linux/drivers/thunderbolt/switch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Thunderbolt driver - switch/port utility functions
   4 *
   5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   6 * Copyright (C) 2018, Intel Corporation
   7 */
   8
   9#include <linux/delay.h>
  10#include <linux/idr.h>
  11#include <linux/nvmem-provider.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/sched/signal.h>
  14#include <linux/sizes.h>
  15#include <linux/slab.h>
  16
  17#include "tb.h"
  18
  19/* Switch NVM support */
  20
  21#define NVM_CSS                 0x10
  22
  23struct nvm_auth_status {
  24        struct list_head list;
  25        uuid_t uuid;
  26        u32 status;
  27};
  28
  29enum nvm_write_ops {
  30        WRITE_AND_AUTHENTICATE = 1,
  31        WRITE_ONLY = 2,
  32};
  33
  34/*
  35 * Hold NVM authentication failure status per switch This information
  36 * needs to stay around even when the switch gets power cycled so we
  37 * keep it separately.
  38 */
  39static LIST_HEAD(nvm_auth_status_cache);
  40static DEFINE_MUTEX(nvm_auth_status_lock);
  41
  42static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
  43{
  44        struct nvm_auth_status *st;
  45
  46        list_for_each_entry(st, &nvm_auth_status_cache, list) {
  47                if (uuid_equal(&st->uuid, sw->uuid))
  48                        return st;
  49        }
  50
  51        return NULL;
  52}
  53
  54static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
  55{
  56        struct nvm_auth_status *st;
  57
  58        mutex_lock(&nvm_auth_status_lock);
  59        st = __nvm_get_auth_status(sw);
  60        mutex_unlock(&nvm_auth_status_lock);
  61
  62        *status = st ? st->status : 0;
  63}
  64
  65static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
  66{
  67        struct nvm_auth_status *st;
  68
  69        if (WARN_ON(!sw->uuid))
  70                return;
  71
  72        mutex_lock(&nvm_auth_status_lock);
  73        st = __nvm_get_auth_status(sw);
  74
  75        if (!st) {
  76                st = kzalloc(sizeof(*st), GFP_KERNEL);
  77                if (!st)
  78                        goto unlock;
  79
  80                memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
  81                INIT_LIST_HEAD(&st->list);
  82                list_add_tail(&st->list, &nvm_auth_status_cache);
  83        }
  84
  85        st->status = status;
  86unlock:
  87        mutex_unlock(&nvm_auth_status_lock);
  88}
  89
  90static void nvm_clear_auth_status(const struct tb_switch *sw)
  91{
  92        struct nvm_auth_status *st;
  93
  94        mutex_lock(&nvm_auth_status_lock);
  95        st = __nvm_get_auth_status(sw);
  96        if (st) {
  97                list_del(&st->list);
  98                kfree(st);
  99        }
 100        mutex_unlock(&nvm_auth_status_lock);
 101}
 102
 103static int nvm_validate_and_write(struct tb_switch *sw)
 104{
 105        unsigned int image_size, hdr_size;
 106        const u8 *buf = sw->nvm->buf;
 107        u16 ds_size;
 108        int ret;
 109
 110        if (!buf)
 111                return -EINVAL;
 112
 113        image_size = sw->nvm->buf_data_size;
 114        if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
 115                return -EINVAL;
 116
 117        /*
 118         * FARB pointer must point inside the image and must at least
 119         * contain parts of the digital section we will be reading here.
 120         */
 121        hdr_size = (*(u32 *)buf) & 0xffffff;
 122        if (hdr_size + NVM_DEVID + 2 >= image_size)
 123                return -EINVAL;
 124
 125        /* Digital section start should be aligned to 4k page */
 126        if (!IS_ALIGNED(hdr_size, SZ_4K))
 127                return -EINVAL;
 128
 129        /*
 130         * Read digital section size and check that it also fits inside
 131         * the image.
 132         */
 133        ds_size = *(u16 *)(buf + hdr_size);
 134        if (ds_size >= image_size)
 135                return -EINVAL;
 136
 137        if (!sw->safe_mode) {
 138                u16 device_id;
 139
 140                /*
 141                 * Make sure the device ID in the image matches the one
 142                 * we read from the switch config space.
 143                 */
 144                device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
 145                if (device_id != sw->config.device_id)
 146                        return -EINVAL;
 147
 148                if (sw->generation < 3) {
 149                        /* Write CSS headers first */
 150                        ret = dma_port_flash_write(sw->dma_port,
 151                                DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
 152                                DMA_PORT_CSS_MAX_SIZE);
 153                        if (ret)
 154                                return ret;
 155                }
 156
 157                /* Skip headers in the image */
 158                buf += hdr_size;
 159                image_size -= hdr_size;
 160        }
 161
 162        if (tb_switch_is_usb4(sw))
 163                ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
 164        else
 165                ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
 166        if (!ret)
 167                sw->nvm->flushed = true;
 168        return ret;
 169}
 170
 171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
 172{
 173        int ret = 0;
 174
 175        /*
 176         * Root switch NVM upgrade requires that we disconnect the
 177         * existing paths first (in case it is not in safe mode
 178         * already).
 179         */
 180        if (!sw->safe_mode) {
 181                u32 status;
 182
 183                ret = tb_domain_disconnect_all_paths(sw->tb);
 184                if (ret)
 185                        return ret;
 186                /*
 187                 * The host controller goes away pretty soon after this if
 188                 * everything goes well so getting timeout is expected.
 189                 */
 190                ret = dma_port_flash_update_auth(sw->dma_port);
 191                if (!ret || ret == -ETIMEDOUT)
 192                        return 0;
 193
 194                /*
 195                 * Any error from update auth operation requires power
 196                 * cycling of the host router.
 197                 */
 198                tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
 199                if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
 200                        nvm_set_auth_status(sw, status);
 201        }
 202
 203        /*
 204         * From safe mode we can get out by just power cycling the
 205         * switch.
 206         */
 207        dma_port_power_cycle(sw->dma_port);
 208        return ret;
 209}
 210
 211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
 212{
 213        int ret, retries = 10;
 214
 215        ret = dma_port_flash_update_auth(sw->dma_port);
 216        switch (ret) {
 217        case 0:
 218        case -ETIMEDOUT:
 219        case -EACCES:
 220        case -EINVAL:
 221                /* Power cycle is required */
 222                break;
 223        default:
 224                return ret;
 225        }
 226
 227        /*
 228         * Poll here for the authentication status. It takes some time
 229         * for the device to respond (we get timeout for a while). Once
 230         * we get response the device needs to be power cycled in order
 231         * to the new NVM to be taken into use.
 232         */
 233        do {
 234                u32 status;
 235
 236                ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
 237                if (ret < 0 && ret != -ETIMEDOUT)
 238                        return ret;
 239                if (ret > 0) {
 240                        if (status) {
 241                                tb_sw_warn(sw, "failed to authenticate NVM\n");
 242                                nvm_set_auth_status(sw, status);
 243                        }
 244
 245                        tb_sw_info(sw, "power cycling the switch now\n");
 246                        dma_port_power_cycle(sw->dma_port);
 247                        return 0;
 248                }
 249
 250                msleep(500);
 251        } while (--retries);
 252
 253        return -ETIMEDOUT;
 254}
 255
 256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
 257{
 258        struct pci_dev *root_port;
 259
 260        /*
 261         * During host router NVM upgrade we should not allow root port to
 262         * go into D3cold because some root ports cannot trigger PME
 263         * itself. To be on the safe side keep the root port in D0 during
 264         * the whole upgrade process.
 265         */
 266        root_port = pcie_find_root_port(sw->tb->nhi->pdev);
 267        if (root_port)
 268                pm_runtime_get_noresume(&root_port->dev);
 269}
 270
 271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
 272{
 273        struct pci_dev *root_port;
 274
 275        root_port = pcie_find_root_port(sw->tb->nhi->pdev);
 276        if (root_port)
 277                pm_runtime_put(&root_port->dev);
 278}
 279
 280static inline bool nvm_readable(struct tb_switch *sw)
 281{
 282        if (tb_switch_is_usb4(sw)) {
 283                /*
 284                 * USB4 devices must support NVM operations but it is
 285                 * optional for hosts. Therefore we query the NVM sector
 286                 * size here and if it is supported assume NVM
 287                 * operations are implemented.
 288                 */
 289                return usb4_switch_nvm_sector_size(sw) > 0;
 290        }
 291
 292        /* Thunderbolt 2 and 3 devices support NVM through DMA port */
 293        return !!sw->dma_port;
 294}
 295
 296static inline bool nvm_upgradeable(struct tb_switch *sw)
 297{
 298        if (sw->no_nvm_upgrade)
 299                return false;
 300        return nvm_readable(sw);
 301}
 302
 303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
 304                           void *buf, size_t size)
 305{
 306        if (tb_switch_is_usb4(sw))
 307                return usb4_switch_nvm_read(sw, address, buf, size);
 308        return dma_port_flash_read(sw->dma_port, address, buf, size);
 309}
 310
 311static int nvm_authenticate(struct tb_switch *sw)
 312{
 313        int ret;
 314
 315        if (tb_switch_is_usb4(sw))
 316                return usb4_switch_nvm_authenticate(sw);
 317
 318        if (!tb_route(sw)) {
 319                nvm_authenticate_start_dma_port(sw);
 320                ret = nvm_authenticate_host_dma_port(sw);
 321        } else {
 322                ret = nvm_authenticate_device_dma_port(sw);
 323        }
 324
 325        return ret;
 326}
 327
 328static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
 329                              size_t bytes)
 330{
 331        struct tb_nvm *nvm = priv;
 332        struct tb_switch *sw = tb_to_switch(nvm->dev);
 333        int ret;
 334
 335        pm_runtime_get_sync(&sw->dev);
 336
 337        if (!mutex_trylock(&sw->tb->lock)) {
 338                ret = restart_syscall();
 339                goto out;
 340        }
 341
 342        ret = nvm_read(sw, offset, val, bytes);
 343        mutex_unlock(&sw->tb->lock);
 344
 345out:
 346        pm_runtime_mark_last_busy(&sw->dev);
 347        pm_runtime_put_autosuspend(&sw->dev);
 348
 349        return ret;
 350}
 351
 352static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
 353                               size_t bytes)
 354{
 355        struct tb_nvm *nvm = priv;
 356        struct tb_switch *sw = tb_to_switch(nvm->dev);
 357        int ret;
 358
 359        if (!mutex_trylock(&sw->tb->lock))
 360                return restart_syscall();
 361
 362        /*
 363         * Since writing the NVM image might require some special steps,
 364         * for example when CSS headers are written, we cache the image
 365         * locally here and handle the special cases when the user asks
 366         * us to authenticate the image.
