linux/drivers/spi/spi-pxa2xx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   4 * Copyright (C) 2013, Intel Corporation
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/err.h>
  13#include <linux/errno.h>
  14#include <linux/gpio/consumer.h>
  15#include <linux/gpio.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/ioport.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/mod_devicetable.h>
  22#include <linux/of.h>
  23#include <linux/pci.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/property.h>
  27#include <linux/slab.h>
  28#include <linux/spi/pxa2xx_spi.h>
  29#include <linux/spi/spi.h>
  30
  31#include "spi-pxa2xx.h"
  32
  33MODULE_AUTHOR("Stephen Street");
  34MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  35MODULE_LICENSE("GPL");
  36MODULE_ALIAS("platform:pxa2xx-spi");
  37
  38#define TIMOUT_DFLT             1000
  39
  40/*
  41 * for testing SSCR1 changes that require SSP restart, basically
  42 * everything except the service and interrupt enables, the pxa270 developer
  43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  44 * list, but the PXA255 dev man says all bits without really meaning the
  45 * service and interrupt enables
  46 */
  47#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  48                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  49                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  50                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  51                                | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  52                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  53
  54#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF   \
  55                                | QUARK_X1000_SSCR1_EFWR        \
  56                                | QUARK_X1000_SSCR1_RFT         \
  57                                | QUARK_X1000_SSCR1_TFT         \
  58                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  61                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  62                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  63                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  64                                | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  65                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  66
  67#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE   BIT(24)
  68#define LPSS_CS_CONTROL_SW_MODE                 BIT(0)
  69#define LPSS_CS_CONTROL_CS_HIGH                 BIT(1)
  70#define LPSS_CAPS_CS_EN_SHIFT                   9
  71#define LPSS_CAPS_CS_EN_MASK                    (0xf << LPSS_CAPS_CS_EN_SHIFT)
  72
  73#define LPSS_PRIV_CLOCK_GATE 0x38
  74#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
  75#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
  76
  77struct lpss_config {
  78        /* LPSS offset from drv_data->ioaddr */
  79        unsigned offset;
  80        /* Register offsets from drv_data->lpss_base or -1 */
  81        int reg_general;
  82        int reg_ssp;
  83        int reg_cs_ctrl;
  84        int reg_capabilities;
  85        /* FIFO thresholds */
  86        u32 rx_threshold;
  87        u32 tx_threshold_lo;
  88        u32 tx_threshold_hi;
  89        /* Chip select control */
  90        unsigned cs_sel_shift;
  91        unsigned cs_sel_mask;
  92        unsigned cs_num;
  93        /* Quirks */
  94        unsigned cs_clk_stays_gated : 1;
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99        {       /* LPSS_LPT_SSP */
 100                .offset = 0x800,
 101                .reg_general = 0x08,
 102                .reg_ssp = 0x0c,
 103                .reg_cs_ctrl = 0x18,
 104                .reg_capabilities = -1,
 105                .rx_threshold = 64,
 106                .tx_threshold_lo = 160,
 107                .tx_threshold_hi = 224,
 108        },
 109        {       /* LPSS_BYT_SSP */
 110                .offset = 0x400,
 111                .reg_general = 0x08,
 112                .reg_ssp = 0x0c,
 113                .reg_cs_ctrl = 0x18,
 114                .reg_capabilities = -1,
 115                .rx_threshold = 64,
 116                .tx_threshold_lo = 160,
 117                .tx_threshold_hi = 224,
 118        },
 119        {       /* LPSS_BSW_SSP */
 120                .offset = 0x400,
 121                .reg_general = 0x08,
 122                .reg_ssp = 0x0c,
 123                .reg_cs_ctrl = 0x18,
 124                .reg_capabilities = -1,
 125                .rx_threshold = 64,
 126                .tx_threshold_lo = 160,
 127                .tx_threshold_hi = 224,
 128                .cs_sel_shift = 2,
 129                .cs_sel_mask = 1 << 2,
 130                .cs_num = 2,
 131        },
 132        {       /* LPSS_SPT_SSP */
 133                .offset = 0x200,
 134                .reg_general = -1,
 135                .reg_ssp = 0x20,
 136                .reg_cs_ctrl = 0x24,
 137                .reg_capabilities = -1,
 138                .rx_threshold = 1,
 139                .tx_threshold_lo = 32,
 140                .tx_threshold_hi = 56,
 141        },
 142        {       /* LPSS_BXT_SSP */
 143                .offset = 0x200,
 144                .reg_general = -1,
 145                .reg_ssp = 0x20,
 146                .reg_cs_ctrl = 0x24,
 147                .reg_capabilities = 0xfc,
 148                .rx_threshold = 1,
 149                .tx_threshold_lo = 16,
 150                .tx_threshold_hi = 48,
 151                .cs_sel_shift = 8,
 152                .cs_sel_mask = 3 << 8,
 153                .cs_clk_stays_gated = true,
 154        },
 155        {       /* LPSS_CNL_SSP */
 156                .offset = 0x200,
 157                .reg_general = -1,
 158                .reg_ssp = 0x20,
 159                .reg_cs_ctrl = 0x24,
 160                .reg_capabilities = 0xfc,
 161                .rx_threshold = 1,
 162                .tx_threshold_lo = 32,
 163                .tx_threshold_hi = 56,
 164                .cs_sel_shift = 8,
 165                .cs_sel_mask = 3 << 8,
 166                .cs_clk_stays_gated = true,
 167        },
 168};
 169
 170static inline const struct lpss_config
 171*lpss_get_config(const struct driver_data *drv_data)
 172{
 173        return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 174}
 175
 176static bool is_lpss_ssp(const struct driver_data *drv_data)
 177{
 178        switch (drv_data->ssp_type) {
 179        case LPSS_LPT_SSP:
 180        case LPSS_BYT_SSP:
 181        case LPSS_BSW_SSP:
 182        case LPSS_SPT_SSP:
 183        case LPSS_BXT_SSP:
 184        case LPSS_CNL_SSP:
 185                return true;
 186        default:
 187                return false;
 188        }
 189}
 190
 191static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 192{
 193        return drv_data->ssp_type == QUARK_X1000_SSP;
 194}
 195
 196static bool is_mmp2_ssp(const struct driver_data *drv_data)
 197{
 198        return drv_data->ssp_type == MMP2_SSP;
 199}
 200
 201static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 202{
 203        switch (drv_data->ssp_type) {
 204        case QUARK_X1000_SSP:
 205                return QUARK_X1000_SSCR1_CHANGE_MASK;
 206        case CE4100_SSP:
 207                return CE4100_SSCR1_CHANGE_MASK;
 208        default:
 209                return SSCR1_CHANGE_MASK;
 210        }
 211}
 212
 213static u32
 214pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 215{
 216        switch (drv_data->ssp_type) {
 217        case QUARK_X1000_SSP:
 218                return RX_THRESH_QUARK_X1000_DFLT;
 219        case CE4100_SSP:
 220                return RX_THRESH_CE4100_DFLT;
 221        default:
 222                return RX_THRESH_DFLT;
 223        }
 224}
 225
 226static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 227{
 228        u32 mask;
 229
 230        switch (drv_data->ssp_type) {
 231        case QUARK_X1000_SSP:
 232                mask = QUARK_X1000_SSSR_TFL_MASK;
 233                break;
 234        case CE4100_SSP:
 235                mask = CE4100_SSSR_TFL_MASK;
 236                break;
 237        default:
 238                mask = SSSR_TFL_MASK;
 239                break;
 240        }
 241
 242        return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 243}
 244
 245static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 246                                     u32 *sccr1_reg)
 247{
 248        u32 mask;
 249
 250        switch (drv_data->ssp_type) {
 251        case QUARK_X1000_SSP:
 252                mask = QUARK_X1000_SSCR1_RFT;
 253                break;
 254        case CE4100_SSP:
 255                mask = CE4100_SSCR1_RFT;
 256                break;
 257        default:
 258                mask = SSCR1_RFT;
 259                break;
 260        }
 261        *sccr1_reg &= ~mask;
 262}
 263
 264static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 265                                   u32 *sccr1_reg, u32 threshold)
 266{
 267        switch (drv_data->ssp_type) {
 268        case QUARK_X1000_SSP:
 269                *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 270                break;
 271        case CE4100_SSP:
 272                *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 273                break;
 274        default:
 275                *sccr1_reg |= SSCR1_RxTresh(threshold);
 276                break;
 277        }
 278}
 279
 280static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 281                                  u32 clk_div, u8 bits)
 282{
 283        switch (drv_data->ssp_type) {
 284        case QUARK_X1000_SSP:
 285                return clk_div
 286                        | QUARK_X1000_SSCR0_Motorola
 287                        | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 288                        | SSCR0_SSE;
 289        default:
 290                return clk_div
 291                        | SSCR0_Motorola
 292                        | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 293                        | SSCR0_SSE
 294                        | (bits > 16 ? SSCR0_EDSS : 0);
 295        }
 296}
 297
 298/*
 299 * Read and write LPSS SSP private registers. Caller must first check that
 300 * is_lpss_ssp() returns true before these can be called.
