linux/drivers/spi/spi-cadence-quadspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2//
   3// Driver for Cadence QSPI Controller
   4//
   5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
   6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
   7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
   8
   9#include <linux/clk.h>
  10#include <linux/completion.h>
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/dmaengine.h>
  14#include <linux/err.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/iopoll.h>
  19#include <linux/jiffies.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/of_device.h>
  23#include <linux/of.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/reset.h>
  27#include <linux/sched.h>
  28#include <linux/spi/spi.h>
  29#include <linux/spi/spi-mem.h>
  30#include <linux/timer.h>
  31
  32#define CQSPI_NAME                      "cadence-qspi"
  33#define CQSPI_MAX_CHIPSELECT            16
  34
  35/* Quirks */
  36#define CQSPI_NEEDS_WR_DELAY            BIT(0)
  37#define CQSPI_DISABLE_DAC_MODE          BIT(1)
  38
  39/* Capabilities */
  40#define CQSPI_SUPPORTS_OCTAL            BIT(0)
  41
  42struct cqspi_st;
  43
  44struct cqspi_flash_pdata {
  45        struct cqspi_st *cqspi;
  46        u32             clk_rate;
  47        u32             read_delay;
  48        u32             tshsl_ns;
  49        u32             tsd2d_ns;
  50        u32             tchsh_ns;
  51        u32             tslch_ns;
  52        u8              inst_width;
  53        u8              addr_width;
  54        u8              data_width;
  55        u8              cs;
  56};
  57
  58struct cqspi_st {
  59        struct platform_device  *pdev;
  60
  61        struct clk              *clk;
  62        unsigned int            sclk;
  63
  64        void __iomem            *iobase;
  65        void __iomem            *ahb_base;
  66        resource_size_t         ahb_size;
  67        struct completion       transfer_complete;
  68
  69        struct dma_chan         *rx_chan;
  70        struct completion       rx_dma_complete;
  71        dma_addr_t              mmap_phys_base;
  72
  73        int                     current_cs;
  74        unsigned long           master_ref_clk_hz;
  75        bool                    is_decoded_cs;
  76        u32                     fifo_depth;
  77        u32                     fifo_width;
  78        bool                    rclk_en;
  79        u32                     trigger_address;
  80        u32                     wr_delay;
  81        bool                    use_direct_mode;
  82        struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
  83};
  84
  85struct cqspi_driver_platdata {
  86        u32 hwcaps_mask;
  87        u8 quirks;
  88};
  89
  90/* Operation timeout value */
  91#define CQSPI_TIMEOUT_MS                        500
  92#define CQSPI_READ_TIMEOUT_MS                   10
  93
  94/* Instruction type */
  95#define CQSPI_INST_TYPE_SINGLE                  0
  96#define CQSPI_INST_TYPE_DUAL                    1
  97#define CQSPI_INST_TYPE_QUAD                    2
  98#define CQSPI_INST_TYPE_OCTAL                   3
  99
 100#define CQSPI_DUMMY_CLKS_PER_BYTE               8
 101#define CQSPI_DUMMY_BYTES_MAX                   4
 102#define CQSPI_DUMMY_CLKS_MAX                    31
 103
 104#define CQSPI_STIG_DATA_LEN_MAX                 8
 105
 106/* Register map */
 107#define CQSPI_REG_CONFIG                        0x00
 108#define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
 109#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
 110#define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
 111#define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
 112#define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
 113#define CQSPI_REG_CONFIG_BAUD_LSB               19
 114#define CQSPI_REG_CONFIG_IDLE_LSB               31
 115#define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
 116#define CQSPI_REG_CONFIG_BAUD_MASK              0xF
 117
 118#define CQSPI_REG_RD_INSTR                      0x04
 119#define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
 120#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
 121#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
 122#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
 123#define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
 124#define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
 125#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
 126#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
 127#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
 128#define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
 129
 130#define CQSPI_REG_WR_INSTR                      0x08
 131#define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
 132#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
 133#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
 134
 135#define CQSPI_REG_DELAY                         0x0C
 136#define CQSPI_REG_DELAY_TSLCH_LSB               0
 137#define CQSPI_REG_DELAY_TCHSH_LSB               8
 138#define CQSPI_REG_DELAY_TSD2D_LSB               16
 139#define CQSPI_REG_DELAY_TSHSL_LSB               24
 140#define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
 141#define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
 142#define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
 143#define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
 144
 145#define CQSPI_REG_READCAPTURE                   0x10
 146#define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
 147#define CQSPI_REG_READCAPTURE_DELAY_LSB         1
 148#define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
 149
 150#define CQSPI_REG_SIZE                          0x14
 151#define CQSPI_REG_SIZE_ADDRESS_LSB              0
 152#define CQSPI_REG_SIZE_PAGE_LSB                 4
 153#define CQSPI_REG_SIZE_BLOCK_LSB                16
 154#define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
 155#define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
 156#define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
 157
 158#define CQSPI_REG_SRAMPARTITION                 0x18
 159#define CQSPI_REG_INDIRECTTRIGGER               0x1C
 160
 161#define CQSPI_REG_DMA                           0x20
 162#define CQSPI_REG_DMA_SINGLE_LSB                0
 163#define CQSPI_REG_DMA_BURST_LSB                 8
 164#define CQSPI_REG_DMA_SINGLE_MASK               0xFF
 165#define CQSPI_REG_DMA_BURST_MASK                0xFF
 166
 167#define CQSPI_REG_REMAP                         0x24
 168#define CQSPI_REG_MODE_BIT                      0x28
 169
 170#define CQSPI_REG_SDRAMLEVEL                    0x2C
 171#define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
 172#define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
 173#define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
 174#define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
 175
 176#define CQSPI_REG_IRQSTATUS                     0x40