 367         */
 368        ret = tb_nvm_write_buf(nvm, offset, val, bytes);
 369        mutex_unlock(&sw->tb->lock);
 370
 371        return ret;
 372}
 373
 374static int tb_switch_nvm_add(struct tb_switch *sw)
 375{
 376        struct tb_nvm *nvm;
 377        u32 val;
 378        int ret;
 379
 380        if (!nvm_readable(sw))
 381                return 0;
 382
 383        /*
 384         * The NVM format of non-Intel hardware is not known so
 385         * currently restrict NVM upgrade for Intel hardware. We may
 386         * relax this in the future when we learn other NVM formats.
 387         */
 388        if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
 389            sw->config.vendor_id != 0x8087) {
 390                dev_info(&sw->dev,
 391                         "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
 392                         sw->config.vendor_id);
 393                return 0;
 394        }
 395
 396        nvm = tb_nvm_alloc(&sw->dev);
 397        if (IS_ERR(nvm))
 398                return PTR_ERR(nvm);
 399
 400        /*
 401         * If the switch is in safe-mode the only accessible portion of
 402         * the NVM is the non-active one where userspace is expected to
 403         * write new functional NVM.
 404         */
 405        if (!sw->safe_mode) {
 406                u32 nvm_size, hdr_size;
 407
 408                ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
 409                if (ret)
 410                        goto err_nvm;
 411
 412                hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
 413                nvm_size = (SZ_1M << (val & 7)) / 8;
 414                nvm_size = (nvm_size - hdr_size) / 2;
 415
 416                ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
 417                if (ret)
 418                        goto err_nvm;
 419
 420                nvm->major = val >> 16;
 421                nvm->minor = val >> 8;
 422
 423                ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
 424                if (ret)
 425                        goto err_nvm;
 426        }
 427
 428        if (!sw->no_nvm_upgrade) {
 429                ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
 430                                            tb_switch_nvm_write);
 431                if (ret)
 432                        goto err_nvm;
 433        }
 434
 435        sw->nvm = nvm;
 436        return 0;
 437
 438err_nvm:
 439        tb_nvm_free(nvm);
 440        return ret;
 441}
 442
 443static void tb_switch_nvm_remove(struct tb_switch *sw)
 444{
 445        struct tb_nvm *nvm;
 446
 447        nvm = sw->nvm;
 448        sw->nvm = NULL;
 449
 450        if (!nvm)
 451                return;
 452
 453        /* Remove authentication status in case the switch is unplugged */
 454        if (!nvm->authenticating)
 455                nvm_clear_auth_status(sw);
 456
 457        tb_nvm_free(nvm);
 458}
 459
 460/* port utility functions */
 461
 462static const char *tb_port_type(struct tb_regs_port_header *port)
 463{
 464        switch (port->type >> 16) {
 465        case 0:
 466                switch ((u8) port->type) {
 467                case 0:
 468                        return "Inactive";
 469                case 1:
 470                        return "Port";
 471                case 2:
 472                        return "NHI";
 473                default:
 474                        return "unknown";
 475                }
 476        case 0x2:
 477                return "Ethernet";
 478        case 0x8:
 479                return "SATA";
 480        case 0xe:
 481                return "DP/HDMI";
 482        case 0x10:
 483                return "PCIe";
 484        case 0x20:
 485                return "USB";
 486        default:
 487                return "unknown";
 488        }
 489}
 490
 491static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
 492{
 493        tb_dbg(tb,
 494               " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
 495               port->port_number, port->vendor_id, port->device_id,
 496               port->revision, port->thunderbolt_version, tb_port_type(port),
 497               port->type);
 498        tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
 499               port->max_in_hop_id, port->max_out_hop_id);
 500        tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
 501        tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
 502}
 503
 504/**
 505 * tb_port_state() - get connectedness state of a port
 506 *
 507 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
 508 *
 509 * Return: Returns an enum tb_port_state on success or an error code on failure.
 510 */
 511static int tb_port_state(struct tb_port *port)
 512{
 513        struct tb_cap_phy phy;
 514        int res;
 515        if (port->cap_phy == 0) {
 516                tb_port_WARN(port, "does not have a PHY\n");
 517                return -EINVAL;
 518        }
 519        res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
 520        if (res)
 521                return res;
 522        return phy.state;
 523}
 524
 525/**
 526 * tb_wait_for_port() - wait for a port to become ready
 527 *
 528 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
 529 * wait_if_unplugged is set then we also wait if the port is in state
 530 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
 531 * switch resume). Otherwise we only wait if a device is registered but the link
 532 * has not yet been established.
 533 *
 534 * Return: Returns an error code on failure. Returns 0 if the port is not
 535 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
 536 * if the port is connected and in state TB_PORT_UP.
 537 */
 538int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
 539{
 540        int retries = 10;
 541        int state;
 542        if (!port->cap_phy) {
 543                tb_port_WARN(port, "does not have PHY\n");
 544                return -EINVAL;
 545        }
 546        if (tb_is_upstream_port(port)) {
 547                tb_port_WARN(port, "is the upstream port\n");
 548                return -EINVAL;
 549        }
 550
 551        while (retries--) {
 552                state = tb_port_state(port);
 553                if (state < 0)
 554                        return state;
 555                if (state == TB_PORT_DISABLED) {
 556                        tb_port_dbg(port, "is disabled (state: 0)\n");
 557                        return 0;
 558                }
 559                if (state == TB_PORT_UNPLUGGED) {
 560                        if (wait_if_unplugged) {
 561                                /* used during resume */
 562                                tb_port_dbg(port,
 563                                            "is unplugged (state: 7), retrying...\n");
 564                                msleep(100);
 565                                continue;
 566                        }
 567                        tb_port_dbg(port, "is unplugged (state: 7)\n");
 568                        return 0;
 569                }
 570                if (state == TB_PORT_UP) {
 571                        tb_port_dbg(port, "is connected, link is up (state: 2)\n");
 572                        return 1;
 573                }
 574
 575                /*
 576                 * After plug-in the state is TB_PORT_CONNECTING. Give it some
 577                 * time.
 578                 */
 579                tb_port_dbg(port,
 580                            "is connected, link is not up (state: %d), retrying...\n",
 581                            state);
 582                msleep(100);
 583        }
 584        tb_port_warn(port,
 585                     "failed to reach state TB_PORT_UP. Ignoring port...\n");
 586        return 0;
 587}
 588
 589/**
 590 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
 591 *
 592 * Change the number of NFC credits allocated to @port by @credits. To remove
 593 * NFC credits pass a negative amount of credits.
 594 *
 595 * Return: Returns 0 on success or an error code on failure.
 596 */
 597int tb_port_add_nfc_credits(struct tb_port *port, int credits)
 598{
 599        u32 nfc_credits;
 600
 601        if (credits == 0 || port->sw->is_unplugged)
 602                return 0;
 603
 604        /*
 605         * USB4 restricts programming NFC buffers to lane adapters only
 606         * so skip other ports.
 607         */
 608        if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
 609                return 0;
 610
 611        nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
 612        nfc_credits += credits;
 613
 614        tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
 615                    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
 616
 617        port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
 618        port->config.nfc_credits |= nfc_credits;
 619
 620        return tb_port_write(port, &port->config.nfc_credits,
 621                             TB_CFG_PORT, ADP_CS_4, 1);
 622}
 623
 624/**
 625 * tb_port_set_initial_credits() - Set initial port link credits allocated
 626 * @port: Port to set the initial credits
 627 * @credits: Number of credits to to allocate
 628 *
 629 * Set initial credits value to be used for ingress shared buffering.
 630 */
 631int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
 632{
 633        u32 data;
 634        int ret;
 635
 636        ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
 637        if (ret)
 638                return ret;
 639
 640        data &= ~ADP_CS_5_LCA_MASK;
 641        data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
 642
 643        return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
 644}
 645
 646/**
 647 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
 648 *
 649 * Return: Returns 0 on success or an error code on failure.
 650 */
 651int tb_port_clear_counter(struct tb_port *port, int counter)
 652{
 653        u32 zero[3] = { 0, 0, 0 };
 654        tb_port_dbg(port, "clearing counter %d\n", counter);
 655        return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
 656}
 657
 658/**
 659 * tb_port_unlock() - Unlock downstream port
 660 * @port: Port to unlock
 661 *
 662 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
 663 * downstream router accessible for CM.
 664 */
 665int tb_port_unlock(struct tb_port *port)
 666{
 667        if (tb_switch_is_icm(port->sw))
 668                return 0;
 669        if (!tb_port_is_null(port))
 670                return -EINVAL;
 671        if (tb_switch_is_usb4(port->sw))
 672                return usb4_port_unlock(port);
 673        return 0;
 674}
 675
 676static int __tb_port_enable(struct tb_port *port, bool enable)
 677{
 678        int ret;
 679        u32 phy;
 680
 681        if (!tb_port_is_null(port))
 682                return -EINVAL;
 683
 684        ret = tb_port_read(port, &phy, TB_CFG_PORT,
 685                           port->cap_phy + LANE_ADP_CS_1, 1);
 686        if (ret)
 687                return ret;
 688
 689        if (enable)
 690                phy &= ~LANE_ADP_CS_1_LD;
 691        else
 692                phy |= LANE_ADP_CS_1_LD;
 693
 694        return tb_port_write(port, &phy, TB_CFG_PORT,
 695                             port->cap_phy + LANE_ADP_CS_1, 1);
 696}
 697
 698/**
 699 * tb_port_enable() - Enable lane adapter
 700 * @port: Port to enable (can be %NULL)
 701 *
 702 * This is used for lane 0 and 1 adapters to enable it.
 703 */
 704int tb_port_enable(struct tb_port *port)
 705{
 706        return __tb_port_enable(port, true);
 707}
 708
 709/**
 710 * tb_port_disable() - Disable lane adapter
 711 * @port: Port to disable (can be %NULL)
 712 *
 713 * This is used for lane 0 and 1 adapters to disable it.
 714 */
 715int tb_port_disable(struct tb_port *port)
 716{
 717        return __tb_port_enable(port, false);
 718}
 719
 720/**
 721 * tb_init_port() - initialize a port
 722 *
 723 * This is a helper method for tb_switch_alloc. Does not check or initialize
 724 * any downstream switches.
 725 *
 726 * Return: Returns 0 on success or an error code on failure.