 301 */
 302static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 303{
 304        WARN_ON(!drv_data->lpss_base);
 305        return readl(drv_data->lpss_base + offset);
 306}
 307
 308static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 309                                  unsigned offset, u32 value)
 310{
 311        WARN_ON(!drv_data->lpss_base);
 312        writel(value, drv_data->lpss_base + offset);
 313}
 314
 315/*
 316 * lpss_ssp_setup - perform LPSS SSP specific setup
 317 * @drv_data: pointer to the driver private data
 318 *
 319 * Perform LPSS SSP specific setup. This function must be called first if
 320 * one is going to use LPSS SSP private registers.
 321 */
 322static void lpss_ssp_setup(struct driver_data *drv_data)
 323{
 324        const struct lpss_config *config;
 325        u32 value;
 326
 327        config = lpss_get_config(drv_data);
 328        drv_data->lpss_base = drv_data->ioaddr + config->offset;
 329
 330        /* Enable software chip select control */
 331        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 332        value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 333        value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 334        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 335
 336        /* Enable multiblock DMA transfers */
 337        if (drv_data->controller_info->enable_dma) {
 338                __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 339
 340                if (config->reg_general >= 0) {
 341                        value = __lpss_ssp_read_priv(drv_data,
 342                                                     config->reg_general);
 343                        value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 344                        __lpss_ssp_write_priv(drv_data,
 345                                              config->reg_general, value);
 346                }
 347        }
 348}
 349
 350static void lpss_ssp_select_cs(struct spi_device *spi,
 351                               const struct lpss_config *config)
 352{
 353        struct driver_data *drv_data =
 354                spi_controller_get_devdata(spi->controller);
 355        u32 value, cs;
 356
 357        if (!config->cs_sel_mask)
 358                return;
 359
 360        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 361
 362        cs = spi->chip_select;
 363        cs <<= config->cs_sel_shift;
 364        if (cs != (value & config->cs_sel_mask)) {
 365                /*
 366                 * When switching another chip select output active the
 367                 * output must be selected first and wait 2 ssp_clk cycles
 368                 * before changing state to active. Otherwise a short
 369                 * glitch will occur on the previous chip select since
 370                 * output select is latched but state control is not.
 371                 */
 372                value &= ~config->cs_sel_mask;
 373                value |= cs;
 374                __lpss_ssp_write_priv(drv_data,
 375                                      config->reg_cs_ctrl, value);
 376                ndelay(1000000000 /
 377                       (drv_data->controller->max_speed_hz / 2));
 378        }
 379}
 380
 381static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 382{
 383        struct driver_data *drv_data =
 384                spi_controller_get_devdata(spi->controller);
 385        const struct lpss_config *config;
 386        u32 value;
 387
 388        config = lpss_get_config(drv_data);
 389
 390        if (enable)
 391                lpss_ssp_select_cs(spi, config);
 392
 393        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 394        if (enable)
 395                value &= ~LPSS_CS_CONTROL_CS_HIGH;
 396        else
 397                value |= LPSS_CS_CONTROL_CS_HIGH;
 398        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 399        if (config->cs_clk_stays_gated) {
 400                u32 clkgate;
 401
 402                /*
 403                 * Changing CS alone when dynamic clock gating is on won't
 404                 * actually flip CS at that time. This ruins SPI transfers
 405                 * that specify delays, or have no data. Toggle the clock mode
 406                 * to force on briefly to poke the CS pin to move.
 407                 */
 408                clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
 409                value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
 410                        LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
 411
 412                __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
 413                __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
 414        }
 415}
 416
 417static void cs_assert(struct spi_device *spi)
 418{
 419        struct chip_data *chip = spi_get_ctldata(spi);
 420        struct driver_data *drv_data =
 421                spi_controller_get_devdata(spi->controller);
 422
 423        if (drv_data->ssp_type == CE4100_SSP) {
 424                pxa2xx_spi_write(drv_data, SSSR, chip->frm);
 425                return;
 426        }
 427
 428        if (chip->cs_control) {
 429                chip->cs_control(PXA2XX_CS_ASSERT);
 430                return;
 431        }
 432
 433        if (chip->gpiod_cs) {
 434                gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
 435                return;
 436        }
 437
 438        if (is_lpss_ssp(drv_data))
 439                lpss_ssp_cs_control(spi, true);
 440}
 441
 442static void cs_deassert(struct spi_device *spi)
 443{
 444        struct chip_data *chip = spi_get_ctldata(spi);
 445        struct driver_data *drv_data =
 446                spi_controller_get_devdata(spi->controller);
 447        unsigned long timeout;
 448
 449        if (drv_data->ssp_type == CE4100_SSP)
 450                return;
 451
 452        /* Wait until SSP becomes idle before deasserting the CS */
 453        timeout = jiffies + msecs_to_jiffies(10);
 454        while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 455               !time_after(jiffies, timeout))
 456                cpu_relax();
 457
 458        if (chip->cs_control) {
 459                chip->cs_control(PXA2XX_CS_DEASSERT);
 460                return;
 461        }
 462
 463        if (chip->gpiod_cs) {
 464                gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
 465                return;
 466        }
 467
 468        if (is_lpss_ssp(drv_data))
 469                lpss_ssp_cs_control(spi, false);
 470}
 471
 472static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 473{
 474        if (level)
 475                cs_deassert(spi);
 476        else
 477                cs_assert(spi);
 478}
 479
 480int pxa2xx_spi_flush(struct driver_data *drv_data)
 481{
 482        unsigned long limit = loops_per_jiffy << 1;
 483
 484        do {
 485                while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 486                        pxa2xx_spi_read(drv_data, SSDR);
 487        } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 488        write_SSSR_CS(drv_data, SSSR_ROR);
 489
 490        return limit;
 491}
 492
 493static void pxa2xx_spi_off(struct driver_data *drv_data)
 494{
 495        /* On MMP, disabling SSE seems to corrupt the Rx FIFO */
 496        if (is_mmp2_ssp(drv_data))
 497                return;
 498
 499        pxa2xx_spi_write(drv_data, SSCR0,
 500                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 501}
 502
 503static int null_writer(struct driver_data *drv_data)
 504{
 505        u8 n_bytes = drv_data->n_bytes;
 506
 507        if (pxa2xx_spi_txfifo_full(drv_data)
 508                || (drv_data->tx == drv_data->tx_end))
 509                return 0;
 510
 511        pxa2xx_spi_write(drv_data, SSDR, 0);
 512        drv_data->tx += n_bytes;
 513
 514        return 1;
 515}
 516
 517static int null_reader(struct driver_data *drv_data)
 518{
 519        u8 n_bytes = drv_data->n_bytes;
 520
 521        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 522               && (drv_data->rx < drv_data->rx_end)) {
 523                pxa2xx_spi_read(drv_data, SSDR);
 524                drv_data->rx += n_bytes;
 525        }
 526
 527        return drv_data->rx == drv_data->rx_end;
 528}
 529
 530static int u8_writer(struct driver_data *drv_data)
 531{
 532        if (pxa2xx_spi_txfifo_full(drv_data)
 533                || (drv_data->tx == drv_data->tx_end))
 534                return 0;
 535
 536        pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 537        ++drv_data->tx;
 538
 539        return 1;
 540}
 541
 542static int u8_reader(struct driver_data *drv_data)
 543{
 544        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 545               && (drv_data->rx < drv_data->rx_end)) {
