linux/fs/btrfs/file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
  12#include <linux/falloc.h>
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include "ctree.h"
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "btrfs_inode.h"
  23#include "print-tree.h"
  24#include "tree-log.h"
  25#include "locking.h"
  26#include "volumes.h"
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30#include "reflink.h"
  31
  32static struct kmem_cache *btrfs_inode_defrag_cachep;
  33/*
  34 * when auto defrag is enabled we
  35 * queue up these defrag structs to remember which
  36 * inodes need defragging passes
  37 */
  38struct inode_defrag {
  39        struct rb_node rb_node;
  40        /* objectid */
  41        u64 ino;
  42        /*
  43         * transid where the defrag was added, we search for
  44         * extents newer than this
  45         */
  46        u64 transid;
  47
  48        /* root objectid */
  49        u64 root;
  50
  51        /* last offset we were able to defrag */
  52        u64 last_offset;
  53
  54        /* if we've wrapped around back to zero once already */
  55        int cycled;
  56};
  57
  58static int __compare_inode_defrag(struct inode_defrag *defrag1,
  59                                  struct inode_defrag *defrag2)
  60{
  61        if (defrag1->root > defrag2->root)
  62                return 1;
  63        else if (defrag1->root < defrag2->root)
  64                return -1;
  65        else if (defrag1->ino > defrag2->ino)
  66                return 1;
  67        else if (defrag1->ino < defrag2->ino)
  68                return -1;
  69        else
  70                return 0;
  71}
  72
  73/* pop a record for an inode into the defrag tree.  The lock
  74 * must be held already
  75 *
  76 * If you're inserting a record for an older transid than an
  77 * existing record, the transid already in the tree is lowered
  78 *
  79 * If an existing record is found the defrag item you
  80 * pass in is freed
  81 */
  82static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  83                                    struct inode_defrag *defrag)
  84{
  85        struct btrfs_fs_info *fs_info = inode->root->fs_info;
  86        struct inode_defrag *entry;
  87        struct rb_node **p;
  88        struct rb_node *parent = NULL;
  89        int ret;
  90
  91        p = &fs_info->defrag_inodes.rb_node;
  92        while (*p) {
  93                parent = *p;
  94                entry = rb_entry(parent, struct inode_defrag, rb_node);
  95
  96                ret = __compare_inode_defrag(defrag, entry);
  97                if (ret < 0)
  98                        p = &parent->rb_left;
  99                else if (ret > 0)
 100                        p = &parent->rb_right;
 101                else {
 102                        /* if we're reinserting an entry for
 103                         * an old defrag run, make sure to
 104                         * lower the transid of our existing record
 105                         */
 106                        if (defrag->transid < entry->transid)
 107                                entry->transid = defrag->transid;
 108                        if (defrag->last_offset > entry->last_offset)
 109                                entry->last_offset = defrag->last_offset;
 110                        return -EEXIST;
 111                }
 112        }
 113        set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 114        rb_link_node(&defrag->rb_node, parent, p);
 115        rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 116        return 0;
 117}
 118
 119static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 120{
 121        if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 122                return 0;
 123
 124        if (btrfs_fs_closing(fs_info))
 125                return 0;
 126
 127        return 1;
 128}
 129
 130/*
 131 * insert a defrag record for this inode if auto defrag is
 132 * enabled
 133 */
 134int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 135                           struct btrfs_inode *inode)
 136{
 137        struct btrfs_root *root = inode->root;
 138        struct btrfs_fs_info *fs_info = root->fs_info;
 139        struct inode_defrag *defrag;
 140        u64 transid;
 141        int ret;
 142
 143        if (!__need_auto_defrag(fs_info))
 144                return 0;
 145
 146        if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 147                return 0;
 148
 149        if (trans)
 150                transid = trans->transid;
 151        else
 152                transid = inode->root->last_trans;
 153
 154        defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 155        if (!defrag)
 156                return -ENOMEM;
 157
 158        defrag->ino = btrfs_ino(inode);
 159        defrag->transid = transid;
 160        defrag->root = root->root_key.objectid;
 161
 162        spin_lock(&fs_info->defrag_inodes_lock);
 163        if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 164                /*
 165                 * If we set IN_DEFRAG flag and evict the inode from memory,
 166                 * and then re-read this inode, this new inode doesn't have
 167                 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 168                 */
 169                ret = __btrfs_add_inode_defrag(inode, defrag);
 170                if (ret)
 171                        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 172        } else {
 173                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 174        }
 175        spin_unlock(&fs_info->defrag_inodes_lock);
 176        return 0;
 177}
 178
 179/*
 180 * Requeue the defrag object. If there is a defrag object that points to
 181 * the same inode in the tree, we will merge them together (by
 182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 183 */
 184static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
 185                                       struct inode_defrag *defrag)
 186{
 187        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 188        int ret;
 189
 190        if (!__need_auto_defrag(fs_info))
 191                goto out;
 192
 193        /*
 194         * Here we don't check the IN_DEFRAG flag, because we need merge
 195         * them together.
 196         */
 197        spin_lock(&fs_info->defrag_inodes_lock);
 198        ret = __btrfs_add_inode_defrag(inode, defrag);
 199        spin_unlock(&fs_info->defrag_inodes_lock);
 200        if (ret)
 201                goto out;
 202        return;
 203out:
 204        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 205}
 206
 207/*
 208 * pick the defragable inode that we want, if it doesn't exist, we will get
 209 * the next one.
 210 */
 211static struct inode_defrag *
 212btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 213{
 214        struct inode_defrag *entry = NULL;
 215        struct inode_defrag tmp;
 216        struct rb_node *p;
 217        struct rb_node *parent = NULL;
 218        int ret;
 219
 220        tmp.ino = ino;
 221        tmp.root = root;
 222
 223        spin_lock(&fs_info->defrag_inodes_lock);
 224        p = fs_info->defrag_inodes.rb_node;
 225        while (p) {
 226                parent = p;
 227                entry = rb_entry(parent, struct inode_defrag, rb_node);
 228
 229                ret = __compare_inode_defrag(&tmp, entry);
 230                if (ret < 0)
 231                        p = parent->rb_left;
 232                else if (ret > 0)
 233                        p = parent->rb_right;
 234                else
 235                        goto out;
 236        }
 237
 238        if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 239                parent = rb_next(parent);
 240                if (parent)
 241                        entry = rb_entry(parent, struct inode_defrag, rb_node);
 242                else
 243                        entry = NULL;
 244        }
 245out:
 246        if (entry)
 247                rb_erase(parent, &fs_info->defrag_inodes);
 248        spin_unlock(&fs_info->defrag_inodes_lock);
 249        return entry;
 250}
 251
 252void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 253{
 254        struct inode_defrag *defrag;
 255        struct rb_node *node;
 256
 257        spin_lock(&fs_info->defrag_inodes_lock);
 258        node = rb_first(&fs_info->defrag_inodes);
 259        while (node) {
 260                rb_erase(node, &fs_info->defrag_inodes);
 261                defrag = rb_entry(node, struct inode_defrag, rb_node);
 262                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 263
 264                cond_resched_lock(&fs_info->defrag_inodes_lock);
 265
 266                node = rb_first(&fs_info->defrag_inodes);
 267        }
 268        spin_unlock(&fs_info->defrag_inodes_lock);
 269}
 270
 271#define BTRFS_DEFRAG_BATCH      1024
 272
 273static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 274                                    struct inode_defrag *defrag)
 275{
 276        struct btrfs_root *inode_root;
 277        struct inode *inode;
 278        struct btrfs_ioctl_defrag_range_args range;
 279        int num_defrag;
 280        int ret;
 281
 282        /* get the inode */
 283        inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
 284        if (IS_ERR(inode_root)) {
 285                ret = PTR_ERR(inode_root);
 286                goto cleanup;
 287        }
 288
 289        inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
 290        btrfs_put_root(inode_root);
 291        if (IS_ERR(inode)) {
 292                ret = PTR_ERR(inode);
 293                goto cleanup;
 294        }
 295
 296        /* do a chunk of defrag */
 297        clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 298        memset(&range, 0, sizeof(range));
 299        range.len = (u64)-1;
 300        range.start = defrag->last_offset;
 301
 302        sb_start_write(fs_info->sb);
 303        num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 304                                       BTRFS_DEFRAG_BATCH);
 305        sb_end_write(fs_info->sb);
 306        /*
 307         * if we filled the whole defrag batch, there
 308         * must be more work to do.  Queue this defrag
 309         * again
 310         */
 311        if (num_defrag == BTRFS_DEFRAG_BATCH) {
 312                defrag->last_offset = range.start;
 313                btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 314        } else if (defrag->last_offset && !defrag->cycled) {
 315                /*
 316                 * we didn't fill our defrag batch, but
 317                 * we didn't start at zero.  Make sure we loop
 318                 * around to the start of the file.
 319                 */
 320                defrag->last_offset = 0;
 321                defrag->cycled = 1;
 322                btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 323        } else {
 324                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 325        }
 326
 327        iput(inode);
 328        return 0;
 329cleanup:
 330        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 331        return ret;
 332}
 333
 334/*
 335 * run through the list of inodes in the FS that need
 336 * defragging
 337 */
 338int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 339{
 340        struct inode_defrag *defrag;
 341        u64 first_ino = 0;
 342        u64 root_objectid = 0;
 343
 344        atomic_inc(&fs_info->defrag_running);
 345        while (1) {
 346                /* Pause the auto defragger. */
 347                if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 348                             &fs_info->fs_state))
 349                        break;
 350
 351                if (!__need_auto_defrag(fs_info))
 352                        break;
 353
 354                /* find an inode to defrag */
 355                defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 356                                                 first_ino);
 357                if (!defrag) {
 358                        if (root_objectid || first_ino) {
 359                                root_objectid = 0;
 360                                first_ino = 0;
 361                                continue;
 362                        } else {
 363                                break;
 364                        }
 365                }
 366
 367                first_ino = defrag->ino + 1;
 368                root_objectid = defrag->root;
 369
 370                __btrfs_run_defrag_inode(fs_info, defrag);
 371        }
 372        atomic_dec(&fs_info->defrag_running);
 373
 374        /*
 375         * during unmount, we use the transaction_wait queue to
 376         * wait for the defragger to stop
 377         */
 378        wake_up(&fs_info->transaction_wait);
 379        return 0;
 380}
 381
 382/* simple helper to fault in pages and copy.  This should go away
 383 * and be replaced with calls into generic code.