 727 */
 728static int tb_init_port(struct tb_port *port)
 729{
 730        int res;
 731        int cap;
 732
 733        res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
 734        if (res) {
 735                if (res == -ENODEV) {
 736                        tb_dbg(port->sw->tb, " Port %d: not implemented\n",
 737                               port->port);
 738                        port->disabled = true;
 739                        return 0;
 740                }
 741                return res;
 742        }
 743
 744        /* Port 0 is the switch itself and has no PHY. */
 745        if (port->config.type == TB_TYPE_PORT && port->port != 0) {
 746                cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
 747
 748                if (cap > 0)
 749                        port->cap_phy = cap;
 750                else
 751                        tb_port_WARN(port, "non switch port without a PHY\n");
 752
 753                cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
 754                if (cap > 0)
 755                        port->cap_usb4 = cap;
 756        } else if (port->port != 0) {
 757                cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
 758                if (cap > 0)
 759                        port->cap_adap = cap;
 760        }
 761
 762        tb_dump_port(port->sw->tb, &port->config);
 763
 764        /* Control port does not need HopID allocation */
 765        if (port->port) {
 766                ida_init(&port->in_hopids);
 767                ida_init(&port->out_hopids);
 768        }
 769
 770        INIT_LIST_HEAD(&port->list);
 771        return 0;
 772
 773}
 774
 775static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
 776                               int max_hopid)
 777{
 778        int port_max_hopid;
 779        struct ida *ida;
 780
 781        if (in) {
 782                port_max_hopid = port->config.max_in_hop_id;
 783                ida = &port->in_hopids;
 784        } else {
 785                port_max_hopid = port->config.max_out_hop_id;
 786                ida = &port->out_hopids;
 787        }
 788
 789        /*
 790         * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
 791         * reserved.
 792         */
 793        if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
 794                min_hopid = TB_PATH_MIN_HOPID;
 795
 796        if (max_hopid < 0 || max_hopid > port_max_hopid)
 797                max_hopid = port_max_hopid;
 798
 799        return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
 800}
 801
 802/**
 803 * tb_port_alloc_in_hopid() - Allocate input HopID from port
 804 * @port: Port to allocate HopID for
 805 * @min_hopid: Minimum acceptable input HopID
 806 * @max_hopid: Maximum acceptable input HopID
 807 *
 808 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 809 * case of error.
 810 */
 811int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 812{
 813        return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
 814}
 815
 816/**
 817 * tb_port_alloc_out_hopid() - Allocate output HopID from port
 818 * @port: Port to allocate HopID for
 819 * @min_hopid: Minimum acceptable output HopID
 820 * @max_hopid: Maximum acceptable output HopID
 821 *
 822 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 823 * case of error.
 824 */
 825int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 826{
 827        return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
 828}
 829
 830/**
 831 * tb_port_release_in_hopid() - Release allocated input HopID from port
 832 * @port: Port whose HopID to release
 833 * @hopid: HopID to release
 834 */
 835void tb_port_release_in_hopid(struct tb_port *port, int hopid)
 836{
 837        ida_simple_remove(&port->in_hopids, hopid);
 838}
 839
 840/**
 841 * tb_port_release_out_hopid() - Release allocated output HopID from port
 842 * @port: Port whose HopID to release
 843 * @hopid: HopID to release
 844 */
 845void tb_port_release_out_hopid(struct tb_port *port, int hopid)
 846{
 847        ida_simple_remove(&port->out_hopids, hopid);
 848}
 849
 850static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
 851                                          const struct tb_switch *sw)
 852{
 853        u64 mask = (1ULL << parent->config.depth * 8) - 1;
 854        return (tb_route(parent) & mask) == (tb_route(sw) & mask);
 855}
 856
 857/**
 858 * tb_next_port_on_path() - Return next port for given port on a path
 859 * @start: Start port of the walk
 860 * @end: End port of the walk
 861 * @prev: Previous port (%NULL if this is the first)
 862 *
 863 * This function can be used to walk from one port to another if they
 864 * are connected through zero or more switches. If the @prev is dual
 865 * link port, the function follows that link and returns another end on
 866 * that same link.
 867 *
 868 * If the @end port has been reached, return %NULL.
 869 *
 870 * Domain tb->lock must be held when this function is called.
 871 */
 872struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
 873                                     struct tb_port *prev)
 874{
 875        struct tb_port *next;
 876
 877        if (!prev)
 878                return start;
 879
 880        if (prev->sw == end->sw) {
 881                if (prev == end)
 882                        return NULL;
 883                return end;
 884        }
 885
 886        if (tb_switch_is_reachable(prev->sw, end->sw)) {
 887                next = tb_port_at(tb_route(end->sw), prev->sw);
 888                /* Walk down the topology if next == prev */
 889                if (prev->remote &&
 890                    (next == prev || next->dual_link_port == prev))
 891                        next = prev->remote;
 892        } else {
 893                if (tb_is_upstream_port(prev)) {
 894                        next = prev->remote;
 895                } else {
 896                        next = tb_upstream_port(prev->sw);
 897                        /*
 898                         * Keep the same link if prev and next are both
 899                         * dual link ports.
 900                         */
 901                        if (next->dual_link_port &&
 902                            next->link_nr != prev->link_nr) {
 903                                next = next->dual_link_port;
 904                        }
 905                }
 906        }
 907
 908        return next != prev ? next : NULL;
 909}
 910
 911/**
 912 * tb_port_get_link_speed() - Get current link speed
 913 * @port: Port to check (USB4 or CIO)
 914 *
 915 * Returns link speed in Gb/s or negative errno in case of failure.
 916 */
 917int tb_port_get_link_speed(struct tb_port *port)
 918{
 919        u32 val, speed;
 920        int ret;
 921
 922        if (!port->cap_phy)
 923                return -EINVAL;
 924
 925        ret = tb_port_read(port, &val, TB_CFG_PORT,
 926                           port->cap_phy + LANE_ADP_CS_1, 1);
 927        if (ret)
 928                return ret;
 929
 930        speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
 931                LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
 932        return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
 933}
 934
 935static int tb_port_get_link_width(struct tb_port *port)
 936{
 937        u32 val;
 938        int ret;
 939
 940        if (!port->cap_phy)
 941                return -EINVAL;
 942
 943        ret = tb_port_read(port, &val, TB_CFG_PORT,
 944                           port->cap_phy + LANE_ADP_CS_1, 1);
 945        if (ret)
 946                return ret;
 947
 948        return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
 949                LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
 950}
 951
 952static bool tb_port_is_width_supported(struct tb_port *port, int width)
 953{
 954        u32 phy, widths;
 955        int ret;
 956
 957        if (!port->cap_phy)
 958                return false;
 959
 960        ret = tb_port_read(port, &phy, TB_CFG_PORT,
 961                           port->cap_phy + LANE_ADP_CS_0, 1);
 962        if (ret)
 963                return false;
 964
 965        widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
 966                LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
 967
 968        return !!(widths & width);
 969}
 970
 971static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
 972{
 973        u32 val;
 974        int ret;
 975
 976        if (!port->cap_phy)
 977                return -EINVAL;
 978
 979        ret = tb_port_read(port, &val, TB_CFG_PORT,
 980                           port->cap_phy + LANE_ADP_CS_1, 1);
 981        if (ret)
 982                return ret;
 983
 984        val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
 985        switch (width) {
 986        case 1:
 987                val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
 988                        LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
 989                break;
 990        case 2:
 991                val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
 992                        LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
 993                break;
 994        default:
 995                return -EINVAL;
 996        }
 997
 998        val |= LANE_ADP_CS_1_LB;
 999
1000        return tb_port_write(port, &val, TB_CFG_PORT,
1001                             port->cap_phy + LANE_ADP_CS_1, 1);
1002}
1003
1004static int tb_port_lane_bonding_enable(struct tb_port *port)
1005{
1006        int ret;
1007
1008        /*
1009         * Enable lane bonding for both links if not already enabled by
1010         * for example the boot firmware.
1011         */
1012        ret = tb_port_get_link_width(port);
1013        if (ret == 1) {
1014                ret = tb_port_set_link_width(port, 2);
1015                if (ret)
1016                        return ret;
1017        }
1018
1019        ret = tb_port_get_link_width(port->dual_link_port);
1020        if (ret == 1) {
1021                ret = tb_port_set_link_width(port->dual_link_port, 2);
1022                if (ret) {
1023                        tb_port_set_link_width(port, 1);
1024                        return ret;
1025                }
1026        }
1027
1028        port->bonded = true;
1029        port->dual_link_port->bonded = true;
1030
1031        return 0;
1032}
1033
1034static void tb_port_lane_bonding_disable(struct tb_port *port)
1035{
1036        port->dual_link_port->bonded = false;
1037        port->bonded = false;
1038
1039        tb_port_set_link_width(port->dual_link_port, 1);
1040        tb_port_set_link_width(port, 1);
1041}
1042
1043/**
1044 * tb_port_is_enabled() - Is the adapter port enabled
1045 * @port: Port to check
1046 */
1047bool tb_port_is_enabled(struct tb_port *port)
1048{
1049        switch (port->config.type) {
1050        case TB_TYPE_PCIE_UP:
1051        case TB_TYPE_PCIE_DOWN:
1052                return tb_pci_port_is_enabled(port);
1053
1054        case TB_TYPE_DP_HDMI_IN:
1055        case TB_TYPE_DP_HDMI_OUT:
1056                return tb_dp_port_is_enabled(port);
1057
1058        case TB_TYPE_USB3_UP:
1059        case TB_TYPE_USB3_DOWN:
1060                return tb_usb3_port_is_enabled(port);
1061
1062        default:
1063                return false;
1064        }
1065}
1066
1067/**
1068 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1069 * @port: USB3 adapter port to check
1070 */
1071bool tb_usb3_port_is_enabled(struct tb_port *port)
1072{
1073        u32 data;
1074
1075        if (tb_port_read(port, &data, TB_CFG_PORT,
1076                         port->cap_adap + ADP_USB3_CS_0, 1))
1077                return false;
1078
1079        return !!(data & ADP_USB3_CS_0_PE);
1080}
1081
1082/**
1083 * tb_usb3_port_enable() - Enable USB3 adapter port
1084 * @port: USB3 adapter port to enable
1085 * @enable: Enable/disable the USB3 adapter
1086 */
1087int tb_usb3_port_enable(struct tb_port *port, bool enable)
1088{
1089        u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1090                          : ADP_USB3_CS_0_V;
1091
1092        if (!port->cap_adap)
1093                return -ENXIO;
1094        return tb_port_write(port, &word, TB_CFG_PORT,
1095                             port->cap_adap + ADP_USB3_CS_0, 1);
1096}
1097
1098/**
1099 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1100 * @port: PCIe port to check
1101 */
1102bool tb_pci_port_is_enabled(struct tb_port *port)
1103{
1104        u32 data;
1105
1106        if (tb_port_read(port, &data, TB_CFG_PORT,
1107                         port->cap_adap + ADP_PCIE_CS_0, 1))
1108                return false;
1109
1110        return !!(data & ADP_PCIE_CS_0_PE);
1111}
1112
1113/**
1114 * tb_pci_port_enable() - Enable PCIe adapter port
1115 * @port: PCIe port to enable
1116 * @enable: Enable/disable the PCIe adapter
1117 */
1118int tb_pci_port_enable(struct tb_port *port, bool enable)
1119{
1120        u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1121        if (!port->cap_adap)
1122                return -ENXIO;
1123        return tb_port_write(port, &word, TB_CFG_PORT,
1124                             port->cap_adap + ADP_PCIE_CS_0, 1);
1125}
1126
1127/**
1128 * tb_dp_port_hpd_is_active() - Is HPD already active
1129 * @port: DP out port to check
1130 *
1131 * Checks if the DP OUT adapter port has HDP bit already set.