 546                *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 547                ++drv_data->rx;
 548        }
 549
 550        return drv_data->rx == drv_data->rx_end;
 551}
 552
 553static int u16_writer(struct driver_data *drv_data)
 554{
 555        if (pxa2xx_spi_txfifo_full(drv_data)
 556                || (drv_data->tx == drv_data->tx_end))
 557                return 0;
 558
 559        pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 560        drv_data->tx += 2;
 561
 562        return 1;
 563}
 564
 565static int u16_reader(struct driver_data *drv_data)
 566{
 567        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 568               && (drv_data->rx < drv_data->rx_end)) {
 569                *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 570                drv_data->rx += 2;
 571        }
 572
 573        return drv_data->rx == drv_data->rx_end;
 574}
 575
 576static int u32_writer(struct driver_data *drv_data)
 577{
 578        if (pxa2xx_spi_txfifo_full(drv_data)
 579                || (drv_data->tx == drv_data->tx_end))
 580                return 0;
 581
 582        pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 583        drv_data->tx += 4;
 584
 585        return 1;
 586}
 587
 588static int u32_reader(struct driver_data *drv_data)
 589{
 590        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 591               && (drv_data->rx < drv_data->rx_end)) {
 592                *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 593                drv_data->rx += 4;
 594        }
 595
 596        return drv_data->rx == drv_data->rx_end;
 597}
 598
 599static void reset_sccr1(struct driver_data *drv_data)
 600{
 601        struct chip_data *chip =
 602                spi_get_ctldata(drv_data->controller->cur_msg->spi);
 603        u32 sccr1_reg;
 604
 605        sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 606        switch (drv_data->ssp_type) {
 607        case QUARK_X1000_SSP:
 608                sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
 609                break;
 610        case CE4100_SSP:
 611                sccr1_reg &= ~CE4100_SSCR1_RFT;
 612                break;
 613        default:
 614                sccr1_reg &= ~SSCR1_RFT;
 615                break;
 616        }
 617        sccr1_reg |= chip->threshold;
 618        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 619}
 620
 621static void int_error_stop(struct driver_data *drv_data, const char* msg)
 622{
 623        /* Stop and reset SSP */
 624        write_SSSR_CS(drv_data, drv_data->clear_sr);
 625        reset_sccr1(drv_data);
 626        if (!pxa25x_ssp_comp(drv_data))
 627                pxa2xx_spi_write(drv_data, SSTO, 0);
 628        pxa2xx_spi_flush(drv_data);
 629        pxa2xx_spi_off(drv_data);
 630
 631        dev_err(&drv_data->pdev->dev, "%s\n", msg);
 632
 633        drv_data->controller->cur_msg->status = -EIO;
 634        spi_finalize_current_transfer(drv_data->controller);
 635}
 636
 637static void int_transfer_complete(struct driver_data *drv_data)
 638{
 639        /* Clear and disable interrupts */
 640        write_SSSR_CS(drv_data, drv_data->clear_sr);
 641        reset_sccr1(drv_data);
 642        if (!pxa25x_ssp_comp(drv_data))
 643                pxa2xx_spi_write(drv_data, SSTO, 0);
 644
 645        spi_finalize_current_transfer(drv_data->controller);
 646}
 647
 648static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 649{
 650        u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 651                       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 652
 653        u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 654
 655        if (irq_status & SSSR_ROR) {
 656                int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 657                return IRQ_HANDLED;
 658        }
 659
 660        if (irq_status & SSSR_TUR) {
 661                int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
 662                return IRQ_HANDLED;
 663        }
 664
 665        if (irq_status & SSSR_TINT) {
 666                pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 667                if (drv_data->read(drv_data)) {
 668                        int_transfer_complete(drv_data);
 669                        return IRQ_HANDLED;
 670                }
 671        }
 672
 673        /* Drain rx fifo, Fill tx fifo and prevent overruns */
 674        do {
 675                if (drv_data->read(drv_data)) {
 676                        int_transfer_complete(drv_data);
 677                        return IRQ_HANDLED;
 678                }
 679        } while (drv_data->write(drv_data));
 680
 681        if (drv_data->read(drv_data)) {
 682                int_transfer_complete(drv_data);
 683                return IRQ_HANDLED;
 684        }
 685
 686        if (drv_data->tx == drv_data->tx_end) {
 687                u32 bytes_left;
 688                u32 sccr1_reg;
 689
 690                sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 691                sccr1_reg &= ~SSCR1_TIE;
 692
 693                /*
 694                 * PXA25x_SSP has no timeout, set up rx threshould for the
 695                 * remaining RX bytes.
 696                 */
 697                if (pxa25x_ssp_comp(drv_data)) {
 698                        u32 rx_thre;
 699
 700                        pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 701
 702                        bytes_left = drv_data->rx_end - drv_data->rx;
 703                        switch (drv_data->n_bytes) {
 704                        case 4:
 705                                bytes_left >>= 2;
 706                                break;
 707                        case 2:
 708                                bytes_left >>= 1;
 709                                break;
 710                        }
 711
 712                        rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 713                        if (rx_thre > bytes_left)
 714                                rx_thre = bytes_left;
 715
 716                        pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 717                }
 718                pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 719        }
 720
 721        /* We did something */
 722        return IRQ_HANDLED;
 723}
 724
 725static void handle_bad_msg(struct driver_data *drv_data)
 726{
 727        pxa2xx_spi_off(drv_data);
 728        pxa2xx_spi_write(drv_data, SSCR1,
 729                         pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
 730        if (!pxa25x_ssp_comp(drv_data))
 731                pxa2xx_spi_write(drv_data, SSTO, 0);
 732        write_SSSR_CS(drv_data, drv_data->clear_sr);
 733
 734        dev_err(&drv_data->pdev->dev,
 735                "bad message state in interrupt handler\n");
 736}
 737
 738static irqreturn_t ssp_int(int irq, void *dev_id)
 739{
 740        struct driver_data *drv_data = dev_id;
 741        u32 sccr1_reg;
 742        u32 mask = drv_data->mask_sr;
 743        u32 status;
 744
 745        /*
 746         * The IRQ might be shared with other peripherals so we must first
 747         * check that are we RPM suspended or not. If we are we assume that
 748         * the IRQ was not for us (we shouldn't be RPM suspended when the
 749         * interrupt is enabled).
 750         */
 751        if (pm_runtime_suspended(&drv_data->pdev->dev))
 752                return IRQ_NONE;
 753
 754        /*
 755         * If the device is not yet in RPM suspended state and we get an
 756         * interrupt that is meant for another device, check if status bits
 757         * are all set to one. That means that the device is already
 758         * powered off.
 759         */
 760        status = pxa2xx_spi_read(drv_data, SSSR);
 761        if (status == ~0)
 762                return IRQ_NONE;
 763
 764        sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 765
 766        /* Ignore possible writes if we don't need to write */
 767        if (!(sccr1_reg & SSCR1_TIE))
 768                mask &= ~SSSR_TFS;
 769
 770        /* Ignore RX timeout interrupt if it is disabled */
 771        if (!(sccr1_reg & SSCR1_TINTE))
 772                mask &= ~SSSR_TINT;
 773
 774        if (!(status & mask))
 775                return IRQ_NONE;
 776
 777        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 778        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 779
 780        if (!drv_data->controller->cur_msg) {
 781                handle_bad_msg(drv_data);
 782                /* Never fail */
 783                return IRQ_HANDLED;
 784        }
 785
 786        return drv_data->transfer_handler(drv_data);
 787}
 788
 789/*
 790 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 791 * input frequency by fractions of 2^24. It also has a divider by 5.