 384 */
 385static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 386                                         struct page **prepared_pages,
 387                                         struct iov_iter *i)
 388{
 389        size_t copied = 0;
 390        size_t total_copied = 0;
 391        int pg = 0;
 392        int offset = offset_in_page(pos);
 393
 394        while (write_bytes > 0) {
 395                size_t count = min_t(size_t,
 396                                     PAGE_SIZE - offset, write_bytes);
 397                struct page *page = prepared_pages[pg];
 398                /*
 399                 * Copy data from userspace to the current page
 400                 */
 401                copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 402
 403                /* Flush processor's dcache for this page */
 404                flush_dcache_page(page);
 405
 406                /*
 407                 * if we get a partial write, we can end up with
 408                 * partially up to date pages.  These add
 409                 * a lot of complexity, so make sure they don't
 410                 * happen by forcing this copy to be retried.
 411                 *
 412                 * The rest of the btrfs_file_write code will fall
 413                 * back to page at a time copies after we return 0.
 414                 */
 415                if (!PageUptodate(page) && copied < count)
 416                        copied = 0;
 417
 418                iov_iter_advance(i, copied);
 419                write_bytes -= copied;
 420                total_copied += copied;
 421
 422                /* Return to btrfs_file_write_iter to fault page */
 423                if (unlikely(copied == 0))
 424                        break;
 425
 426                if (copied < PAGE_SIZE - offset) {
 427                        offset += copied;
 428                } else {
 429                        pg++;
 430                        offset = 0;
 431                }
 432        }
 433        return total_copied;
 434}
 435
 436/*
 437 * unlocks pages after btrfs_file_write is done with them
 438 */
 439static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 440{
 441        size_t i;
 442        for (i = 0; i < num_pages; i++) {
 443                /* page checked is some magic around finding pages that
 444                 * have been modified without going through btrfs_set_page_dirty
 445                 * clear it here. There should be no need to mark the pages
 446                 * accessed as prepare_pages should have marked them accessed
 447                 * in prepare_pages via find_or_create_page()
 448                 */
 449                ClearPageChecked(pages[i]);
 450                unlock_page(pages[i]);
 451                put_page(pages[i]);
 452        }
 453}
 454
 455/*
 456 * after copy_from_user, pages need to be dirtied and we need to make
 457 * sure holes are created between the current EOF and the start of
 458 * any next extents (if required).
 459 *
 460 * this also makes the decision about creating an inline extent vs
 461 * doing real data extents, marking pages dirty and delalloc as required.
 462 */
 463int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
 464                      size_t num_pages, loff_t pos, size_t write_bytes,
 465                      struct extent_state **cached)
 466{
 467        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 468        int err = 0;
 469        int i;
 470        u64 num_bytes;
 471        u64 start_pos;
 472        u64 end_of_last_block;
 473        u64 end_pos = pos + write_bytes;
 474        loff_t isize = i_size_read(&inode->vfs_inode);
 475        unsigned int extra_bits = 0;
 476
 477        start_pos = pos & ~((u64) fs_info->sectorsize - 1);
 478        num_bytes = round_up(write_bytes + pos - start_pos,
 479                             fs_info->sectorsize);
 480
 481        end_of_last_block = start_pos + num_bytes - 1;
 482
 483        /*
 484         * The pages may have already been dirty, clear out old accounting so
 485         * we can set things up properly
 486         */
 487        clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 488                         EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 489                         0, 0, cached);
 490
 491        err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 492                                        extra_bits, cached);
 493        if (err)
 494                return err;
 495
 496        for (i = 0; i < num_pages; i++) {
 497                struct page *p = pages[i];
 498                SetPageUptodate(p);
 499                ClearPageChecked(p);
 500                set_page_dirty(p);
 501        }
 502
 503        /*
 504         * we've only changed i_size in ram, and we haven't updated
 505         * the disk i_size.  There is no need to log the inode
 506         * at this time.
 507         */
 508        if (end_pos > isize)
 509                i_size_write(&inode->vfs_inode, end_pos);
 510        return 0;
 511}
 512
 513/*
 514 * this drops all the extents in the cache that intersect the range
 515 * [start, end].  Existing extents are split as required.
 516 */
 517void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 518                             int skip_pinned)
 519{
 520        struct extent_map *em;
 521        struct extent_map *split = NULL;
 522        struct extent_map *split2 = NULL;
 523        struct extent_map_tree *em_tree = &inode->extent_tree;
 524        u64 len = end - start + 1;
 525        u64 gen;
 526        int ret;
 527        int testend = 1;
 528        unsigned long flags;
 529        int compressed = 0;
 530        bool modified;
 531
 532        WARN_ON(end < start);
 533        if (end == (u64)-1) {
 534                len = (u64)-1;
 535                testend = 0;
 536        }
 537        while (1) {
 538                int no_splits = 0;
 539
 540                modified = false;
 541                if (!split)
 542                        split = alloc_extent_map();
 543                if (!split2)
 544                        split2 = alloc_extent_map();
 545                if (!split || !split2)
 546                        no_splits = 1;
 547
 548                write_lock(&em_tree->lock);
 549                em = lookup_extent_mapping(em_tree, start, len);
 550                if (!em) {
 551                        write_unlock(&em_tree->lock);
 552                        break;
 553                }
 554                flags = em->flags;
 555                gen = em->generation;
 556                if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 557                        if (testend && em->start + em->len >= start + len) {
 558                                free_extent_map(em);
 559                                write_unlock(&em_tree->lock);
 560                                break;
 561                        }
 562                        start = em->start + em->len;
 563                        if (testend)
 564                                len = start + len - (em->start + em->len);
 565                        free_extent_map(em);
 566                        write_unlock(&em_tree->lock);
 567                        continue;
 568                }
 569                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 570                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 571                clear_bit(EXTENT_FLAG_LOGGING, &flags);
 572                modified = !list_empty(&em->list);
 573                if (no_splits)
 574                        goto next;
 575
 576                if (em->start < start) {
 577                        split->start = em->start;
 578                        split->len = start - em->start;
 579
 580                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 581                                split->orig_start = em->orig_start;
 582                                split->block_start = em->block_start;
 583
 584                                if (compressed)
 585                                        split->block_len = em->block_len;
 586                                else
 587                                        split->block_len = split->len;
 588                                split->orig_block_len = max(split->block_len,
 589                                                em->orig_block_len);
 590                                split->ram_bytes = em->ram_bytes;
 591                        } else {
 592                                split->orig_start = split->start;
 593                                split->block_len = 0;
 594                                split->block_start = em->block_start;
 595                                split->orig_block_len = 0;
 596                                split->ram_bytes = split->len;
 597                        }
 598
 599                        split->generation = gen;
 600                        split->flags = flags;
 601                        split->compress_type = em->compress_type;
 602                        replace_extent_mapping(em_tree, em, split, modified);
 603                        free_extent_map(split);
 604                        split = split2;
 605                        split2 = NULL;
 606                }
 607                if (testend && em->start + em->len > start + len) {
 608                        u64 diff = start + len - em->start;
 609
 610                        split->start = start + len;
 611                        split->len = em->start + em->len - (start + len);
 612                        split->flags = flags;
 613                        split->compress_type = em->compress_type;
 614                        split->generation = gen;
 615
 616                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 617                                split->orig_block_len = max(em->block_len,
 618                                                    em->orig_block_len);
 619
 620                                split->ram_bytes = em->ram_bytes;
 621                                if (compressed) {
 622                                        split->block_len = em->block_len;
 623                                        split->block_start = em->block_start;
 624                                        split->orig_start = em->orig_start;
 625                                } else {
 626                                        split->block_len = split->len;
 627                                        split->block_start = em->block_start
 628                                                + diff;
 629                                        split->orig_start = em->orig_start;
 630                                }
 631                        } else {
 632                                split->ram_bytes = split->len;
 633                                split->orig_start = split->start;
 634                                split->block_len = 0;
 635                                split->block_start = em->block_start;
 636                                split->orig_block_len = 0;
 637                        }
 638
 639                        if (extent_map_in_tree(em)) {
 640                                replace_extent_mapping(em_tree, em, split,
 641                                                       modified);
 642                        } else {
 643                                ret = add_extent_mapping(em_tree, split,
 644                                                         modified);
 645                                ASSERT(ret == 0); /* Logic error */
 646                        }
 647                        free_extent_map(split);
 648                        split = NULL;
 649                }
 650next:
 651                if (extent_map_in_tree(em))
 652                        remove_extent_mapping(em_tree, em);
 653                write_unlock(&em_tree->lock);
 654
 655                /* once for us */
 656                free_extent_map(em);
 657                /* once for the tree*/
 658                free_extent_map(em);
 659        }
 660        if (split)
 661                free_extent_map(split);
 662        if (split2)
 663                free_extent_map(split2);
 664}
 665
 666/*
 667 * this is very complex, but the basic idea is to drop all extents
 668 * in the range start - end.  hint_block is filled in with a block number
 669 * that would be a good hint to the block allocator for this file.
 670 *
 671 * If an extent intersects the range but is not entirely inside the range
 672 * it is either truncated or split.  Anything entirely inside the range
 673 * is deleted from the tree.