1132 */
1133int tb_dp_port_hpd_is_active(struct tb_port *port)
1134{
1135        u32 data;
1136        int ret;
1137
1138        ret = tb_port_read(port, &data, TB_CFG_PORT,
1139                           port->cap_adap + ADP_DP_CS_2, 1);
1140        if (ret)
1141                return ret;
1142
1143        return !!(data & ADP_DP_CS_2_HDP);
1144}
1145
1146/**
1147 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1148 * @port: Port to clear HPD
1149 *
1150 * If the DP IN port has HDP set, this function can be used to clear it.
1151 */
1152int tb_dp_port_hpd_clear(struct tb_port *port)
1153{
1154        u32 data;
1155        int ret;
1156
1157        ret = tb_port_read(port, &data, TB_CFG_PORT,
1158                           port->cap_adap + ADP_DP_CS_3, 1);
1159        if (ret)
1160                return ret;
1161
1162        data |= ADP_DP_CS_3_HDPC;
1163        return tb_port_write(port, &data, TB_CFG_PORT,
1164                             port->cap_adap + ADP_DP_CS_3, 1);
1165}
1166
1167/**
1168 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1169 * @port: DP IN/OUT port to set hops
1170 * @video: Video Hop ID
1171 * @aux_tx: AUX TX Hop ID
1172 * @aux_rx: AUX RX Hop ID
1173 *
1174 * Programs specified Hop IDs for DP IN/OUT port.
1175 */
1176int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1177                        unsigned int aux_tx, unsigned int aux_rx)
1178{
1179        u32 data[2];
1180        int ret;
1181
1182        ret = tb_port_read(port, data, TB_CFG_PORT,
1183                           port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1184        if (ret)
1185                return ret;
1186
1187        data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1188        data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1189        data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1190
1191        data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1192                ADP_DP_CS_0_VIDEO_HOPID_MASK;
1193        data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1194        data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1195                ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1196
1197        return tb_port_write(port, data, TB_CFG_PORT,
1198                             port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1199}
1200
1201/**
1202 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1203 * @port: DP adapter port to check
1204 */
1205bool tb_dp_port_is_enabled(struct tb_port *port)
1206{
1207        u32 data[2];
1208
1209        if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1210                         ARRAY_SIZE(data)))
1211                return false;
1212
1213        return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1214}
1215
1216/**
1217 * tb_dp_port_enable() - Enables/disables DP paths of a port
1218 * @port: DP IN/OUT port
1219 * @enable: Enable/disable DP path
1220 *
1221 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1222 * calling this function.
1223 */
1224int tb_dp_port_enable(struct tb_port *port, bool enable)
1225{
1226        u32 data[2];
1227        int ret;
1228
1229        ret = tb_port_read(port, data, TB_CFG_PORT,
1230                          port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1231        if (ret)
1232                return ret;
1233
1234        if (enable)
1235                data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1236        else
1237                data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1238
1239        return tb_port_write(port, data, TB_CFG_PORT,
1240                             port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1241}
1242
1243/* switch utility functions */
1244
1245static const char *tb_switch_generation_name(const struct tb_switch *sw)
1246{
1247        switch (sw->generation) {
1248        case 1:
1249                return "Thunderbolt 1";
1250        case 2:
1251                return "Thunderbolt 2";
1252        case 3:
1253                return "Thunderbolt 3";
1254        case 4:
1255                return "USB4";
1256        default:
1257                return "Unknown";
1258        }
1259}
1260
1261static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1262{
1263        const struct tb_regs_switch_header *regs = &sw->config;
1264
1265        tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1266               tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1267               regs->revision, regs->thunderbolt_version);
1268        tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1269        tb_dbg(tb, "  Config:\n");
1270        tb_dbg(tb,
1271                "   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1272               regs->upstream_port_number, regs->depth,
1273               (((u64) regs->route_hi) << 32) | regs->route_lo,
1274               regs->enabled, regs->plug_events_delay);
1275        tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1276               regs->__unknown1, regs->__unknown4);
1277}
1278
1279/**
1280 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1281 * @sw: Switch to reset
1282 *
1283 * Return: Returns 0 on success or an error code on failure.
1284 */
1285int tb_switch_reset(struct tb_switch *sw)
1286{
1287        struct tb_cfg_result res;
1288
1289        if (sw->generation > 1)
1290                return 0;
1291
1292        tb_sw_dbg(sw, "resetting switch\n");
1293
1294        res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1295                              TB_CFG_SWITCH, 2, 2);
1296        if (res.err)
1297                return res.err;
1298        res = tb_cfg_reset(sw->tb->ctl, tb_route(sw), TB_CFG_DEFAULT_TIMEOUT);
1299        if (res.err > 0)
1300                return -EIO;
1301        return res.err;
1302}
1303
1304/**
1305 * tb_plug_events_active() - enable/disable plug events on a switch
1306 *
1307 * Also configures a sane plug_events_delay of 255ms.
1308 *
1309 * Return: Returns 0 on success or an error code on failure.
1310 */
1311static int tb_plug_events_active(struct tb_switch *sw, bool active)
1312{
1313        u32 data;
1314        int res;
1315
1316        if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1317                return 0;
1318
1319        sw->config.plug_events_delay = 0xff;
1320        res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1321        if (res)
1322                return res;
1323
1324        res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1325        if (res)
1326                return res;
1327
1328        if (active) {
1329                data = data & 0xFFFFFF83;
1330                switch (sw->config.device_id) {
1331                case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1332                case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1333                case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1334                        break;
1335                default:
1336                        data |= 4;
1337                }
1338        } else {
1339                data = data | 0x7c;
1340        }
1341        return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1342                           sw->cap_plug_events + 1, 1);
1343}
1344
1345static ssize_t authorized_show(struct device *dev,
1346                               struct device_attribute *attr,
1347                               char *buf)
1348{
1349        struct tb_switch *sw = tb_to_switch(dev);
1350
1351        return sprintf(buf, "%u\n", sw->authorized);
1352}
1353
1354static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1355{
1356        int ret = -EINVAL;
1357
1358        if (!mutex_trylock(&sw->tb->lock))
1359                return restart_syscall();
1360
1361        if (sw->authorized)
1362                goto unlock;
1363
1364        switch (val) {
1365        /* Approve switch */
1366        case 1:
1367                if (sw->key)
1368                        ret = tb_domain_approve_switch_key(sw->tb, sw);
1369                else
1370                        ret = tb_domain_approve_switch(sw->tb, sw);
1371                break;
1372
1373        /* Challenge switch */
1374        case 2:
1375                if (sw->key)
1376                        ret = tb_domain_challenge_switch_key(sw->tb, sw);
1377                break;
1378
1379        default:
1380                break;
1381        }
1382
1383        if (!ret) {
1384                sw->authorized = val;
1385                /* Notify status change to the userspace */
1386                kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1387        }
1388
1389unlock:
1390        mutex_unlock(&sw->tb->lock);
1391        return ret;
1392}
1393
1394static ssize_t authorized_store(struct device *dev,
1395                                struct device_attribute *attr,
1396                                const char *buf, size_t count)
1397{
1398        struct tb_switch *sw = tb_to_switch(dev);
1399        unsigned int val;
1400        ssize_t ret;
1401
1402        ret = kstrtouint(buf, 0, &val);
1403        if (ret)
1404                return ret;
1405        if (val > 2)
1406                return -EINVAL;
1407
1408        pm_runtime_get_sync(&sw->dev);
1409        ret = tb_switch_set_authorized(sw, val);
1410        pm_runtime_mark_last_busy(&sw->dev);
1411        pm_runtime_put_autosuspend(&sw->dev);
1412
1413        return ret ? ret : count;
1414}
1415static DEVICE_ATTR_RW(authorized);
1416
1417static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1418                         char *buf)
1419{
1420        struct tb_switch *sw = tb_to_switch(dev);
1421
1422        return sprintf(buf, "%u\n", sw->boot);
1423}
1424static DEVICE_ATTR_RO(boot);
1425
1426static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1427                           char *buf)
1428{
1429        struct tb_switch *sw = tb_to_switch(dev);
1430
1431        return sprintf(buf, "%#x\n", sw->device);
1432}
1433static DEVICE_ATTR_RO(device);
1434
1435static ssize_t
1436device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1437{
1438        struct tb_switch *sw = tb_to_switch(dev);
1439
1440        return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1441}
1442static DEVICE_ATTR_RO(device_name);
1443
1444static ssize_t
1445generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1446{
1447        struct tb_switch *sw = tb_to_switch(dev);
1448
1449        return sprintf(buf, "%u\n", sw->generation);
1450}
1451static DEVICE_ATTR_RO(generation);
1452
1453static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1454                        char *buf)
1455{
1456        struct tb_switch *sw = tb_to_switch(dev);
1457        ssize_t ret;
1458
1459        if (!mutex_trylock(&sw->tb->lock))
1460                return restart_syscall();
1461
1462        if (sw->key)
1463                ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1464        else
1465                ret = sprintf(buf, "\n");
1466
1467        mutex_unlock(&sw->tb->lock);
1468        return ret;
1469}
1470
1471static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1472                         const char *buf, size_t count)
1473{
1474        struct tb_switch *sw = tb_to_switch(dev);
1475        u8 key[TB_SWITCH_KEY_SIZE];
1476        ssize_t ret = count;
1477        bool clear = false;
1478
1479        if (!strcmp(buf, "\n"))
1480                clear = true;
1481        else if (hex2bin(key, buf, sizeof(key)))
1482                return -EINVAL;
1483
1484        if (!mutex_trylock(&sw->tb->lock))
1485                return restart_syscall();
1486
1487        if (sw->authorized) {
1488                ret = -EBUSY;
1489        } else {
1490                kfree(sw->key);
1491                if (clear) {
1492                        sw->key = NULL;
1493                } else {
1494                        sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1495                        if (!sw->key)
1496                                ret = -ENOMEM;
1497                }
1498        }
1499
1500        mutex_unlock(&sw->tb->lock);
1501        return ret;
1502}
1503static DEVICE_ATTR(key, 0600, key_show, key_store);
1504
1505static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1506                          char *buf)
1507{
1508        struct tb_switch *sw = tb_to_switch(dev);
1509
1510        return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1511}
1512
1513/*
1514 * Currently all lanes must run at the same speed but we expose here
1515 * both directions to allow possible asymmetric links in the future.
