulator_disable_deferred(struct regulator *regulator, int ms)
2920{
2921        struct regulator_dev *rdev = regulator->rdev;
2922
2923        if (!ms)
2924                return regulator_disable(regulator);
2925
2926        regulator_lock(rdev);
2927        regulator->deferred_disables++;
2928        mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2929                         msecs_to_jiffies(ms));
2930        regulator_unlock(rdev);
2931
2932        return 0;
2933}
2934EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2935
2936static int _regulator_is_enabled(struct regulator_dev *rdev)
2937{
2938        /* A GPIO control always takes precedence */
2939        if (rdev->ena_pin)
2940                return rdev->ena_gpio_state;
2941
2942        /* If we don't know then assume that the regulator is always on */
2943        if (!rdev->desc->ops->is_enabled)
2944                return 1;
2945
2946        return rdev->desc->ops->is_enabled(rdev);
2947}
2948
2949static int _regulator_list_voltage(struct regulator_dev *rdev,
2950                                   unsigned selector, int lock)
2951{
2952        const struct regulator_ops *ops = rdev->desc->ops;
2953        int ret;
2954
2955        if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2956                return rdev->desc->fixed_uV;
2957
2958        if (ops->list_voltage) {
2959                if (selector >= rdev->desc->n_voltages)
2960                        return -EINVAL;
2961                if (lock)
2962                        regulator_lock(rdev);
2963                ret = ops->list_voltage(rdev, selector);
2964                if (lock)
2965                        regulator_unlock(rdev);
2966        } else if (rdev->is_switch && rdev->supply) {
2967                ret = _regulator_list_voltage(rdev->supply->rdev,
2968                                              selector, lock);
2969        } else {
2970                return -EINVAL;
2971        }
2972
2973        if (ret > 0) {
2974                if (ret < rdev->constraints->min_uV)
2975                        ret = 0;
2976                else if (ret > rdev->constraints->max_uV)
2977                        ret = 0;
2978        }
2979
2980        return ret;
2981}
2982
2983/**
2984 * regulator_is_enabled - is the regulator output enabled
2985 * @regulator: regulator source
2986 *
2987 * Returns positive if the regulator driver backing the source/client
2988 * has requested that the device be enabled, zero if it hasn't, else a
2989 * negative errno code.
2990 *
2991 * Note that the device backing this regulator handle can have multiple
2992 * users, so it might be enabled even if regulator_enable() was never
2993 * called for this particular source.
2994 */
2995int regulator_is_enabled(struct regulator *regulator)
2996{
2997        int ret;
2998
2999        if (regulator->always_on)
3000                return 1;
3001
3002        regulator_lock(regulator->rdev);
3003        ret = _regulator_is_enabled(regulator->rdev);
3004        regulator_unlock(regulator->rdev);
3005
3006        return ret;
3007}
3008EXPORT_SYMBOL_GPL(regulator_is_enabled);
3009
3010/**
3011 * regulator_count_voltages - count regulator_list_voltage() selectors
3012 * @regulator: regulator source
3013 *
3014 * Returns number of selectors, or negative errno.  Selectors are
3015 * numbered starting at zero, and typically correspond to bitfields
3016 * in hardware registers.
3017 */
3018int regulator_count_voltages(struct regulator *regulator)
3019{
3020        struct regulator_dev    *rdev = regulator->rdev;
3021
3022        if (rdev->desc->n_voltages)
3023                return rdev->desc->n_voltages;
3024
3025        if (!rdev->is_switch || !rdev->supply)
3026                return -EINVAL;
3027
3028        return regulator_count_voltages(rdev->supply);
3029}
3030EXPORT_SYMBOL_GPL(regulator_count_voltages);
3031
3032/**
3033 * regulator_list_voltage - enumerate supported voltages
3034 * @regulator: regulator source
3035 * @selector: identify voltage to list
3036 * Context: can sleep
3037 *
3038 * Returns a voltage that can be passed to @regulator_set_voltage(),
3039 * zero if this selector code can't be used on this system, or a
3040 * negative errno.
3041 */
3042int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3043{
3044        return _regulator_list_voltage(regulator->rdev, selector, 1);
3045}
3046EXPORT_SYMBOL_GPL(regulator_list_voltage);
3047
3048/**
3049 * regulator_get_regmap - get the regulator's register map
3050 * @regulator: regulator source
3051 *
3052 * Returns the register map for the given regulator, or an ERR_PTR value
3053 * if the regulator doesn't use regmap.
3054 */
3055struct regmap *regulator_get_regmap(struct regulator *regulator)
3056{
3057        struct regmap *map = regulator->rdev->regmap;
3058
3059        return map ? map : ERR_PTR(-EOPNOTSUPP);
3060}
3061
3062/**
3063 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3064 * @regulator: regulator source
3065 * @vsel_reg: voltage selector register, output parameter
3066 * @vsel_mask: mask for voltage selector bitfield, output parameter
3067 *
3068 * Returns the hardware register offset and bitmask used for setting the
3069 * regulator voltage. This might be useful when configuring voltage-scaling
3070 * hardware or firmware that can make I2C requests behind the kernel's back,
3071 * for example.
3072 *
3073 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3074 * and 0 is returned, otherwise a negative errno is returned.
3075 */
3076int regulator_get_hardware_vsel_register(struct regulator *regulator,
3077                                         unsigned *vsel_reg,
3078                                         unsigned *vsel_mask)
3079{
3080        struct regulator_dev *rdev = regulator->rdev;
3081        const struct regulator_ops *ops = rdev->desc->ops;
3082
3083        if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3084                return -EOPNOTSUPP;
3085
3086        *vsel_reg = rdev->desc->vsel_reg;
3087        *vsel_mask = rdev->desc->vsel_mask;
3088
3089        return 0;
3090}
3091EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3092
3093/**
3094 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3095 * @regulator: regulator source
3096 * @selector: identify voltage to list
3097 *
3098 * Converts the selector to a hardware-specific voltage selector that can be
3099 * directly written to the regulator registers. The address of the voltage
3100 * register can be determined by calling @regulator_get_hardware_vsel_register.
3101 *
3102 * On error a negative errno is returned.
3103 */
3104int regulator_list_hardware_vsel(struct regulator *regulator,
3105                                 unsigned selector)
3106{
3107        struct regulator_dev *rdev = regulator->rdev;
3108        const struct regulator_ops *ops = rdev->desc->ops;
3109
3110        if (selector >= rdev->desc->n_voltages)
3111                return -EINVAL;
3112        if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3113                return -EOPNOTSUPP;
3114
3115        return selector;
3116}
3117EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3118
3119/**
3120 * regulator_get_linear_step - return the voltage step size between VSEL values
3121 * @regulator: regulator source
3122 *
3123 * Returns the voltage step size between VSEL values for linear
3124 * regulators, or return 0 if the regulator isn't a linear regulator.
3125 */
3126unsigned int regulator_get_linear_step(struct regulator *regulator)
3127{
3128        struct regulator_dev *rdev = regulator->rdev;
3129
3130        return rdev->desc->uV_step;
3131}
3132EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3133
3134/**
3135 * regulator_is_supported_voltage - check if a voltage range can be supported
3136 *
3137 * @regulator: Regulator to check.
3138 * @min_uV: Minimum required voltage in uV.
3139 * @max_uV: Maximum required voltage in uV.
3140 *
3141 * Returns a boolean.
3142 */
3143int regulator_is_supported_voltage(struct regulator *regulator,
3144                                   int min_uV, int max_uV)
3145{
3146        struct regulator_dev *rdev = regulator->rdev;
3147        int i, voltages, ret;
3148
3149        /* If we can't change voltage check the current voltage */
3150        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3151                ret = regulator_get_voltage(regulator);
3152                if (ret >= 0)
3153                        return min_uV <= ret && ret <= max_uV;
3154                else
3155                        return ret;
3156        }
3157
3158        /* Any voltage within constrains range is fine? */
3159        if (rdev->desc->continuous_voltage_range)
3160                return min_uV >= rdev->constraints->min_uV &&
3161                                max_uV <= rdev->constraints->max_uV;
3162
3163        ret = regulator_count_voltages(regulator);
3164        if (ret < 0)
3165                return 0;
3166        voltages = ret;
3167
3168        for (i = 0; i < voltages; i++) {
3169                ret = regulator_list_voltage(regulator, i);
3170
3171                if (ret >= min_uV && ret <= max_uV)
3172                        return 1;
3173        }
3174
3175        return 0;
3176}
3177EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3178
3179static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3180                                 int max_uV)
3181{
3182        const struct regulator_desc *desc = rdev->desc;
3183
3184        if (desc->ops->map_voltage)
3185                return desc->ops->map_voltage(rdev, min_uV, max_uV);
3186
3187        if (desc->ops->list_voltage == regulator_list_voltage_linear)
3188                return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3189
3190        if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3191                return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3192
3193        if (desc->ops->list_voltage ==
3194                regulator_list_voltage_pickable_linear_range)
3195                return regulator_map_voltage_pickable_linear_range(rdev,
3196                                                        min_uV, max_uV);
3197
3198        return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3199}
3200
3201static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3202                                       int min_uV, int max_uV,
3203                                       unsigned *selector)
3204{
3205        struct pre_voltage_change_data data;
3206        int ret;
3207
3208        data.old_uV = regulator_get_voltage_rdev(rdev);
3209        data.min_uV = min_uV;
3210        data.max_uV = max_uV;
3211        ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3212                                   &data);
3213        if (ret & NOTIFY_STOP_MASK)
3214                return -EINVAL;
3215
3216        ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3217        if (ret >= 0)
3218                return ret;
3219
3220        _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3221                             (void *)data.old_uV);
3222
3223        return ret;
3224}
3225
3226static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3227                                           int uV, unsigned selector)
3228{
3229        struct pre_voltage_change_data data;
3230        int ret;
3231
3232        data.old_uV = regulator_get_voltage_rdev(rdev);
3233        data.min_uV = uV;
3234        data.max_uV = uV;
3235        ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3236                                   &data);
3237        if (ret & NOTIFY_STOP_MASK)
3238                return -EINVAL;
3239
3240        ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3241        if (ret >= 0)
3242                return ret;
3243
3244        _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3245                             (void *)data.old_uV);
3246
3247        return ret;
3248}
3249
3250static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3251                                           int uV, int new_selector)
3252{
3253        const struct regulator_ops *ops = rdev->desc->ops;
3254        int diff, old_sel, curr_sel, ret;
3255
3256        /* Stepping is only needed if the regulator is enabled. */
3257        if (!_regulator_is_enabled(rdev))
3258                goto final_set;
3259
3260        if (!ops->get_voltage_sel)
3261                return -EINVAL;
3262
3263        old_sel = ops->get_voltage_sel(rdev);
3264        if (old_sel < 0)
3265                return old_sel;
3266
3267        diff = new_selector - old_sel;
3268        if (diff == 0)
3269                return 0; /* No change needed. */
3270
3271        if (diff > 0) {
3272                /* Stepping up. */
3273                for (curr_sel = old_sel + rdev->desc->vsel_step;
3274                     curr_sel < new_selector;
3275                     curr_sel += rdev->desc->vsel_step) {
3276                        /*
3277                         * Call the callback directly instead of using
3278                         * _regulator_call_set_voltage_sel() as we don't
3279                         * want to notify anyone yet. Same in the branch
3280                         * below.
3281                         */
3282                        ret = ops->set_voltage_sel(rdev, curr_sel);
3283                        if (ret)
3284                                goto try_revert;
3285                }
3286        } else {
3287                /* Stepping down. */
3288                for (curr_sel = old_sel - rdev->desc->vsel_step;
3289                     curr_sel > new_selector;
3290                     curr_sel -= rdev->desc->vsel_step) {
3291                        ret = ops->set_voltage_sel(rdev, curr_sel);
3292                        if (ret)
3293                                goto try_revert;
3294                }
3295        }
3296
3297final_set:
3298        /* The final selector will trigger the notifiers. */
3299        return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3300
3301try_revert:
3302        /*
3303         * At least try to return to the previous voltage if setting a new
3304         * one failed.