 674 */
 675int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 676                         struct btrfs_root *root, struct btrfs_inode *inode,
 677                         struct btrfs_path *path, u64 start, u64 end,
 678                         u64 *drop_end, int drop_cache,
 679                         int replace_extent,
 680                         u32 extent_item_size,
 681                         int *key_inserted)
 682{
 683        struct btrfs_fs_info *fs_info = root->fs_info;
 684        struct extent_buffer *leaf;
 685        struct btrfs_file_extent_item *fi;
 686        struct btrfs_ref ref = { 0 };
 687        struct btrfs_key key;
 688        struct btrfs_key new_key;
 689        struct inode *vfs_inode = &inode->vfs_inode;
 690        u64 ino = btrfs_ino(inode);
 691        u64 search_start = start;
 692        u64 disk_bytenr = 0;
 693        u64 num_bytes = 0;
 694        u64 extent_offset = 0;
 695        u64 extent_end = 0;
 696        u64 last_end = start;
 697        int del_nr = 0;
 698        int del_slot = 0;
 699        int extent_type;
 700        int recow;
 701        int ret;
 702        int modify_tree = -1;
 703        int update_refs;
 704        int found = 0;
 705        int leafs_visited = 0;
 706
 707        if (drop_cache)
 708                btrfs_drop_extent_cache(inode, start, end - 1, 0);
 709
 710        if (start >= inode->disk_i_size && !replace_extent)
 711                modify_tree = 0;
 712
 713        update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 714                       root == fs_info->tree_root);
 715        while (1) {
 716                recow = 0;
 717                ret = btrfs_lookup_file_extent(trans, root, path, ino,
 718                                               search_start, modify_tree);
 719                if (ret < 0)
 720                        break;
 721                if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 722                        leaf = path->nodes[0];
 723                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 724                        if (key.objectid == ino &&
 725                            key.type == BTRFS_EXTENT_DATA_KEY)
 726                                path->slots[0]--;
 727                }
 728                ret = 0;
 729                leafs_visited++;
 730next_slot:
 731                leaf = path->nodes[0];
 732                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 733                        BUG_ON(del_nr > 0);
 734                        ret = btrfs_next_leaf(root, path);
 735                        if (ret < 0)
 736                                break;
 737                        if (ret > 0) {
 738                                ret = 0;
 739                                break;
 740                        }
 741                        leafs_visited++;
 742                        leaf = path->nodes[0];
 743                        recow = 1;
 744                }
 745
 746                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 747
 748                if (key.objectid > ino)
 749                        break;
 750                if (WARN_ON_ONCE(key.objectid < ino) ||
 751                    key.type < BTRFS_EXTENT_DATA_KEY) {
 752                        ASSERT(del_nr == 0);
 753                        path->slots[0]++;
 754                        goto next_slot;
 755                }
 756                if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 757                        break;
 758
 759                fi = btrfs_item_ptr(leaf, path->slots[0],
 760                                    struct btrfs_file_extent_item);
 761                extent_type = btrfs_file_extent_type(leaf, fi);
 762
 763                if (extent_type == BTRFS_FILE_EXTENT_REG ||
 764                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 765                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 766                        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 767                        extent_offset = btrfs_file_extent_offset(leaf, fi);
 768                        extent_end = key.offset +
 769                                btrfs_file_extent_num_bytes(leaf, fi);
 770                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 771                        extent_end = key.offset +
 772                                btrfs_file_extent_ram_bytes(leaf, fi);
 773                } else {
 774                        /* can't happen */
 775                        BUG();
 776                }
 777
 778                /*
 779                 * Don't skip extent items representing 0 byte lengths. They
 780                 * used to be created (bug) if while punching holes we hit
 781                 * -ENOSPC condition. So if we find one here, just ensure we
 782                 * delete it, otherwise we would insert a new file extent item
 783                 * with the same key (offset) as that 0 bytes length file
 784                 * extent item in the call to setup_items_for_insert() later
 785                 * in this function.
 786                 */
 787                if (extent_end == key.offset && extent_end >= search_start) {
 788                        last_end = extent_end;
 789                        goto delete_extent_item;
 790                }
 791
 792                if (extent_end <= search_start) {
 793                        path->slots[0]++;
 794                        goto next_slot;
 795                }
 796
 797                found = 1;
 798                search_start = max(key.offset, start);
 799                if (recow || !modify_tree) {
 800                        modify_tree = -1;
 801                        btrfs_release_path(path);
 802                        continue;
 803                }
 804
 805                /*
 806                 *     | - range to drop - |
 807                 *  | -------- extent -------- |
 808                 */
 809                if (start > key.offset && end < extent_end) {
 810                        BUG_ON(del_nr > 0);
 811                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 812                                ret = -EOPNOTSUPP;
 813                                break;
 814                        }
 815
 816                        memcpy(&new_key, &key, sizeof(new_key));
 817                        new_key.offset = start;
 818                        ret = btrfs_duplicate_item(trans, root, path,
 819                                                   &new_key);
 820                        if (ret == -EAGAIN) {
 821                                btrfs_release_path(path);
 822                                continue;
 823                        }
 824                        if (ret < 0)
 825                                break;
 826
 827                        leaf = path->nodes[0];
 828                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 829                                            struct btrfs_file_extent_item);
 830                        btrfs_set_file_extent_num_bytes(leaf, fi,
 831                                                        start - key.offset);
 832
 833                        fi = btrfs_item_ptr(leaf, path->slots[0],
 834                                            struct btrfs_file_extent_item);
 835
 836                        extent_offset += start - key.offset;
 837                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 838                        btrfs_set_file_extent_num_bytes(leaf, fi,
 839                                                        extent_end - start);
 840                        btrfs_mark_buffer_dirty(leaf);
 841
 842                        if (update_refs && disk_bytenr > 0) {
 843                                btrfs_init_generic_ref(&ref,
 844                                                BTRFS_ADD_DELAYED_REF,
 845                                                disk_bytenr, num_bytes, 0);
 846                                btrfs_init_data_ref(&ref,
 847                                                root->root_key.objectid,
 848                                                new_key.objectid,
 849                                                start - extent_offset);
 850                                ret = btrfs_inc_extent_ref(trans, &ref);
 851                                BUG_ON(ret); /* -ENOMEM */
 852                        }
 853                        key.offset = start;
 854                }
 855                /*
 856                 * From here on out we will have actually dropped something, so
 857                 * last_end can be updated.
 858                 */
 859                last_end = extent_end;
 860
 861                /*
 862                 *  | ---- range to drop ----- |
 863                 *      | -------- extent -------- |
 864                 */
 865                if (start <= key.offset && end < extent_end) {
 866                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 867                                ret = -EOPNOTSUPP;
 868                                break;
 869                        }
 870
 871                        memcpy(&new_key, &key, sizeof(new_key));
 872                        new_key.offset = end;
 873                        btrfs_set_item_key_safe(fs_info, path, &new_key);
 874
 875                        extent_offset += end - key.offset;
 876                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 877                        btrfs_set_file_extent_num_bytes(leaf, fi,
 878                                                        extent_end - end);
 879                        btrfs_mark_buffer_dirty(leaf);
 880                        if (update_refs && disk_bytenr > 0)
 881                                inode_sub_bytes(vfs_inode, end - key.offset);
 882                        break;
 883                }
 884
 885                search_start = extent_end;
 886                /*
 887                 *       | ---- range to drop ----- |
 888                 *  | -------- extent -------- |
 889                 */
 890                if (start > key.offset && end >= extent_end) {
 891                        BUG_ON(del_nr > 0);
 892                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 893                                ret = -EOPNOTSUPP;
 894                                break;
 895                        }
 896
 897                        btrfs_set_file_extent_num_bytes(leaf, fi,
 898                                                        start - key.offset);
 899                        btrfs_mark_buffer_dirty(leaf);
 900                        if (update_refs && disk_bytenr > 0)
 901                                inode_sub_bytes(vfs_inode, extent_end - start);
 902                        if (end == extent_end)
 903                                break;
 904
 905                        path->slots[0]++;
 906                        goto next_slot;
 907                }
 908
 909                /*
 910                 *  | ---- range to drop ----- |
 911                 *    | ------ extent ------ |
 912                 */
 913                if (start <= key.offset && end >= extent_end) {
 914delete_extent_item:
 915                        if (del_nr == 0) {
 916                                del_slot = path->slots[0];
 917                                del_nr = 1;
 918                        } else {
 919                                BUG_ON(del_slot + del_nr != path->slots[0]);
 920                                del_nr++;
 921                        }
 922
 923                        if (update_refs &&
 924                            extent_type == BTRFS_FILE_EXTENT_INLINE) {
 925                                inode_sub_bytes(vfs_inode,
 926                                                extent_end - key.offset);
 927                                extent_end = ALIGN(extent_end,
 928                                                   fs_info->sectorsize);
 929                        } else if (update_refs && disk_bytenr > 0) {
 930                                btrfs_init_generic_ref(&ref,
 931                                                BTRFS_DROP_DELAYED_REF,
 932                                                disk_bytenr, num_bytes, 0);
 933                                btrfs_init_data_ref(&ref,
 934                                                root->root_key.objectid,
 935                                                key.objectid,
 936                                                key.offset - extent_offset);
 937                                ret = btrfs_free_extent(trans, &ref);
 938                                BUG_ON(ret); /* -ENOMEM */
 939                                inode_sub_bytes(vfs_inode,
 940                                                extent_end - key.offset);
 941                        }
 942
 943                        if (end == extent_end)
 944                                break;
 945
 946                        if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 947                                path->slots[0]++;
 948                                goto next_slot;
 949                        }
 950
 951                        ret = btrfs_del_items(trans, root, path, del_slot,
 952                                              del_nr);
 953                        if (ret) {
 954                                btrfs_abort_transaction(trans, ret);
 955                                break;
 956                        }
 957
 958                        del_nr = 0;
 959                        del_slot = 0;
 960
 961                        btrfs_release_path(path);
 962                        continue;
 963                }
 964
 965                BUG();
 966        }
 967
 968        if (!ret && del_nr > 0) {
 969                /*
 970                 * Set path->slots[0] to first slot, so that after the delete
 971                 * if items are move off from our leaf to its immediate left or
 972                 * right neighbor leafs, we end up with a correct and adjusted
 973                 * path->slots[0] for our insertion (if replace_extent != 0).
 974                 */
 975                path->slots[0] = del_slot;
 976                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 977                if (ret)
 978                        btrfs_abort_transaction(trans, ret);
 979        }
 980
 981        leaf = path->nodes[0];
 982        /*
 983         * If btrfs_del_items() was called, it might have deleted a leaf, in
 984         * which case it unlocked our path, so check path->locks[0] matches a
 985         * write lock.
 986         */
 987        if (!ret && replace_extent && leafs_visited == 1 &&
 988            (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 989             path->locks[0] == BTRFS_WRITE_LOCK) &&
 990            btrfs_leaf_free_space(leaf) >=
 991            sizeof(struct btrfs_item) + extent_item_size) {
 992
 993                key.objectid = ino;
 994                key.type = BTRFS_EXTENT_DATA_KEY;
 995                key.offset = start;
 996                if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 997                        struct btrfs_key slot_key;
 998
 999                        btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1000                        if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1001                                path->slots[0]++;
1002                }
1003                setup_items_for_insert(root, path, &key, &extent_item_size, 1);
1004                *key_inserted = 1;
1005        }
1006
1007        if (!replace_extent || !(*key_inserted))
1008                btrfs_release_path(path);
1009        if (drop_end)
1010                *drop_end = found ? min(end, last_end) : end;
1011        return ret;
1012}
1013
1014int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1015                       struct btrfs_root *root, struct inode *inode, u64 start,
1016                       u64 end, int drop_cache)
1017{
1018        struct btrfs_path *path;
1019        int ret;
1020
1021        path = btrfs_alloc_path();
1022        if (!path)
1023                return -ENOMEM;
1024        ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1025                                   end, NULL, drop_cache, 0, 0, NULL);
1026        btrfs_free_path(path);
1027        return ret;
1028}
1029
1030static int extent_mergeable(struct extent_buffer *leaf, int slot,
1031                            u64 objectid, u64 bytenr, u64 orig_offset,
1032                            u64 *start, u64 *end)
1033{
1034        struct btrfs_file_extent_item *fi;
1035        struct btrfs_key key;
1036        u64 extent_end;
1037
1038        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1039                return 0;
1040
1041        btrfs_item_key_to_cpu(leaf, &key, slot);
1042        if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1043                return 0;
1044
1045        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1046        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1047            btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1048            btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1049            btrfs_file_extent_compression(leaf, fi) ||
1050            btrfs_file_extent_encryption(leaf, fi) ||
1051            btrfs_file_extent_other_encoding(leaf, fi))
1052                return 0;
1053
1054        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1055        if ((*start && *start != key.offset) || (*end && *end != extent_end))
1056                return 0;
1057
1058        *start = key.offset;
1059        *end = extent_end;
1060        return 1;
1061}
1062
1063/*
1064 * Mark extent in the range start - end as written.