1516 */
1517static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1518static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1519
1520static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1521                          char *buf)
1522{
1523        struct tb_switch *sw = tb_to_switch(dev);
1524
1525        return sprintf(buf, "%u\n", sw->link_width);
1526}
1527
1528/*
1529 * Currently link has same amount of lanes both directions (1 or 2) but
1530 * expose them separately to allow possible asymmetric links in the future.
1531 */
1532static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1533static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1534
1535static ssize_t nvm_authenticate_show(struct device *dev,
1536        struct device_attribute *attr, char *buf)
1537{
1538        struct tb_switch *sw = tb_to_switch(dev);
1539        u32 status;
1540
1541        nvm_get_auth_status(sw, &status);
1542        return sprintf(buf, "%#x\n", status);
1543}
1544
1545static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1546                                      bool disconnect)
1547{
1548        struct tb_switch *sw = tb_to_switch(dev);
1549        int val;
1550        int ret;
1551
1552        pm_runtime_get_sync(&sw->dev);
1553
1554        if (!mutex_trylock(&sw->tb->lock)) {
1555                ret = restart_syscall();
1556                goto exit_rpm;
1557        }
1558
1559        /* If NVMem devices are not yet added */
1560        if (!sw->nvm) {
1561                ret = -EAGAIN;
1562                goto exit_unlock;
1563        }
1564
1565        ret = kstrtoint(buf, 10, &val);
1566        if (ret)
1567                goto exit_unlock;
1568
1569        /* Always clear the authentication status */
1570        nvm_clear_auth_status(sw);
1571
1572        if (val > 0) {
1573                if (!sw->nvm->flushed) {
1574                        if (!sw->nvm->buf) {
1575                                ret = -EINVAL;
1576                                goto exit_unlock;
1577                        }
1578
1579                        ret = nvm_validate_and_write(sw);
1580                        if (ret || val == WRITE_ONLY)
1581                                goto exit_unlock;
1582                }
1583                if (val == WRITE_AND_AUTHENTICATE) {
1584                        if (disconnect) {
1585                                ret = tb_lc_force_power(sw);
1586                        } else {
1587                                sw->nvm->authenticating = true;
1588                                ret = nvm_authenticate(sw);
1589                        }
1590                }
1591        }
1592
1593exit_unlock:
1594        mutex_unlock(&sw->tb->lock);
1595exit_rpm:
1596        pm_runtime_mark_last_busy(&sw->dev);
1597        pm_runtime_put_autosuspend(&sw->dev);
1598
1599        return ret;
1600}
1601
1602static ssize_t nvm_authenticate_store(struct device *dev,
1603        struct device_attribute *attr, const char *buf, size_t count)
1604{
1605        int ret = nvm_authenticate_sysfs(dev, buf, false);
1606        if (ret)
1607                return ret;
1608        return count;
1609}
1610static DEVICE_ATTR_RW(nvm_authenticate);
1611
1612static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1613        struct device_attribute *attr, char *buf)
1614{
1615        return nvm_authenticate_show(dev, attr, buf);
1616}
1617
1618static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1619        struct device_attribute *attr, const char *buf, size_t count)
1620{
1621        int ret;
1622
1623        ret = nvm_authenticate_sysfs(dev, buf, true);
1624        return ret ? ret : count;
1625}
1626static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1627
1628static ssize_t nvm_version_show(struct device *dev,
1629                                struct device_attribute *attr, char *buf)
1630{
1631        struct tb_switch *sw = tb_to_switch(dev);
1632        int ret;
1633
1634        if (!mutex_trylock(&sw->tb->lock))
1635                return restart_syscall();
1636
1637        if (sw->safe_mode)
1638                ret = -ENODATA;
1639        else if (!sw->nvm)
1640                ret = -EAGAIN;
1641        else
1642                ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1643
1644        mutex_unlock(&sw->tb->lock);
1645
1646        return ret;
1647}
1648static DEVICE_ATTR_RO(nvm_version);
1649
1650static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1651                           char *buf)
1652{
1653        struct tb_switch *sw = tb_to_switch(dev);
1654
1655        return sprintf(buf, "%#x\n", sw->vendor);
1656}
1657static DEVICE_ATTR_RO(vendor);
1658
1659static ssize_t
1660vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1661{
1662        struct tb_switch *sw = tb_to_switch(dev);
1663
1664        return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1665}
1666static DEVICE_ATTR_RO(vendor_name);
1667
1668static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1669                              char *buf)
1670{
1671        struct tb_switch *sw = tb_to_switch(dev);
1672
1673        return sprintf(buf, "%pUb\n", sw->uuid);
1674}
1675static DEVICE_ATTR_RO(unique_id);
1676
1677static struct attribute *switch_attrs[] = {
1678        &dev_attr_authorized.attr,
1679        &dev_attr_boot.attr,
1680        &dev_attr_device.attr,
1681        &dev_attr_device_name.attr,
1682        &dev_attr_generation.attr,
1683        &dev_attr_key.attr,
1684        &dev_attr_nvm_authenticate.attr,
1685        &dev_attr_nvm_authenticate_on_disconnect.attr,
1686        &dev_attr_nvm_version.attr,
1687        &dev_attr_rx_speed.attr,
1688        &dev_attr_rx_lanes.attr,
1689        &dev_attr_tx_speed.attr,
1690        &dev_attr_tx_lanes.attr,
1691        &dev_attr_vendor.attr,
1692        &dev_attr_vendor_name.attr,
1693        &dev_attr_unique_id.attr,
1694        NULL,
1695};
1696
1697static umode_t switch_attr_is_visible(struct kobject *kobj,
1698                                      struct attribute *attr, int n)
1699{
1700        struct device *dev = kobj_to_dev(kobj);
1701        struct tb_switch *sw = tb_to_switch(dev);
1702
1703        if (attr == &dev_attr_device.attr) {
1704                if (!sw->device)
1705                        return 0;
1706        } else if (attr == &dev_attr_device_name.attr) {
1707                if (!sw->device_name)
1708                        return 0;
1709        } else if (attr == &dev_attr_vendor.attr)  {
1710                if (!sw->vendor)
1711                        return 0;
1712        } else if (attr == &dev_attr_vendor_name.attr)  {
1713                if (!sw->vendor_name)
1714                        return 0;
1715        } else if (attr == &dev_attr_key.attr) {
1716                if (tb_route(sw) &&
1717                    sw->tb->security_level == TB_SECURITY_SECURE &&
1718                    sw->security_level == TB_SECURITY_SECURE)
1719                        return attr->mode;
1720                return 0;
1721        } else if (attr == &dev_attr_rx_speed.attr ||
1722                   attr == &dev_attr_rx_lanes.attr ||
1723                   attr == &dev_attr_tx_speed.attr ||
1724                   attr == &dev_attr_tx_lanes.attr) {
1725                if (tb_route(sw))
1726                        return attr->mode;
1727                return 0;
1728        } else if (attr == &dev_attr_nvm_authenticate.attr) {
1729                if (nvm_upgradeable(sw))
1730                        return attr->mode;
1731                return 0;
1732        } else if (attr == &dev_attr_nvm_version.attr) {
1733                if (nvm_readable(sw))
1734                        return attr->mode;
1735                return 0;
1736        } else if (attr == &dev_attr_boot.attr) {
1737                if (tb_route(sw))
1738                        return attr->mode;
1739                return 0;
1740        } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1741                if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1742                        return attr->mode;
1743                return 0;
1744        }
1745
1746        return sw->safe_mode ? 0 : attr->mode;
1747}
1748
1749static struct attribute_group switch_group = {
1750        .is_visible = switch_attr_is_visible,
1751        .attrs = switch_attrs,
1752};
1753
1754static const struct attribute_group *switch_groups[] = {
1755        &switch_group,
1756        NULL,
1757};
1758
1759static void tb_switch_release(struct device *dev)
1760{
1761        struct tb_switch *sw = tb_to_switch(dev);
1762        struct tb_port *port;
1763
1764        dma_port_free(sw->dma_port);
1765
1766        tb_switch_for_each_port(sw, port) {
1767                if (!port->disabled) {
1768                        ida_destroy(&port->in_hopids);
1769                        ida_destroy(&port->out_hopids);
1770                }
1771        }
1772
1773        kfree(sw->uuid);
1774        kfree(sw->device_name);
1775        kfree(sw->vendor_name);
1776        kfree(sw->ports);
1777        kfree(sw->drom);
1778        kfree(sw->key);
1779        kfree(sw);
1780}
1781
1782/*
1783 * Currently only need to provide the callbacks. Everything else is handled
1784 * in the connection manager.
1785 */
1786static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1787{
1788        struct tb_switch *sw = tb_to_switch(dev);
1789        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1790
1791        if (cm_ops->runtime_suspend_switch)
1792                return cm_ops->runtime_suspend_switch(sw);
1793
1794        return 0;
1795}
1796
1797static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1798{
1799        struct tb_switch *sw = tb_to_switch(dev);
1800        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1801
1802        if (cm_ops->runtime_resume_switch)
1803                return cm_ops->runtime_resume_switch(sw);
1804        return 0;
1805}
1806
1807static const struct dev_pm_ops tb_switch_pm_ops = {
1808        SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1809                           NULL)
1810};
1811
1812struct device_type tb_switch_type = {
1813        .name = "thunderbolt_device",
1814        .release = tb_switch_release,
1815        .pm = &tb_switch_pm_ops,
1816};
1817
1818static int tb_switch_get_generation(struct tb_switch *sw)
1819{
1820        switch (sw->config.device_id) {
1821        case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1822        case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1823        case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1824        case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1825        case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1826        case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1827        case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1828        case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1829                return 1;
1830
1831        case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1832        case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1833        case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1834                return 2;
1835
1836        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1837        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1838        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1839        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1840        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1841        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1842        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1843        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1844        case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1845        case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1846                return 3;
1847
1848        default:
1849                if (tb_switch_is_usb4(sw))
1850                        return 4;
1851
1852                /*
1853                 * For unknown switches assume generation to be 1 to be
1854                 * on the safe side.