 792 *
 793 * There are formulas to get baud rate value for given input frequency and
 794 * divider parameters, such as DDS_CLK_RATE and SCR:
 795 *
 796 * Fsys = 200MHz
 797 *
 798 * Fssp = Fsys * DDS_CLK_RATE / 2^24                    (1)
 799 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))           (2)
 800 *
 801 * DDS_CLK_RATE either 2^n or 2^n / 5.
 802 * SCR is in range 0 .. 255
 803 *
 804 * Divisor = 5^i * 2^j * 2 * k
 805 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 806 *       j = [0, 23]     j = 0 iff i = 1
 807 *       k = [1, 256]
 808 * Special case: j = 0, i = 1: Divisor = 2 / 5
 809 *
 810 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 811 * are:
 812 *      Case 1:         2^n, n = [0, 23]
 813 *      Case 2:         2^24 * 2 / 5 (0x666666)
 814 *      Case 3:         less than or equal to 2^24 / 5 / 16 (0x33333)
 815 *
 816 * In all cases the lowest possible value is better.
 817 *
 818 * The function calculates parameters for all cases and chooses the one closest
 819 * to the asked baud rate.
 820 */
 821static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 822{
 823        unsigned long xtal = 200000000;
 824        unsigned long fref = xtal / 2;          /* mandatory division by 2,
 825                                                   see (2) */
 826                                                /* case 3 */
 827        unsigned long fref1 = fref / 2;         /* case 1 */
 828        unsigned long fref2 = fref * 2 / 5;     /* case 2 */
 829        unsigned long scale;
 830        unsigned long q, q1, q2;
 831        long r, r1, r2;
 832        u32 mul;
 833
 834        /* Case 1 */
 835
 836        /* Set initial value for DDS_CLK_RATE */
 837        mul = (1 << 24) >> 1;
 838
 839        /* Calculate initial quot */
 840        q1 = DIV_ROUND_UP(fref1, rate);
 841
 842        /* Scale q1 if it's too big */
 843        if (q1 > 256) {
 844                /* Scale q1 to range [1, 512] */
 845                scale = fls_long(q1 - 1);
 846                if (scale > 9) {
 847                        q1 >>= scale - 9;
 848                        mul >>= scale - 9;
 849                }
 850
 851                /* Round the result if we have a remainder */
 852                q1 += q1 & 1;
 853        }
 854
 855        /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 856        scale = __ffs(q1);
 857        q1 >>= scale;
 858        mul >>= scale;
 859
 860        /* Get the remainder */
 861        r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 862
 863        /* Case 2 */
 864
 865        q2 = DIV_ROUND_UP(fref2, rate);
 866        r2 = abs(fref2 / q2 - rate);
 867
 868        /*
 869         * Choose the best between two: less remainder we have the better. We
 870         * can't go case 2 if q2 is greater than 256 since SCR register can
 871         * hold only values 0 .. 255.
 872         */
 873        if (r2 >= r1 || q2 > 256) {
 874                /* case 1 is better */
 875                r = r1;
 876                q = q1;
 877        } else {
 878                /* case 2 is better */
 879                r = r2;
 880                q = q2;
 881                mul = (1 << 24) * 2 / 5;
 882        }
 883
 884        /* Check case 3 only if the divisor is big enough */
 885        if (fref / rate >= 80) {
 886                u64 fssp;
 887                u32 m;
 888
 889                /* Calculate initial quot */
 890                q1 = DIV_ROUND_UP(fref, rate);
 891                m = (1 << 24) / q1;
 892
 893                /* Get the remainder */
 894                fssp = (u64)fref * m;
 895                do_div(fssp, 1 << 24);
 896                r1 = abs(fssp - rate);
 897
 898                /* Choose this one if it suits better */
 899                if (r1 < r) {
 900                        /* case 3 is better */
 901                        q = 1;
 902                        mul = m;
 903                }
 904        }
 905
 906        *dds = mul;
 907        return q - 1;
 908}
 909
 910static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 911{
 912        unsigned long ssp_clk = drv_data->controller->max_speed_hz;
 913        const struct ssp_device *ssp = drv_data->ssp;
 914
 915        rate = min_t(int, ssp_clk, rate);
 916
 917        /*
 918         * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
 919         * that the SSP transmission rate can be greater than the device rate
 920         */
 921        if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 922                return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
 923        else
 924                return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
 925}
 926
 927static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 928                                           int rate)
 929{
 930        struct chip_data *chip =
 931                spi_get_ctldata(drv_data->controller->cur_msg->spi);
 932        unsigned int clk_div;
 933
 934        switch (drv_data->ssp_type) {
 935        case QUARK_X1000_SSP:
 936                clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 937                break;
 938        default:
 939                clk_div = ssp_get_clk_div(drv_data, rate);
 940                break;
 941        }
 942        return clk_div << 8;
 943}
 944
 945static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
 946                               struct spi_device *spi,
 947                               struct spi_transfer *xfer)
 948{
 949        struct chip_data *chip = spi_get_ctldata(spi);
 950
 951        return chip->enable_dma &&
 952               xfer->len <= MAX_DMA_LEN &&
 953               xfer->len >= chip->dma_burst_size;
 954}
 955
 956static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
 957                                   struct spi_device *spi,
 958                                   struct spi_transfer *transfer)
 959{
 960        struct driver_data *drv_data = spi_controller_get_devdata(controller);
 961        struct spi_message *message = controller->cur_msg;
 962        struct chip_data *chip = spi_get_ctldata(spi);
 963        u32 dma_thresh = chip->dma_threshold;
 964        u32 dma_burst = chip->dma_burst_size;
 965        u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 966        u32 clk_div;
 967        u8 bits;
 968        u32 speed;
 969        u32 cr0;
 970        u32 cr1;
 971        int err;
 972        int dma_mapped;
 973
 974        /* Check if we can DMA this transfer */
 975        if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 976
 977                /* reject already-mapped transfers; PIO won't always work */
 978                if (message->is_dma_mapped
 979                                || transfer->rx_dma || transfer->tx_dma) {
 980                        dev_err(&spi->dev,
 981                                "Mapped transfer length of %u is greater than %d\n",
 982                                transfer->len, MAX_DMA_LEN);
 983                        return -EINVAL;
 984                }
 985
 986                /* warn ... we force this to PIO mode */
 987                dev_warn_ratelimited(&spi->dev,
 988                                     "DMA disabled for transfer length %ld greater than %d\n",
 989                                     (long)transfer->len, MAX_DMA_LEN);
 990        }
 991
 992        /* Setup the transfer state based on the type of transfer */
 993        if (pxa2xx_spi_flush(drv_data) == 0) {
 994                dev_err(&spi->dev, "Flush failed\n");
 995                return -EIO;
 996        }
 997        drv_data->n_bytes = chip->n_bytes;
 998        drv_data->tx = (void *)transfer->tx_buf;
 999        drv_data->tx_end = drv_data->tx + transfer->len;
1000        drv_data->rx = transfer->rx_buf;
1001        drv_data->rx_end = drv_data->rx + transfer->len;
1002        drv_data->write = drv_data->tx ? chip->write : null_writer;
1003        drv_data->read = drv_data->rx ? chip->read : null_reader;
1004
1005        /* Change speed and bit per word on a per transfer */
1006        bits = transfer->bits_per_word;
1007        speed = transfer->speed_hz;
1008
1009        clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1010
1011        if (bits <= 8) {
1012                drv_data->n_bytes = 1;
1013                drv_data->read = drv_data->read != null_reader ?
1014                                        u8_reader : null_reader;
1015                drv_data->write = drv_data->write != null_writer ?
1016                                        u8_writer : null_writer;
1017        } else if (bits <= 16) {
1018                drv_data->n_bytes = 2;
1019                drv_data->read = drv_data->read != null_reader ?
1020                                        u16_reader : null_reader;
1021                drv_data->write = drv_data->write != null_writer ?