1065 *
1066 * This changes extent type from 'pre-allocated' to 'regular'. If only
1067 * part of extent is marked as written, the extent will be split into
1068 * two or three.
1069 */
1070int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1071                              struct btrfs_inode *inode, u64 start, u64 end)
1072{
1073        struct btrfs_fs_info *fs_info = trans->fs_info;
1074        struct btrfs_root *root = inode->root;
1075        struct extent_buffer *leaf;
1076        struct btrfs_path *path;
1077        struct btrfs_file_extent_item *fi;
1078        struct btrfs_ref ref = { 0 };
1079        struct btrfs_key key;
1080        struct btrfs_key new_key;
1081        u64 bytenr;
1082        u64 num_bytes;
1083        u64 extent_end;
1084        u64 orig_offset;
1085        u64 other_start;
1086        u64 other_end;
1087        u64 split;
1088        int del_nr = 0;
1089        int del_slot = 0;
1090        int recow;
1091        int ret;
1092        u64 ino = btrfs_ino(inode);
1093
1094        path = btrfs_alloc_path();
1095        if (!path)
1096                return -ENOMEM;
1097again:
1098        recow = 0;
1099        split = start;
1100        key.objectid = ino;
1101        key.type = BTRFS_EXTENT_DATA_KEY;
1102        key.offset = split;
1103
1104        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1105        if (ret < 0)
1106                goto out;
1107        if (ret > 0 && path->slots[0] > 0)
1108                path->slots[0]--;
1109
1110        leaf = path->nodes[0];
1111        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1112        if (key.objectid != ino ||
1113            key.type != BTRFS_EXTENT_DATA_KEY) {
1114                ret = -EINVAL;
1115                btrfs_abort_transaction(trans, ret);
1116                goto out;
1117        }
1118        fi = btrfs_item_ptr(leaf, path->slots[0],
1119                            struct btrfs_file_extent_item);
1120        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1121                ret = -EINVAL;
1122                btrfs_abort_transaction(trans, ret);
1123                goto out;
1124        }
1125        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1126        if (key.offset > start || extent_end < end) {
1127                ret = -EINVAL;
1128                btrfs_abort_transaction(trans, ret);
1129                goto out;
1130        }
1131
1132        bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1133        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1134        orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1135        memcpy(&new_key, &key, sizeof(new_key));
1136
1137        if (start == key.offset && end < extent_end) {
1138                other_start = 0;
1139                other_end = start;
1140                if (extent_mergeable(leaf, path->slots[0] - 1,
1141                                     ino, bytenr, orig_offset,
1142                                     &other_start, &other_end)) {
1143                        new_key.offset = end;
1144                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1145                        fi = btrfs_item_ptr(leaf, path->slots[0],
1146                                            struct btrfs_file_extent_item);
1147                        btrfs_set_file_extent_generation(leaf, fi,
1148                                                         trans->transid);
1149                        btrfs_set_file_extent_num_bytes(leaf, fi,
1150                                                        extent_end - end);
1151                        btrfs_set_file_extent_offset(leaf, fi,
1152                                                     end - orig_offset);
1153                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1154                                            struct btrfs_file_extent_item);
1155                        btrfs_set_file_extent_generation(leaf, fi,
1156                                                         trans->transid);
1157                        btrfs_set_file_extent_num_bytes(leaf, fi,
1158                                                        end - other_start);
1159                        btrfs_mark_buffer_dirty(leaf);
1160                        goto out;
1161                }
1162        }
1163
1164        if (start > key.offset && end == extent_end) {
1165                other_start = end;
1166                other_end = 0;
1167                if (extent_mergeable(leaf, path->slots[0] + 1,
1168                                     ino, bytenr, orig_offset,
1169                                     &other_start, &other_end)) {
1170                        fi = btrfs_item_ptr(leaf, path->slots[0],
1171                                            struct btrfs_file_extent_item);
1172                        btrfs_set_file_extent_num_bytes(leaf, fi,
1173                                                        start - key.offset);
1174                        btrfs_set_file_extent_generation(leaf, fi,
1175                                                         trans->transid);
1176                        path->slots[0]++;
1177                        new_key.offset = start;
1178                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1179
1180                        fi = btrfs_item_ptr(leaf, path->slots[0],
1181                                            struct btrfs_file_extent_item);
1182                        btrfs_set_file_extent_generation(leaf, fi,
1183                                                         trans->transid);
1184                        btrfs_set_file_extent_num_bytes(leaf, fi,
1185                                                        other_end - start);
1186                        btrfs_set_file_extent_offset(leaf, fi,
1187                                                     start - orig_offset);
1188                        btrfs_mark_buffer_dirty(leaf);
1189                        goto out;
1190                }
1191        }
1192
1193        while (start > key.offset || end < extent_end) {
1194                if (key.offset == start)
1195                        split = end;
1196
1197                new_key.offset = split;
1198                ret = btrfs_duplicate_item(trans, root, path, &new_key);
1199                if (ret == -EAGAIN) {
1200                        btrfs_release_path(path);
1201                        goto again;
1202                }
1203                if (ret < 0) {
1204                        btrfs_abort_transaction(trans, ret);
1205                        goto out;
1206                }
1207
1208                leaf = path->nodes[0];
1209                fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1210                                    struct btrfs_file_extent_item);
1211                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1212                btrfs_set_file_extent_num_bytes(leaf, fi,
1213                                                split - key.offset);
1214
1215                fi = btrfs_item_ptr(leaf, path->slots[0],
1216                                    struct btrfs_file_extent_item);
1217
1218                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1219                btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1220                btrfs_set_file_extent_num_bytes(leaf, fi,
1221                                                extent_end - split);
1222                btrfs_mark_buffer_dirty(leaf);
1223
1224                btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1225                                       num_bytes, 0);
1226                btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1227                                    orig_offset);
1228                ret = btrfs_inc_extent_ref(trans, &ref);
1229                if (ret) {
1230                        btrfs_abort_transaction(trans, ret);
1231                        goto out;
1232                }
1233
1234                if (split == start) {
1235                        key.offset = start;
1236                } else {
1237                        if (start != key.offset) {
1238                                ret = -EINVAL;
1239                                btrfs_abort_transaction(trans, ret);
1240                                goto out;
1241                        }
1242                        path->slots[0]--;
1243                        extent_end = end;
1244                }
1245                recow = 1;
1246        }
1247
1248        other_start = end;
1249        other_end = 0;
1250        btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1251                               num_bytes, 0);
1252        btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1253        if (extent_mergeable(leaf, path->slots[0] + 1,
1254                             ino, bytenr, orig_offset,
1255                             &other_start, &other_end)) {
1256                if (recow) {
1257                        btrfs_release_path(path);
1258                        goto again;
1259                }
1260                extent_end = other_end;
1261                del_slot = path->slots[0] + 1;
1262                del_nr++;
1263                ret = btrfs_free_extent(trans, &ref);
1264                if (ret) {
1265                        btrfs_abort_transaction(trans, ret);
1266                        goto out;
1267                }
1268        }
1269        other_start = 0;
1270        other_end = start;
1271        if (extent_mergeable(leaf, path->slots[0] - 1,
1272                             ino, bytenr, orig_offset,
1273                             &other_start, &other_end)) {
1274                if (recow) {
1275                        btrfs_release_path(path);
1276                        goto again;
1277                }
1278                key.offset = other_start;
1279                del_slot = path->slots[0];
1280                del_nr++;
1281                ret = btrfs_free_extent(trans, &ref);
1282                if (ret) {
1283                        btrfs_abort_transaction(trans, ret);
1284                        goto out;
1285                }
1286        }
1287        if (del_nr == 0) {
1288                fi = btrfs_item_ptr(leaf, path->slots[0],
1289                           struct btrfs_file_extent_item);
1290                btrfs_set_file_extent_type(leaf, fi,
1291                                           BTRFS_FILE_EXTENT_REG);
1292                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293                btrfs_mark_buffer_dirty(leaf);
1294        } else {
1295                fi = btrfs_item_ptr(leaf, del_slot - 1,
1296                           struct btrfs_file_extent_item);
1297                btrfs_set_file_extent_type(leaf, fi,
1298                                           BTRFS_FILE_EXTENT_REG);
1299                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1300                btrfs_set_file_extent_num_bytes(leaf, fi,
1301                                                extent_end - key.offset);
1302                btrfs_mark_buffer_dirty(leaf);
1303
1304                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1305                if (ret < 0) {
1306                        btrfs_abort_transaction(trans, ret);
1307                        goto out;
1308                }
1309        }
1310out:
1311        btrfs_free_path(path);
1312        return 0;
1313}
1314
1315/*
1316 * on error we return an unlocked page and the error value
1317 * on success we return a locked page and 0
1318 */
1319static int prepare_uptodate_page(struct inode *inode,
1320                                 struct page *page, u64 pos,
1321                                 bool force_uptodate)
1322{
1323        int ret = 0;
1324
1325        if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1326            !PageUptodate(page)) {
1327                ret = btrfs_readpage(NULL, page);
1328                if (ret)
1329                        return ret;
1330                lock_page(page);
1331                if (!PageUptodate(page)) {
1332                        unlock_page(page);
1333                        return -EIO;
1334                }
1335                if (page->mapping != inode->i_mapping) {
1336                        unlock_page(page);
1337                        return -EAGAIN;
1338                }
1339        }
1340        return 0;
1341}
1342
1343/*
1344 * this just gets pages into the page cache and locks them down.