1855                 */
1856                tb_sw_warn(sw, "unsupported switch device id %#x\n",
1857                           sw->config.device_id);
1858                return 1;
1859        }
1860}
1861
1862static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1863{
1864        int max_depth;
1865
1866        if (tb_switch_is_usb4(sw) ||
1867            (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1868                max_depth = USB4_SWITCH_MAX_DEPTH;
1869        else
1870                max_depth = TB_SWITCH_MAX_DEPTH;
1871
1872        return depth > max_depth;
1873}
1874
1875/**
1876 * tb_switch_alloc() - allocate a switch
1877 * @tb: Pointer to the owning domain
1878 * @parent: Parent device for this switch
1879 * @route: Route string for this switch
1880 *
1881 * Allocates and initializes a switch. Will not upload configuration to
1882 * the switch. For that you need to call tb_switch_configure()
1883 * separately. The returned switch should be released by calling
1884 * tb_switch_put().
1885 *
1886 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1887 * failure.
1888 */
1889struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1890                                  u64 route)
1891{
1892        struct tb_switch *sw;
1893        int upstream_port;
1894        int i, ret, depth;
1895
1896        /* Unlock the downstream port so we can access the switch below */
1897        if (route) {
1898                struct tb_switch *parent_sw = tb_to_switch(parent);
1899                struct tb_port *down;
1900
1901                down = tb_port_at(route, parent_sw);
1902                tb_port_unlock(down);
1903        }
1904
1905        depth = tb_route_length(route);
1906
1907        upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1908        if (upstream_port < 0)
1909                return ERR_PTR(upstream_port);
1910
1911        sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1912        if (!sw)
1913                return ERR_PTR(-ENOMEM);
1914
1915        sw->tb = tb;
1916        ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1917        if (ret)
1918                goto err_free_sw_ports;
1919
1920        sw->generation = tb_switch_get_generation(sw);
1921
1922        tb_dbg(tb, "current switch config:\n");
1923        tb_dump_switch(tb, sw);
1924
1925        /* configure switch */
1926        sw->config.upstream_port_number = upstream_port;
1927        sw->config.depth = depth;
1928        sw->config.route_hi = upper_32_bits(route);
1929        sw->config.route_lo = lower_32_bits(route);
1930        sw->config.enabled = 0;
1931
1932        /* Make sure we do not exceed maximum topology limit */
1933        if (tb_switch_exceeds_max_depth(sw, depth)) {
1934                ret = -EADDRNOTAVAIL;
1935                goto err_free_sw_ports;
1936        }
1937
1938        /* initialize ports */
1939        sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1940                                GFP_KERNEL);
1941        if (!sw->ports) {
1942                ret = -ENOMEM;
1943                goto err_free_sw_ports;
1944        }
1945
1946        for (i = 0; i <= sw->config.max_port_number; i++) {
1947                /* minimum setup for tb_find_cap and tb_drom_read to work */
1948                sw->ports[i].sw = sw;
1949                sw->ports[i].port = i;
1950        }
1951
1952        ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1953        if (ret > 0)
1954                sw->cap_plug_events = ret;
1955
1956        ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1957        if (ret > 0)
1958                sw->cap_lc = ret;
1959
1960        /* Root switch is always authorized */
1961        if (!route)
1962                sw->authorized = true;
1963
1964        device_initialize(&sw->dev);
1965        sw->dev.parent = parent;
1966        sw->dev.bus = &tb_bus_type;
1967        sw->dev.type = &tb_switch_type;
1968        sw->dev.groups = switch_groups;
1969        dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1970
1971        return sw;
1972
1973err_free_sw_ports:
1974        kfree(sw->ports);
1975        kfree(sw);
1976
1977        return ERR_PTR(ret);
1978}
1979
1980/**
1981 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1982 * @tb: Pointer to the owning domain
1983 * @parent: Parent device for this switch
1984 * @route: Route string for this switch
1985 *
1986 * This creates a switch in safe mode. This means the switch pretty much
1987 * lacks all capabilities except DMA configuration port before it is
1988 * flashed with a valid NVM firmware.
1989 *
1990 * The returned switch must be released by calling tb_switch_put().
1991 *
1992 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1993 */
1994struct tb_switch *
1995tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1996{
1997        struct tb_switch *sw;
1998
1999        sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2000        if (!sw)
2001                return ERR_PTR(-ENOMEM);
2002
2003        sw->tb = tb;
2004        sw->config.depth = tb_route_length(route);
2005        sw->config.route_hi = upper_32_bits(route);
2006        sw->config.route_lo = lower_32_bits(route);
2007        sw->safe_mode = true;
2008
2009        device_initialize(&sw->dev);
2010        sw->dev.parent = parent;
2011        sw->dev.bus = &tb_bus_type;
2012        sw->dev.type = &tb_switch_type;
2013        sw->dev.groups = switch_groups;
2014        dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2015
2016        return sw;
2017}
2018
2019/**
2020 * tb_switch_configure() - Uploads configuration to the switch
2021 * @sw: Switch to configure
2022 *
2023 * Call this function before the switch is added to the system. It will
2024 * upload configuration to the switch and makes it available for the
2025 * connection manager to use. Can be called to the switch again after
2026 * resume from low power states to re-initialize it.
2027 *
2028 * Return: %0 in case of success and negative errno in case of failure
2029 */
2030int tb_switch_configure(struct tb_switch *sw)
2031{
2032        struct tb *tb = sw->tb;
2033        u64 route;
2034        int ret;
2035
2036        route = tb_route(sw);
2037
2038        tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2039               sw->config.enabled ? "restoring" : "initializing", route,
2040               tb_route_length(route), sw->config.upstream_port_number);
2041
2042        sw->config.enabled = 1;
2043
2044        if (tb_switch_is_usb4(sw)) {
2045                /*
2046                 * For USB4 devices, we need to program the CM version
2047                 * accordingly so that it knows to expose all the
2048                 * additional capabilities.
2049                 */
2050                sw->config.cmuv = USB4_VERSION_1_0;
2051
2052                /* Enumerate the switch */
2053                ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2054                                  ROUTER_CS_1, 4);
2055                if (ret)
2056                        return ret;
2057
2058                ret = usb4_switch_setup(sw);
2059        } else {
2060                if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2061                        tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2062                                   sw->config.vendor_id);
2063
2064                if (!sw->cap_plug_events) {
2065                        tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2066                        return -ENODEV;
2067                }
2068
2069                /* Enumerate the switch */
2070                ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2071                                  ROUTER_CS_1, 3);
2072        }
2073        if (ret)
2074                return ret;
2075
2076        return tb_plug_events_active(sw, true);
2077}
2078
2079static int tb_switch_set_uuid(struct tb_switch *sw)
2080{
2081        bool uid = false;
2082        u32 uuid[4];
2083        int ret;
2084
2085        if (sw->uuid)
2086                return 0;
2087
2088        if (tb_switch_is_usb4(sw)) {
2089                ret = usb4_switch_read_uid(sw, &sw->uid);
2090                if (ret)
2091                        return ret;
2092                uid = true;
2093        } else {
2094                /*
2095                 * The newer controllers include fused UUID as part of
2096                 * link controller specific registers
2097                 */
2098                ret = tb_lc_read_uuid(sw, uuid);
2099                if (ret) {
2100                        if (ret != -EINVAL)
2101                                return ret;
2102                        uid = true;
2103                }
2104        }
2105
2106        if (uid) {
2107                /*
2108                 * ICM generates UUID based on UID and fills the upper
2109                 * two words with ones. This is not strictly following
2110                 * UUID format but we want to be compatible with it so
2111                 * we do the same here.
2112                 */
2113                uuid[0] = sw->uid & 0xffffffff;
2114                uuid[1] = (sw->uid >> 32) & 0xffffffff;
2115                uuid[2] = 0xffffffff;
2116                uuid[3] = 0xffffffff;
2117        }
2118
2119        sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2120        if (!sw->uuid)
2121                return -ENOMEM;
2122        return 0;
2123}
2124
2125static int tb_switch_add_dma_port(struct tb_switch *sw)
2126{
2127        u32 status;
2128        int ret;
2129
2130        switch (sw->generation) {
2131        case 2:
2132                /* Only root switch can be upgraded */
2133                if (tb_route(sw))
2134                        return 0;
2135
2136                fallthrough;
2137        case 3:
2138                ret = tb_switch_set_uuid(sw);
2139                if (ret)
2140                        return ret;
2141                break;
2142
2143        default:
2144                /*
2145                 * DMA port is the only thing available when the switch
2146                 * is in safe mode.
2147                 */
2148                if (!sw->safe_mode)
2149                        return 0;
2150                break;
2151        }
2152
2153        /* Root switch DMA port requires running firmware */
2154        if (!tb_route(sw) && !tb_switch_is_icm(sw))
2155                return 0;
2156
2157        sw->dma_port = dma_port_alloc(sw);
2158        if (!sw->dma_port)
2159                return 0;
2160
2161        if (sw->no_nvm_upgrade)
2162                return 0;
2163
2164        /*
2165         * If there is status already set then authentication failed
2166         * when the dma_port_flash_update_auth() returned. Power cycling
2167         * is not needed (it was done already) so only thing we do here
2168         * is to unblock runtime PM of the root port.
2169         */
2170        nvm_get_auth_status(sw, &status);
2171        if (status) {
2172                if (!tb_route(sw))
2173                        nvm_authenticate_complete_dma_port(sw);
2174                return 0;
2175        }
2176
2177        /*
2178         * Check status of the previous flash authentication. If there
2179         * is one we need to power cycle the switch in any case to make
2180         * it functional again.
2181         */
2182        ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2183        if (ret <= 0)
2184                return ret;
2185
2186        /* Now we can allow root port to suspend again */
2187        if (!tb_route(sw))
2188                nvm_authenticate_complete_dma_port(sw);
2189
2190        if (status) {
2191                tb_sw_info(sw, "switch flash authentication failed\n");
2192                nvm_set_auth_status(sw, status);
2193        }
2194
2195        tb_sw_info(sw, "power cycling the switch now\n");
2196        dma_port_power_cycle(sw->dma_port);
2197
2198        /*
2199         * We return error here which causes the switch adding failure.
2200         * It should appear back after power cycle is complete.