3305         */
3306        (void)ops->set_voltage_sel(rdev, old_sel);
3307        return ret;
3308}
3309
3310static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3311                                       int old_uV, int new_uV)
3312{
3313        unsigned int ramp_delay = 0;
3314
3315        if (rdev->constraints->ramp_delay)
3316                ramp_delay = rdev->constraints->ramp_delay;
3317        else if (rdev->desc->ramp_delay)
3318                ramp_delay = rdev->desc->ramp_delay;
3319        else if (rdev->constraints->settling_time)
3320                return rdev->constraints->settling_time;
3321        else if (rdev->constraints->settling_time_up &&
3322                 (new_uV > old_uV))
3323                return rdev->constraints->settling_time_up;
3324        else if (rdev->constraints->settling_time_down &&
3325                 (new_uV < old_uV))
3326                return rdev->constraints->settling_time_down;
3327
3328        if (ramp_delay == 0) {
3329                rdev_dbg(rdev, "ramp_delay not set\n");
3330                return 0;
3331        }
3332
3333        return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3334}
3335
3336static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3337                                     int min_uV, int max_uV)
3338{
3339        int ret;
3340        int delay = 0;
3341        int best_val = 0;
3342        unsigned int selector;
3343        int old_selector = -1;
3344        const struct regulator_ops *ops = rdev->desc->ops;
3345        int old_uV = regulator_get_voltage_rdev(rdev);
3346
3347        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3348
3349        min_uV += rdev->constraints->uV_offset;
3350        max_uV += rdev->constraints->uV_offset;
3351
3352        /*
3353         * If we can't obtain the old selector there is not enough
3354         * info to call set_voltage_time_sel().
3355         */
3356        if (_regulator_is_enabled(rdev) &&
3357            ops->set_voltage_time_sel && ops->get_voltage_sel) {
3358                old_selector = ops->get_voltage_sel(rdev);
3359                if (old_selector < 0)
3360                        return old_selector;
3361        }
3362
3363        if (ops->set_voltage) {
3364                ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3365                                                  &selector);
3366
3367                if (ret >= 0) {
3368                        if (ops->list_voltage)
3369                                best_val = ops->list_voltage(rdev,
3370                                                             selector);
3371                        else
3372                                best_val = regulator_get_voltage_rdev(rdev);
3373                }
3374
3375        } else if (ops->set_voltage_sel) {
3376                ret = regulator_map_voltage(rdev, min_uV, max_uV);
3377                if (ret >= 0) {
3378                        best_val = ops->list_voltage(rdev, ret);
3379                        if (min_uV <= best_val && max_uV >= best_val) {
3380                                selector = ret;
3381                                if (old_selector == selector)
3382                                        ret = 0;
3383                                else if (rdev->desc->vsel_step)
3384                                        ret = _regulator_set_voltage_sel_step(
3385                                                rdev, best_val, selector);
3386                                else
3387                                        ret = _regulator_call_set_voltage_sel(
3388                                                rdev, best_val, selector);
3389                        } else {
3390                                ret = -EINVAL;
3391                        }
3392                }
3393        } else {
3394                ret = -EINVAL;
3395        }
3396
3397        if (ret)
3398                goto out;
3399
3400        if (ops->set_voltage_time_sel) {
3401                /*
3402                 * Call set_voltage_time_sel if successfully obtained
3403                 * old_selector
3404                 */
3405                if (old_selector >= 0 && old_selector != selector)
3406                        delay = ops->set_voltage_time_sel(rdev, old_selector,
3407                                                          selector);
3408        } else {
3409                if (old_uV != best_val) {
3410                        if (ops->set_voltage_time)
3411                                delay = ops->set_voltage_time(rdev, old_uV,
3412                                                              best_val);
3413                        else
3414                                delay = _regulator_set_voltage_time(rdev,
3415                                                                    old_uV,
3416                                                                    best_val);
3417                }
3418        }
3419
3420        if (delay < 0) {
3421                rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3422                delay = 0;
3423        }
3424
3425        /* Insert any necessary delays */
3426        if (delay >= 1000) {
3427                mdelay(delay / 1000);
3428                udelay(delay % 1000);
3429        } else if (delay) {
3430                udelay(delay);
3431        }
3432
3433        if (best_val >= 0) {
3434                unsigned long data = best_val;
3435
3436                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3437                                     (void *)data);
3438        }
3439
3440out:
3441        trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3442
3443        return ret;
3444}
3445
3446static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3447                                  int min_uV, int max_uV, suspend_state_t state)
3448{
3449        struct regulator_state *rstate;
3450        int uV, sel;
3451
3452        rstate = regulator_get_suspend_state(rdev, state);
3453        if (rstate == NULL)
3454                return -EINVAL;
3455
3456        if (min_uV < rstate->min_uV)
3457                min_uV = rstate->min_uV;
3458        if (max_uV > rstate->max_uV)
3459                max_uV = rstate->max_uV;
3460
3461        sel = regulator_map_voltage(rdev, min_uV, max_uV);
3462        if (sel < 0)
3463                return sel;
3464
3465        uV = rdev->desc->ops->list_voltage(rdev, sel);
3466        if (uV >= min_uV && uV <= max_uV)
3467                rstate->uV = uV;
3468
3469        return 0;
3470}
3471
3472static int regulator_set_voltage_unlocked(struct regulator *regulator,
3473                                          int min_uV, int max_uV,
3474                                          suspend_state_t state)
3475{
3476        struct regulator_dev *rdev = regulator->rdev;
3477        struct regulator_voltage *voltage = &regulator->voltage[state];
3478        int ret = 0;
3479        int old_min_uV, old_max_uV;
3480        int current_uV;
3481
3482        /* If we're setting the same range as last time the change
3483         * should be a noop (some cpufreq implementations use the same
3484         * voltage for multiple frequencies, for example).
3485         */
3486        if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3487                goto out;
3488
3489        /* If we're trying to set a range that overlaps the current voltage,
3490         * return successfully even though the regulator does not support
3491         * changing the voltage.
3492         */
3493        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3494                current_uV = regulator_get_voltage_rdev(rdev);
3495                if (min_uV <= current_uV && current_uV <= max_uV) {
3496                        voltage->min_uV = min_uV;
3497                        voltage->max_uV = max_uV;
3498                        goto out;
3499                }
3500        }
3501
3502        /* sanity check */
3503        if (!rdev->desc->ops->set_voltage &&
3504            !rdev->desc->ops->set_voltage_sel) {
3505                ret = -EINVAL;
3506                goto out;
3507        }
3508
3509        /* constraints check */
3510        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3511        if (ret < 0)
3512                goto out;
3513
3514        /* restore original values in case of error */
3515        old_min_uV = voltage->min_uV;
3516        old_max_uV = voltage->max_uV;
3517        voltage->min_uV = min_uV;
3518        voltage->max_uV = max_uV;
3519
3520        /* for not coupled regulators this will just set the voltage */
3521        ret = regulator_balance_voltage(rdev, state);
3522        if (ret < 0) {
3523                voltage->min_uV = old_min_uV;
3524                voltage->max_uV = old_max_uV;
3525        }
3526
3527out:
3528        return ret;
3529}
3530
3531int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3532                               int max_uV, suspend_state_t state)
3533{
3534        int best_supply_uV = 0;
3535        int supply_change_uV = 0;
3536        int ret;
3537
3538        if (rdev->supply &&
3539            regulator_ops_is_valid(rdev->supply->rdev,
3540                                   REGULATOR_CHANGE_VOLTAGE) &&
3541            (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3542                                           rdev->desc->ops->get_voltage_sel))) {
3543                int current_supply_uV;
3544                int selector;
3545
3546                selector = regulator_map_voltage(rdev, min_uV, max_uV);
3547                if (selector < 0) {
3548                        ret = selector;
3549                        goto out;
3550                }
3551
3552                best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3553                if (best_supply_uV < 0) {
3554                        ret = best_supply_uV;
3555                        goto out;
3556                }
3557
3558                best_supply_uV += rdev->desc->min_dropout_uV;
3559
3560                current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3561                if (current_supply_uV < 0) {
3562                        ret = current_supply_uV;
3563                        goto out;
3564                }
3565
3566                supply_change_uV = best_supply_uV - current_supply_uV;
3567        }
3568
3569        if (supply_change_uV > 0) {
3570                ret = regulator_set_voltage_unlocked(rdev->supply,
3571                                best_supply_uV, INT_MAX, state);
3572                if (ret) {
3573                        dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3574                                ERR_PTR(ret));
3575                        goto out;
3576                }
3577        }
3578
3579        if (state == PM_SUSPEND_ON)
3580                ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3581        else
3582                ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3583                                                        max_uV, state);
3584        if (ret < 0)
3585                goto out;
3586
3587        if (supply_change_uV < 0) {
3588                ret = regulator_set_voltage_unlocked(rdev->supply,
3589                                best_supply_uV, INT_MAX, state);
3590                if (ret)
3591                        dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3592                                 ERR_PTR(ret));
3593                /* No need to fail here */
3594                ret = 0;
3595        }
3596
3597out:
3598        return ret;
3599}
3600EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3601
3602static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3603                                        int *current_uV, int *min_uV)
3604{
3605        struct regulation_constraints *constraints = rdev->constraints;
3606
3607        /* Limit voltage change only if necessary */
3608        if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3609                return 1;
3610
3611        if (*current_uV < 0) {
3612                *current_uV = regulator_get_voltage_rdev(rdev);
3613
3614                if (*current_uV < 0)
3615                        return *current_uV;
3616        }
3617
3618        if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3619                return 1;
3620
3621        /* Clamp target voltage within the given step */
3622        if (*current_uV < *min_uV)
3623                *min_uV = min(*current_uV + constraints->max_uV_step,
3624                              *min_uV);
3625        else
3626                *min_uV = max(*current_uV - constraints->max_uV_step,
3627                              *min_uV);
3628
3629        return 0;
3630}
3631
3632static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3633                                         int *current_uV,
3634                                         int *min_uV, int *max_uV,
3635                                         suspend_state_t state,
3636                                         int n_coupled)
3637{
3638        struct coupling_desc *c_desc = &rdev->coupling_desc;
3639        struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3640        struct regulation_constraints *constraints = rdev->constraints;
3641        int desired_min_uV = 0, desired_max_uV = INT_MAX;
3642        int max_current_uV = 0, min_current_uV = INT_MAX;
3643        int highest_min_uV = 0, target_uV, possible_uV;
3644        int i, ret, max_spread;
3645        bool done;
3646
3647        *current_uV = -1;
3648
3649        /*
3650         * If there are no coupled regulators, simply set the voltage
3651         * demanded by consumers.
3652         */
3653        if (n_coupled == 1) {
3654                /*
3655                 * If consumers don't provide any demands, set voltage
3656                 * to min_uV
3657                 */
3658                desired_min_uV = constraints->min_uV;
3659                desired_max_uV = constraints->max_uV;
3660
3661                ret = regulator_check_consumers(rdev,
3662                                                &desired_min_uV,
3663                                                &desired_max_uV, state);
3664                if (ret < 0)
3665                        return ret;
3666
3667                possible_uV = desired_min_uV;
3668                done = true;
3669
3670                goto finish;
3671        }
3672
3673        /* Find highest min desired voltage */
3674        for (i = 0; i < n_coupled; i++) {
3675                int tmp_min = 0;
3676                int tmp_max = INT_MAX;
3677
3678                lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3679
3680                ret = regulator_check_consumers(c_rdevs[i],
3681                                                &tmp_min,
3682                                                &tmp_max, state);
3683                if (ret < 0)
3684                        return ret;
3685
3686                ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3687                if (ret < 0)
3688                        return ret;
3689
3690                highest_min_uV = max(highest_min_uV, tmp_min);
3691
3692                if (i == 0) {
3693                        desired_min_uV = tmp_min;
3694                        desired_max_uV = tmp_max;
3695                }
3696        }
3697
3698        max_spread = constraints->max_spread[0];
3699
3700        /*
3701         * Let target_uV be equal to the desired one if possible.