1345 */
1346static noinline int prepare_pages(struct inode *inode, struct page **pages,
1347                                  size_t num_pages, loff_t pos,
1348                                  size_t write_bytes, bool force_uptodate)
1349{
1350        int i;
1351        unsigned long index = pos >> PAGE_SHIFT;
1352        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1353        int err = 0;
1354        int faili;
1355
1356        for (i = 0; i < num_pages; i++) {
1357again:
1358                pages[i] = find_or_create_page(inode->i_mapping, index + i,
1359                                               mask | __GFP_WRITE);
1360                if (!pages[i]) {
1361                        faili = i - 1;
1362                        err = -ENOMEM;
1363                        goto fail;
1364                }
1365
1366                if (i == 0)
1367                        err = prepare_uptodate_page(inode, pages[i], pos,
1368                                                    force_uptodate);
1369                if (!err && i == num_pages - 1)
1370                        err = prepare_uptodate_page(inode, pages[i],
1371                                                    pos + write_bytes, false);
1372                if (err) {
1373                        put_page(pages[i]);
1374                        if (err == -EAGAIN) {
1375                                err = 0;
1376                                goto again;
1377                        }
1378                        faili = i - 1;
1379                        goto fail;
1380                }
1381                wait_on_page_writeback(pages[i]);
1382        }
1383
1384        return 0;
1385fail:
1386        while (faili >= 0) {
1387                unlock_page(pages[faili]);
1388                put_page(pages[faili]);
1389                faili--;
1390        }
1391        return err;
1392
1393}
1394
1395/*
1396 * This function locks the extent and properly waits for data=ordered extents
1397 * to finish before allowing the pages to be modified if need.
1398 *
1399 * The return value:
1400 * 1 - the extent is locked
1401 * 0 - the extent is not locked, and everything is OK
1402 * -EAGAIN - need re-prepare the pages
1403 * the other < 0 number - Something wrong happens
1404 */
1405static noinline int
1406lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1407                                size_t num_pages, loff_t pos,
1408                                size_t write_bytes,
1409                                u64 *lockstart, u64 *lockend,
1410                                struct extent_state **cached_state)
1411{
1412        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1413        u64 start_pos;
1414        u64 last_pos;
1415        int i;
1416        int ret = 0;
1417
1418        start_pos = round_down(pos, fs_info->sectorsize);
1419        last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1420
1421        if (start_pos < inode->vfs_inode.i_size) {
1422                struct btrfs_ordered_extent *ordered;
1423
1424                lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1425                                cached_state);
1426                ordered = btrfs_lookup_ordered_range(inode, start_pos,
1427                                                     last_pos - start_pos + 1);
1428                if (ordered &&
1429                    ordered->file_offset + ordered->num_bytes > start_pos &&
1430                    ordered->file_offset <= last_pos) {
1431                        unlock_extent_cached(&inode->io_tree, start_pos,
1432                                        last_pos, cached_state);
1433                        for (i = 0; i < num_pages; i++) {
1434                                unlock_page(pages[i]);
1435                                put_page(pages[i]);
1436                        }
1437                        btrfs_start_ordered_extent(ordered, 1);
1438                        btrfs_put_ordered_extent(ordered);
1439                        return -EAGAIN;
1440                }
1441                if (ordered)
1442                        btrfs_put_ordered_extent(ordered);
1443
1444                *lockstart = start_pos;
1445                *lockend = last_pos;
1446                ret = 1;
1447        }
1448
1449        /*
1450         * It's possible the pages are dirty right now, but we don't want
1451         * to clean them yet because copy_from_user may catch a page fault
1452         * and we might have to fall back to one page at a time.  If that
1453         * happens, we'll unlock these pages and we'd have a window where
1454         * reclaim could sneak in and drop the once-dirty page on the floor
1455         * without writing it.
1456         *
1457         * We have the pages locked and the extent range locked, so there's
1458         * no way someone can start IO on any dirty pages in this range.
1459         *
1460         * We'll call btrfs_dirty_pages() later on, and that will flip around
1461         * delalloc bits and dirty the pages as required.
1462         */
1463        for (i = 0; i < num_pages; i++) {
1464                set_page_extent_mapped(pages[i]);
1465                WARN_ON(!PageLocked(pages[i]));
1466        }
1467
1468        return ret;
1469}
1470
1471static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1472                           size_t *write_bytes, bool nowait)
1473{
1474        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1475        struct btrfs_root *root = inode->root;
1476        u64 lockstart, lockend;
1477        u64 num_bytes;
1478        int ret;
1479
1480        if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1481                return 0;
1482
1483        if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1484                return -EAGAIN;
1485
1486        lockstart = round_down(pos, fs_info->sectorsize);
1487        lockend = round_up(pos + *write_bytes,
1488                           fs_info->sectorsize) - 1;
1489        num_bytes = lockend - lockstart + 1;
1490
1491        if (nowait) {
1492                struct btrfs_ordered_extent *ordered;
1493
1494                if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1495                        return -EAGAIN;
1496
1497                ordered = btrfs_lookup_ordered_range(inode, lockstart,
1498                                                     num_bytes);
1499                if (ordered) {
1500                        btrfs_put_ordered_extent(ordered);
1501                        ret = -EAGAIN;
1502                        goto out_unlock;
1503                }
1504        } else {
1505                btrfs_lock_and_flush_ordered_range(inode, lockstart,
1506                                                   lockend, NULL);
1507        }
1508
1509        ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1510                        NULL, NULL, NULL, false);
1511        if (ret <= 0) {
1512                ret = 0;
1513                if (!nowait)
1514                        btrfs_drew_write_unlock(&root->snapshot_lock);
1515        } else {
1516                *write_bytes = min_t(size_t, *write_bytes ,
1517                                     num_bytes - pos + lockstart);
1518        }
1519out_unlock:
1520        unlock_extent(&inode->io_tree, lockstart, lockend);
1521
1522        return ret;
1523}
1524
1525static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1526                              size_t *write_bytes)
1527{
1528        return check_can_nocow(inode, pos, write_bytes, true);
1529}
1530
1531/*
1532 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1533 *
1534 * @pos:         File offset
1535 * @write_bytes: The length to write, will be updated to the nocow writeable
1536 *               range
1537 *
1538 * This function will flush ordered extents in the range to ensure proper
1539 * nocow checks.
1540 *
1541 * Return:
1542 * >0           and update @write_bytes if we can do nocow write
1543 *  0           if we can't do nocow write
1544 * -EAGAIN      if we can't get the needed lock or there are ordered extents
1545 *              for * (nowait == true) case
1546 * <0           if other error happened
1547 *
1548 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1549 */
1550int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1551                           size_t *write_bytes)
1552{
1553        return check_can_nocow(inode, pos, write_bytes, false);
1554}
1555
1556void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1557{
1558        btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1559}
1560
1561static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1562                                               struct iov_iter *i)
1563{
1564        struct file *file = iocb->ki_filp;
1565        loff_t pos = iocb->ki_pos;
1566        struct inode *inode = file_inode(file);
1567        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1568        struct page **pages = NULL;
1569        struct extent_changeset *data_reserved = NULL;
1570        u64 release_bytes = 0;
1571        u64 lockstart;
1572        u64 lockend;
1573        size_t num_written = 0;
1574        int nrptrs;
1575        int ret = 0;
1576        bool only_release_metadata = false;
1577        bool force_page_uptodate = false;
1578
1579        nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1580                        PAGE_SIZE / (sizeof(struct page *)));
1581        nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1582        nrptrs = max(nrptrs, 8);
1583        pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1584        if (!pages)
1585                return -ENOMEM;
1586
1587        while (iov_iter_count(i) > 0) {
1588                struct extent_state *cached_state = NULL;
1589                size_t offset = offset_in_page(pos);
1590                size_t sector_offset;
1591                size_t write_bytes = min(iov_iter_count(i),
1592                                         nrptrs * (size_t)PAGE_SIZE -
1593                                         offset);
1594                size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1595                                                PAGE_SIZE);
1596                size_t reserve_bytes;
1597                size_t dirty_pages;
1598                size_t copied;
1599                size_t dirty_sectors;
1600                size_t num_sectors;
1601                int extents_locked;
1602
1603                WARN_ON(num_pages > nrptrs);
1604
1605                /*
1606                 * Fault pages before locking them in prepare_pages
1607                 * to avoid recursive lock
1608                 */
1609                if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1610                        ret = -EFAULT;
1611                        break;
1612                }
1613
1614                only_release_metadata = false;
1615                sector_offset = pos & (fs_info->sectorsize - 1);
1616                reserve_bytes = round_up(write_bytes + sector_offset,
1617                                fs_info->sectorsize);
1618
1619                extent_changeset_release(data_reserved);
1620                ret = btrfs_check_data_free_space(BTRFS_I(inode),
1621                                                  &data_reserved, pos,
1622                                                  write_bytes);
1623                if (ret < 0) {
1624                        if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1625                                                   &write_bytes) > 0) {
1626                                /*
1627                                 * For nodata cow case, no need to reserve
1628                                 * data space.
1629                                 */
1630                                only_release_metadata = true;
1631                                /*
1632                                 * our prealloc extent may be smaller than
1633                                 * write_bytes, so scale down.
1634                                 */
1635                                num_pages = DIV_ROUND_UP(write_bytes + offset,
1636                                                         PAGE_SIZE);
1637                                reserve_bytes = round_up(write_bytes +
1638                                                         sector_offset,
1639                                                         fs_info->sectorsize);
1640                        } else {
1641                                break;
1642                        }
1643                }
1644
1645                WARN_ON(reserve_bytes == 0);
1646                ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1647                                reserve_bytes);
1648                if (ret) {
1649                        if (!only_release_metadata)
1650                                btrfs_free_reserved_data_space(BTRFS_I(inode),
1651                                                data_reserved, pos,
1652                                                write_bytes);
1653                        else
1654                                btrfs_check_nocow_unlock(BTRFS_I(inode));
1655                        break;
1656                }
1657
1658                release_bytes = reserve_bytes;
1659again:
1660                /*
1661                 * This is going to setup the pages array with the number of
1662                 * pages we want, so we don't really need to worry about the
1663                 * contents of pages from loop to loop
1664                 */
1665                ret = prepare_pages(inode, pages, num_pages,
1666                                    pos, write_bytes,
1667                                    force_page_uptodate);
1668                if (ret) {
1669                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1670                                                       reserve_bytes);
1671                        break;
1672                }
1673
1674                extents_locked = lock_and_cleanup_extent_if_need(
1675                                BTRFS_I(inode), pages,
1676                                num_pages, pos, write_bytes, &lockstart,
1677                                &lockend, &cached_state);
1678                if (extents_locked < 0) {
1679                        if (extents_locked == -EAGAIN)
1680                                goto again;
1681                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1682                                                       reserve_bytes);
1683                        ret = extents_locked;
1684                        break;
1685                }
1686
1687                copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1688
1689                num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1690                dirty_sectors = round_up(copied + sector_offset,
1691                                        fs_info->sectorsize);
1692                dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1693
1694                /*
1695                 * if we have trouble faulting in the pages, fall
1696                 * back to one page at a time
1697                 */
1698                if (copied < write_bytes)
1699                        nrptrs = 1;
1700
1701                if (copied == 0) {
1702                        force_page_uptodate = true;
1703                        dirty_sectors = 0;
1704                        dirty_pages = 0;
1705                } else {
1706                        force_page_uptodate = false;
1707                        dirty_pages = DIV_ROUND_UP(copied + offset,
1708                                                   PAGE_SIZE);
1709                }
1710
1711                if (num_sectors > dirty_sectors) {
1712                        /* release everything except the sectors we dirtied */
1713                        release_bytes -= dirty_sectors <<
1714                                                fs_info->sb->s_blocksize_bits;
1715                        if (only_release_metadata) {
1716                                btrfs_delalloc_release_metadata(BTRFS_I(inode),
1717                                                        release_bytes, true);
1718                        } else {
1719                                u64 __pos;
1720
1721                                __pos = round_down(pos,
1722                                                   fs_info->sectorsize) +
1723                                        (dirty_pages << PAGE_SHIFT);
1724                                btrfs_delalloc_release_space(BTRFS_I(inode),
1725                                                data_reserved, __pos,
1726                                                release_bytes, true);
1727                        }
1728                }
1729
1730                release_bytes = round_up(copied + sector_offset,
1731                                        fs_info->sectorsize);
1732
1733                if (copied > 0)
1734                        ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1735                                                dirty_pages, pos, copied,
1736                                                &cached_state);
1737
1738                /*
1739                 * If we have not locked the extent range, because the range's
1740                 * start offset is >= i_size, we might still have a non-NULL
1741                 * cached extent state, acquired while marking the extent range
1742                 * as delalloc through btrfs_dirty_pages(). Therefore free any
1743                 * possible cached extent state to avoid a memory leak.