 177#define CQSPI_REG_IRQMASK                       0x44
 178
 179#define CQSPI_REG_INDIRECTRD                    0x60
 180#define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
 181#define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
 182#define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
 183
 184#define CQSPI_REG_INDIRECTRDWATERMARK           0x64
 185#define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
 186#define CQSPI_REG_INDIRECTRDBYTES               0x6C
 187
 188#define CQSPI_REG_CMDCTRL                       0x90
 189#define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
 190#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
 191#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
 192#define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
 193#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
 194#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
 195#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
 196#define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
 197#define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
 198#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
 199#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
 200#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
 201
 202#define CQSPI_REG_INDIRECTWR                    0x70
 203#define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
 204#define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
 205#define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
 206
 207#define CQSPI_REG_INDIRECTWRWATERMARK           0x74
 208#define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
 209#define CQSPI_REG_INDIRECTWRBYTES               0x7C
 210
 211#define CQSPI_REG_CMDADDRESS                    0x94
 212#define CQSPI_REG_CMDREADDATALOWER              0xA0
 213#define CQSPI_REG_CMDREADDATAUPPER              0xA4
 214#define CQSPI_REG_CMDWRITEDATALOWER             0xA8
 215#define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
 216
 217/* Interrupt status bits */
 218#define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
 219#define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
 220#define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
 221#define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
 222#define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
 223#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
 224#define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
 225#define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
 226
 227#define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
 228                                         CQSPI_REG_IRQ_IND_SRAM_FULL    | \
 229                                         CQSPI_REG_IRQ_IND_COMP)
 230
 231#define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
 232                                         CQSPI_REG_IRQ_WATERMARK        | \
 233                                         CQSPI_REG_IRQ_UNDERFLOW)
 234
 235#define CQSPI_IRQ_STATUS_MASK           0x1FFFF
 236
 237static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
 238{
 239        u32 val;
 240
 241        return readl_relaxed_poll_timeout(reg, val,
 242                                          (((clr ? ~val : val) & mask) == mask),
 243                                          10, CQSPI_TIMEOUT_MS * 1000);
 244}
 245
 246static bool cqspi_is_idle(struct cqspi_st *cqspi)
 247{
 248        u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 249
 250        return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
 251}
 252
 253static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
 254{
 255        u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
 256
 257        reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
 258        return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
 259}
 260
 261static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
 262{
 263        struct cqspi_st *cqspi = dev;
 264        unsigned int irq_status;
 265
 266        /* Read interrupt status */
 267        irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
 268
 269        /* Clear interrupt */
 270        writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
 271
 272        irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
 273
 274        if (irq_status)
 275                complete(&cqspi->transfer_complete);
 276
 277        return IRQ_HANDLED;
 278}
 279
 280static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
 281{
 282        u32 rdreg = 0;
 283
 284        rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
 285        rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
 286        rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
 287
 288        return rdreg;
 289}
 290
 291static int cqspi_wait_idle(struct cqspi_st *cqspi)
 292{
 293        const unsigned int poll_idle_retry = 3;
 294        unsigned int count = 0;
 295        unsigned long timeout;
 296
 297        timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
 298        while (1) {
 299                /*
 300                 * Read few times in succession to ensure the controller
 301                 * is indeed idle, that is, the bit does not transition
 302                 * low again.
 303                 */
 304                if (cqspi_is_idle(cqspi))
 305                        count++;
 306                else
 307                        count = 0;
 308
 309                if (count >= poll_idle_retry)
 310                        return 0;
 311
 312                if (time_after(jiffies, timeout)) {
 313                        /* Timeout, in busy mode. */
 314                        dev_err(&cqspi->pdev->dev,
 315                                "QSPI is still busy after %dms timeout.\n",
 316                                CQSPI_TIMEOUT_MS);
 317                        return -ETIMEDOUT;
 318                }
 319
 320                cpu_relax();
 321        }
 322}
 323
 324static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
 325{
 326        void __iomem *reg_base = cqspi->iobase;
 327        int ret;
 328
 329        /* Write the CMDCTRL without start execution. */
 330        writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 331        /* Start execute */
 332        reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
 333        writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 334
 335        /* Polling for completion. */
 336        ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
 337                                 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
 338        if (ret) {
 339                dev_err(&cqspi->pdev->dev,
 340                        "Flash command execution timed out.\n");
 341                return ret;
 342        }
 343
 344        /* Polling QSPI idle status. */
 345        return cqspi_wait_idle(cqspi);
 346}
 347
 348static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