2201         */
2202        return -ESHUTDOWN;
2203}
2204
2205static void tb_switch_default_link_ports(struct tb_switch *sw)
2206{
2207        int i;
2208
2209        for (i = 1; i <= sw->config.max_port_number; i += 2) {
2210                struct tb_port *port = &sw->ports[i];
2211                struct tb_port *subordinate;
2212
2213                if (!tb_port_is_null(port))
2214                        continue;
2215
2216                /* Check for the subordinate port */
2217                if (i == sw->config.max_port_number ||
2218                    !tb_port_is_null(&sw->ports[i + 1]))
2219                        continue;
2220
2221                /* Link them if not already done so (by DROM) */
2222                subordinate = &sw->ports[i + 1];
2223                if (!port->dual_link_port && !subordinate->dual_link_port) {
2224                        port->link_nr = 0;
2225                        port->dual_link_port = subordinate;
2226                        subordinate->link_nr = 1;
2227                        subordinate->dual_link_port = port;
2228
2229                        tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2230                                  port->port, subordinate->port);
2231                }
2232        }
2233}
2234
2235static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2236{
2237        const struct tb_port *up = tb_upstream_port(sw);
2238
2239        if (!up->dual_link_port || !up->dual_link_port->remote)
2240                return false;
2241
2242        if (tb_switch_is_usb4(sw))
2243                return usb4_switch_lane_bonding_possible(sw);
2244        return tb_lc_lane_bonding_possible(sw);
2245}
2246
2247static int tb_switch_update_link_attributes(struct tb_switch *sw)
2248{
2249        struct tb_port *up;
2250        bool change = false;
2251        int ret;
2252
2253        if (!tb_route(sw) || tb_switch_is_icm(sw))
2254                return 0;
2255
2256        up = tb_upstream_port(sw);
2257
2258        ret = tb_port_get_link_speed(up);
2259        if (ret < 0)
2260                return ret;
2261        if (sw->link_speed != ret)
2262                change = true;
2263        sw->link_speed = ret;
2264
2265        ret = tb_port_get_link_width(up);
2266        if (ret < 0)
2267                return ret;
2268        if (sw->link_width != ret)
2269                change = true;
2270        sw->link_width = ret;
2271
2272        /* Notify userspace that there is possible link attribute change */
2273        if (device_is_registered(&sw->dev) && change)
2274                kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2275
2276        return 0;
2277}
2278
2279/**
2280 * tb_switch_lane_bonding_enable() - Enable lane bonding
2281 * @sw: Switch to enable lane bonding
2282 *
2283 * Connection manager can call this function to enable lane bonding of a
2284 * switch. If conditions are correct and both switches support the feature,
2285 * lanes are bonded. It is safe to call this to any switch.
2286 */
2287int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2288{
2289        struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2290        struct tb_port *up, *down;
2291        u64 route = tb_route(sw);
2292        int ret;
2293
2294        if (!route)
2295                return 0;
2296
2297        if (!tb_switch_lane_bonding_possible(sw))
2298                return 0;
2299
2300        up = tb_upstream_port(sw);
2301        down = tb_port_at(route, parent);
2302
2303        if (!tb_port_is_width_supported(up, 2) ||
2304            !tb_port_is_width_supported(down, 2))
2305                return 0;
2306
2307        ret = tb_port_lane_bonding_enable(up);
2308        if (ret) {
2309                tb_port_warn(up, "failed to enable lane bonding\n");
2310                return ret;
2311        }
2312
2313        ret = tb_port_lane_bonding_enable(down);
2314        if (ret) {
2315                tb_port_warn(down, "failed to enable lane bonding\n");
2316                tb_port_lane_bonding_disable(up);
2317                return ret;
2318        }
2319
2320        tb_switch_update_link_attributes(sw);
2321
2322        tb_sw_dbg(sw, "lane bonding enabled\n");
2323        return ret;
2324}
2325
2326/**
2327 * tb_switch_lane_bonding_disable() - Disable lane bonding
2328 * @sw: Switch whose lane bonding to disable
2329 *
2330 * Disables lane bonding between @sw and parent. This can be called even
2331 * if lanes were not bonded originally.
2332 */
2333void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2334{
2335        struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2336        struct tb_port *up, *down;
2337
2338        if (!tb_route(sw))
2339                return;
2340
2341        up = tb_upstream_port(sw);
2342        if (!up->bonded)
2343                return;
2344
2345        down = tb_port_at(tb_route(sw), parent);
2346
2347        tb_port_lane_bonding_disable(up);
2348        tb_port_lane_bonding_disable(down);
2349
2350        tb_switch_update_link_attributes(sw);
2351        tb_sw_dbg(sw, "lane bonding disabled\n");
2352}
2353
2354/**
2355 * tb_switch_configure_link() - Set link configured
2356 * @sw: Switch whose link is configured
2357 *
2358 * Sets the link upstream from @sw configured (from both ends) so that
2359 * it will not be disconnected when the domain exits sleep. Can be
2360 * called for any switch.
2361 *
2362 * It is recommended that this is called after lane bonding is enabled.
2363 *
2364 * Returns %0 on success and negative errno in case of error.
2365 */
2366int tb_switch_configure_link(struct tb_switch *sw)
2367{
2368        struct tb_port *up, *down;
2369        int ret;
2370
2371        if (!tb_route(sw) || tb_switch_is_icm(sw))
2372                return 0;
2373
2374        up = tb_upstream_port(sw);
2375        if (tb_switch_is_usb4(up->sw))
2376                ret = usb4_port_configure(up);
2377        else
2378                ret = tb_lc_configure_port(up);
2379        if (ret)
2380                return ret;
2381
2382        down = up->remote;
2383        if (tb_switch_is_usb4(down->sw))
2384                return usb4_port_configure(down);
2385        return tb_lc_configure_port(down);
2386}
2387
2388/**
2389 * tb_switch_unconfigure_link() - Unconfigure link
2390 * @sw: Switch whose link is unconfigured
2391 *
2392 * Sets the link unconfigured so the @sw will be disconnected if the
2393 * domain exists sleep.
2394 */
2395void tb_switch_unconfigure_link(struct tb_switch *sw)
2396{
2397        struct tb_port *up, *down;
2398
2399        if (sw->is_unplugged)
2400                return;
2401        if (!tb_route(sw) || tb_switch_is_icm(sw))
2402                return;
2403
2404        up = tb_upstream_port(sw);
2405        if (tb_switch_is_usb4(up->sw))
2406                usb4_port_unconfigure(up);
2407        else
2408                tb_lc_unconfigure_port(up);
2409
2410        down = up->remote;
2411        if (tb_switch_is_usb4(down->sw))
2412                usb4_port_unconfigure(down);
2413        else
2414                tb_lc_unconfigure_port(down);
2415}
2416
2417/**
2418 * tb_switch_add() - Add a switch to the domain
2419 * @sw: Switch to add
2420 *
2421 * This is the last step in adding switch to the domain. It will read
2422 * identification information from DROM and initializes ports so that
2423 * they can be used to connect other switches. The switch will be
2424 * exposed to the userspace when this function successfully returns. To
2425 * remove and release the switch, call tb_switch_remove().
2426 *
2427 * Return: %0 in case of success and negative errno in case of failure
2428 */
2429int tb_switch_add(struct tb_switch *sw)
2430{
2431        int i, ret;
2432
2433        /*
2434         * Initialize DMA control port now before we read DROM. Recent
2435         * host controllers have more complete DROM on NVM that includes
2436         * vendor and model identification strings which we then expose
2437         * to the userspace. NVM can be accessed through DMA
2438         * configuration based mailbox.
2439         */
2440        ret = tb_switch_add_dma_port(sw);
2441        if (ret) {
2442                dev_err(&sw->dev, "failed to add DMA port\n");
2443                return ret;
2444        }
2445
2446        if (!sw->safe_mode) {
2447                /* read drom */
2448                ret = tb_drom_read(sw);
2449                if (ret) {
2450                        dev_err(&sw->dev, "reading DROM failed\n");
2451                        return ret;
2452                }
2453                tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2454
2455                ret = tb_switch_set_uuid(sw);
2456                if (ret) {
2457                        dev_err(&sw->dev, "failed to set UUID\n");
2458                        return ret;
2459                }
2460
2461                for (i = 0; i <= sw->config.max_port_number; i++) {
2462                        if (sw->ports[i].disabled) {
2463                                tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2464                                continue;
2465                        }
2466                        ret = tb_init_port(&sw->ports[i]);
2467                        if (ret) {
2468                                dev_err(&sw->dev, "failed to initialize port %d\n", i);
2469                                return ret;
2470                        }
2471                }
2472
2473                tb_switch_default_link_ports(sw);
2474
2475                ret = tb_switch_update_link_attributes(sw);
2476                if (ret)
2477                        return ret;
2478
2479                ret = tb_switch_tmu_init(sw);
2480                if (ret)
2481                        return ret;
2482        }
2483
2484        ret = device_add(&sw->dev);
2485        if (ret) {
2486                dev_err(&sw->dev, "failed to add device: %d\n", ret);
2487                return ret;
2488        }
2489
2490        if (tb_route(sw)) {
2491                dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2492                         sw->vendor, sw->device);
2493                if (sw->vendor_name && sw->device_name)
2494                        dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2495                                 sw->device_name);
2496        }
2497
2498        ret = tb_switch_nvm_add(sw);
2499        if (ret) {
2500                dev_err(&sw->dev, "failed to add NVM devices\n");
2501                device_del(&sw->dev);
2502                return ret;
2503        }
2504
2505        /*
2506         * Thunderbolt routers do not generate wakeups themselves but
2507         * they forward wakeups from tunneled protocols, so enable it
2508         * here.
2509         */
2510        device_init_wakeup(&sw->dev, true);
2511
2512        pm_runtime_set_active(&sw->dev);
2513        if (sw->rpm) {
2514                pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2515                pm_runtime_use_autosuspend(&sw->dev);
2516                pm_runtime_mark_last_busy(&sw->dev);
2517                pm_runtime_enable(&sw->dev);
2518                pm_request_autosuspend(&sw->dev);
2519        }
2520
2521        tb_switch_debugfs_init(sw);
2522        return 0;
2523}
2524
2525/**
2526 * tb_switch_remove() - Remove and release a switch
2527 * @sw: Switch to remove
2528 *
2529 * This will remove the switch from the domain and release it after last
2530 * reference count drops to zero. If there are switches connected below
2531 * this switch, they will be removed as well.