1744                 */
1745                if (extents_locked)
1746                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1747                                             lockstart, lockend, &cached_state);
1748                else
1749                        free_extent_state(cached_state);
1750
1751                btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1752                if (ret) {
1753                        btrfs_drop_pages(pages, num_pages);
1754                        break;
1755                }
1756
1757                release_bytes = 0;
1758                if (only_release_metadata)
1759                        btrfs_check_nocow_unlock(BTRFS_I(inode));
1760
1761                if (only_release_metadata && copied > 0) {
1762                        lockstart = round_down(pos,
1763                                               fs_info->sectorsize);
1764                        lockend = round_up(pos + copied,
1765                                           fs_info->sectorsize) - 1;
1766
1767                        set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1768                                       lockend, EXTENT_NORESERVE, NULL,
1769                                       NULL, GFP_NOFS);
1770                }
1771
1772                btrfs_drop_pages(pages, num_pages);
1773
1774                cond_resched();
1775
1776                balance_dirty_pages_ratelimited(inode->i_mapping);
1777
1778                pos += copied;
1779                num_written += copied;
1780        }
1781
1782        kfree(pages);
1783
1784        if (release_bytes) {
1785                if (only_release_metadata) {
1786                        btrfs_check_nocow_unlock(BTRFS_I(inode));
1787                        btrfs_delalloc_release_metadata(BTRFS_I(inode),
1788                                        release_bytes, true);
1789                } else {
1790                        btrfs_delalloc_release_space(BTRFS_I(inode),
1791                                        data_reserved,
1792                                        round_down(pos, fs_info->sectorsize),
1793                                        release_bytes, true);
1794                }
1795        }
1796
1797        extent_changeset_free(data_reserved);
1798        return num_written ? num_written : ret;
1799}
1800
1801static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1802{
1803        struct file *file = iocb->ki_filp;
1804        struct inode *inode = file_inode(file);
1805        loff_t pos;
1806        ssize_t written;
1807        ssize_t written_buffered;
1808        loff_t endbyte;
1809        int err;
1810
1811        written = btrfs_direct_IO(iocb, from);
1812
1813        if (written < 0 || !iov_iter_count(from))
1814                return written;
1815
1816        pos = iocb->ki_pos;
1817        written_buffered = btrfs_buffered_write(iocb, from);
1818        if (written_buffered < 0) {
1819                err = written_buffered;
1820                goto out;
1821        }
1822        /*
1823         * Ensure all data is persisted. We want the next direct IO read to be
1824         * able to read what was just written.
1825         */
1826        endbyte = pos + written_buffered - 1;
1827        err = btrfs_fdatawrite_range(inode, pos, endbyte);
1828        if (err)
1829                goto out;
1830        err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1831        if (err)
1832                goto out;
1833        written += written_buffered;
1834        iocb->ki_pos = pos + written_buffered;
1835        invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1836                                 endbyte >> PAGE_SHIFT);
1837out:
1838        return written ? written : err;
1839}
1840
1841static void update_time_for_write(struct inode *inode)
1842{
1843        struct timespec64 now;
1844
1845        if (IS_NOCMTIME(inode))
1846                return;
1847
1848        now = current_time(inode);
1849        if (!timespec64_equal(&inode->i_mtime, &now))
1850                inode->i_mtime = now;
1851
1852        if (!timespec64_equal(&inode->i_ctime, &now))
1853                inode->i_ctime = now;
1854
1855        if (IS_I_VERSION(inode))
1856                inode_inc_iversion(inode);
1857}
1858
1859static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1860                                    struct iov_iter *from)
1861{
1862        struct file *file = iocb->ki_filp;
1863        struct inode *inode = file_inode(file);
1864        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1865        struct btrfs_root *root = BTRFS_I(inode)->root;
1866        u64 start_pos;
1867        u64 end_pos;
1868        ssize_t num_written = 0;
1869        const bool sync = iocb->ki_flags & IOCB_DSYNC;
1870        ssize_t err;
1871        loff_t pos;
1872        size_t count;
1873        loff_t oldsize;
1874        int clean_page = 0;
1875
1876        if (!(iocb->ki_flags & IOCB_DIRECT) &&
1877            (iocb->ki_flags & IOCB_NOWAIT))
1878                return -EOPNOTSUPP;
1879
1880        if (iocb->ki_flags & IOCB_NOWAIT) {
1881                if (!inode_trylock(inode))
1882                        return -EAGAIN;
1883        } else {
1884                inode_lock(inode);
1885        }
1886
1887        err = generic_write_checks(iocb, from);
1888        if (err <= 0) {
1889                inode_unlock(inode);
1890                return err;
1891        }
1892
1893        pos = iocb->ki_pos;
1894        count = iov_iter_count(from);
1895        if (iocb->ki_flags & IOCB_NOWAIT) {
1896                size_t nocow_bytes = count;
1897
1898                /*
1899                 * We will allocate space in case nodatacow is not set,
1900                 * so bail
1901                 */
1902                if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1903                    <= 0) {
1904                        inode_unlock(inode);
1905                        return -EAGAIN;
1906                }
1907                /*
1908                 * There are holes in the range or parts of the range that must
1909                 * be COWed (shared extents, RO block groups, etc), so just bail
1910                 * out.
1911                 */
1912                if (nocow_bytes < count) {
1913                        inode_unlock(inode);
1914                        return -EAGAIN;
1915                }
1916        }
1917
1918        current->backing_dev_info = inode_to_bdi(inode);
1919        err = file_remove_privs(file);
1920        if (err) {
1921                inode_unlock(inode);
1922                goto out;
1923        }
1924
1925        /*
1926         * If BTRFS flips readonly due to some impossible error
1927         * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1928         * although we have opened a file as writable, we have
1929         * to stop this write operation to ensure FS consistency.
1930         */
1931        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1932                inode_unlock(inode);
1933                err = -EROFS;
1934                goto out;
1935        }
1936
1937        /*
1938         * We reserve space for updating the inode when we reserve space for the
1939         * extent we are going to write, so we will enospc out there.  We don't
1940         * need to start yet another transaction to update the inode as we will
1941         * update the inode when we finish writing whatever data we write.
1942         */
1943        update_time_for_write(inode);
1944
1945        start_pos = round_down(pos, fs_info->sectorsize);
1946        oldsize = i_size_read(inode);
1947        if (start_pos > oldsize) {
1948                /* Expand hole size to cover write data, preventing empty gap */
1949                end_pos = round_up(pos + count,
1950                                   fs_info->sectorsize);
1951                err = btrfs_cont_expand(inode, oldsize, end_pos);
1952                if (err) {
1953                        inode_unlock(inode);
1954                        goto out;
1955                }
1956                if (start_pos > round_up(oldsize, fs_info->sectorsize))
1957                        clean_page = 1;
1958        }
1959
1960        if (sync)
1961                atomic_inc(&BTRFS_I(inode)->sync_writers);
1962
1963        if (iocb->ki_flags & IOCB_DIRECT) {
1964                /*
1965                 * 1. We must always clear IOCB_DSYNC in order to not deadlock
1966                 *    in iomap, as it calls generic_write_sync() in this case.
1967                 * 2. If we are async, we can call iomap_dio_complete() either
1968                 *    in
1969                 *
1970                 *    2.1. A worker thread from the last bio completed.  In this
1971                 *         case we need to mark the btrfs_dio_data that it is
1972                 *         async in order to call generic_write_sync() properly.
1973                 *         This is handled by setting BTRFS_DIO_SYNC_STUB in the
1974                 *         current->journal_info.
1975                 *    2.2  The submitter context, because all IO completed
1976                 *         before we exited iomap_dio_rw().  In this case we can
1977                 *         just re-set the IOCB_DSYNC on the iocb and we'll do
1978                 *         the sync below.  If our ->end_io() gets called and
1979                 *         current->journal_info is set, then we know we're in
1980                 *         our current context and we will clear
1981                 *         current->journal_info to indicate that we need to
1982                 *         sync below.
1983                 */
1984                if (sync) {
1985                        ASSERT(current->journal_info == NULL);
1986                        iocb->ki_flags &= ~IOCB_DSYNC;
1987                        current->journal_info = BTRFS_DIO_SYNC_STUB;
1988                }
1989                num_written = __btrfs_direct_write(iocb, from);
1990
1991                /*
1992                 * As stated above, we cleared journal_info, so we need to do
1993                 * the sync ourselves.
1994                 */
1995                if (sync && current->journal_info == NULL)
1996                        iocb->ki_flags |= IOCB_DSYNC;
1997                current->journal_info = NULL;
1998        } else {
1999                num_written = btrfs_buffered_write(iocb, from);
2000                if (num_written > 0)
2001                        iocb->ki_pos = pos + num_written;
2002                if (clean_page)
2003                        pagecache_isize_extended(inode, oldsize,
2004                                                i_size_read(inode));
2005        }
2006
2007        inode_unlock(inode);
2008
2009        /*
2010         * We also have to set last_sub_trans to the current log transid,
2011         * otherwise subsequent syncs to a file that's been synced in this
2012         * transaction will appear to have already occurred.