 349                              const struct spi_mem_op *op)
 350{
 351        struct cqspi_st *cqspi = f_pdata->cqspi;
 352        void __iomem *reg_base = cqspi->iobase;
 353        u8 *rxbuf = op->data.buf.in;
 354        u8 opcode = op->cmd.opcode;
 355        size_t n_rx = op->data.nbytes;
 356        unsigned int rdreg;
 357        unsigned int reg;
 358        size_t read_len;
 359        int status;
 360
 361        if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
 362                dev_err(&cqspi->pdev->dev,
 363                        "Invalid input argument, len %zu rxbuf 0x%p\n",
 364                        n_rx, rxbuf);
 365                return -EINVAL;
 366        }
 367
 368        reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 369
 370        rdreg = cqspi_calc_rdreg(f_pdata);
 371        writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
 372
 373        reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
 374
 375        /* 0 means 1 byte. */
 376        reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
 377                << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
 378        status = cqspi_exec_flash_cmd(cqspi, reg);
 379        if (status)
 380                return status;
 381
 382        reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
 383
 384        /* Put the read value into rx_buf */
 385        read_len = (n_rx > 4) ? 4 : n_rx;
 386        memcpy(rxbuf, &reg, read_len);
 387        rxbuf += read_len;
 388
 389        if (n_rx > 4) {
 390                reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
 391
 392                read_len = n_rx - read_len;
 393                memcpy(rxbuf, &reg, read_len);
 394        }
 395
 396        return 0;
 397}
 398
 399static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
 400                               const struct spi_mem_op *op)
 401{
 402        struct cqspi_st *cqspi = f_pdata->cqspi;
 403        void __iomem *reg_base = cqspi->iobase;
 404        const u8 opcode = op->cmd.opcode;
 405        const u8 *txbuf = op->data.buf.out;
 406        size_t n_tx = op->data.nbytes;
 407        unsigned int reg;
 408        unsigned int data;
 409        size_t write_len;
 410
 411        if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
 412                dev_err(&cqspi->pdev->dev,
 413                        "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
 414                        n_tx, txbuf);
 415                return -EINVAL;
 416        }
 417
 418        reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 419
 420        if (op->addr.nbytes) {
 421                reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
 422                reg |= ((op->addr.nbytes - 1) &
 423                        CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
 424                        << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
 425
 426                writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
 427        }
 428
 429        if (n_tx) {
 430                reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
 431                reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
 432                        << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
 433                data = 0;
 434                write_len = (n_tx > 4) ? 4 : n_tx;
 435                memcpy(&data, txbuf, write_len);
 436                txbuf += write_len;
 437                writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
 438
 439                if (n_tx > 4) {
 440                        data = 0;
 441                        write_len = n_tx - 4;
 442                        memcpy(&data, txbuf, write_len);
 443                        writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
 444                }
 445        }
 446
 447        return cqspi_exec_flash_cmd(cqspi, reg);
 448}
 449
 450static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
 451                            const struct spi_mem_op *op)
 452{
 453        struct cqspi_st *cqspi = f_pdata->cqspi;
 454        void __iomem *reg_base = cqspi->iobase;
 455        unsigned int dummy_clk = 0;
 456        unsigned int reg;
 457
 458        reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
 459        reg |= cqspi_calc_rdreg(f_pdata);
 460
 461        /* Setup dummy clock cycles */
 462        dummy_clk = op->dummy.nbytes * 8;
 463        if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 464                dummy_clk = CQSPI_DUMMY_CLKS_MAX;
 465
 466        if (dummy_clk)
 467                reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
 468                       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
 469
 470        writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 471
 472        /* Set address width */
 473        reg = readl(reg_base + CQSPI_REG_SIZE);
 474        reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
 475        reg |= (op->addr.nbytes - 1);
 476        writel(reg, reg_base + CQSPI_REG_SIZE);
 477        return 0;
 478}
 479
 480static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
 481                                       u8 *rxbuf, loff_t from_addr,
 482                                       const size_t n_rx)
 483{
 484        struct cqspi_st *cqspi = f_pdata->cqspi;
 485        struct device *dev = &cqspi->pdev->dev;
 486        void __iomem *reg_base = cqspi->iobase;
 487        void __iomem *ahb_base = cqspi->ahb_base;
 488        unsigned int remaining = n_rx;
 489        unsigned int mod_bytes = n_rx % 4;
 490        unsigned int bytes_to_read = 0;
 491        u8 *rxbuf_end = rxbuf + n_rx;
 492        int ret = 0;
 493
 494        writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 495        writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 496
 497        /* Clear all interrupts. */
 498        writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 499
 500        writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
 501
 502        reinit_completion(&cqspi->transfer_complete);
 503        writel(CQSPI_REG_INDIRECTRD_START_MASK,
 504               reg_base + CQSPI_REG_INDIRECTRD);
 505
 506        while (remaining > 0) {
 507                if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 508                                                 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
 509                        ret = -ETIMEDOUT;
 510
 511                bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 512
 513                if (ret && bytes_to_read == 0) {
 514                        dev_err(dev, "Indirect read timeout, no bytes\n");
 515                        goto failrd;
 516                }
 517
 518                while (bytes_to_read != 0) {
 519                        unsigned int word_remain = round_down(remaining, 4);
 520
 521                        bytes_to_read *= cqspi->fifo_width;
 522                        bytes_to_read = bytes_to_read > remaining ?