1022                                        u16_writer : null_writer;
1023        } else if (bits <= 32) {
1024                drv_data->n_bytes = 4;
1025                drv_data->read = drv_data->read != null_reader ?
1026                                        u32_reader : null_reader;
1027                drv_data->write = drv_data->write != null_writer ?
1028                                        u32_writer : null_writer;
1029        }
1030        /*
1031         * if bits/word is changed in dma mode, then must check the
1032         * thresholds and burst also
1033         */
1034        if (chip->enable_dma) {
1035                if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1036                                                spi,
1037                                                bits, &dma_burst,
1038                                                &dma_thresh))
1039                        dev_warn_ratelimited(&spi->dev,
1040                                             "DMA burst size reduced to match bits_per_word\n");
1041        }
1042
1043        dma_mapped = controller->can_dma &&
1044                     controller->can_dma(controller, spi, transfer) &&
1045                     controller->cur_msg_mapped;
1046        if (dma_mapped) {
1047
1048                /* Ensure we have the correct interrupt handler */
1049                drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1050
1051                err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1052                if (err)
1053                        return err;
1054
1055                /* Clear status and start DMA engine */
1056                cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1057                pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1058
1059                pxa2xx_spi_dma_start(drv_data);
1060        } else {
1061                /* Ensure we have the correct interrupt handler */
1062                drv_data->transfer_handler = interrupt_transfer;
1063
1064                /* Clear status  */
1065                cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1066                write_SSSR_CS(drv_data, drv_data->clear_sr);
1067        }
1068
1069        /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1070        cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1071        if (!pxa25x_ssp_comp(drv_data))
1072                dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1073                        controller->max_speed_hz
1074                                / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1075                        dma_mapped ? "DMA" : "PIO");
1076        else
1077                dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1078                        controller->max_speed_hz / 2
1079                                / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1080                        dma_mapped ? "DMA" : "PIO");
1081
1082        if (is_lpss_ssp(drv_data)) {
1083                if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1084                    != chip->lpss_rx_threshold)
1085                        pxa2xx_spi_write(drv_data, SSIRF,
1086                                         chip->lpss_rx_threshold);
1087                if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1088                    != chip->lpss_tx_threshold)
1089                        pxa2xx_spi_write(drv_data, SSITF,
1090                                         chip->lpss_tx_threshold);
1091        }
1092
1093        if (is_quark_x1000_ssp(drv_data) &&
1094            (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1095                pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1096
1097        /* see if we need to reload the config registers */
1098        if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1099            || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1100            != (cr1 & change_mask)) {
1101                /* stop the SSP, and update the other bits */
1102                if (!is_mmp2_ssp(drv_data))
1103                        pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1104                if (!pxa25x_ssp_comp(drv_data))
1105                        pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1106                /* first set CR1 without interrupt and service enables */
1107                pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1108                /* restart the SSP */
1109                pxa2xx_spi_write(drv_data, SSCR0, cr0);
1110
1111        } else {
1112                if (!pxa25x_ssp_comp(drv_data))
1113                        pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1114        }
1115
1116        if (is_mmp2_ssp(drv_data)) {
1117                u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1118                                        & SSSR_TFL_MASK) >> 8;
1119
1120                if (tx_level) {
1121                        /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1122                        dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1123                                                                tx_level);
1124                        if (tx_level > transfer->len)
1125                                tx_level = transfer->len;
1126                        drv_data->tx += tx_level;
1127                }
1128        }
1129
1130        if (spi_controller_is_slave(controller)) {
1131                while (drv_data->write(drv_data))
1132                        ;
1133                if (drv_data->gpiod_ready) {
1134                        gpiod_set_value(drv_data->gpiod_ready, 1);
1135                        udelay(1);
1136                        gpiod_set_value(drv_data->gpiod_ready, 0);
1137                }
1138        }
1139
1140        /*
1141         * Release the data by enabling service requests and interrupts,
1142         * without changing any mode bits
1143         */
1144        pxa2xx_spi_write(drv_data, SSCR1, cr1);
1145
1146        return 1;
1147}
1148
1149static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1150{
1151        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1152
1153        /* Stop and reset SSP */
1154        write_SSSR_CS(drv_data, drv_data->clear_sr);
1155        reset_sccr1(drv_data);
1156        if (!pxa25x_ssp_comp(drv_data))
1157                pxa2xx_spi_write(drv_data, SSTO, 0);
1158        pxa2xx_spi_flush(drv_data);
1159        pxa2xx_spi_off(drv_data);
1160
1161        dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1162
1163        drv_data->controller->cur_msg->status = -EINTR;
1164        spi_finalize_current_transfer(drv_data->controller);
1165
1166        return 0;
1167}
1168
1169static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1170                                 struct spi_message *msg)
1171{
1172        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1173
1174        /* Disable the SSP */
1175        pxa2xx_spi_off(drv_data);
1176        /* Clear and disable interrupts and service requests */
1177        write_SSSR_CS(drv_data, drv_data->clear_sr);
1178        pxa2xx_spi_write(drv_data, SSCR1,
1179                         pxa2xx_spi_read(drv_data, SSCR1)
1180                         & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1181        if (!pxa25x_ssp_comp(drv_data))
1182                pxa2xx_spi_write(drv_data, SSTO, 0);
1183
1184        /*
1185         * Stop the DMA if running. Note DMA callback handler may have unset
1186         * the dma_running already, which is fine as stopping is not needed
1187         * then but we shouldn't rely this flag for anything else than
1188         * stopping. For instance to differentiate between PIO and DMA
1189         * transfers.
1190         */
1191        if (atomic_read(&drv_data->dma_running))
1192                pxa2xx_spi_dma_stop(drv_data);
1193}
1194
1195static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1196{
1197        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1198
1199        /* Disable the SSP now */
1200        pxa2xx_spi_off(drv_data);
1201
1202        return 0;
1203}
1204
1205static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1206                    struct pxa2xx_spi_chip *chip_info)
1207{
1208        struct driver_data *drv_data =
1209                spi_controller_get_devdata(spi->controller);
1210        struct gpio_desc *gpiod;
1211        int err = 0;
1212
1213        if (chip == NULL)
1214                return 0;
1215
1216        if (drv_data->cs_gpiods) {
1217                gpiod = drv_data->cs_gpiods[spi->chip_select];
1218                if (gpiod) {
1219                        chip->gpiod_cs = gpiod;
1220                        chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1221                        gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1222                }
1223
1224                return 0;
1225        }
1226
1227        if (chip_info == NULL)
1228                return 0;
1229
1230        /* NOTE: setup() can be called multiple times, possibly with
1231         * different chip_info, release previously requested GPIO
1232         */
1233        if (chip->gpiod_cs) {
1234                gpiod_put(chip->gpiod_cs);
1235                chip->gpiod_cs = NULL;
1236        }
1237
1238        /* If (*cs_control) is provided, ignore GPIO chip select */
1239        if (chip_info->cs_control) {
1240                chip->cs_control = chip_info->cs_control;
1241                return 0;
1242        }
1243
1244        if (gpio_is_valid(chip_info->gpio_cs)) {
1245                err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1246                if (err) {
1247                        dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1248                                chip_info->gpio_cs);
1249                        return err;
1250                }
1251
1252                gpiod = gpio_to_desc(chip_info->gpio_cs);
1253                chip->gpiod_cs = gpiod;
1254                chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1255
1256                err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1257        }
1258
1259        return err;
1260}
1261
1262static int setup(struct spi_device *spi)
1263{
1264        struct pxa2xx_spi_chip *chip_info;
1265        struct chip_data *chip;
1266        const struct lpss_config *config;
1267        struct driver_data *drv_data =
1268                spi_controller_get_devdata(spi->controller);
1269        uint tx_thres, tx_hi_thres, rx_thres;
1270
1271        switch (drv_data->ssp_type) {
1272        case QUARK_X1000_SSP:
1273                tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1274                tx_hi_thres = 0;
1275                rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1276                break;
1277        case CE4100_SSP:
1278                tx_thres = TX_THRESH_CE4100_DFLT;
1279                tx_hi_thres = 0;
1280                rx_thres = RX_THRESH_CE4100_DFLT;
1281                break;
1282        case LPSS_LPT_SSP:
1283        case LPSS_BYT_SSP:
1284        case LPSS_BSW_SSP:
1285        case LPSS_SPT_SSP:
1286        case LPSS_BXT_SSP:
1287        case LPSS_CNL_SSP:
1288                config = lpss_get_config(drv_data);
1289                tx_thres = config->tx_threshold_lo;
1290                tx_hi_thres = config->tx_threshold_hi;
1291                rx_thres = config->rx_threshold;
1292                break;
1293        default:
1294                tx_hi_thres = 0;
1295                if (spi_controller_is_slave(drv_data->controller)) {
1296                        tx_thres = 1;
1297                        rx_thres = 2;
1298                } else {
1299                        tx_thres = TX_THRESH_DFLT;
1300                        rx_thres = RX_THRESH_DFLT;
1301                }
1302                break;
1303        }
1304
1305        /* Only alloc on first setup */
1306        chip = spi_get_ctldata(spi);
1307        if (!chip) {
1308                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1309                if (!chip)
1310                        return -ENOMEM;
1311
1312                if (drv_data->ssp_type == CE4100_SSP) {
1313                        if (spi->chip_select > 4) {
1314                                dev_err(&spi->dev,
1315                                        "failed setup: cs number must not be > 4.\n");
1316                                kfree(chip);
1317                                return -EINVAL;
1318                        }
1319
1320                        chip->frm = spi->chip_select;
1321                }
1322                chip->enable_dma = drv_data->controller_info->enable_dma;
1323                chip->timeout = TIMOUT_DFLT;
1324        }
1325
1326        /* protocol drivers may change the chip settings, so...