3702         * If not, set it to minimum voltage, allowed by other coupled
3703         * regulators.
3704         */
3705        target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3706
3707        /*
3708         * Find min and max voltages, which currently aren't violating
3709         * max_spread.
3710         */
3711        for (i = 1; i < n_coupled; i++) {
3712                int tmp_act;
3713
3714                if (!_regulator_is_enabled(c_rdevs[i]))
3715                        continue;
3716
3717                tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3718                if (tmp_act < 0)
3719                        return tmp_act;
3720
3721                min_current_uV = min(tmp_act, min_current_uV);
3722                max_current_uV = max(tmp_act, max_current_uV);
3723        }
3724
3725        /* There aren't any other regulators enabled */
3726        if (max_current_uV == 0) {
3727                possible_uV = target_uV;
3728        } else {
3729                /*
3730                 * Correct target voltage, so as it currently isn't
3731                 * violating max_spread
3732                 */
3733                possible_uV = max(target_uV, max_current_uV - max_spread);
3734                possible_uV = min(possible_uV, min_current_uV + max_spread);
3735        }
3736
3737        if (possible_uV > desired_max_uV)
3738                return -EINVAL;
3739
3740        done = (possible_uV == target_uV);
3741        desired_min_uV = possible_uV;
3742
3743finish:
3744        /* Apply max_uV_step constraint if necessary */
3745        if (state == PM_SUSPEND_ON) {
3746                ret = regulator_limit_voltage_step(rdev, current_uV,
3747                                                   &desired_min_uV);
3748                if (ret < 0)
3749                        return ret;
3750
3751                if (ret == 0)
3752                        done = false;
3753        }
3754
3755        /* Set current_uV if wasn't done earlier in the code and if necessary */
3756        if (n_coupled > 1 && *current_uV == -1) {
3757
3758                if (_regulator_is_enabled(rdev)) {
3759                        ret = regulator_get_voltage_rdev(rdev);
3760                        if (ret < 0)
3761                                return ret;
3762
3763                        *current_uV = ret;
3764                } else {
3765                        *current_uV = desired_min_uV;
3766                }
3767        }
3768
3769        *min_uV = desired_min_uV;
3770        *max_uV = desired_max_uV;
3771
3772        return done;
3773}
3774
3775int regulator_do_balance_voltage(struct regulator_dev *rdev,
3776                                 suspend_state_t state, bool skip_coupled)
3777{
3778        struct regulator_dev **c_rdevs;
3779        struct regulator_dev *best_rdev;
3780        struct coupling_desc *c_desc = &rdev->coupling_desc;
3781        int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3782        unsigned int delta, best_delta;
3783        unsigned long c_rdev_done = 0;
3784        bool best_c_rdev_done;
3785
3786        c_rdevs = c_desc->coupled_rdevs;
3787        n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3788
3789        /*
3790         * Find the best possible voltage change on each loop. Leave the loop
3791         * if there isn't any possible change.
3792         */
3793        do {
3794                best_c_rdev_done = false;
3795                best_delta = 0;
3796                best_min_uV = 0;
3797                best_max_uV = 0;
3798                best_c_rdev = 0;
3799                best_rdev = NULL;
3800
3801                /*
3802                 * Find highest difference between optimal voltage
3803                 * and current voltage.
3804                 */
3805                for (i = 0; i < n_coupled; i++) {
3806                        /*
3807                         * optimal_uV is the best voltage that can be set for
3808                         * i-th regulator at the moment without violating
3809                         * max_spread constraint in order to balance
3810                         * the coupled voltages.
3811                         */
3812                        int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3813
3814                        if (test_bit(i, &c_rdev_done))
3815                                continue;
3816
3817                        ret = regulator_get_optimal_voltage(c_rdevs[i],
3818                                                            &current_uV,
3819                                                            &optimal_uV,
3820                                                            &optimal_max_uV,
3821                                                            state, n_coupled);
3822                        if (ret < 0)
3823                                goto out;
3824
3825                        delta = abs(optimal_uV - current_uV);
3826
3827                        if (delta && best_delta <= delta) {
3828                                best_c_rdev_done = ret;
3829                                best_delta = delta;
3830                                best_rdev = c_rdevs[i];
3831                                best_min_uV = optimal_uV;
3832                                best_max_uV = optimal_max_uV;
3833                                best_c_rdev = i;
3834                        }
3835                }
3836
3837                /* Nothing to change, return successfully */
3838                if (!best_rdev) {
3839                        ret = 0;
3840                        goto out;
3841                }
3842
3843                ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3844                                                 best_max_uV, state);
3845
3846                if (ret < 0)
3847                        goto out;
3848
3849                if (best_c_rdev_done)
3850                        set_bit(best_c_rdev, &c_rdev_done);
3851
3852        } while (n_coupled > 1);
3853
3854out:
3855        return ret;
3856}
3857
3858static int regulator_balance_voltage(struct regulator_dev *rdev,
3859                                     suspend_state_t state)
3860{
3861        struct coupling_desc *c_desc = &rdev->coupling_desc;
3862        struct regulator_coupler *coupler = c_desc->coupler;
3863        bool skip_coupled = false;
3864
3865        /*
3866         * If system is in a state other than PM_SUSPEND_ON, don't check
3867         * other coupled regulators.
3868         */
3869        if (state != PM_SUSPEND_ON)
3870                skip_coupled = true;
3871
3872        if (c_desc->n_resolved < c_desc->n_coupled) {
3873                rdev_err(rdev, "Not all coupled regulators registered\n");
3874                return -EPERM;
3875        }
3876
3877        /* Invoke custom balancer for customized couplers */
3878        if (coupler && coupler->balance_voltage)
3879                return coupler->balance_voltage(coupler, rdev, state);
3880
3881        return regulator_do_balance_voltage(rdev, state, skip_coupled);
3882}
3883
3884/**
3885 * regulator_set_voltage - set regulator output voltage
3886 * @regulator: regulator source
3887 * @min_uV: Minimum required voltage in uV
3888 * @max_uV: Maximum acceptable voltage in uV
3889 *
3890 * Sets a voltage regulator to the desired output voltage. This can be set
3891 * during any regulator state. IOW, regulator can be disabled or enabled.
3892 *
3893 * If the regulator is enabled then the voltage will change to the new value
3894 * immediately otherwise if the regulator is disabled the regulator will
3895 * output at the new voltage when enabled.
3896 *
3897 * NOTE: If the regulator is shared between several devices then the lowest
3898 * request voltage that meets the system constraints will be used.
3899 * Regulator system constraints must be set for this regulator before
3900 * calling this function otherwise this call will fail.
3901 */
3902int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3903{
3904        struct ww_acquire_ctx ww_ctx;
3905        int ret;
3906
3907        regulator_lock_dependent(regulator->rdev, &ww_ctx);
3908
3909        ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3910                                             PM_SUSPEND_ON);
3911
3912        regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3913
3914        return ret;
3915}
3916EXPORT_SYMBOL_GPL(regulator_set_voltage);
3917
3918static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3919                                           suspend_state_t state, bool en)
3920{
3921        struct regulator_state *rstate;
3922
3923        rstate = regulator_get_suspend_state(rdev, state);
3924        if (rstate == NULL)
3925                return -EINVAL;
3926
3927        if (!rstate->changeable)
3928                return -EPERM;
3929
3930        rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3931
3932        return 0;
3933}
3934
3935int regulator_suspend_enable(struct regulator_dev *rdev,
3936                                    suspend_state_t state)
3937{
3938        return regulator_suspend_toggle(rdev, state, true);
3939}
3940EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3941
3942int regulator_suspend_disable(struct regulator_dev *rdev,
3943                                     suspend_state_t state)
3944{
3945        struct regulator *regulator;
3946        struct regulator_voltage *voltage;
3947
3948        /*
3949         * if any consumer wants this regulator device keeping on in
3950         * suspend states, don't set it as disabled.
3951         */
3952        list_for_each_entry(regulator, &rdev->consumer_list, list) {
3953                voltage = &regulator->voltage[state];
3954                if (voltage->min_uV || voltage->max_uV)
3955                        return 0;
3956        }
3957
3958        return regulator_suspend_toggle(rdev, state, false);
3959}
3960EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3961
3962static int _regulator_set_suspend_voltage(struct regulator *regulator,
3963                                          int min_uV, int max_uV,
3964                                          suspend_state_t state)
3965{
3966        struct regulator_dev *rdev = regulator->rdev;
3967        struct regulator_state *rstate;
3968
3969        rstate = regulator_get_suspend_state(rdev, state);
3970        if (rstate == NULL)
3971                return -EINVAL;
3972
3973        if (rstate->min_uV == rstate->max_uV) {
3974                rdev_err(rdev, "The suspend voltage can't be changed!\n");
3975                return -EPERM;
3976        }
3977
3978        return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3979}
3980
3981int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3982                                  int max_uV, suspend_state_t state)
3983{
3984        struct ww_acquire_ctx ww_ctx;
3985        int ret;
3986
3987        /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3988        if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3989                return -EINVAL;
3990
3991        regulator_lock_dependent(regulator->rdev, &ww_ctx);
3992
3993        ret = _regulator_set_suspend_voltage(regulator, min_uV,
3994                                             max_uV, state);
3995
3996        regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3997
3998        return ret;
3999}
4000EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4001
4002/**
4003 * regulator_set_voltage_time - get raise/fall time
4004 * @regulator: regulator source
4005 * @old_uV: starting voltage in microvolts
4006 * @new_uV: target voltage in microvolts
4007 *
4008 * Provided with the starting and ending voltage, this function attempts to
4009 * calculate the time in microseconds required to rise or fall to this new
4010 * voltage.
4011 */
4012int regulator_set_voltage_time(struct regulator *regulator,
4013                               int old_uV, int new_uV)
4014{
4015        struct regulator_dev *rdev = regulator->rdev;
4016        const struct regulator_ops *ops = rdev->desc->ops;
4017        int old_sel = -1;
4018        int new_sel = -1;
4019        int voltage;
4020        int i;
4021
4022        if (ops->set_voltage_time)
4023                return ops->set_voltage_time(rdev, old_uV, new_uV);
4024        else if (!ops->set_voltage_time_sel)
4025                return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4026
4027        /* Currently requires operations to do this */
4028        if (!ops->list_voltage || !rdev->desc->n_voltages)
4029                return -EINVAL;
4030
4031        for (i = 0; i < rdev->desc->n_voltages; i++) {
4032                /* We only look for exact voltage matches here */
4033                voltage = regulator_list_voltage(regulator, i);
4034                if (voltage < 0)
4035                        return -EINVAL;
4036                if (voltage == 0)
4037                        continue;
4038                if (voltage == old_uV)
4039                        old_sel = i;
4040                if (voltage == new_uV)
4041                        new_sel = i;
4042        }
4043
4044        if (old_sel < 0 || new_sel < 0)
4045                return -EINVAL;
4046
4047        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4048}
4049EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4050
4051/**
4052 * regulator_set_voltage_time_sel - get raise/fall time
4053 * @rdev: regulator source device
4054 * @old_selector: selector for starting voltage
4055 * @new_selector: selector for target voltage
4056 *
4057 * Provided with the starting and target voltage selectors, this function
4058 * returns time in microseconds required to rise or fall to this new voltage
4059 *
4060 * Drivers providing ramp_delay in regulation_constraints can use this as their
4061 * set_voltage_time_sel() operation.
4062 */
4063int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4064                                   unsigned int old_selector,
4065                                   unsigned int new_selector)
4066{
4067        int old_volt, new_volt;
4068
4069        /* sanity check */
4070        if (!rdev->desc->ops->list_voltage)
4071                return -EINVAL;
4072
4073        old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4074        new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4075
4076        if (rdev->desc->ops->set_voltage_time)
4077                return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4078                                                         new_volt);
4079        else
4080                return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4081}
4082EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4083
4084/**
4085 * regulator_sync_voltage - re-apply last regulator output voltage
4086 * @regulator: regulator source
4087 *
4088 * Re-apply the last configured voltage.  This is intended to be used
4089 * where some external control source the consumer is cooperating with
4090 * has caused the configured voltage to change.