 523                                        remaining : bytes_to_read;
 524                        bytes_to_read = round_down(bytes_to_read, 4);
 525                        /* Read 4 byte word chunks then single bytes */
 526                        if (bytes_to_read) {
 527                                ioread32_rep(ahb_base, rxbuf,
 528                                             (bytes_to_read / 4));
 529                        } else if (!word_remain && mod_bytes) {
 530                                unsigned int temp = ioread32(ahb_base);
 531
 532                                bytes_to_read = mod_bytes;
 533                                memcpy(rxbuf, &temp, min((unsigned int)
 534                                                         (rxbuf_end - rxbuf),
 535                                                         bytes_to_read));
 536                        }
 537                        rxbuf += bytes_to_read;
 538                        remaining -= bytes_to_read;
 539                        bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 540                }
 541
 542                if (remaining > 0)
 543                        reinit_completion(&cqspi->transfer_complete);
 544        }
 545
 546        /* Check indirect done status */
 547        ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
 548                                 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
 549        if (ret) {
 550                dev_err(dev, "Indirect read completion error (%i)\n", ret);
 551                goto failrd;
 552        }
 553
 554        /* Disable interrupt */
 555        writel(0, reg_base + CQSPI_REG_IRQMASK);
 556
 557        /* Clear indirect completion status */
 558        writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
 559
 560        return 0;
 561
 562failrd:
 563        /* Disable interrupt */
 564        writel(0, reg_base + CQSPI_REG_IRQMASK);
 565
 566        /* Cancel the indirect read */
 567        writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
 568               reg_base + CQSPI_REG_INDIRECTRD);
 569        return ret;
 570}
 571
 572static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
 573                             const struct spi_mem_op *op)
 574{
 575        unsigned int reg;
 576        struct cqspi_st *cqspi = f_pdata->cqspi;
 577        void __iomem *reg_base = cqspi->iobase;
 578
 579        /* Set opcode. */
 580        reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
 581        writel(reg, reg_base + CQSPI_REG_WR_INSTR);
 582        reg = cqspi_calc_rdreg(f_pdata);
 583        writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 584
 585        reg = readl(reg_base + CQSPI_REG_SIZE);
 586        reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
 587        reg |= (op->addr.nbytes - 1);
 588        writel(reg, reg_base + CQSPI_REG_SIZE);
 589        return 0;
 590}
 591
 592static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
 593                                        loff_t to_addr, const u8 *txbuf,
 594                                        const size_t n_tx)
 595{
 596        struct cqspi_st *cqspi = f_pdata->cqspi;
 597        struct device *dev = &cqspi->pdev->dev;
 598        void __iomem *reg_base = cqspi->iobase;
 599        unsigned int remaining = n_tx;
 600        unsigned int write_bytes;
 601        int ret;
 602
 603        writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
 604        writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
 605
 606        /* Clear all interrupts. */
 607        writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 608
 609        writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
 610
 611        reinit_completion(&cqspi->transfer_complete);
 612        writel(CQSPI_REG_INDIRECTWR_START_MASK,
 613               reg_base + CQSPI_REG_INDIRECTWR);
 614        /*
 615         * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
 616         * Controller programming sequence, couple of cycles of
 617         * QSPI_REF_CLK delay is required for the above bit to
 618         * be internally synchronized by the QSPI module. Provide 5
 619         * cycles of delay.
 620         */
 621        if (cqspi->wr_delay)
 622                ndelay(cqspi->wr_delay);
 623
 624        while (remaining > 0) {
 625                size_t write_words, mod_bytes;
 626
 627                write_bytes = remaining;
 628                write_words = write_bytes / 4;
 629                mod_bytes = write_bytes % 4;
 630                /* Write 4 bytes at a time then single bytes. */
 631                if (write_words) {
 632                        iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
 633                        txbuf += (write_words * 4);
 634                }
 635                if (mod_bytes) {
 636                        unsigned int temp = 0xFFFFFFFF;
 637
 638                        memcpy(&temp, txbuf, mod_bytes);
 639                        iowrite32(temp, cqspi->ahb_base);
 640                        txbuf += mod_bytes;
 641                }
 642
 643                if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 644                                                 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
 645                        dev_err(dev, "Indirect write timeout\n");
 646                        ret = -ETIMEDOUT;
 647                        goto failwr;
 648                }
 649
 650                remaining -= write_bytes;
 651
 652                if (remaining > 0)
 653                        reinit_completion(&cqspi->transfer_complete);
 654        }
 655
 656        /* Check indirect done status */
 657        ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
 658                                 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
 659        if (ret) {
 660                dev_err(dev, "Indirect write completion error (%i)\n", ret);
 661                goto failwr;
 662        }
 663
 664        /* Disable interrupt. */
 665        writel(0, reg_base + CQSPI_REG_IRQMASK);
 666
 667        /* Clear indirect completion status */
 668        writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
 669
 670        cqspi_wait_idle(cqspi);
 671
 672        return 0;
 673
 674failwr:
 675        /* Disable interrupt. */
 676        writel(0, reg_base + CQSPI_REG_IRQMASK);
 677
 678        /* Cancel the indirect write */
 679        writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
 680               reg_base + CQSPI_REG_INDIRECTWR);
 681        return ret;
 682}
 683
 684static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
 685{
 686        struct cqspi_st *cqspi = f_pdata->cqspi;
 687        void __iomem *reg_base = cqspi->iobase;
 688        unsigned int chip_select = f_pdata->cs;
 689        unsigned int reg;
 690
 691        reg = readl(reg_base + CQSPI_REG_CONFIG);
 692        if (cqspi->is_decoded_cs) {
 693                reg |= CQSPI_REG_CONFIG_DECODE_MASK;
 694        } else {
 695                reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
 696
 697                /* Convert CS if without decoder.