2532 */
2533void tb_switch_remove(struct tb_switch *sw)
2534{
2535        struct tb_port *port;
2536
2537        tb_switch_debugfs_remove(sw);
2538
2539        if (sw->rpm) {
2540                pm_runtime_get_sync(&sw->dev);
2541                pm_runtime_disable(&sw->dev);
2542        }
2543
2544        /* port 0 is the switch itself and never has a remote */
2545        tb_switch_for_each_port(sw, port) {
2546                if (tb_port_has_remote(port)) {
2547                        tb_switch_remove(port->remote->sw);
2548                        port->remote = NULL;
2549                } else if (port->xdomain) {
2550                        tb_xdomain_remove(port->xdomain);
2551                        port->xdomain = NULL;
2552                }
2553
2554                /* Remove any downstream retimers */
2555                tb_retimer_remove_all(port);
2556        }
2557
2558        if (!sw->is_unplugged)
2559                tb_plug_events_active(sw, false);
2560
2561        tb_switch_nvm_remove(sw);
2562
2563        if (tb_route(sw))
2564                dev_info(&sw->dev, "device disconnected\n");
2565        device_unregister(&sw->dev);
2566}
2567
2568/**
2569 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2570 */
2571void tb_sw_set_unplugged(struct tb_switch *sw)
2572{
2573        struct tb_port *port;
2574
2575        if (sw == sw->tb->root_switch) {
2576                tb_sw_WARN(sw, "cannot unplug root switch\n");
2577                return;
2578        }
2579        if (sw->is_unplugged) {
2580                tb_sw_WARN(sw, "is_unplugged already set\n");
2581                return;
2582        }
2583        sw->is_unplugged = true;
2584        tb_switch_for_each_port(sw, port) {
2585                if (tb_port_has_remote(port))
2586                        tb_sw_set_unplugged(port->remote->sw);
2587                else if (port->xdomain)
2588                        port->xdomain->is_unplugged = true;
2589        }
2590}
2591
2592static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2593{
2594        if (flags)
2595                tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2596        else
2597                tb_sw_dbg(sw, "disabling wakeup\n");
2598
2599        if (tb_switch_is_usb4(sw))
2600                return usb4_switch_set_wake(sw, flags);
2601        return tb_lc_set_wake(sw, flags);
2602}
2603
2604int tb_switch_resume(struct tb_switch *sw)
2605{
2606        struct tb_port *port;
2607        int err;
2608
2609        tb_sw_dbg(sw, "resuming switch\n");
2610
2611        /*
2612         * Check for UID of the connected switches except for root
2613         * switch which we assume cannot be removed.
2614         */
2615        if (tb_route(sw)) {
2616                u64 uid;
2617
2618                /*
2619                 * Check first that we can still read the switch config
2620                 * space. It may be that there is now another domain
2621                 * connected.
2622                 */
2623                err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2624                if (err < 0) {
2625                        tb_sw_info(sw, "switch not present anymore\n");
2626                        return err;
2627                }
2628
2629                if (tb_switch_is_usb4(sw))
2630                        err = usb4_switch_read_uid(sw, &uid);
2631                else
2632                        err = tb_drom_read_uid_only(sw, &uid);
2633                if (err) {
2634                        tb_sw_warn(sw, "uid read failed\n");
2635                        return err;
2636                }
2637                if (sw->uid != uid) {
2638                        tb_sw_info(sw,
2639                                "changed while suspended (uid %#llx -> %#llx)\n",
2640                                sw->uid, uid);
2641                        return -ENODEV;
2642                }
2643        }
2644
2645        err = tb_switch_configure(sw);
2646        if (err)
2647                return err;
2648
2649        /* Disable wakes */
2650        tb_switch_set_wake(sw, 0);
2651
2652        err = tb_switch_tmu_init(sw);
2653        if (err)
2654                return err;
2655
2656        /* check for surviving downstream switches */
2657        tb_switch_for_each_port(sw, port) {
2658                if (!tb_port_has_remote(port) && !port->xdomain)
2659                        continue;
2660
2661                if (tb_wait_for_port(port, true) <= 0) {
2662                        tb_port_warn(port,
2663                                     "lost during suspend, disconnecting\n");
2664                        if (tb_port_has_remote(port))
2665                                tb_sw_set_unplugged(port->remote->sw);
2666                        else if (port->xdomain)
2667                                port->xdomain->is_unplugged = true;
2668                } else if (tb_port_has_remote(port) || port->xdomain) {
2669                        /*
2670                         * Always unlock the port so the downstream
2671                         * switch/domain is accessible.
2672                         */
2673                        if (tb_port_unlock(port))
2674                                tb_port_warn(port, "failed to unlock port\n");
2675                        if (port->remote && tb_switch_resume(port->remote->sw)) {
2676                                tb_port_warn(port,
2677                                             "lost during suspend, disconnecting\n");
2678                                tb_sw_set_unplugged(port->remote->sw);
2679                        }
2680                }
2681        }
2682        return 0;
2683}
2684
2685/**
2686 * tb_switch_suspend() - Put a switch to sleep
2687 * @sw: Switch to suspend
2688 * @runtime: Is this runtime suspend or system sleep
2689 *
2690 * Suspends router and all its children. Enables wakes according to
2691 * value of @runtime and then sets sleep bit for the router. If @sw is
2692 * host router the domain is ready to go to sleep once this function
2693 * returns.
2694 */
2695void tb_switch_suspend(struct tb_switch *sw, bool runtime)
2696{
2697        unsigned int flags = 0;
2698        struct tb_port *port;
2699        int err;
2700
2701        tb_sw_dbg(sw, "suspending switch\n");
2702
2703        err = tb_plug_events_active(sw, false);
2704        if (err)
2705                return;
2706
2707        tb_switch_for_each_port(sw, port) {
2708                if (tb_port_has_remote(port))
2709                        tb_switch_suspend(port->remote->sw, runtime);
2710        }
2711
2712        if (runtime) {
2713                /* Trigger wake when something is plugged in/out */
2714                flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
2715                flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2716        } else if (device_may_wakeup(&sw->dev)) {
2717                flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2718        }
2719
2720        tb_switch_set_wake(sw, flags);
2721
2722        if (tb_switch_is_usb4(sw))
2723                usb4_switch_set_sleep(sw);
2724        else
2725                tb_lc_set_sleep(sw);
2726}
2727
2728/**
2729 * tb_switch_query_dp_resource() - Query availability of DP resource
2730 * @sw: Switch whose DP resource is queried
2731 * @in: DP IN port
2732 *
2733 * Queries availability of DP resource for DP tunneling using switch
2734 * specific means. Returns %true if resource is available.
2735 */
2736bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2737{
2738        if (tb_switch_is_usb4(sw))
2739                return usb4_switch_query_dp_resource(sw, in);
2740        return tb_lc_dp_sink_query(sw, in);
2741}
2742
2743/**
2744 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2745 * @sw: Switch whose DP resource is allocated
2746 * @in: DP IN port
2747 *
2748 * Allocates DP resource for DP tunneling. The resource must be
2749 * available for this to succeed (see tb_switch_query_dp_resource()).
2750 * Returns %0 in success and negative errno otherwise.
2751 */
2752int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2753{
2754        if (tb_switch_is_usb4(sw))
2755                return usb4_switch_alloc_dp_resource(sw, in);
2756        return tb_lc_dp_sink_alloc(sw, in);
2757}
2758
2759/**
2760 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2761 * @sw: Switch whose DP resource is de-allocated
2762 * @in: DP IN port
2763 *
2764 * De-allocates DP resource that was previously allocated for DP
2765 * tunneling.
2766 */
2767void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2768{
2769        int ret;
2770
2771        if (tb_switch_is_usb4(sw))
2772                ret = usb4_switch_dealloc_dp_resource(sw, in);
2773        else
2774                ret = tb_lc_dp_sink_dealloc(sw, in);
2775
2776        if (ret)
2777                tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2778                           in->port);
2779}
2780
2781struct tb_sw_lookup {
2782        struct tb *tb;
2783        u8 link;
2784        u8 depth;
2785        const uuid_t *uuid;
2786        u64 route;
2787};
2788
2789static int tb_switch_match(struct device *dev, const void *data)
2790{
2791        struct tb_switch *sw = tb_to_switch(dev);
2792        const struct tb_sw_lookup *lookup = data;
2793
2794        if (!sw)
2795                return 0;
2796        if (sw->tb != lookup->tb)
2797                return 0;
2798
2799        if (lookup->uuid)
2800                return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2801
2802        if (lookup->route) {
2803                return sw->config.route_lo == lower_32_bits(lookup->route) &&
2804                       sw->config.route_hi == upper_32_bits(lookup->route);
2805        }
2806
2807        /* Root switch is matched only by depth */
2808        if (!lookup->depth)
2809                return !sw->depth;
2810
2811        return sw->link == lookup->link && sw->depth == lookup->depth;
2812}
2813
2814/**
2815 * tb_switch_find_by_link_depth() - Find switch by link and depth
2816 * @tb: Domain the switch belongs
2817 * @link: Link number the switch is connected
2818 * @depth: Depth of the switch in link
2819 *
2820 * Returned switch has reference count increased so the caller needs to
2821 * call tb_switch_put() when done with the switch.
2822 */
2823struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2824{
2825        struct tb_sw_lookup lookup;
2826        struct device *dev;
2827
2828        memset(&lookup, 0, sizeof(lookup));
2829        lookup.tb = tb;
2830        lookup.link = link;
2831        lookup.depth = depth;
2832
2833        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2834        if (dev)
2835                return tb_to_switch(dev);
2836
2837        return NULL;
2838}
2839
2840/**
2841 * tb_switch_find_by_uuid() - Find switch by UUID
2842 * @tb: Domain the switch belongs
2843 * @uuid: UUID to look for
2844 *
2845 * Returned switch has reference count increased so the caller needs to
2846 * call tb_switch_put() when done with the switch.
2847 */
2848struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2849{
2850        struct tb_sw_lookup lookup;
2851        struct device *dev;
2852
2853        memset(&lookup, 0, sizeof(lookup));
2854        lookup.tb = tb;
2855        lookup.uuid = uuid;
2856
2857        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2858        if (dev)
2859                return tb_to_switch(dev);
2860
2861        return NULL;
2862}
2863
2864/**
2865 * tb_switch_find_by_route() - Find switch by route string
2866 * @tb: Domain the switch belongs
2867 * @route: Route string to look for
2868 *
2869 * Returned switch has reference count increased so the caller needs to
2870 * call tb_switch_put() when done with the switch.
2871 */
2872struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2873{
2874        struct tb_sw_lookup lookup;
2875        struct device *dev;
2876
2877        if (!route)
2878                return tb_switch_get(tb->root_switch);
2879
2880        memset(&lookup, 0, sizeof(lookup));
2881        lookup.tb = tb;
2882        lookup.route = route;
2883
2884        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2885        if (dev)
2886                return tb_to_switch(dev);
2887
2888        return NULL;
2889}
2890
2891/**
2892 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2893 * @sw: Switch to find the port from
2894 * @type: Port type to look for
2895 */
2896struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2897                                    enum tb_port_type type)
2898{
2899        struct tb_port *port;
2900
2901        tb_switch_for_each_port(sw, port) {
2902                if (port->config.type == type)
2903                        return port;
2904        }
2905
2906        return NULL;
2907}
2908