4091 */
4092int regulator_sync_voltage(struct regulator *regulator)
4093{
4094        struct regulator_dev *rdev = regulator->rdev;
4095        struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4096        int ret, min_uV, max_uV;
4097
4098        regulator_lock(rdev);
4099
4100        if (!rdev->desc->ops->set_voltage &&
4101            !rdev->desc->ops->set_voltage_sel) {
4102                ret = -EINVAL;
4103                goto out;
4104        }
4105
4106        /* This is only going to work if we've had a voltage configured. */
4107        if (!voltage->min_uV && !voltage->max_uV) {
4108                ret = -EINVAL;
4109                goto out;
4110        }
4111
4112        min_uV = voltage->min_uV;
4113        max_uV = voltage->max_uV;
4114
4115        /* This should be a paranoia check... */
4116        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4117        if (ret < 0)
4118                goto out;
4119
4120        ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4121        if (ret < 0)
4122                goto out;
4123
4124        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4125
4126out:
4127        regulator_unlock(rdev);
4128        return ret;
4129}
4130EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4131
4132int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4133{
4134        int sel, ret;
4135        bool bypassed;
4136
4137        if (rdev->desc->ops->get_bypass) {
4138                ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4139                if (ret < 0)
4140                        return ret;
4141                if (bypassed) {
4142                        /* if bypassed the regulator must have a supply */
4143                        if (!rdev->supply) {
4144                                rdev_err(rdev,
4145                                         "bypassed regulator has no supply!\n");
4146                                return -EPROBE_DEFER;
4147                        }
4148
4149                        return regulator_get_voltage_rdev(rdev->supply->rdev);
4150                }
4151        }
4152
4153        if (rdev->desc->ops->get_voltage_sel) {
4154                sel = rdev->desc->ops->get_voltage_sel(rdev);
4155                if (sel < 0)
4156                        return sel;
4157                ret = rdev->desc->ops->list_voltage(rdev, sel);
4158        } else if (rdev->desc->ops->get_voltage) {
4159                ret = rdev->desc->ops->get_voltage(rdev);
4160        } else if (rdev->desc->ops->list_voltage) {
4161                ret = rdev->desc->ops->list_voltage(rdev, 0);
4162        } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4163                ret = rdev->desc->fixed_uV;
4164        } else if (rdev->supply) {
4165                ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4166        } else if (rdev->supply_name) {
4167                return -EPROBE_DEFER;
4168        } else {
4169                return -EINVAL;
4170        }
4171
4172        if (ret < 0)
4173                return ret;
4174        return ret - rdev->constraints->uV_offset;
4175}
4176EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4177
4178/**
4179 * regulator_get_voltage - get regulator output voltage
4180 * @regulator: regulator source
4181 *
4182 * This returns the current regulator voltage in uV.
4183 *
4184 * NOTE: If the regulator is disabled it will return the voltage value. This
4185 * function should not be used to determine regulator state.
4186 */
4187int regulator_get_voltage(struct regulator *regulator)
4188{
4189        struct ww_acquire_ctx ww_ctx;
4190        int ret;
4191
4192        regulator_lock_dependent(regulator->rdev, &ww_ctx);
4193        ret = regulator_get_voltage_rdev(regulator->rdev);
4194        regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4195
4196        return ret;
4197}
4198EXPORT_SYMBOL_GPL(regulator_get_voltage);
4199
4200/**
4201 * regulator_set_current_limit - set regulator output current limit
4202 * @regulator: regulator source
4203 * @min_uA: Minimum supported current in uA
4204 * @max_uA: Maximum supported current in uA
4205 *
4206 * Sets current sink to the desired output current. This can be set during
4207 * any regulator state. IOW, regulator can be disabled or enabled.
4208 *
4209 * If the regulator is enabled then the current will change to the new value
4210 * immediately otherwise if the regulator is disabled the regulator will
4211 * output at the new current when enabled.
4212 *
4213 * NOTE: Regulator system constraints must be set for this regulator before
4214 * calling this function otherwise this call will fail.
4215 */
4216int regulator_set_current_limit(struct regulator *regulator,
4217                               int min_uA, int max_uA)
4218{
4219        struct regulator_dev *rdev = regulator->rdev;
4220        int ret;
4221
4222        regulator_lock(rdev);
4223
4224        /* sanity check */
4225        if (!rdev->desc->ops->set_current_limit) {
4226                ret = -EINVAL;
4227                goto out;
4228        }
4229
4230        /* constraints check */
4231        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4232        if (ret < 0)
4233                goto out;
4234
4235        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4236out:
4237        regulator_unlock(rdev);
4238        return ret;
4239}
4240EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4241
4242static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4243{
4244        /* sanity check */
4245        if (!rdev->desc->ops->get_current_limit)
4246                return -EINVAL;
4247
4248        return rdev->desc->ops->get_current_limit(rdev);
4249}
4250
4251static int _regulator_get_current_limit(struct regulator_dev *rdev)
4252{
4253        int ret;
4254
4255        regulator_lock(rdev);
4256        ret = _regulator_get_current_limit_unlocked(rdev);
4257        regulator_unlock(rdev);
4258
4259        return ret;
4260}
4261
4262/**
4263 * regulator_get_current_limit - get regulator output current
4264 * @regulator: regulator source
4265 *
4266 * This returns the current supplied by the specified current sink in uA.
4267 *
4268 * NOTE: If the regulator is disabled it will return the current value. This
4269 * function should not be used to determine regulator state.
4270 */
4271int regulator_get_current_limit(struct regulator *regulator)
4272{
4273        return _regulator_get_current_limit(regulator->rdev);
4274}
4275EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4276
4277/**
4278 * regulator_set_mode - set regulator operating mode
4279 * @regulator: regulator source
4280 * @mode: operating mode - one of the REGULATOR_MODE constants
4281 *
4282 * Set regulator operating mode to increase regulator efficiency or improve
4283 * regulation performance.
4284 *
4285 * NOTE: Regulator system constraints must be set for this regulator before
4286 * calling this function otherwise this call will fail.
4287 */
4288int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4289{
4290        struct regulator_dev *rdev = regulator->rdev;
4291        int ret;
4292        int regulator_curr_mode;
4293
4294        regulator_lock(rdev);
4295
4296        /* sanity check */
4297        if (!rdev->desc->ops->set_mode) {
4298                ret = -EINVAL;
4299                goto out;
4300        }
4301
4302        /* return if the same mode is requested */
4303        if (rdev->desc->ops->get_mode) {
4304                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4305                if (regulator_curr_mode == mode) {
4306                        ret = 0;
4307                        goto out;
4308                }
4309        }
4310
4311        /* constraints check */
4312        ret = regulator_mode_constrain(rdev, &mode);
4313        if (ret < 0)
4314                goto out;
4315
4316        ret = rdev->desc->ops->set_mode(rdev, mode);
4317out:
4318        regulator_unlock(rdev);
4319        return ret;
4320}
4321EXPORT_SYMBOL_GPL(regulator_set_mode);
4322
4323static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4324{
4325        /* sanity check */
4326        if (!rdev->desc->ops->get_mode)
4327                return -EINVAL;
4328
4329        return rdev->desc->ops->get_mode(rdev);
4330}
4331
4332static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4333{
4334        int ret;
4335
4336        regulator_lock(rdev);
4337        ret = _regulator_get_mode_unlocked(rdev);
4338        regulator_unlock(rdev);
4339
4340        return ret;
4341}
4342
4343/**
4344 * regulator_get_mode - get regulator operating mode
4345 * @regulator: regulator source
4346 *
4347 * Get the current regulator operating mode.
4348 */
4349unsigned int regulator_get_mode(struct regulator *regulator)
4350{
4351        return _regulator_get_mode(regulator->rdev);
4352}
4353EXPORT_SYMBOL_GPL(regulator_get_mode);
4354
4355static int _regulator_get_error_flags(struct regulator_dev *rdev,
4356                                        unsigned int *flags)
4357{
4358        int ret;
4359
4360        regulator_lock(rdev);
4361
4362        /* sanity check */
4363        if (!rdev->desc->ops->get_error_flags) {
4364                ret = -EINVAL;
4365                goto out;
4366        }
4367
4368        ret = rdev->desc->ops->get_error_flags(rdev, flags);
4369out:
4370        regulator_unlock(rdev);
4371        return ret;
4372}
4373
4374/**
4375 * regulator_get_error_flags - get regulator error information
4376 * @regulator: regulator source
4377 * @flags: pointer to store error flags
4378 *
4379 * Get the current regulator error information.
4380 */
4381int regulator_get_error_flags(struct regulator *regulator,
4382                                unsigned int *flags)
4383{
4384        return _regulator_get_error_flags(regulator->rdev, flags);
4385}
4386EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4387
4388/**
4389 * regulator_set_load - set regulator load
4390 * @regulator: regulator source
4391 * @uA_load: load current
4392 *
4393 * Notifies the regulator core of a new device load. This is then used by
4394 * DRMS (if enabled by constraints) to set the most efficient regulator
4395 * operating mode for the new regulator loading.
4396 *
4397 * Consumer devices notify their supply regulator of the maximum power
4398 * they will require (can be taken from device datasheet in the power
4399 * consumption tables) when they change operational status and hence power
4400 * state. Examples of operational state changes that can affect power
4401 * consumption are :-
4402 *
4403 *    o Device is opened / closed.
4404 *    o Device I/O is about to begin or has just finished.
4405 *    o Device is idling in between work.
4406 *
4407 * This information is also exported via sysfs to userspace.
4408 *
4409 * DRMS will sum the total requested load on the regulator and change
4410 * to the most efficient operating mode if platform constraints allow.
4411 *
4412 * NOTE: when a regulator consumer requests to have a regulator
4413 * disabled then any load that consumer requested no longer counts
4414 * toward the total requested load.  If the regulator is re-enabled
4415 * then the previously requested load will start counting again.
4416 *
4417 * If a regulator is an always-on regulator then an individual consumer's
4418 * load will still be removed if that consumer is fully disabled.
4419 *
4420 * On error a negative errno is returned.
4421 */
4422int regulator_set_load(struct regulator *regulator, int uA_load)
4423{
4424        struct regulator_dev *rdev = regulator->rdev;
4425        int old_uA_load;
4426        int ret = 0;
4427
4428        regulator_lock(rdev);
4429        old_uA_load = regulator->uA_load;
4430        regulator->uA_load = uA_load;
4431        if (regulator->enable_count && old_uA_load != uA_load) {
4432                ret = drms_uA_update(rdev);
4433                if (ret < 0)
4434                        regulator->uA_load = old_uA_load;
4435        }
4436        regulator_unlock(rdev);
4437
4438        return ret;
4439}
4440EXPORT_SYMBOL_GPL(regulator_set_load);
4441
4442/**
4443 * regulator_allow_bypass - allow the regulator to go into bypass mode
4444 *
4445 * @regulator: Regulator to configure
4446 * @enable: enable or disable bypass mode
4447 *
4448 * Allow the regulator to go into bypass mode if all other consumers
4449 * for the regulator also enable bypass mode and the machine
4450 * constraints allow this.  Bypass mode means that the regulator is
4451 * simply passing the input directly to the output with no regulation.