 698                 * CS0 to 4b'1110
 699                 * CS1 to 4b'1101
 700                 * CS2 to 4b'1011
 701                 * CS3 to 4b'0111
 702                 */
 703                chip_select = 0xF & ~(1 << chip_select);
 704        }
 705
 706        reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
 707                 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
 708        reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
 709            << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
 710        writel(reg, reg_base + CQSPI_REG_CONFIG);
 711}
 712
 713static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
 714                                           const unsigned int ns_val)
 715{
 716        unsigned int ticks;
 717
 718        ticks = ref_clk_hz / 1000;      /* kHz */
 719        ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
 720
 721        return ticks;
 722}
 723
 724static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
 725{
 726        struct cqspi_st *cqspi = f_pdata->cqspi;
 727        void __iomem *iobase = cqspi->iobase;
 728        const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
 729        unsigned int tshsl, tchsh, tslch, tsd2d;
 730        unsigned int reg;
 731        unsigned int tsclk;
 732
 733        /* calculate the number of ref ticks for one sclk tick */
 734        tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
 735
 736        tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
 737        /* this particular value must be at least one sclk */
 738        if (tshsl < tsclk)
 739                tshsl = tsclk;
 740
 741        tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
 742        tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
 743        tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
 744
 745        reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
 746               << CQSPI_REG_DELAY_TSHSL_LSB;
 747        reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
 748                << CQSPI_REG_DELAY_TCHSH_LSB;
 749        reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
 750                << CQSPI_REG_DELAY_TSLCH_LSB;
 751        reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
 752                << CQSPI_REG_DELAY_TSD2D_LSB;
 753        writel(reg, iobase + CQSPI_REG_DELAY);
 754}
 755
 756static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
 757{
 758        const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
 759        void __iomem *reg_base = cqspi->iobase;
 760        u32 reg, div;
 761
 762        /* Recalculate the baudrate divisor based on QSPI specification. */
 763        div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
 764
 765        reg = readl(reg_base + CQSPI_REG_CONFIG);
 766        reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
 767        reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
 768        writel(reg, reg_base + CQSPI_REG_CONFIG);
 769}
 770
 771static void cqspi_readdata_capture(struct cqspi_st *cqspi,
 772                                   const bool bypass,
 773                                   const unsigned int delay)
 774{
 775        void __iomem *reg_base = cqspi->iobase;
 776        unsigned int reg;
 777
 778        reg = readl(reg_base + CQSPI_REG_READCAPTURE);
 779
 780        if (bypass)
 781                reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
 782        else
 783                reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
 784
 785        reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
 786                 << CQSPI_REG_READCAPTURE_DELAY_LSB);
 787
 788        reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
 789                << CQSPI_REG_READCAPTURE_DELAY_LSB;
 790
 791        writel(reg, reg_base + CQSPI_REG_READCAPTURE);
 792}
 793
 794static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
 795{
 796        void __iomem *reg_base = cqspi->iobase;
 797        unsigned int reg;
 798
 799        reg = readl(reg_base + CQSPI_REG_CONFIG);
 800
 801        if (enable)
 802                reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
 803        else
 804                reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
 805
 806        writel(reg, reg_base + CQSPI_REG_CONFIG);
 807}
 808
 809static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
 810                            unsigned long sclk)
 811{
 812        struct cqspi_st *cqspi = f_pdata->cqspi;
 813        int switch_cs = (cqspi->current_cs != f_pdata->cs);
 814        int switch_ck = (cqspi->sclk != sclk);
 815
 816        if (switch_cs || switch_ck)
 817                cqspi_controller_enable(cqspi, 0);
 818
 819        /* Switch chip select. */
 820        if (switch_cs) {
 821                cqspi->current_cs = f_pdata->cs;
 822                cqspi_chipselect(f_pdata);
 823        }
 824
 825        /* Setup baudrate divisor and delays */
 826        if (switch_ck) {
 827                cqspi->sclk = sclk;
 828                cqspi_config_baudrate_div(cqspi);
 829                cqspi_delay(f_pdata);
 830                cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
 831                                       f_pdata->read_delay);
 832        }
 833
 834        if (switch_cs || switch_ck)
 835                cqspi_controller_enable(cqspi, 1);
 836}
 837
 838static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
 839                              const struct spi_mem_op *op)
 840{
 841        f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
 842        f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
 843        f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
 844
 845        if (op->data.dir == SPI_MEM_DATA_IN) {
 846                switch (op->data.buswidth) {
 847                case 1:
 848                        f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
 849                        break;
 850                case 2:
 851                        f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
 852                        break;
 853                case 4:
 854                        f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
 855                        break;
 856                case 8:
 857                        f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
 858                        break;
 859                default:
 860                        return -EINVAL;
 861                }
 862        }
 863
 864        return 0;
 865}
 866