2013         */
2014        spin_lock(&BTRFS_I(inode)->lock);
2015        BTRFS_I(inode)->last_sub_trans = root->log_transid;
2016        spin_unlock(&BTRFS_I(inode)->lock);
2017        if (num_written > 0)
2018                num_written = generic_write_sync(iocb, num_written);
2019
2020        if (sync)
2021                atomic_dec(&BTRFS_I(inode)->sync_writers);
2022out:
2023        current->backing_dev_info = NULL;
2024        return num_written ? num_written : err;
2025}
2026
2027int btrfs_release_file(struct inode *inode, struct file *filp)
2028{
2029        struct btrfs_file_private *private = filp->private_data;
2030
2031        if (private && private->filldir_buf)
2032                kfree(private->filldir_buf);
2033        kfree(private);
2034        filp->private_data = NULL;
2035
2036        /*
2037         * Set by setattr when we are about to truncate a file from a non-zero
2038         * size to a zero size.  This tries to flush down new bytes that may
2039         * have been written if the application were using truncate to replace
2040         * a file in place.
2041         */
2042        if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2043                               &BTRFS_I(inode)->runtime_flags))
2044                        filemap_flush(inode->i_mapping);
2045        return 0;
2046}
2047
2048static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2049{
2050        int ret;
2051        struct blk_plug plug;
2052
2053        /*
2054         * This is only called in fsync, which would do synchronous writes, so
2055         * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2056         * multiple disks using raid profile, a large IO can be split to
2057         * several segments of stripe length (currently 64K).
2058         */
2059        blk_start_plug(&plug);
2060        atomic_inc(&BTRFS_I(inode)->sync_writers);
2061        ret = btrfs_fdatawrite_range(inode, start, end);
2062        atomic_dec(&BTRFS_I(inode)->sync_writers);
2063        blk_finish_plug(&plug);
2064
2065        return ret;
2066}
2067
2068/*
2069 * fsync call for both files and directories.  This logs the inode into
2070 * the tree log instead of forcing full commits whenever possible.
2071 *
2072 * It needs to call filemap_fdatawait so that all ordered extent updates are
2073 * in the metadata btree are up to date for copying to the log.
2074 *
2075 * It drops the inode mutex before doing the tree log commit.  This is an
2076 * important optimization for directories because holding the mutex prevents
2077 * new operations on the dir while we write to disk.
2078 */
2079int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2080{
2081        struct dentry *dentry = file_dentry(file);
2082        struct inode *inode = d_inode(dentry);
2083        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2084        struct btrfs_root *root = BTRFS_I(inode)->root;
2085        struct btrfs_trans_handle *trans;
2086        struct btrfs_log_ctx ctx;
2087        int ret = 0, err;
2088        u64 len;
2089        bool full_sync;
2090
2091        trace_btrfs_sync_file(file, datasync);
2092
2093        btrfs_init_log_ctx(&ctx, inode);
2094
2095        /*
2096         * Always set the range to a full range, otherwise we can get into
2097         * several problems, from missing file extent items to represent holes
2098         * when not using the NO_HOLES feature, to log tree corruption due to
2099         * races between hole detection during logging and completion of ordered
2100         * extents outside the range, to missing checksums due to ordered extents
2101         * for which we flushed only a subset of their pages.
2102         */
2103        start = 0;
2104        end = LLONG_MAX;
2105        len = (u64)LLONG_MAX + 1;
2106
2107        /*
2108         * We write the dirty pages in the range and wait until they complete
2109         * out of the ->i_mutex. If so, we can flush the dirty pages by
2110         * multi-task, and make the performance up.  See
2111         * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2112         */
2113        ret = start_ordered_ops(inode, start, end);
2114        if (ret)
2115                goto out;
2116
2117        inode_lock(inode);
2118
2119        /*
2120         * We take the dio_sem here because the tree log stuff can race with
2121         * lockless dio writes and get an extent map logged for an extent we
2122         * never waited on.  We need it this high up for lockdep reasons.
2123         */
2124        down_write(&BTRFS_I(inode)->dio_sem);
2125
2126        atomic_inc(&root->log_batch);
2127
2128        /*
2129         * Always check for the full sync flag while holding the inode's lock,
2130         * to avoid races with other tasks. The flag must be either set all the
2131         * time during logging or always off all the time while logging.
2132         */
2133        full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2134                             &BTRFS_I(inode)->runtime_flags);
2135
2136        /*
2137         * Before we acquired the inode's lock, someone may have dirtied more
2138         * pages in the target range. We need to make sure that writeback for
2139         * any such pages does not start while we are logging the inode, because
2140         * if it does, any of the following might happen when we are not doing a
2141         * full inode sync:
2142         *
2143         * 1) We log an extent after its writeback finishes but before its
2144         *    checksums are added to the csum tree, leading to -EIO errors
2145         *    when attempting to read the extent after a log replay.
2146         *
2147         * 2) We can end up logging an extent before its writeback finishes.
2148         *    Therefore after the log replay we will have a file extent item
2149         *    pointing to an unwritten extent (and no data checksums as well).
2150         *
2151         * So trigger writeback for any eventual new dirty pages and then we
2152         * wait for all ordered extents to complete below.
2153         */
2154        ret = start_ordered_ops(inode, start, end);
2155        if (ret) {
2156                up_write(&BTRFS_I(inode)->dio_sem);
2157                inode_unlock(inode);
2158                goto out;
2159        }
2160
2161        /*
2162         * We have to do this here to avoid the priority inversion of waiting on
2163         * IO of a lower priority task while holding a transaction open.
2164         *
2165         * For a full fsync we wait for the ordered extents to complete while
2166         * for a fast fsync we wait just for writeback to complete, and then
2167         * attach the ordered extents to the transaction so that a transaction
2168         * commit waits for their completion, to avoid data loss if we fsync,
2169         * the current transaction commits before the ordered extents complete
2170         * and a power failure happens right after that.
2171         */
2172        if (full_sync) {
2173                ret = btrfs_wait_ordered_range(inode, start, len);
2174        } else {
2175                /*
2176                 * Get our ordered extents as soon as possible to avoid doing
2177                 * checksum lookups in the csum tree, and use instead the
2178                 * checksums attached to the ordered extents.
2179                 */
2180                btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2181                                                      &ctx.ordered_extents);
2182                ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2183        }
2184
2185        if (ret)
2186                goto out_release_extents;
2187
2188        atomic_inc(&root->log_batch);
2189
2190        /*
2191         * If we are doing a fast fsync we can not bail out if the inode's
2192         * last_trans is <= then the last committed transaction, because we only
2193         * update the last_trans of the inode during ordered extent completion,
2194         * and for a fast fsync we don't wait for that, we only wait for the
2195         * writeback to complete.
2196         */
2197        smp_mb();
2198        if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2199            (BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed &&
2200             (full_sync || list_empty(&ctx.ordered_extents)))) {
2201                /*
2202                 * We've had everything committed since the last time we were
2203                 * modified so clear this flag in case it was set for whatever
2204                 * reason, it's no longer relevant.
2205                 */
2206                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2207                          &BTRFS_I(inode)->runtime_flags);
2208                /*
2209                 * An ordered extent might have started before and completed
2210                 * already with io errors, in which case the inode was not
2211                 * updated and we end up here. So check the inode's mapping
2212                 * for any errors that might have happened since we last
2213                 * checked called fsync.
2214                 */
2215                ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2216                goto out_release_extents;
2217        }
2218
2219        /*
2220         * We use start here because we will need to wait on the IO to complete
2221         * in btrfs_sync_log, which could require joining a transaction (for
2222         * example checking cross references in the nocow path).  If we use join
2223         * here we could get into a situation where we're waiting on IO to
2224         * happen that is blocked on a transaction trying to commit.  With start
2225         * we inc the extwriter counter, so we wait for all extwriters to exit
2226         * before we start blocking joiners.  This comment is to keep somebody
2227         * from thinking they are super smart and changing this to
2228         * btrfs_join_transaction *cough*Josef*cough*.
2229         */
2230        trans = btrfs_start_transaction(root, 0);
2231        if (IS_ERR(trans)) {
2232                ret = PTR_ERR(trans);
2233                goto out_release_extents;
2234        }
2235
2236        ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2237        btrfs_release_log_ctx_extents(&ctx);
2238        if (ret < 0) {
2239                /* Fallthrough and commit/free transaction. */
2240                ret = 1;
2241        }
2242
2243        /* we've logged all the items and now have a consistent
2244         * version of the file in the log.  It is possible that
2245         * someone will come in and modify the file, but that's
2246         * fine because the log is consistent on disk, and we
2247         * have references to all of the file's extents
2248         *
2249         * It is possible that someone will come in and log the
2250         * file again, but that will end up using the synchronization
2251         * inside btrfs_sync_log to keep things safe.