4452 */
4453int regulator_allow_bypass(struct regulator *regulator, bool enable)
4454{
4455        struct regulator_dev *rdev = regulator->rdev;
4456        const char *name = rdev_get_name(rdev);
4457        int ret = 0;
4458
4459        if (!rdev->desc->ops->set_bypass)
4460                return 0;
4461
4462        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4463                return 0;
4464
4465        regulator_lock(rdev);
4466
4467        if (enable && !regulator->bypass) {
4468                rdev->bypass_count++;
4469
4470                if (rdev->bypass_count == rdev->open_count) {
4471                        trace_regulator_bypass_enable(name);
4472
4473                        ret = rdev->desc->ops->set_bypass(rdev, enable);
4474                        if (ret != 0)
4475                                rdev->bypass_count--;
4476                        else
4477                                trace_regulator_bypass_enable_complete(name);
4478                }
4479
4480        } else if (!enable && regulator->bypass) {
4481                rdev->bypass_count--;
4482
4483                if (rdev->bypass_count != rdev->open_count) {
4484                        trace_regulator_bypass_disable(name);
4485
4486                        ret = rdev->desc->ops->set_bypass(rdev, enable);
4487                        if (ret != 0)
4488                                rdev->bypass_count++;
4489                        else
4490                                trace_regulator_bypass_disable_complete(name);
4491                }
4492        }
4493
4494        if (ret == 0)
4495                regulator->bypass = enable;
4496
4497        regulator_unlock(rdev);
4498
4499        return ret;
4500}
4501EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4502
4503/**
4504 * regulator_register_notifier - register regulator event notifier
4505 * @regulator: regulator source
4506 * @nb: notifier block
4507 *
4508 * Register notifier block to receive regulator events.
4509 */
4510int regulator_register_notifier(struct regulator *regulator,
4511                              struct notifier_block *nb)
4512{
4513        return blocking_notifier_chain_register(&regulator->rdev->notifier,
4514                                                nb);
4515}
4516EXPORT_SYMBOL_GPL(regulator_register_notifier);
4517
4518/**
4519 * regulator_unregister_notifier - unregister regulator event notifier
4520 * @regulator: regulator source
4521 * @nb: notifier block
4522 *
4523 * Unregister regulator event notifier block.
4524 */
4525int regulator_unregister_notifier(struct regulator *regulator,
4526                                struct notifier_block *nb)
4527{
4528        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4529                                                  nb);
4530}
4531EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4532
4533/* notify regulator consumers and downstream regulator consumers.
4534 * Note mutex must be held by caller.
4535 */
4536static int _notifier_call_chain(struct regulator_dev *rdev,
4537                                  unsigned long event, void *data)
4538{
4539        /* call rdev chain first */
4540        return blocking_notifier_call_chain(&rdev->notifier, event, data);
4541}
4542
4543/**
4544 * regulator_bulk_get - get multiple regulator consumers
4545 *
4546 * @dev:           Device to supply
4547 * @num_consumers: Number of consumers to register
4548 * @consumers:     Configuration of consumers; clients are stored here.
4549 *
4550 * @return 0 on success, an errno on failure.
4551 *
4552 * This helper function allows drivers to get several regulator
4553 * consumers in one operation.  If any of the regulators cannot be
4554 * acquired then any regulators that were allocated will be freed
4555 * before returning to the caller.
4556 */
4557int regulator_bulk_get(struct device *dev, int num_consumers,
4558                       struct regulator_bulk_data *consumers)
4559{
4560        int i;
4561        int ret;
4562
4563        for (i = 0; i < num_consumers; i++)
4564                consumers[i].consumer = NULL;
4565
4566        for (i = 0; i < num_consumers; i++) {
4567                consumers[i].consumer = regulator_get(dev,
4568                                                      consumers[i].supply);
4569                if (IS_ERR(consumers[i].consumer)) {
4570                        ret = PTR_ERR(consumers[i].consumer);
4571                        consumers[i].consumer = NULL;
4572                        goto err;
4573                }
4574        }
4575
4576        return 0;
4577
4578err:
4579        if (ret != -EPROBE_DEFER)
4580                dev_err(dev, "Failed to get supply '%s': %pe\n",
4581                        consumers[i].supply, ERR_PTR(ret));
4582        else
4583                dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4584                        consumers[i].supply);
4585
4586        while (--i >= 0)
4587                regulator_put(consumers[i].consumer);
4588
4589        return ret;
4590}
4591EXPORT_SYMBOL_GPL(regulator_bulk_get);
4592
4593static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4594{
4595        struct regulator_bulk_data *bulk = data;
4596
4597        bulk->ret = regulator_enable(bulk->consumer);
4598}
4599
4600/**
4601 * regulator_bulk_enable - enable multiple regulator consumers
4602 *
4603 * @num_consumers: Number of consumers
4604 * @consumers:     Consumer data; clients are stored here.
4605 * @return         0 on success, an errno on failure
4606 *
4607 * This convenience API allows consumers to enable multiple regulator
4608 * clients in a single API call.  If any consumers cannot be enabled
4609 * then any others that were enabled will be disabled again prior to
4610 * return.
4611 */
4612int regulator_bulk_enable(int num_consumers,
4613                          struct regulator_bulk_data *consumers)
4614{
4615        ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4616        int i;
4617        int ret = 0;
4618
4619        for (i = 0; i < num_consumers; i++) {
4620                async_schedule_domain(regulator_bulk_enable_async,
4621                                      &consumers[i], &async_domain);
4622        }
4623
4624        async_synchronize_full_domain(&async_domain);
4625
4626        /* If any consumer failed we need to unwind any that succeeded */
4627        for (i = 0; i < num_consumers; i++) {
4628                if (consumers[i].ret != 0) {
4629                        ret = consumers[i].ret;
4630                        goto err;
4631                }
4632        }
4633
4634        return 0;
4635
4636err:
4637        for (i = 0; i < num_consumers; i++) {
4638                if (consumers[i].ret < 0)
4639                        pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4640                               ERR_PTR(consumers[i].ret));
4641                else
4642                        regulator_disable(consumers[i].consumer);
4643        }
4644
4645        return ret;
4646}
4647EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4648
4649/**
4650 * regulator_bulk_disable - disable multiple regulator consumers
4651 *
4652 * @num_consumers: Number of consumers
4653 * @consumers:     Consumer data; clients are stored here.
4654 * @return         0 on success, an errno on failure
4655 *
4656 * This convenience API allows consumers to disable multiple regulator
4657 * clients in a single API call.  If any consumers cannot be disabled
4658 * then any others that were disabled will be enabled again prior to
4659 * return.
4660 */
4661int regulator_bulk_disable(int num_consumers,
4662                           struct regulator_bulk_data *consumers)
4663{
4664        int i;
4665        int ret, r;
4666
4667        for (i = num_consumers - 1; i >= 0; --i) {
4668                ret = regulator_disable(consumers[i].consumer);
4669                if (ret != 0)
4670                        goto err;
4671        }
4672
4673        return 0;
4674
4675err:
4676        pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4677        for (++i; i < num_consumers; ++i) {
4678                r = regulator_enable(consumers[i].consumer);
4679                if (r != 0)
4680                        pr_err("Failed to re-enable %s: %pe\n",
4681                               consumers[i].supply, ERR_PTR(r));
4682        }
4683
4684        return ret;
4685}
4686EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4687
4688/**
4689 * regulator_bulk_force_disable - force disable multiple regulator consumers
4690 *
4691 * @num_consumers: Number of consumers
4692 * @consumers:     Consumer data; clients are stored here.
4693 * @return         0 on success, an errno on failure
4694 *
4695 * This convenience API allows consumers to forcibly disable multiple regulator
4696 * clients in a single API call.
4697 * NOTE: This should be used for situations when device damage will
4698 * likely occur if the regulators are not disabled (e.g. over temp).
4699 * Although regulator_force_disable function call for some consumers can
4700 * return error numbers, the function is called for all consumers.
4701 */
4702int regulator_bulk_force_disable(int num_consumers,
4703                           struct regulator_bulk_data *consumers)
4704{
4705        int i;
4706        int ret = 0;
4707
4708        for (i = 0; i < num_consumers; i++) {
4709                consumers[i].ret =
4710                            regulator_force_disable(consumers[i].consumer);
4711
4712                /* Store first error for reporting */
4713                if (consumers[i].ret && !ret)
4714                        ret = consumers[i].ret;
4715        }
4716
4717        return ret;
4718}
4719EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4720
4721/**
4722 * regulator_bulk_free - free multiple regulator consumers
4723 *
4724 * @num_consumers: Number of consumers
4725 * @consumers:     Consumer data; clients are stored here.
4726 *
4727 * This convenience API allows consumers to free multiple regulator
4728 * clients in a single API call.
4729 */
4730void regulator_bulk_free(int num_consumers,
4731                         struct regulator_bulk_data *consumers)
4732{
4733        int i;
4734
4735        for (i = 0; i < num_consumers; i++) {
4736                regulator_put(consumers[i].consumer);
4737                consumers[i].consumer = NULL;
4738        }
4739}
4740EXPORT_SYMBOL_GPL(regulator_bulk_free);
4741
4742/**
4743 * regulator_notifier_call_chain - call regulator event notifier
4744 * @rdev: regulator source
4745 * @event: notifier block
4746 * @data: callback-specific data.
4747 *
4748 * Called by regulator drivers to notify clients a regulator event has
4749 * occurred.
4750 */
4751int regulator_notifier_call_chain(struct regulator_dev *rdev,
4752                                  unsigned long event, void *data)
4753{
4754        _notifier_call_chain(rdev, event, data);
4755        return NOTIFY_DONE;
4756
4757}
4758EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4759
4760/**
4761 * regulator_mode_to_status - convert a regulator mode into a status
4762 *
4763 * @mode: Mode to convert
4764 *
4765 * Convert a regulator mode into a status.
4766 */
4767int regulator_mode_to_status(unsigned int mode)
4768{
4769        switch (mode) {
4770        case REGULATOR_MODE_FAST:
4771                return REGULATOR_STATUS_FAST;
4772        case REGULATOR_MODE_NORMAL:
4773                return REGULATOR_STATUS_NORMAL;
4774        case REGULATOR_MODE_IDLE:
4775                return REGULATOR_STATUS_IDLE;
4776        case REGULATOR_MODE_STANDBY:
4777                return REGULATOR_STATUS_STANDBY;
4778        default:
4779                return REGULATOR_STATUS_UNDEFINED;
4780        }
4781}
4782EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4783
4784static struct attribute *regulator_dev_attrs[] = {
4785        &dev_attr_name.attr,
4786        &dev_attr_num_users.attr,
4787        &dev_attr_type.attr,
4788        &dev_attr_microvolts.attr,
4789        &dev_attr_microamps.attr,
4790        &dev_attr_opmode.attr,
4791        &dev_attr_state.attr,
4792        &dev_attr_status.attr,
4793        &dev_attr_bypass.attr,
4794        &dev_attr_requested_microamps.attr,
4795        &dev_attr_min_microvolts.attr,
4796        &dev_attr_max_microvolts.attr,
4797        &dev_attr_min_microamps.attr,
4798        &dev_attr_max_microamps.attr,
4799        &dev_attr_suspend_standby_state.attr,
4800        &dev_attr_suspend_mem_state.attr,
4801        &dev_attr_suspend_disk_state.attr,
4802        &dev_attr_suspend_standby_microvolts.attr,
4803        &dev_attr_suspend_mem_microvolts.attr,
4804        &dev_attr_suspend_disk_microvolts.attr,
4805        &dev_attr_suspend_standby_mode.attr,
4806        &dev_attr_suspend_mem_mode.attr,
4807        &dev_attr_suspend_disk_mode.attr,
4808        NULL
4809};
4810
4811/*
4812 * To avoid cluttering sysfs (and memory) with useless state, only
4813 * create attributes that can be meaningfully displayed.