 867static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
 868                           const struct spi_mem_op *op)
 869{
 870        struct cqspi_st *cqspi = f_pdata->cqspi;
 871        loff_t to = op->addr.val;
 872        size_t len = op->data.nbytes;
 873        const u_char *buf = op->data.buf.out;
 874        int ret;
 875
 876        ret = cqspi_set_protocol(f_pdata, op);
 877        if (ret)
 878                return ret;
 879
 880        ret = cqspi_write_setup(f_pdata, op);
 881        if (ret)
 882                return ret;
 883
 884        if (cqspi->use_direct_mode && ((to + len) <= cqspi->ahb_size)) {
 885                memcpy_toio(cqspi->ahb_base + to, buf, len);
 886                return cqspi_wait_idle(cqspi);
 887        }
 888
 889        return cqspi_indirect_write_execute(f_pdata, to, buf, len);
 890}
 891
 892static void cqspi_rx_dma_callback(void *param)
 893{
 894        struct cqspi_st *cqspi = param;
 895
 896        complete(&cqspi->rx_dma_complete);
 897}
 898
 899static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
 900                                     u_char *buf, loff_t from, size_t len)
 901{
 902        struct cqspi_st *cqspi = f_pdata->cqspi;
 903        struct device *dev = &cqspi->pdev->dev;
 904        enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 905        dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
 906        int ret = 0;
 907        struct dma_async_tx_descriptor *tx;
 908        dma_cookie_t cookie;
 909        dma_addr_t dma_dst;
 910        struct device *ddev;
 911
 912        if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
 913                memcpy_fromio(buf, cqspi->ahb_base + from, len);
 914                return 0;
 915        }
 916
 917        ddev = cqspi->rx_chan->device->dev;
 918        dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
 919        if (dma_mapping_error(ddev, dma_dst)) {
 920                dev_err(dev, "dma mapping failed\n");
 921                return -ENOMEM;
 922        }
 923        tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
 924                                       len, flags);
 925        if (!tx) {
 926                dev_err(dev, "device_prep_dma_memcpy error\n");
 927                ret = -EIO;
 928                goto err_unmap;
 929        }
 930
 931        tx->callback = cqspi_rx_dma_callback;
 932        tx->callback_param = cqspi;
 933        cookie = tx->tx_submit(tx);
 934        reinit_completion(&cqspi->rx_dma_complete);
 935
 936        ret = dma_submit_error(cookie);
 937        if (ret) {
 938                dev_err(dev, "dma_submit_error %d\n", cookie);
 939                ret = -EIO;
 940                goto err_unmap;
 941        }
 942
 943        dma_async_issue_pending(cqspi->rx_chan);
 944        if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
 945                                         msecs_to_jiffies(len))) {
 946                dmaengine_terminate_sync(cqspi->rx_chan);
 947                dev_err(dev, "DMA wait_for_completion_timeout\n");
 948                ret = -ETIMEDOUT;
 949                goto err_unmap;
 950        }
 951
 952err_unmap:
 953        dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
 954
 955        return ret;
 956}
 957
 958static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
 959                          const struct spi_mem_op *op)
 960{
 961        struct cqspi_st *cqspi = f_pdata->cqspi;
 962        loff_t from = op->addr.val;
 963        size_t len = op->data.nbytes;
 964        u_char *buf = op->data.buf.in;
 965        int ret;
 966
 967        ret = cqspi_set_protocol(f_pdata, op);
 968        if (ret)
 969                return ret;
 970
 971        ret = cqspi_read_setup(f_pdata, op);
 972        if (ret)
 973                return ret;
 974
 975        if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
 976                return cqspi_direct_read_execute(f_pdata, buf, from, len);
 977
 978        return cqspi_indirect_read_execute(f_pdata, buf, from, len);
 979}
 980
 981static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
 982{
 983        struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
 984        struct cqspi_flash_pdata *f_pdata;
 985
 986        f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
 987        cqspi_configure(f_pdata, mem->spi->max_speed_hz);
 988
 989        if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
 990                if (!op->addr.nbytes)
 991                        return cqspi_command_read(f_pdata, op);
 992
 993                return cqspi_read(f_pdata, op);
 994        }
 995
 996        if (!op->addr.nbytes || !op->data.buf.out)
 997                return cqspi_command_write(f_pdata, op);
 998
 999        return cqspi_write(f_pdata, op);
1000}
1001
1002static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1003{
1004        int ret;
1005
1006        ret = cqspi_mem_process(mem, op);
1007        if (ret)
1008                dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1009
1010        return ret;
1011}
1012
1013static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1014                                    struct cqspi_flash_pdata *f_pdata,
1015                                    struct device_node *np)
1016{
1017        if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1018                dev_err(&pdev->dev, "couldn't determine read-delay\n");
1019                return -ENXIO;
1020        }
1021
1022        if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1023                dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1024                return -ENXIO;
1025        }
1026
1027        if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1028                dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1029                return -ENXIO;
1030        }
1031
1032        if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1033                dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1034                return -ENXIO;
1035        }
1036
1037        if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1038                dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1039                return -ENXIO;
1040        }
1041
1042        if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1043                dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1044                return -ENXIO;
1045        }
1046
1047        return 0;
1048}
1049
1050static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1051{
1052        struct device *dev = &cqspi->pdev->dev;