1327         * if chip_info exists, use it */
1328        chip_info = spi->controller_data;
1329
1330        /* chip_info isn't always needed */
1331        chip->cr1 = 0;
1332        if (chip_info) {
1333                if (chip_info->timeout)
1334                        chip->timeout = chip_info->timeout;
1335                if (chip_info->tx_threshold)
1336                        tx_thres = chip_info->tx_threshold;
1337                if (chip_info->tx_hi_threshold)
1338                        tx_hi_thres = chip_info->tx_hi_threshold;
1339                if (chip_info->rx_threshold)
1340                        rx_thres = chip_info->rx_threshold;
1341                chip->dma_threshold = 0;
1342                if (chip_info->enable_loopback)
1343                        chip->cr1 = SSCR1_LBM;
1344        }
1345        if (spi_controller_is_slave(drv_data->controller)) {
1346                chip->cr1 |= SSCR1_SCFR;
1347                chip->cr1 |= SSCR1_SCLKDIR;
1348                chip->cr1 |= SSCR1_SFRMDIR;
1349                chip->cr1 |= SSCR1_SPH;
1350        }
1351
1352        chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1353        chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1354                                | SSITF_TxHiThresh(tx_hi_thres);
1355
1356        /* set dma burst and threshold outside of chip_info path so that if
1357         * chip_info goes away after setting chip->enable_dma, the
1358         * burst and threshold can still respond to changes in bits_per_word */
1359        if (chip->enable_dma) {
1360                /* set up legal burst and threshold for dma */
1361                if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1362                                                spi->bits_per_word,
1363                                                &chip->dma_burst_size,
1364                                                &chip->dma_threshold)) {
1365                        dev_warn(&spi->dev,
1366                                 "in setup: DMA burst size reduced to match bits_per_word\n");
1367                }
1368                dev_dbg(&spi->dev,
1369                        "in setup: DMA burst size set to %u\n",
1370                        chip->dma_burst_size);
1371        }
1372
1373        switch (drv_data->ssp_type) {
1374        case QUARK_X1000_SSP:
1375                chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1376                                   & QUARK_X1000_SSCR1_RFT)
1377                                   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1378                                   & QUARK_X1000_SSCR1_TFT);
1379                break;
1380        case CE4100_SSP:
1381                chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1382                        (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1383                break;
1384        default:
1385                chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1386                        (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1387                break;
1388        }
1389
1390        chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1391        chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1392                        | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1393
1394        if (spi->mode & SPI_LOOP)
1395                chip->cr1 |= SSCR1_LBM;
1396
1397        if (spi->bits_per_word <= 8) {
1398                chip->n_bytes = 1;
1399                chip->read = u8_reader;
1400                chip->write = u8_writer;
1401        } else if (spi->bits_per_word <= 16) {
1402                chip->n_bytes = 2;
1403                chip->read = u16_reader;
1404                chip->write = u16_writer;
1405        } else if (spi->bits_per_word <= 32) {
1406                chip->n_bytes = 4;
1407                chip->read = u32_reader;
1408                chip->write = u32_writer;
1409        }
1410
1411        spi_set_ctldata(spi, chip);
1412
1413        if (drv_data->ssp_type == CE4100_SSP)
1414                return 0;
1415
1416        return setup_cs(spi, chip, chip_info);
1417}
1418
1419static void cleanup(struct spi_device *spi)
1420{
1421        struct chip_data *chip = spi_get_ctldata(spi);
1422        struct driver_data *drv_data =
1423                spi_controller_get_devdata(spi->controller);
1424
1425        if (!chip)
1426                return;
1427
1428        if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1429            chip->gpiod_cs)
1430                gpiod_put(chip->gpiod_cs);
1431
1432        kfree(chip);
1433}
1434
1435#ifdef CONFIG_ACPI
1436static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1437        { "INT33C0", LPSS_LPT_SSP },
1438        { "INT33C1", LPSS_LPT_SSP },
1439        { "INT3430", LPSS_LPT_SSP },
1440        { "INT3431", LPSS_LPT_SSP },
1441        { "80860F0E", LPSS_BYT_SSP },
1442        { "8086228E", LPSS_BSW_SSP },
1443        { },
1444};
1445MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1446#endif
1447
1448/*
1449 * PCI IDs of compound devices that integrate both host controller and private
1450 * integrated DMA engine. Please note these are not used in module
1451 * autoloading and probing in this module but matching the LPSS SSP type.