4814 */
4815static umode_t regulator_attr_is_visible(struct kobject *kobj,
4816                                         struct attribute *attr, int idx)
4817{
4818        struct device *dev = kobj_to_dev(kobj);
4819        struct regulator_dev *rdev = dev_to_rdev(dev);
4820        const struct regulator_ops *ops = rdev->desc->ops;
4821        umode_t mode = attr->mode;
4822
4823        /* these three are always present */
4824        if (attr == &dev_attr_name.attr ||
4825            attr == &dev_attr_num_users.attr ||
4826            attr == &dev_attr_type.attr)
4827                return mode;
4828
4829        /* some attributes need specific methods to be displayed */
4830        if (attr == &dev_attr_microvolts.attr) {
4831                if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4832                    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4833                    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4834                    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4835                        return mode;
4836                return 0;
4837        }
4838
4839        if (attr == &dev_attr_microamps.attr)
4840                return ops->get_current_limit ? mode : 0;
4841
4842        if (attr == &dev_attr_opmode.attr)
4843                return ops->get_mode ? mode : 0;
4844
4845        if (attr == &dev_attr_state.attr)
4846                return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4847
4848        if (attr == &dev_attr_status.attr)
4849                return ops->get_status ? mode : 0;
4850
4851        if (attr == &dev_attr_bypass.attr)
4852                return ops->get_bypass ? mode : 0;
4853
4854        /* constraints need specific supporting methods */
4855        if (attr == &dev_attr_min_microvolts.attr ||
4856            attr == &dev_attr_max_microvolts.attr)
4857                return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4858
4859        if (attr == &dev_attr_min_microamps.attr ||
4860            attr == &dev_attr_max_microamps.attr)
4861                return ops->set_current_limit ? mode : 0;
4862
4863        if (attr == &dev_attr_suspend_standby_state.attr ||
4864            attr == &dev_attr_suspend_mem_state.attr ||
4865            attr == &dev_attr_suspend_disk_state.attr)
4866                return mode;
4867
4868        if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4869            attr == &dev_attr_suspend_mem_microvolts.attr ||
4870            attr == &dev_attr_suspend_disk_microvolts.attr)
4871                return ops->set_suspend_voltage ? mode : 0;
4872
4873        if (attr == &dev_attr_suspend_standby_mode.attr ||
4874            attr == &dev_attr_suspend_mem_mode.attr ||
4875            attr == &dev_attr_suspend_disk_mode.attr)
4876                return ops->set_suspend_mode ? mode : 0;
4877
4878        return mode;
4879}
4880
4881static const struct attribute_group regulator_dev_group = {
4882        .attrs = regulator_dev_attrs,
4883        .is_visible = regulator_attr_is_visible,
4884};
4885
4886static const struct attribute_group *regulator_dev_groups[] = {
4887        &regulator_dev_group,
4888        NULL
4889};
4890
4891static void regulator_dev_release(struct device *dev)
4892{
4893        struct regulator_dev *rdev = dev_get_drvdata(dev);
4894
4895        kfree(rdev->constraints);
4896        of_node_put(rdev->dev.of_node);
4897        kfree(rdev);
4898}
4899
4900static void rdev_init_debugfs(struct regulator_dev *rdev)
4901{
4902        struct device *parent = rdev->dev.parent;
4903        const char *rname = rdev_get_name(rdev);
4904        char name[NAME_MAX];
4905
4906        /* Avoid duplicate debugfs directory names */
4907        if (parent && rname == rdev->desc->name) {
4908                snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4909                         rname);
4910                rname = name;
4911        }
4912
4913        rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4914        if (!rdev->debugfs) {
4915                rdev_warn(rdev, "Failed to create debugfs directory\n");
4916                return;
4917        }
4918
4919        debugfs_create_u32("use_count", 0444, rdev->debugfs,
4920                           &rdev->use_count);
4921        debugfs_create_u32("open_count", 0444, rdev->debugfs,
4922                           &rdev->open_count);
4923        debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4924                           &rdev->bypass_count);
4925}
4926
4927static int regulator_register_resolve_supply(struct device *dev, void *data)
4928{
4929        struct regulator_dev *rdev = dev_to_rdev(dev);
4930
4931        if (regulator_resolve_supply(rdev))
4932                rdev_dbg(rdev, "unable to resolve supply\n");
4933
4934        return 0;
4935}
4936
4937int regulator_coupler_register(struct regulator_coupler *coupler)
4938{
4939        mutex_lock(&regulator_list_mutex);
4940        list_add_tail(&coupler->list, &regulator_coupler_list);
4941        mutex_unlock(&regulator_list_mutex);
4942
4943        return 0;
4944}
4945
4946static struct regulator_coupler *
4947regulator_find_coupler(struct regulator_dev *rdev)
4948{
4949        struct regulator_coupler *coupler;
4950        int err;
4951
4952        /*
4953         * Note that regulators are appended to the list and the generic
4954         * coupler is registered first, hence it will be attached at last
4955         * if nobody cared.
4956         */
4957        list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4958                err = coupler->attach_regulator(coupler, rdev);
4959                if (!err) {
4960                        if (!coupler->balance_voltage &&
4961                            rdev->coupling_desc.n_coupled > 2)
4962                                goto err_unsupported;
4963
4964                        return coupler;
4965                }
4966
4967                if (err < 0)
4968                        return ERR_PTR(err);
4969
4970                if (err == 1)
4971                        continue;
4972
4973                break;
4974        }
4975
4976        return ERR_PTR(-EINVAL);
4977
4978err_unsupported:
4979        if (coupler->detach_regulator)
4980                coupler->detach_regulator(coupler, rdev);
4981
4982        rdev_err(rdev,
4983                "Voltage balancing for multiple regulator couples is unimplemented\n");
4984
4985        return ERR_PTR(-EPERM);
4986}
4987
4988static void regulator_resolve_coupling(struct regulator_dev *rdev)
4989{
4990        struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4991        struct coupling_desc *c_desc = &rdev->coupling_desc;
4992        int n_coupled = c_desc->n_coupled;
4993        struct regulator_dev *c_rdev;
4994        int i;
4995
4996        for (i = 1; i < n_coupled; i++) {
4997                /* already resolved */
4998                if (c_desc->coupled_rdevs[i])
4999                        continue;
5000
5001                c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5002
5003                if (!c_rdev)
5004                        continue;
5005
5006                if (c_rdev->coupling_desc.coupler != coupler) {
5007                        rdev_err(rdev, "coupler mismatch with %s\n",
5008                                 rdev_get_name(c_rdev));
5009                        return;
5010                }
5011
5012                c_desc->coupled_rdevs[i] = c_rdev;
5013                c_desc->n_resolved++;
5014
5015                regulator_resolve_coupling(c_rdev);
5016        }
5017}
5018
5019static void regulator_remove_coupling(struct regulator_dev *rdev)
5020{
5021        struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5022        struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5023        struct regulator_dev *__c_rdev, *c_rdev;
5024        unsigned int __n_coupled, n_coupled;
5025        int i, k;
5026        int err;
5027
5028        n_coupled = c_desc->n_coupled;
5029
5030        for (i = 1; i < n_coupled; i++) {
5031                c_rdev = c_desc->coupled_rdevs[i];
5032
5033                if (!c_rdev)
5034                        continue;
5035
5036                regulator_lock(c_rdev);
5037
5038                __c_desc = &c_rdev->coupling_desc;
5039                __n_coupled = __c_desc->n_coupled;
5040
5041                for (k = 1; k < __n_coupled; k++) {
5042                        __c_rdev = __c_desc->coupled_rdevs[k];
5043
5044                        if (__c_rdev == rdev) {
5045                                __c_desc->coupled_rdevs[k] = NULL;
5046                                __c_desc->n_resolved--;
5047                                break;
5048                        }
5049                }
5050
5051                regulator_unlock(c_rdev);
5052
5053                c_desc->coupled_rdevs[i] = NULL;
5054                c_desc->n_resolved--;
5055        }
5056
5057        if (coupler && coupler->detach_regulator) {
5058                err = coupler->detach_regulator(coupler, rdev);
5059                if (err)
5060                        rdev_err(rdev, "failed to detach from coupler: %pe\n",
5061                                 ERR_PTR(err));
5062        }
5063
5064        kfree(rdev->coupling_desc.coupled_rdevs);
5065        rdev->coupling_desc.coupled_rdevs = NULL;
5066}
5067
5068static int regulator_init_coupling(struct regulator_dev *rdev)
5069{
5070        struct regulator_dev **coupled;
5071        int err, n_phandles;
5072
5073        if (!IS_ENABLED(CONFIG_OF))
5074                n_phandles = 0;
5075        else
5076                n_phandles = of_get_n_coupled(rdev);
5077
5078        coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5079        if (!coupled)
5080                return -ENOMEM;
5081
5082        rdev->coupling_desc.coupled_rdevs = coupled;
5083
5084        /*
5085         * Every regulator should always have coupling descriptor filled with
5086         * at least pointer to itself.
5087         */
5088        rdev->coupling_desc.coupled_rdevs[0] = rdev;
5089        rdev->coupling_desc.n_coupled = n_phandles + 1;
5090        rdev->coupling_desc.n_resolved++;
5091
5092        /* regulator isn't coupled */
5093        if (n_phandles == 0)
5094                return 0;
5095
5096        if (!of_check_coupling_data(rdev))
5097                return -EPERM;
5098
5099        mutex_lock(&regulator_list_mutex);
5100        rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5101        mutex_unlock(&regulator_list_mutex);
5102
5103        if (IS_ERR(rdev->coupling_desc.coupler)) {
5104                err = PTR_ERR(rdev->coupling_desc.coupler);
5105                rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5106                return err;
5107        }
5108
5109        return 0;
5110}
5111
5112static int generic_coupler_attach(struct regulator_coupler *coupler,
5113                                  struct regulator_dev *rdev)
5114{
5115        if (rdev->coupling_desc.n_coupled > 2) {
5116                rdev_err(rdev,
5117                         "Voltage balancing for multiple regulator couples is unimplemented\n");
5118                return -EPERM;
5119        }
5120
5121        if (!rdev->constraints->always_on) {
5122                rdev_err(rdev,
5123                         "Coupling of a non always-on regulator is unimplemented\n");
5124                return -ENOTSUPP;
5125        }
5126
5127        return 0;
5128}
5129
5130static struct regulator_coupler generic_regulator_coupler = {
5131        .attach_regulator = generic_coupler_attach,
5132};
5133
5134/**
5135 * regulator_register - register regulator
5136 * @regulator_desc: regulator to register
5137 * @cfg: runtime configuration for regulator
5138 *
5139 * Called by regulator drivers to register a regulator.
5140 * Returns a valid pointer to struct regulator_dev on success
5141 * or an ERR_PTR() on error.
5142 */
5143struct regulator_dev *
5144regulator_register(const struct regulator_desc *regulator_desc,
5145                   const struct regulator_config *cfg)
5146{
5147        const struct regulator_init_data *init_data;
5148        struct regulator_config *config = NULL;
5149        static atomic_t regulator_no = ATOMIC_INIT(-1);
5150        struct regulator_dev *rdev;
5151        bool dangling_cfg_gpiod = false;
5152        bool dangling_of_gpiod = false;
5153        struct device *dev;
5154        int ret, i;
5155
5156        if (cfg == NULL)
5157                return ERR_PTR(-EINVAL);
5158        if (cfg->ena_gpiod)
5159                dangling_cfg_gpiod = true;
5160        if (regulator_desc == NULL) {
5161                ret = -EINVAL;
5162                goto rinse;
5163        }
5164
5165        dev = cfg->dev;
5166        WARN_ON(!dev);
5167
5168        if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5169                ret = -EINVAL;
5170                goto rinse;
5171        }
5172
5173        if (regulator_desc->type != REGULATOR_VOLTAGE &&
5174            regulator_desc->type != REGULATOR_CURRENT) {
5175                ret = -EINVAL;
5176                goto rinse;
5177        }
5178
5179        /* Only one of each should be implemented */
5180        WARN_ON(regulator_desc->ops->get_voltage &&
5181                regulator_desc->ops->get_voltage_sel);
5182        WARN_ON(regulator_desc->ops->set_voltage &&
5183                regulator_desc->ops->set_voltage_sel);
5184
5185        /* If we're using selectors we must implement list_voltage. */
5186        if (regulator_desc->ops->get_voltage_sel &&
5187            !regulator_desc->ops->list_voltage) {
5188                ret = -EINVAL;
5189                goto rinse;
5190        }
5191        if (regulator_desc->ops->set_voltage_sel &&
5192            !regulator_desc->ops->list_voltage) {
5193                ret = -EINVAL;
5194                goto rinse;
5195        }
5196
5197        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5198        if (rdev == NULL) {
5199                ret = -ENOMEM;
5200                goto rinse;
5201        }
5202        device_initialize(&rdev->dev);
5203
5204        /*
5205         * Duplicate the config so the driver could override it after
5206         * parsing init data.