1053        struct device_node *np = dev->of_node;
1054
1055        cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1056
1057        if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1058                dev_err(dev, "couldn't determine fifo-depth\n");
1059                return -ENXIO;
1060        }
1061
1062        if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1063                dev_err(dev, "couldn't determine fifo-width\n");
1064                return -ENXIO;
1065        }
1066
1067        if (of_property_read_u32(np, "cdns,trigger-address",
1068                                 &cqspi->trigger_address)) {
1069                dev_err(dev, "couldn't determine trigger-address\n");
1070                return -ENXIO;
1071        }
1072
1073        cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1074
1075        return 0;
1076}
1077
1078static void cqspi_controller_init(struct cqspi_st *cqspi)
1079{
1080        u32 reg;
1081
1082        cqspi_controller_enable(cqspi, 0);
1083
1084        /* Configure the remap address register, no remap */
1085        writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1086
1087        /* Disable all interrupts. */
1088        writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1089
1090        /* Configure the SRAM split to 1:1 . */
1091        writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1092
1093        /* Load indirect trigger address. */
1094        writel(cqspi->trigger_address,
1095               cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1096
1097        /* Program read watermark -- 1/2 of the FIFO. */
1098        writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1099               cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1100        /* Program write watermark -- 1/8 of the FIFO. */
1101        writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1102               cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1103
1104        /* Enable Direct Access Controller */
1105        reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1106        reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1107        writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1108
1109        cqspi_controller_enable(cqspi, 1);
1110}
1111
1112static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1113{
1114        dma_cap_mask_t mask;
1115
1116        dma_cap_zero(mask);
1117        dma_cap_set(DMA_MEMCPY, mask);
1118
1119        cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1120        if (IS_ERR(cqspi->rx_chan)) {
1121                int ret = PTR_ERR(cqspi->rx_chan);
1122                cqspi->rx_chan = NULL;
1123                return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1124        }
1125        init_completion(&cqspi->rx_dma_complete);
1126
1127        return 0;
1128}
1129
1130static const char *cqspi_get_name(struct spi_mem *mem)
1131{
1132        struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1133        struct device *dev = &cqspi->pdev->dev;
1134
1135        return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1136}
1137
1138static const struct spi_controller_mem_ops cqspi_mem_ops = {
1139        .exec_op = cqspi_exec_mem_op,
1140        .get_name = cqspi_get_name,
1141};
1142
1143static int cqspi_setup_flash(struct cqspi_st *cqspi)
1144{
1145        struct platform_device *pdev = cqspi->pdev;
1146        struct device *dev = &pdev->dev;
1147        struct device_node *np = dev->of_node;
1148        struct cqspi_flash_pdata *f_pdata;
1149        unsigned int cs;
1150        int ret;
1151
1152        /* Get flash device data */
1153        for_each_available_child_of_node(dev->of_node, np) {
1154                ret = of_property_read_u32(np, "reg", &cs);
1155                if (ret) {
1156                        dev_err(dev, "Couldn't determine chip select.\n");
1157                        return ret;
1158                }
1159
1160                if (cs >= CQSPI_MAX_CHIPSELECT) {
1161                        dev_err(dev, "Chip select %d out of range.\n", cs);
1162                        return -EINVAL;
1163                }
1164
1165                f_pdata = &cqspi->f_pdata[cs];
1166                f_pdata->cqspi = cqspi;
1167                f_pdata->cs = cs;
1168
1169                ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1170                if (ret)
1171                        return ret;
1172        }
1173
1174        return 0;
1175}
1176
1177static int cqspi_probe(struct platform_device *pdev)
1178{
1179        const struct cqspi_driver_platdata *ddata;
1180        struct reset_control *rstc, *rstc_ocp;
1181        struct device *dev = &pdev->dev;
1182        struct spi_master *master;
1183        struct resource *res_ahb;
1184        struct cqspi_st *cqspi;
1185        struct resource *res;
1186        int ret;
1187        int irq;
1188
1189        master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1190        if (!master) {
1191                dev_err(&pdev->dev, "spi_alloc_master failed\n");
1192                return -ENOMEM;
1193        }
1194        master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1195        master->mem_ops = &cqspi_mem_ops;
1196        master->dev.of_node = pdev->dev.of_node;
1197
1198        cqspi = spi_master_get_devdata(master);
1199
1200        cqspi->pdev = pdev;
1201
1202        /* Obtain configuration from OF. */
1203        ret = cqspi_of_get_pdata(cqspi);
1204        if (ret) {
1205                dev_err(dev, "Cannot get mandatory OF data.\n");
1206                ret = -ENODEV;
1207                goto probe_master_put;
1208        }
1209
1210        /* Obtain QSPI clock. */
1211        cqspi->clk = devm_clk_get(dev, NULL);
1212        if (IS_ERR(cqspi->clk)) {
1213                dev_err(dev, "Cannot claim QSPI clock.\n");
1214                ret = PTR_ERR(cqspi->clk);
1215                goto probe_master_put;
1216        }
1217
1218        /* Obtain and remap controller address. */
1219        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1220        cqspi->iobase = devm_ioremap_resource(dev, res);
1221        if (IS_ERR(cqspi->iobase)) {
1222                dev_err(dev, "Cannot remap controller address.\n");
1223                ret = PTR_ERR(cqspi->iobase);
1224                goto probe_master_put;
1225        }
1226
1227        /* Obtain and remap AHB address. */
1228        res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1229        cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1230        if (IS_ERR(cqspi->ahb_base)) {
1231                dev_err(dev, "Cannot remap AHB address.\n");