1452 */
1453static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1454        /* SPT-LP */
1455        { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1456        { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1457        /* SPT-H */
1458        { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1459        { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1460        /* KBL-H */
1461        { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1462        { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1463        /* CML-V */
1464        { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1465        { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1466        /* BXT A-Step */
1467        { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1468        { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1469        { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1470        /* BXT B-Step */
1471        { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1472        { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1473        { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1474        /* GLK */
1475        { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1476        { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1477        { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1478        /* ICL-LP */
1479        { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1480        { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1481        { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1482        /* EHL */
1483        { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1484        { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1485        { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1486        /* JSL */
1487        { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1488        { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1489        { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1490        /* TGL-H */
1491        { PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1492        { PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1493        { PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1494        { PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1495        /* APL */
1496        { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1497        { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1498        { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1499        /* CNL-LP */
1500        { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1501        { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1502        { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1503        /* CNL-H */
1504        { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1505        { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1506        { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1507        /* CML-LP */
1508        { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1509        { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1510        { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1511        /* CML-H */
1512        { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1513        { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1514        { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1515        /* TGL-LP */
1516        { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1517        { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1518        { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1519        { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1520        { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1521        { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1522        { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1523        { },
1524};
1525
1526static const struct of_device_id pxa2xx_spi_of_match[] = {
1527        { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1528        {},
1529};
1530MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1531
1532#ifdef CONFIG_ACPI
1533
1534static int pxa2xx_spi_get_port_id(struct device *dev)
1535{
1536        struct acpi_device *adev;
1537        unsigned int devid;
1538        int port_id = -1;
1539
1540        adev = ACPI_COMPANION(dev);
1541        if (adev && adev->pnp.unique_id &&
1542            !kstrtouint(adev->pnp.unique_id, 0, &devid))
1543                port_id = devid;
1544        return port_id;
1545}
1546
1547#else /* !CONFIG_ACPI */
1548
1549static int pxa2xx_spi_get_port_id(struct device *dev)
1550{
1551        return -1;
1552}
1553
1554#endif /* CONFIG_ACPI */
1555
1556
1557#ifdef CONFIG_PCI
1558
1559static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1560{
1561        return param == chan->device->dev;
1562}
1563
1564#endif /* CONFIG_PCI */
1565
1566static struct pxa2xx_spi_controller *
1567pxa2xx_spi_init_pdata(struct platform_device *pdev)
1568{
1569        struct pxa2xx_spi_controller *pdata;
1570        struct ssp_device *ssp;
1571        struct resource *res;
1572        struct device *parent = pdev->dev.parent;
1573        struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1574        const struct pci_device_id *pcidev_id = NULL;
1575        enum pxa_ssp_type type;
1576        const void *match;
1577
1578        if (pcidev)
1579                pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1580
1581        match = device_get_match_data(&pdev->dev);
1582        if (match)
1583                type = (enum pxa_ssp_type)match;
1584        else if (pcidev_id)
1585                type = (enum pxa_ssp_type)pcidev_id->driver_data;
1586        else
1587                return ERR_PTR(-EINVAL);
1588
1589        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1590        if (!pdata)
1591                return ERR_PTR(-ENOMEM);
1592
1593        ssp = &pdata->ssp;
1594
1595        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1596        ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1597        if (IS_ERR(ssp->mmio_base))
1598                return ERR_CAST(ssp->mmio_base);
1599
1600        ssp->phys_base = res->start;
1601
1602#ifdef CONFIG_PCI
1603        if (pcidev_id) {
1604                pdata->tx_param = parent;
1605                pdata->rx_param = parent;
1606                pdata->dma_filter = pxa2xx_spi_idma_filter;
1607        }
1608#endif
1609
1610        ssp->clk = devm_clk_get(&pdev->dev, NULL);
1611        if (IS_ERR(ssp->clk))
1612                return ERR_CAST(ssp->clk);
1613
1614        ssp->irq = platform_get_irq(pdev, 0);
1615        if (ssp->irq < 0)
1616                return ERR_PTR(ssp->irq);
1617
1618        ssp->type = type;
1619        ssp->dev = &pdev->dev;
1620        ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1621
1622        pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1623        pdata->num_chipselect = 1;
1624        pdata->enable_dma = true;
1625        pdata->dma_burst_size = 1;
1626
1627        return pdata;
1628}
1629
1630static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1631                                      unsigned int cs)
1632{
1633        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1634
1635        if (has_acpi_companion(&drv_data->pdev->dev)) {
1636                switch (drv_data->ssp_type) {
1637                /*
1638                 * For Atoms the ACPI DeviceSelection used by the Windows
1639                 * driver starts from 1 instead of 0 so translate it here
1640                 * to match what Linux expects.
1641                 */
1642                case LPSS_BYT_SSP:
1643                case LPSS_BSW_SSP:
1644                        return cs - 1;
1645
1646                default:
1647                        break;
1648                }
1649        }
1650
1651        return cs;
1652}
1653
1654static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1655{
1656        return MAX_DMA_LEN;
1657}
1658
1659static int pxa2xx_spi_probe(struct platform_device *pdev)
1660{
1661        struct device *dev = &pdev->dev;
1662        struct pxa2xx_spi_controller *platform_info;
1663        struct spi_controller *controller;
1664        struct driver_data *drv_data;
1665        struct ssp_device *ssp;
1666        const struct lpss_config *config;
1667        int status, count;
1668        u32 tmp;
1669
1670        platform_info = dev_get_platdata(dev);
1671        if (!platform_info) {
1672                platform_info = pxa2xx_spi_init_pdata(pdev);
1673                if (IS_ERR(platform_info)) {
1674                        dev_err(&pdev->dev, "missing platform data\n");
1675                        return PTR_ERR(platform_info);
1676                }
1677        }
1678
1679        ssp = pxa_ssp_request(pdev->id, pdev->name);
1680        if (!ssp)
1681                ssp = &platform_info->ssp;
1682
1683        if (!ssp->mmio_base) {
1684                dev_err(&pdev->dev, "failed to get ssp\n");
1685                return -ENODEV;
1686        }
1687
1688        if (platform_info->is_slave)
1689                controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1690        else
1691                controller = spi_alloc_master(dev, sizeof(struct driver_data));
1692
1693        if (!controller) {
1694                dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1695                pxa_ssp_free(ssp);
1696                return -ENOMEM;
1697        }
1698        drv_data = spi_controller_get_devdata(controller);
1699        drv_data->controller = controller;
1700        drv_data->controller_info = platform_info;
1701        drv_data->pdev = pdev;
1702        drv_data->ssp = ssp;
1703
1704        controller->dev.of_node = pdev->dev.of_node;
1705        /* the spi->mode bits understood by this driver: */
1706        controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1707
1708        controller->bus_num = ssp->port_id;
1709        controller->dma_alignment = DMA_ALIGNMENT;
1710        controller->cleanup = cleanup;
1711        controller->setup = setup;
1712        controller->set_cs = pxa2xx_spi_set_cs;
1713        controller->transfer_one = pxa2xx_spi_transfer_one;
1714        controller->slave_abort = pxa2xx_spi_slave_abort;
1715        controller->handle_err = pxa2xx_spi_handle_err;
1716        controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1717        controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1718        controller->auto_runtime_pm = true;
1719        controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1720
1721        drv_data->ssp_type = ssp->type;
1722
1723        drv_data->ioaddr = ssp->mmio_base;
1724        drv_data->ssdr_physical = ssp->phys_base + SSDR;
1725        if (pxa25x_ssp_comp(drv_data)) {
1726                switch (drv_data->ssp_type) {
1727                case QUARK_X1000_SSP:
1728                        controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1729                        break;
1730                default:
1731                        controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1732                        break;
1733                }
1734
1735                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1736                drv_data->dma_cr1 = 0;
1737                drv_data->clear_sr = SSSR_ROR;
1738                drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1739        } else {
1740                controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1741                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1742                drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1743                drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1744                drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1745                                                | SSSR_ROR | SSSR_TUR;
1746        }
1747
1748        status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1749                        drv_data);
1750        if (status < 0) {
1751                dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1752                goto out_error_controller_alloc;
1753        }
1754
1755        /* Setup DMA if requested */
1756        if (platform_info->enable_dma) {
1757                status = pxa2xx_spi_dma_setup(drv_data);
1758                if (status) {
1759                        dev_warn(dev, "no DMA channels available, using PIO\n");
1760                        platform_info->enable_dma = false;
1761                } else {
1762                        controller->can_dma = pxa2xx_spi_can_dma;
1763                        controller->max_dma_len = MAX_DMA_LEN;
1764                        controller->max_transfer_size =
1765                                pxa2xx_spi_max_dma_transfer_size;
1766                }
1767        }
1768
1769        /* Enable SOC clock */
1770        status = clk_prepare_enable(ssp->clk);
1771        if (status)
1772                goto out_error_dma_irq_alloc;
1773
1774        controller->max_speed_hz = clk_get_rate(ssp->clk);
1775        /*
1776         * Set minimum speed for all other platforms than Intel Quark which is
1777         * able do under 1 Hz transfers.