5207         */
5208        config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5209        if (config == NULL) {
5210                ret = -ENOMEM;
5211                goto clean;
5212        }
5213
5214        init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5215                                               &rdev->dev.of_node);
5216
5217        /*
5218         * Sometimes not all resources are probed already so we need to take
5219         * that into account. This happens most the time if the ena_gpiod comes
5220         * from a gpio extender or something else.
5221         */
5222        if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5223                ret = -EPROBE_DEFER;
5224                goto clean;
5225        }
5226
5227        /*
5228         * We need to keep track of any GPIO descriptor coming from the
5229         * device tree until we have handled it over to the core. If the
5230         * config that was passed in to this function DOES NOT contain
5231         * a descriptor, and the config after this call DOES contain
5232         * a descriptor, we definitely got one from parsing the device
5233         * tree.
5234         */
5235        if (!cfg->ena_gpiod && config->ena_gpiod)
5236                dangling_of_gpiod = true;
5237        if (!init_data) {
5238                init_data = config->init_data;
5239                rdev->dev.of_node = of_node_get(config->of_node);
5240        }
5241
5242        ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5243        rdev->reg_data = config->driver_data;
5244        rdev->owner = regulator_desc->owner;
5245        rdev->desc = regulator_desc;
5246        if (config->regmap)
5247                rdev->regmap = config->regmap;
5248        else if (dev_get_regmap(dev, NULL))
5249                rdev->regmap = dev_get_regmap(dev, NULL);
5250        else if (dev->parent)
5251                rdev->regmap = dev_get_regmap(dev->parent, NULL);
5252        INIT_LIST_HEAD(&rdev->consumer_list);
5253        INIT_LIST_HEAD(&rdev->list);
5254        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5255        INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5256
5257        /* preform any regulator specific init */
5258        if (init_data && init_data->regulator_init) {
5259                ret = init_data->regulator_init(rdev->reg_data);
5260                if (ret < 0)
5261                        goto clean;
5262        }
5263
5264        if (config->ena_gpiod) {
5265                ret = regulator_ena_gpio_request(rdev, config);
5266                if (ret != 0) {
5267                        rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5268                                 ERR_PTR(ret));
5269                        goto clean;
5270                }
5271                /* The regulator core took over the GPIO descriptor */
5272                dangling_cfg_gpiod = false;
5273                dangling_of_gpiod = false;
5274        }
5275
5276        /* register with sysfs */
5277        rdev->dev.class = &regulator_class;
5278        rdev->dev.parent = dev;
5279        dev_set_name(&rdev->dev, "regulator.%lu",
5280                    (unsigned long) atomic_inc_return(&regulator_no));
5281        dev_set_drvdata(&rdev->dev, rdev);
5282
5283        /* set regulator constraints */
5284        if (init_data)
5285                rdev->constraints = kmemdup(&init_data->constraints,
5286                                            sizeof(*rdev->constraints),
5287                                            GFP_KERNEL);
5288        else
5289                rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5290                                            GFP_KERNEL);
5291        if (!rdev->constraints) {
5292                ret = -ENOMEM;
5293                goto wash;
5294        }
5295
5296        if (init_data && init_data->supply_regulator)
5297                rdev->supply_name = init_data->supply_regulator;
5298        else if (regulator_desc->supply_name)
5299                rdev->supply_name = regulator_desc->supply_name;
5300
5301        ret = set_machine_constraints(rdev);
5302        if (ret == -EPROBE_DEFER) {
5303                /* Regulator might be in bypass mode and so needs its supply
5304                 * to set the constraints */
5305                /* FIXME: this currently triggers a chicken-and-egg problem
5306                 * when creating -SUPPLY symlink in sysfs to a regulator
5307                 * that is just being created */
5308                ret = regulator_resolve_supply(rdev);
5309                if (!ret)
5310                        ret = set_machine_constraints(rdev);
5311                else
5312                        rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5313                                 ERR_PTR(ret));
5314        }
5315        if (ret < 0)
5316                goto wash;
5317
5318        ret = regulator_init_coupling(rdev);
5319        if (ret < 0)
5320                goto wash;
5321
5322        /* add consumers devices */
5323        if (init_data) {
5324                for (i = 0; i < init_data->num_consumer_supplies; i++) {
5325                        ret = set_consumer_device_supply(rdev,
5326                                init_data->consumer_supplies[i].dev_name,
5327                                init_data->consumer_supplies[i].supply);
5328                        if (ret < 0) {
5329                                dev_err(dev, "Failed to set supply %s\n",
5330                                        init_data->consumer_supplies[i].supply);
5331                                goto unset_supplies;
5332                        }
5333                }
5334        }
5335
5336        if (!rdev->desc->ops->get_voltage &&
5337            !rdev->desc->ops->list_voltage &&
5338            !rdev->desc->fixed_uV)
5339                rdev->is_switch = true;
5340
5341        ret = device_add(&rdev->dev);
5342        if (ret != 0)
5343                goto unset_supplies;
5344
5345        rdev_init_debugfs(rdev);
5346
5347        /* try to resolve regulators coupling since a new one was registered */
5348        mutex_lock(&regulator_list_mutex);
5349        regulator_resolve_coupling(rdev);
5350        mutex_unlock(&regulator_list_mutex);
5351
5352        /* try to resolve regulators supply since a new one was registered */
5353        class_for_each_device(&regulator_class, NULL, NULL,
5354                              regulator_register_resolve_supply);
5355        kfree(config);
5356        return rdev;
5357
5358unset_supplies:
5359        mutex_lock(&regulator_list_mutex);
5360        unset_regulator_supplies(rdev);
5361        regulator_remove_coupling(rdev);
5362        mutex_unlock(&regulator_list_mutex);
5363wash:
5364        kfree(rdev->coupling_desc.coupled_rdevs);
5365        mutex_lock(&regulator_list_mutex);
5366        regulator_ena_gpio_free(rdev);
5367        mutex_unlock(&regulator_list_mutex);
5368clean:
5369        if (dangling_of_gpiod)
5370                gpiod_put(config->ena_gpiod);
5371        kfree(config);
5372        put_device(&rdev->dev);
5373rinse:
5374        if (dangling_cfg_gpiod)
5375                gpiod_put(cfg->ena_gpiod);
5376        return ERR_PTR(ret);
5377}
5378EXPORT_SYMBOL_GPL(regulator_register);
5379
5380/**
5381 * regulator_unregister - unregister regulator
5382 * @rdev: regulator to unregister
5383 *
5384 * Called by regulator drivers to unregister a regulator.
5385 */
5386void regulator_unregister(struct regulator_dev *rdev)
5387{
5388        if (rdev == NULL)
5389                return;
5390
5391        if (rdev->supply) {
5392                while (rdev->use_count--)
5393                        regulator_disable(rdev->supply);
5394                regulator_put(rdev->supply);
5395        }
5396
5397        flush_work(&rdev->disable_work.work);
5398
5399        mutex_lock(&regulator_list_mutex);
5400
5401        debugfs_remove_recursive(rdev->debugfs);
5402        WARN_ON(rdev->open_count);
5403        regulator_remove_coupling(rdev);
5404        unset_regulator_supplies(rdev);
5405        list_del(&rdev->list);
5406        regulator_ena_gpio_free(rdev);
5407        device_unregister(&rdev->dev);
5408
5409        mutex_unlock(&regulator_list_mutex);
5410}
5411EXPORT_SYMBOL_GPL(regulator_unregister);
5412
5413#ifdef CONFIG_SUSPEND
5414/**
5415 * regulator_suspend - prepare regulators for system wide suspend
5416 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5417 *
5418 * Configure each regulator with it's suspend operating parameters for state.
5419 */
5420static int regulator_suspend(struct device *dev)
5421{
5422        struct regulator_dev *rdev = dev_to_rdev(dev);
5423        suspend_state_t state = pm_suspend_target_state;
5424        int ret;
5425        const struct regulator_state *rstate;
5426
5427        rstate = regulator_get_suspend_state_check(rdev, state);
5428        if (!rstate)
5429                return 0;
5430
5431        regulator_lock(rdev);
5432        ret = __suspend_set_state(rdev, rstate);
5433        regulator_unlock(rdev);
5434
5435        return ret;
5436}
5437
5438static int regulator_resume(struct device *dev)
5439{
5440        suspend_state_t state = pm_suspend_target_state;
5441        struct regulator_dev *rdev = dev_to_rdev(dev);
5442        struct regulator_state *rstate;
5443        int ret = 0;
5444
5445        rstate = regulator_get_suspend_state(rdev, state);
5446        if (rstate == NULL)
5447                return 0;
5448
5449        /* Avoid grabbing the lock if we don't need to */
5450        if (!rdev->desc->ops->resume)
5451                return 0;
5452
5453        regulator_lock(rdev);
5454
5455        if (rstate->enabled == ENABLE_IN_SUSPEND ||
5456            rstate->enabled == DISABLE_IN_SUSPEND)
5457                ret = rdev->desc->ops->resume(rdev);
5458
5459        regulator_unlock(rdev);
5460
5461        return ret;
5462}
5463#else /* !CONFIG_SUSPEND */
5464
5465#define regulator_suspend       NULL
5466#define regulator_resume        NULL
5467
5468#endif /* !CONFIG_SUSPEND */
5469
5470#ifdef CONFIG_PM
5471static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5472        .suspend        = regulator_suspend,
5473        .resume         = regulator_resume,
5474};
5475#endif
5476
5477struct class regulator_class = {
5478        .name = "regulator",
5479        .dev_release = regulator_dev_release,
5480        .dev_groups = regulator_dev_groups,
5481#ifdef CONFIG_PM
5482        .pm = &regulator_pm_ops,
5483#endif
5484};
5485/**
5486 * regulator_has_full_constraints - the system has fully specified constraints
5487 *
5488 * Calling this function will cause the regulator API to disable all
5489 * regulators which have a zero use count and don't have an always_on
5490 * constraint in a late_initcall.
5491 *
5492 * The intention is that this will become the default behaviour in a
5493 * future kernel release so users are encouraged to use this facility
5494 * now.
5495 */
5496void regulator_has_full_constraints(void)
5497{
5498        has_full_constraints = 1;
5499}
5500EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5501
5502/**
5503 * rdev_get_drvdata - get rdev regulator driver data
5504 * @rdev: regulator
5505 *
5506 * Get rdev regulator driver private data. This call can be used in the
5507 * regulator driver context.
5508 */
5509void *rdev_get_drvdata(struct regulator_dev *rdev)
5510{
5511        return rdev->reg_data;
5512}
5513EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5514
5515/**
5516 * regulator_get_drvdata - get regulator driver data
5517 * @regulator: regulator
5518 *
5519 * Get regulator driver private data. This call can be used in the consumer
5520 * driver context when non API regulator specific functions need to be called.