1232                ret = PTR_ERR(cqspi->ahb_base);
1233                goto probe_master_put;
1234        }
1235        cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1236        cqspi->ahb_size = resource_size(res_ahb);
1237
1238        init_completion(&cqspi->transfer_complete);
1239
1240        /* Obtain IRQ line. */
1241        irq = platform_get_irq(pdev, 0);
1242        if (irq < 0) {
1243                ret = -ENXIO;
1244                goto probe_master_put;
1245        }
1246
1247        pm_runtime_enable(dev);
1248        ret = pm_runtime_get_sync(dev);
1249        if (ret < 0) {
1250                pm_runtime_put_noidle(dev);
1251                goto probe_master_put;
1252        }
1253
1254        ret = clk_prepare_enable(cqspi->clk);
1255        if (ret) {
1256                dev_err(dev, "Cannot enable QSPI clock.\n");
1257                goto probe_clk_failed;
1258        }
1259
1260        /* Obtain QSPI reset control */
1261        rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1262        if (IS_ERR(rstc)) {
1263                ret = PTR_ERR(rstc);
1264                dev_err(dev, "Cannot get QSPI reset.\n");
1265                goto probe_reset_failed;
1266        }
1267
1268        rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1269        if (IS_ERR(rstc_ocp)) {
1270                ret = PTR_ERR(rstc_ocp);
1271                dev_err(dev, "Cannot get QSPI OCP reset.\n");
1272                goto probe_reset_failed;
1273        }
1274
1275        reset_control_assert(rstc);
1276        reset_control_deassert(rstc);
1277
1278        reset_control_assert(rstc_ocp);
1279        reset_control_deassert(rstc_ocp);
1280
1281        cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1282        ddata  = of_device_get_match_data(dev);
1283        if (ddata) {
1284                if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1285                        cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
1286                                                cqspi->master_ref_clk_hz);
1287                if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1288                        master->mode_bits |= SPI_RX_OCTAL;
1289                if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1290                        cqspi->use_direct_mode = true;
1291        }
1292
1293        ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1294                               pdev->name, cqspi);
1295        if (ret) {
1296                dev_err(dev, "Cannot request IRQ.\n");
1297                goto probe_reset_failed;
1298        }
1299
1300        cqspi_wait_idle(cqspi);
1301        cqspi_controller_init(cqspi);
1302        cqspi->current_cs = -1;
1303        cqspi->sclk = 0;
1304
1305        ret = cqspi_setup_flash(cqspi);
1306        if (ret) {
1307                dev_err(dev, "failed to setup flash parameters %d\n", ret);
1308                goto probe_setup_failed;
1309        }
1310
1311        if (cqspi->use_direct_mode) {
1312                ret = cqspi_request_mmap_dma(cqspi);
1313                if (ret == -EPROBE_DEFER)
1314                        goto probe_setup_failed;
1315        }
1316
1317        ret = devm_spi_register_master(dev, master);
1318        if (ret) {
1319                dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1320                goto probe_setup_failed;
1321        }
1322
1323        return 0;
1324probe_setup_failed:
1325        cqspi_controller_enable(cqspi, 0);
1326probe_reset_failed:
1327        clk_disable_unprepare(cqspi->clk);
1328probe_clk_failed:
1329        pm_runtime_put_sync(dev);
1330        pm_runtime_disable(dev);
1331probe_master_put:
1332        spi_master_put(master);
1333        return ret;
1334}
1335
1336static int cqspi_remove(struct platform_device *pdev)
1337{
1338        struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1339
1340        cqspi_controller_enable(cqspi, 0);
1341
1342        if (cqspi->rx_chan)
1343                dma_release_channel(cqspi->rx_chan);
1344
1345        clk_disable_unprepare(cqspi->clk);
1346
1347        pm_runtime_put_sync(&pdev->dev);
1348        pm_runtime_disable(&pdev->dev);
1349
1350        return 0;
1351}
1352
1353#ifdef CONFIG_PM_SLEEP
1354static int cqspi_suspend(struct device *dev)
1355{
1356        struct cqspi_st *cqspi = dev_get_drvdata(dev);
1357
1358        cqspi_controller_enable(cqspi, 0);
1359        return 0;
1360}
1361
1362static int cqspi_resume(struct device *dev)
1363{
1364        struct cqspi_st *cqspi = dev_get_drvdata(dev);
1365
1366        cqspi_controller_enable(cqspi, 1);
1367        return 0;
1368}
1369
1370static const struct dev_pm_ops cqspi__dev_pm_ops = {
1371        .suspend = cqspi_suspend,
1372        .resume = cqspi_resume,
1373};
1374
1375#define CQSPI_DEV_PM_OPS        (&cqspi__dev_pm_ops)
1376#else
1377#define CQSPI_DEV_PM_OPS        NULL
1378#endif
1379
1380static const struct cqspi_driver_platdata cdns_qspi = {
1381        .quirks = CQSPI_DISABLE_DAC_MODE,
1382};
1383
1384static const struct cqspi_driver_platdata k2g_qspi = {
1385        .quirks = CQSPI_NEEDS_WR_DELAY,
1386};
1387
1388static const struct cqspi_driver_platdata am654_ospi = {
1389        .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1390        .quirks = CQSPI_NEEDS_WR_DELAY,
1391};
1392
1393static const struct of_device_id cqspi_dt_ids[] = {
1394        {
1395                .compatible = "cdns,qspi-nor",
1396                .data = &cdns_qspi,
1397        },
1398        {
1399                .compatible = "ti,k2g-qspi",
1400                .data = &k2g_qspi,
1401        },
1402        {
1403                .compatible = "ti,am654-ospi",
1404                .data = &am654_ospi,
1405        },
1406        { /* end of table */ }
1407};
1408
1409MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1410
1411static struct platform_driver cqspi_platform_driver = {
1412        .probe = cqspi_probe,
1413        .remove = cqspi_remove,
1414        .driver = {
1415                .name = CQSPI_NAME,
1416                .pm = CQSPI_DEV_PM_OPS,
1417                .of_match_table = cqspi_dt_ids,
1418        },
1419};
1420
1421module_platform_driver(cqspi_platform_driver);
1422
1423MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1424MODULE_LICENSE("GPL v2");
1425MODULE_ALIAS("platform:" CQSPI_NAME);
1426MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1427MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1428MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1429MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1430