1778         */
1779        if (!pxa25x_ssp_comp(drv_data))
1780                controller->min_speed_hz =
1781                        DIV_ROUND_UP(controller->max_speed_hz, 4096);
1782        else if (!is_quark_x1000_ssp(drv_data))
1783                controller->min_speed_hz =
1784                        DIV_ROUND_UP(controller->max_speed_hz, 512);
1785
1786        /* Load default SSP configuration */
1787        pxa2xx_spi_write(drv_data, SSCR0, 0);
1788        switch (drv_data->ssp_type) {
1789        case QUARK_X1000_SSP:
1790                tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1791                      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1792                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1793
1794                /* using the Motorola SPI protocol and use 8 bit frame */
1795                tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1796                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1797                break;
1798        case CE4100_SSP:
1799                tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1800                      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1801                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1802                tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1803                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1804                break;
1805        default:
1806
1807                if (spi_controller_is_slave(controller)) {
1808                        tmp = SSCR1_SCFR |
1809                              SSCR1_SCLKDIR |
1810                              SSCR1_SFRMDIR |
1811                              SSCR1_RxTresh(2) |
1812                              SSCR1_TxTresh(1) |
1813                              SSCR1_SPH;
1814                } else {
1815                        tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1816                              SSCR1_TxTresh(TX_THRESH_DFLT);
1817                }
1818                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1819                tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1820                if (!spi_controller_is_slave(controller))
1821                        tmp |= SSCR0_SCR(2);
1822                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1823                break;
1824        }
1825
1826        if (!pxa25x_ssp_comp(drv_data))
1827                pxa2xx_spi_write(drv_data, SSTO, 0);
1828
1829        if (!is_quark_x1000_ssp(drv_data))
1830                pxa2xx_spi_write(drv_data, SSPSP, 0);
1831
1832        if (is_lpss_ssp(drv_data)) {
1833                lpss_ssp_setup(drv_data);
1834                config = lpss_get_config(drv_data);
1835                if (config->reg_capabilities >= 0) {
1836                        tmp = __lpss_ssp_read_priv(drv_data,
1837                                                   config->reg_capabilities);
1838                        tmp &= LPSS_CAPS_CS_EN_MASK;
1839                        tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1840                        platform_info->num_chipselect = ffz(tmp);
1841                } else if (config->cs_num) {
1842                        platform_info->num_chipselect = config->cs_num;
1843                }
1844        }
1845        controller->num_chipselect = platform_info->num_chipselect;
1846
1847        count = gpiod_count(&pdev->dev, "cs");
1848        if (count > 0) {
1849                int i;
1850
1851                controller->num_chipselect = max_t(int, count,
1852                        controller->num_chipselect);
1853
1854                drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1855                        controller->num_chipselect, sizeof(struct gpio_desc *),
1856                        GFP_KERNEL);
1857                if (!drv_data->cs_gpiods) {
1858                        status = -ENOMEM;
1859                        goto out_error_clock_enabled;
1860                }
1861
1862                for (i = 0; i < controller->num_chipselect; i++) {
1863                        struct gpio_desc *gpiod;
1864
1865                        gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1866                        if (IS_ERR(gpiod)) {
1867                                /* Means use native chip select */
1868                                if (PTR_ERR(gpiod) == -ENOENT)
1869                                        continue;
1870
1871                                status = PTR_ERR(gpiod);
1872                                goto out_error_clock_enabled;
1873                        } else {
1874                                drv_data->cs_gpiods[i] = gpiod;
1875                        }
1876                }
1877        }
1878
1879        if (platform_info->is_slave) {
1880                drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1881                                                "ready", GPIOD_OUT_LOW);
1882                if (IS_ERR(drv_data->gpiod_ready)) {
1883                        status = PTR_ERR(drv_data->gpiod_ready);
1884                        goto out_error_clock_enabled;
1885                }
1886        }
1887
1888        pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1889        pm_runtime_use_autosuspend(&pdev->dev);
1890        pm_runtime_set_active(&pdev->dev);
1891        pm_runtime_enable(&pdev->dev);
1892
1893        /* Register with the SPI framework */
1894        platform_set_drvdata(pdev, drv_data);
1895        status = spi_register_controller(controller);
1896        if (status != 0) {
1897                dev_err(&pdev->dev, "problem registering spi controller\n");
1898                goto out_error_pm_runtime_enabled;
1899        }
1900
1901        return status;
1902
1903out_error_pm_runtime_enabled:
1904        pm_runtime_disable(&pdev->dev);
1905
1906out_error_clock_enabled:
1907        clk_disable_unprepare(ssp->clk);
1908
1909out_error_dma_irq_alloc:
1910        pxa2xx_spi_dma_release(drv_data);
1911        free_irq(ssp->irq, drv_data);
1912
1913out_error_controller_alloc:
1914        spi_controller_put(controller);
1915        pxa_ssp_free(ssp);
1916        return status;
1917}
1918
1919static int pxa2xx_spi_remove(struct platform_device *pdev)
1920{
1921        struct driver_data *drv_data = platform_get_drvdata(pdev);
1922        struct ssp_device *ssp = drv_data->ssp;
1923
1924        pm_runtime_get_sync(&pdev->dev);
1925
1926        spi_unregister_controller(drv_data->controller);
1927
1928        /* Disable the SSP at the peripheral and SOC level */
1929        pxa2xx_spi_write(drv_data, SSCR0, 0);
1930        clk_disable_unprepare(ssp->clk);
1931
1932        /* Release DMA */
1933        if (drv_data->controller_info->enable_dma)
1934                pxa2xx_spi_dma_release(drv_data);
1935
1936        pm_runtime_put_noidle(&pdev->dev);
1937        pm_runtime_disable(&pdev->dev);
1938
1939        /* Release IRQ */
1940        free_irq(ssp->irq, drv_data);
1941
1942        /* Release SSP */
1943        pxa_ssp_free(ssp);
1944
1945        return 0;
1946}
1947
1948#ifdef CONFIG_PM_SLEEP
1949static int pxa2xx_spi_suspend(struct device *dev)
1950{
1951        struct driver_data *drv_data = dev_get_drvdata(dev);
1952        struct ssp_device *ssp = drv_data->ssp;
1953        int status;
1954
1955        status = spi_controller_suspend(drv_data->controller);
1956        if (status != 0)
1957                return status;
1958        pxa2xx_spi_write(drv_data, SSCR0, 0);
1959
1960        if (!pm_runtime_suspended(dev))
1961                clk_disable_unprepare(ssp->clk);
1962
1963        return 0;
1964}
1965
1966static int pxa2xx_spi_resume(struct device *dev)
1967{
1968        struct driver_data *drv_data = dev_get_drvdata(dev);
1969        struct ssp_device *ssp = drv_data->ssp;
1970        int status;
1971
1972        /* Enable the SSP clock */
1973        if (!pm_runtime_suspended(dev)) {
1974                status = clk_prepare_enable(ssp->clk);
1975                if (status)
1976                        return status;
1977        }
1978
1979        /* Start the queue running */
1980        return spi_controller_resume(drv_data->controller);
1981}
1982#endif
1983
1984#ifdef CONFIG_PM
1985static int pxa2xx_spi_runtime_suspend(struct device *dev)
1986{
1987        struct driver_data *drv_data = dev_get_drvdata(dev);
1988
1989        clk_disable_unprepare(drv_data->ssp->clk);
1990        return 0;
1991}
1992
1993static int pxa2xx_spi_runtime_resume(struct device *dev)
1994{
1995        struct driver_data *drv_data = dev_get_drvdata(dev);
1996        int status;
1997
1998        status = clk_prepare_enable(drv_data->ssp->clk);
1999        return status;
2000}
2001#endif
2002
2003static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
2004        SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
2005        SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
2006                           pxa2xx_spi_runtime_resume, NULL)
2007};
2008
2009static struct platform_driver driver = {
2010        .driver = {
2011                .name   = "pxa2xx-spi",
2012                .pm     = &pxa2xx_spi_pm_ops,
2013                .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
2014                .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
2015        },
2016        .probe = pxa2xx_spi_probe,
2017        .remove = pxa2xx_spi_remove,
2018};
2019
2020static int __init pxa2xx_spi_init(void)
2021{
2022        return platform_driver_register(&driver);
2023}
2024subsys_initcall(pxa2xx_spi_init);
2025
2026static void __exit pxa2xx_spi_exit(void)
2027{
2028        platform_driver_unregister(&driver);
2029}
2030module_exit(pxa2xx_spi_exit);
2031
2032MODULE_SOFTDEP("pre: dw_dmac");
2033