5521 */
5522void *regulator_get_drvdata(struct regulator *regulator)
5523{
5524        return regulator->rdev->reg_data;
5525}
5526EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5527
5528/**
5529 * regulator_set_drvdata - set regulator driver data
5530 * @regulator: regulator
5531 * @data: data
5532 */
5533void regulator_set_drvdata(struct regulator *regulator, void *data)
5534{
5535        regulator->rdev->reg_data = data;
5536}
5537EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5538
5539/**
5540 * regulator_get_id - get regulator ID
5541 * @rdev: regulator
5542 */
5543int rdev_get_id(struct regulator_dev *rdev)
5544{
5545        return rdev->desc->id;
5546}
5547EXPORT_SYMBOL_GPL(rdev_get_id);
5548
5549struct device *rdev_get_dev(struct regulator_dev *rdev)
5550{
5551        return &rdev->dev;
5552}
5553EXPORT_SYMBOL_GPL(rdev_get_dev);
5554
5555struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5556{
5557        return rdev->regmap;
5558}
5559EXPORT_SYMBOL_GPL(rdev_get_regmap);
5560
5561void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5562{
5563        return reg_init_data->driver_data;
5564}
5565EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5566
5567#ifdef CONFIG_DEBUG_FS
5568static int supply_map_show(struct seq_file *sf, void *data)
5569{
5570        struct regulator_map *map;
5571
5572        list_for_each_entry(map, &regulator_map_list, list) {
5573                seq_printf(sf, "%s -> %s.%s\n",
5574                                rdev_get_name(map->regulator), map->dev_name,
5575                                map->supply);
5576        }
5577
5578        return 0;
5579}
5580DEFINE_SHOW_ATTRIBUTE(supply_map);
5581
5582struct summary_data {
5583        struct seq_file *s;
5584        struct regulator_dev *parent;
5585        int level;
5586};
5587
5588static void regulator_summary_show_subtree(struct seq_file *s,
5589                                           struct regulator_dev *rdev,
5590                                           int level);
5591
5592static int regulator_summary_show_children(struct device *dev, void *data)
5593{
5594        struct regulator_dev *rdev = dev_to_rdev(dev);
5595        struct summary_data *summary_data = data;
5596
5597        if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5598                regulator_summary_show_subtree(summary_data->s, rdev,
5599                                               summary_data->level + 1);
5600
5601        return 0;
5602}
5603
5604static void regulator_summary_show_subtree(struct seq_file *s,
5605                                           struct regulator_dev *rdev,
5606                                           int level)
5607{
5608        struct regulation_constraints *c;
5609        struct regulator *consumer;
5610        struct summary_data summary_data;
5611        unsigned int opmode;
5612
5613        if (!rdev)
5614                return;
5615
5616        opmode = _regulator_get_mode_unlocked(rdev);
5617        seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5618                   level * 3 + 1, "",
5619                   30 - level * 3, rdev_get_name(rdev),
5620                   rdev->use_count, rdev->open_count, rdev->bypass_count,
5621                   regulator_opmode_to_str(opmode));
5622
5623        seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5624        seq_printf(s, "%5dmA ",
5625                   _regulator_get_current_limit_unlocked(rdev) / 1000);
5626
5627        c = rdev->constraints;
5628        if (c) {
5629                switch (rdev->desc->type) {
5630                case REGULATOR_VOLTAGE:
5631                        seq_printf(s, "%5dmV %5dmV ",
5632                                   c->min_uV / 1000, c->max_uV / 1000);
5633                        break;
5634                case REGULATOR_CURRENT:
5635                        seq_printf(s, "%5dmA %5dmA ",
5636                                   c->min_uA / 1000, c->max_uA / 1000);
5637                        break;
5638                }
5639        }
5640
5641        seq_puts(s, "\n");
5642
5643        list_for_each_entry(consumer, &rdev->consumer_list, list) {
5644                if (consumer->dev && consumer->dev->class == &regulator_class)
5645                        continue;
5646
5647                seq_printf(s, "%*s%-*s ",
5648                           (level + 1) * 3 + 1, "",
5649                           30 - (level + 1) * 3,
5650                           consumer->supply_name ? consumer->supply_name :
5651                           consumer->dev ? dev_name(consumer->dev) : "deviceless");
5652
5653                switch (rdev->desc->type) {
5654                case REGULATOR_VOLTAGE:
5655                        seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5656                                   consumer->enable_count,
5657                                   consumer->uA_load / 1000,
5658                                   consumer->uA_load && !consumer->enable_count ?
5659                                   '*' : ' ',
5660                                   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5661                                   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5662                        break;
5663                case REGULATOR_CURRENT:
5664                        break;
5665                }
5666
5667                seq_puts(s, "\n");
5668        }
5669
5670        summary_data.s = s;
5671        summary_data.level = level;
5672        summary_data.parent = rdev;
5673
5674        class_for_each_device(&regulator_class, NULL, &summary_data,
5675                              regulator_summary_show_children);
5676}
5677
5678struct summary_lock_data {
5679        struct ww_acquire_ctx *ww_ctx;
5680        struct regulator_dev **new_contended_rdev;
5681        struct regulator_dev **old_contended_rdev;
5682};
5683
5684static int regulator_summary_lock_one(struct device *dev, void *data)
5685{
5686        struct regulator_dev *rdev = dev_to_rdev(dev);
5687        struct summary_lock_data *lock_data = data;
5688        int ret = 0;
5689
5690        if (rdev != *lock_data->old_contended_rdev) {
5691                ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5692
5693                if (ret == -EDEADLK)
5694                        *lock_data->new_contended_rdev = rdev;
5695                else
5696                        WARN_ON_ONCE(ret);
5697        } else {
5698                *lock_data->old_contended_rdev = NULL;
5699        }
5700
5701        return ret;
5702}
5703
5704static int regulator_summary_unlock_one(struct device *dev, void *data)
5705{
5706        struct regulator_dev *rdev = dev_to_rdev(dev);
5707        struct summary_lock_data *lock_data = data;
5708
5709        if (lock_data) {
5710                if (rdev == *lock_data->new_contended_rdev)
5711                        return -EDEADLK;
5712        }
5713
5714        regulator_unlock(rdev);
5715
5716        return 0;
5717}
5718
5719static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5720                                      struct regulator_dev **new_contended_rdev,
5721                                      struct regulator_dev **old_contended_rdev)
5722{
5723        struct summary_lock_data lock_data;
5724        int ret;
5725
5726        lock_data.ww_ctx = ww_ctx;
5727        lock_data.new_contended_rdev = new_contended_rdev;
5728        lock_data.old_contended_rdev = old_contended_rdev;
5729
5730        ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5731                                    regulator_summary_lock_one);
5732        if (ret)
5733                class_for_each_device(&regulator_class, NULL, &lock_data,
5734                                      regulator_summary_unlock_one);
5735
5736        return ret;
5737}
5738
5739static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5740{
5741        struct regulator_dev *new_contended_rdev = NULL;
5742        struct regulator_dev *old_contended_rdev = NULL;
5743        int err;
5744
5745        mutex_lock(&regulator_list_mutex);
5746
5747        ww_acquire_init(ww_ctx, &regulator_ww_class);
5748
5749        do {
5750                if (new_contended_rdev) {
5751                        ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5752                        old_contended_rdev = new_contended_rdev;
5753                        old_contended_rdev->ref_cnt++;
5754                }
5755
5756                err = regulator_summary_lock_all(ww_ctx,
5757                                                 &new_contended_rdev,
5758                                                 &old_contended_rdev);
5759
5760                if (old_contended_rdev)
5761                        regulator_unlock(old_contended_rdev);
5762
5763        } while (err == -EDEADLK);
5764
5765        ww_acquire_done(ww_ctx);
5766}
5767
5768static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5769{
5770        class_for_each_device(&regulator_class, NULL, NULL,
5771                              regulator_summary_unlock_one);
5772        ww_acquire_fini(ww_ctx);
5773
5774        mutex_unlock(&regulator_list_mutex);
5775}
5776
5777static int regulator_summary_show_roots(struct device *dev, void *data)
5778{
5779        struct regulator_dev *rdev = dev_to_rdev(dev);
5780        struct seq_file *s = data;
5781
5782        if (!rdev->supply)
5783                regulator_summary_show_subtree(s, rdev, 0);
5784
5785        return 0;
5786}
5787
5788static int regulator_summary_show(struct seq_file *s, void *data)
5789{
5790        struct ww_acquire_ctx ww_ctx;
5791
5792        seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5793        seq_puts(s, "---------------------------------------------------------------------------------------\n");
5794
5795        regulator_summary_lock(&ww_ctx);
5796
5797        class_for_each_device(&regulator_class, NULL, s,
5798                              regulator_summary_show_roots);
5799
5800        regulator_summary_unlock(&ww_ctx);
5801
5802        return 0;
5803}
5804DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5805#endif /* CONFIG_DEBUG_FS */
5806
5807static int __init regulator_init(void)
5808{
5809        int ret;
5810
5811        ret = class_register(&regulator_class);
5812
5813        debugfs_root = debugfs_create_dir("regulator", NULL);
5814        if (!debugfs_root)
5815                pr_warn("regulator: Failed to create debugfs directory\n");
5816
5817#ifdef CONFIG_DEBUG_FS
5818        debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5819                            &supply_map_fops);
5820
5821        debugfs_create_file("regulator_summary", 0444, debugfs_root,
5822                            NULL, &regulator_summary_fops);
5823#endif
5824        regulator_dummy_init();
5825
5826        regulator_coupler_register(&generic_regulator_coupler);
5827
5828        return ret;
5829}
5830
5831/* init early to allow our consumers to complete system booting */
5832core_initcall(regulator_init);
5833
5834static int regulator_late_cleanup(struct device *dev, void *data)
5835{
5836        struct regulator_dev *rdev = dev_to_rdev(dev);
5837        const struct regulator_ops *ops = rdev->desc->ops;
5838        struct regulation_constraints *c = rdev->constraints;
5839        int enabled, ret;
5840
5841        if (c && c->always_on)
5842                return 0;
5843
5844        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5845                return 0;
5846
5847        regulator_lock(rdev);
5848
5849        if (rdev->use_count)
5850                goto unlock;
5851
5852        /* If we can't read the status assume it's always on. */
5853        if (ops->is_enabled)
5854                enabled = ops->is_enabled(rdev);
5855        else
5856                enabled = 1;
5857
5858        /* But if reading the status failed, assume that it's off. */
5859        if (enabled <= 0)
5860                goto unlock;
5861
5862        if (have_full_constraints()) {
5863                /* We log since this may kill the system if it goes
5864                 * wrong. */
5865                rdev_info(rdev, "disabling\n");
5866                ret = _regulator_do_disable(rdev);
5867                if (ret != 0)
5868                        rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5869        } else {
5870                /* The intention is that in future we will
5871                 * assume that full constraints are provided
5872                 * so warn even if we aren't going to do
5873                 * anything here.
5874                 */
5875                rdev_warn(rdev, "incomplete constraints, leaving on\n");
5876        }
5877
5878unlock:
5879        regulator_unlock(rdev);
5880
5881        return 0;
5882}
5883
5884static void regulator_init_complete_work_function(struct work_struct *work)
5885{
5886        /*
5887         * Regulators may had failed to resolve their input supplies
5888         * when were registered, either because the input supply was
5889         * not registered yet or because its parent device was not
5890         * bound yet. So attempt to resolve the input supplies for
5891         * pending regulators before trying to disable unused ones.
5892         */
5893        class_for_each_device(&regulator_class, NULL, NULL,
5894                              regulator_register_resolve_supply);
5895
5896        /* If we have a full configuration then disable any regulators
5897         * we have permission to change the status for and which are
5898         * not in use or always_on.  This is effectively the default
5899         * for DT and ACPI as they have full constraints.
5900         */
5901        class_for_each_device(&regulator_class, NULL, NULL,
5902                              regulator_late_cleanup);
5903}
5904
5905static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5906                            regulator_init_complete_work_function);
5907
5908static int __init regulator_init_complete(void)
5909{
5910        /*
5911         * Since DT doesn't provide an idiomatic mechanism for
5912         * enabling full constraints and since it's much more natural
5913         * with DT to provide them just assume that a DT enabled
5914         * system has full constraints.
5915         */
5916        if (of_have_populated_dt())
5917                has_full_constraints = true;
5918
5919        /*
5920         * We punt completion for an arbitrary amount of time since
5921         * systems like distros will load many drivers from userspace
5922         * so consumers might not always be ready yet, this is
5923         * particularly an issue with laptops where this might bounce
5924         * the display off then on.  Ideally we'd get a notification
5925         * from userspace when this happens but we don't so just wait
5926         * a bit and hope we waited long enough.  It'd be better if
5927         * we'd only do this on systems that need it, and a kernel
5928         * command line option might be useful.
5929         */
5930        schedule_delayed_work(&regulator_init_complete_work,
5931                              msecs_to_jiffies(30000));
5932
5933        return 0;
5934}
5935late_initcall_sync(regulator_init_complete);
5936