2252         */
2253        up_write(&BTRFS_I(inode)->dio_sem);
2254        inode_unlock(inode);
2255
2256        if (ret != BTRFS_NO_LOG_SYNC) {
2257                if (!ret) {
2258                        ret = btrfs_sync_log(trans, root, &ctx);
2259                        if (!ret) {
2260                                ret = btrfs_end_transaction(trans);
2261                                goto out;
2262                        }
2263                }
2264                if (!full_sync) {
2265                        ret = btrfs_wait_ordered_range(inode, start, len);
2266                        if (ret) {
2267                                btrfs_end_transaction(trans);
2268                                goto out;
2269                        }
2270                }
2271                ret = btrfs_commit_transaction(trans);
2272        } else {
2273                ret = btrfs_end_transaction(trans);
2274        }
2275out:
2276        ASSERT(list_empty(&ctx.list));
2277        err = file_check_and_advance_wb_err(file);
2278        if (!ret)
2279                ret = err;
2280        return ret > 0 ? -EIO : ret;
2281
2282out_release_extents:
2283        btrfs_release_log_ctx_extents(&ctx);
2284        up_write(&BTRFS_I(inode)->dio_sem);
2285        inode_unlock(inode);
2286        goto out;
2287}
2288
2289static const struct vm_operations_struct btrfs_file_vm_ops = {
2290        .fault          = filemap_fault,
2291        .map_pages      = filemap_map_pages,
2292        .page_mkwrite   = btrfs_page_mkwrite,
2293};
2294
2295static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2296{
2297        struct address_space *mapping = filp->f_mapping;
2298
2299        if (!mapping->a_ops->readpage)
2300                return -ENOEXEC;
2301
2302        file_accessed(filp);
2303        vma->vm_ops = &btrfs_file_vm_ops;
2304
2305        return 0;
2306}
2307
2308static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2309                          int slot, u64 start, u64 end)
2310{
2311        struct btrfs_file_extent_item *fi;
2312        struct btrfs_key key;
2313
2314        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2315                return 0;
2316
2317        btrfs_item_key_to_cpu(leaf, &key, slot);
2318        if (key.objectid != btrfs_ino(inode) ||
2319            key.type != BTRFS_EXTENT_DATA_KEY)
2320                return 0;
2321
2322        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2323
2324        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2325                return 0;
2326
2327        if (btrfs_file_extent_disk_bytenr(leaf, fi))
2328                return 0;
2329
2330        if (key.offset == end)
2331                return 1;
2332        if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2333                return 1;
2334        return 0;
2335}
2336
2337static int fill_holes(struct btrfs_trans_handle *trans,
2338                struct btrfs_inode *inode,
2339                struct btrfs_path *path, u64 offset, u64 end)
2340{
2341        struct btrfs_fs_info *fs_info = trans->fs_info;
2342        struct btrfs_root *root = inode->root;
2343        struct extent_buffer *leaf;
2344        struct btrfs_file_extent_item *fi;
2345        struct extent_map *hole_em;
2346        struct extent_map_tree *em_tree = &inode->extent_tree;
2347        struct btrfs_key key;
2348        int ret;
2349
2350        if (btrfs_fs_incompat(fs_info, NO_HOLES))
2351                goto out;
2352
2353        key.objectid = btrfs_ino(inode);
2354        key.type = BTRFS_EXTENT_DATA_KEY;
2355        key.offset = offset;
2356
2357        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2358        if (ret <= 0) {
2359                /*
2360                 * We should have dropped this offset, so if we find it then
2361                 * something has gone horribly wrong.
2362                 */
2363                if (ret == 0)
2364                        ret = -EINVAL;
2365                return ret;
2366        }
2367
2368        leaf = path->nodes[0];
2369        if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2370                u64 num_bytes;
2371
2372                path->slots[0]--;
2373                fi = btrfs_item_ptr(leaf, path->slots[0],
2374                                    struct btrfs_file_extent_item);
2375                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2376                        end - offset;
2377                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2378                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2379                btrfs_set_file_extent_offset(leaf, fi, 0);
2380                btrfs_mark_buffer_dirty(leaf);
2381                goto out;
2382        }
2383
2384        if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2385                u64 num_bytes;
2386
2387                key.offset = offset;
2388                btrfs_set_item_key_safe(fs_info, path, &key);
2389                fi = btrfs_item_ptr(leaf, path->slots[0],
2390                                    struct btrfs_file_extent_item);
2391                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2392                        offset;
2393                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2394                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2395                btrfs_set_file_extent_offset(leaf, fi, 0);
2396                btrfs_mark_buffer_dirty(leaf);
2397                goto out;
2398        }
2399        btrfs_release_path(path);
2400
2401        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2402                        offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2403        if (ret)
2404                return ret;
2405
2406out:
2407        btrfs_release_path(path);
2408
2409        hole_em = alloc_extent_map();
2410        if (!hole_em) {
2411                btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2412                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2413        } else {
2414                hole_em->start = offset;
2415                hole_em->len = end - offset;
2416                hole_em->ram_bytes = hole_em->len;
2417                hole_em->orig_start = offset;
2418
2419                hole_em->block_start = EXTENT_MAP_HOLE;
2420                hole_em->block_len = 0;
2421                hole_em->orig_block_len = 0;
2422                hole_em->compress_type = BTRFS_COMPRESS_NONE;
2423                hole_em->generation = trans->transid;
2424
2425                do {
2426                        btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2427                        write_lock(&em_tree->lock);
2428                        ret = add_extent_mapping(em_tree, hole_em, 1);
2429                        write_unlock(&em_tree->lock);
2430                } while (ret == -EEXIST);
2431                free_extent_map(hole_em);
2432                if (ret)
2433                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2434                                        &inode->runtime_flags);
2435        }
2436
2437        return 0;
2438}
2439
2440/*
2441 * Find a hole extent on given inode and change start/len to the end of hole
2442 * extent.(hole/vacuum extent whose em->start <= start &&
2443 *         em->start + em->len > start)
2444 * When a hole extent is found, return 1 and modify start/len.
2445 */
2446static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2447{
2448        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2449        struct extent_map *em;
2450        int ret = 0;
2451
2452        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2453                              round_down(*start, fs_info->sectorsize),
2454                              round_up(*len, fs_info->sectorsize));
2455        if (IS_ERR(em))
2456                return PTR_ERR(em);
2457
2458        /* Hole or vacuum extent(only exists in no-hole mode) */
2459        if (em->block_start == EXTENT_MAP_HOLE) {
2460                ret = 1;
2461                *len = em->start + em->len > *start + *len ?
2462                       0 : *start + *len - em->start - em->len;
2463                *start = em->start + em->len;
2464        }
2465        free_extent_map(em);
2466        return ret;
2467}
2468
2469static int btrfs_punch_hole_lock_range(struct inode *inode,
2470                                       const u64 lockstart,
2471                                       const u64 lockend,
2472                                       struct extent_state **cached_state)
2473{
2474        while (1) {
2475                struct btrfs_ordered_extent *ordered;
2476                int ret;
2477
2478                truncate_pagecache_range(inode, lockstart, lockend);
2479
2480                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2481                                 cached_state);
2482                ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2483                                                            lockend);
2484
2485                /*
2486                 * We need to make sure we have no ordered extents in this range
2487                 * and nobody raced in and read a page in this range, if we did
2488                 * we need to try again.
2489                 */
2490                if ((!ordered ||
2491                    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2492                     ordered->file_offset > lockend)) &&
2493                     !filemap_range_has_page(inode->i_mapping,
2494                                             lockstart, lockend)) {
2495                        if (ordered)
2496                                btrfs_put_ordered_extent(ordered);
2497                        break;
2498                }
2499                if (ordered)
2500                        btrfs_put_ordered_extent(ordered);
2501                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2502                                     lockend, cached_state);
2503                ret = btrfs_wait_ordered_range(inode, lockstart,
2504                                               lockend - lockstart + 1);
2505                if (ret)
2506                        return ret;
2507        }
2508        return 0;
2509}
2510
2511static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2512                                     struct inode *inode,
2513                                     struct btrfs_path *path,
2514                                     struct btrfs_replace_extent_info *extent_info,
2515                                     const u64 replace_len)
2516{
2517        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2518        struct btrfs_root *root = BTRFS_I(inode)->root;
2519        struct btrfs_file_extent_item *extent;
2520        struct extent_buffer *leaf;
2521        struct btrfs_key key;
2522        int slot;
2523        struct btrfs_ref ref = { 0 };
2524        int ret;
2525
2526        if (replace_len == 0)
2527                return 0;
2528
2529        if (extent_info->disk_offset == 0 &&
2530            btrfs_fs_incompat(fs_info, NO_HOLES))
2531                return 0;
2532
2533        key.objectid = btrfs_ino(BTRFS_I(inode));
2534        key.type = BTRFS_EXTENT_DATA_KEY;
2535        key.offset = extent_info->file_offset;
2536        ret = btrfs_insert_empty_item(trans, root, path, &key,
2537                                      sizeof(struct btrfs_file_extent_item));
2538        if (ret)
2539                return ret;
2540        leaf = path->nodes[0];
2541        slot = path->slots[0];
2542        write_extent_buffer(leaf, extent_info->extent_buf,
2543                            btrfs_item_ptr_offset(leaf, slot),
2544                            sizeof(struct btrfs_file_extent_item));
2545        extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2546        ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2547        btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2548        btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2549        if (extent_info->is_new_extent)
2550                btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2551        btrfs_mark_buffer_dirty(leaf);
2552        btrfs_release_path(path);
2553
2554        ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2555                        extent_info->file_offset, replace_len);
2556        if (ret)
2557                return ret;
2558
2559        /* If it's a hole, nothing more needs to be done. */
2560        if (extent_info->disk_offset == 0)
2561                return 0;
2562
2563        inode_add_bytes(inode, replace_len);
2564
2565        if (extent_info->is_new_extent && extent_info->insertions == 0) {
2566                key.objectid = extent_info->disk_offset;
2567                key.type = BTRFS_EXTENT_ITEM_KEY;
2568                key.offset = extent_info->disk_len;
2569                ret = btrfs_alloc_reserved_file_extent(trans, root,
2570                                                       btrfs_ino(BTRFS_I(inode)),
2571                                                       extent_info->file_offset,
2572                                                       extent_info->qgroup_reserved,
2573                                                       &key);
2574        } else {
2575                u64 ref_offset;
2576
2577                btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2578                                       extent_info->disk_offset,
2579                                       extent_info->disk_len, 0);
2580                ref_offset = extent_info->file_offset - extent_info->data_offset;
2581                btrfs_init_data_ref(&ref, root->root_key.objectid,
2582                                    btrfs_ino(BTRFS_I(inode)), ref_offset);
2583                ret = btrfs_inc_extent_ref(trans, &ref);
2584        }
2585
2586        extent_info->insertions++;
2587
2588        return ret;
2589}
2590
2591/*
2592 * The respective range must have been previously locked, as well as the inode.
2593 * The end offset is inclusive (last byte of the range).
2594 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2595 * the file range with an extent.
2596 * When not punching a hole, we don't want to end up in a state where we dropped
2597 * extents without inserting a new one, so we must abort the transaction to avoid
2598 * a corruption.
2599 */
2600int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path,
2601                           const u64 start, const u64 end,
2602                           struct btrfs_replace_extent_info *extent_info,
2603                           struct btrfs_trans_handle **trans_out)
2604{
2605        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2606        u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2607        u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2608        struct btrfs_root *root = BTRFS_I(inode)->root;
2609        struct btrfs_trans_handle *trans = NULL;
2610        struct btrfs_block_rsv *rsv;
2611        unsigned int rsv_count;
2612        u64 cur_offset;
2613        u64 drop_end;
2614        u64 len = end - start;
2615        int ret = 0;
2616
2617        if (end <= start)
2618                return -EINVAL;
2619
2620        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2621        if (!rsv) {
2622                ret = -ENOMEM;
2623                goto out;
2624        }
2625        rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2626        rsv->failfast = 1;
2627
2628        /*
2629         * 1 - update the inode
2630         * 1 - removing the extents in the range
2631         * 1 - adding the hole extent if no_holes isn't set or if we are
2632         *     replacing the range with a new extent
2633         */
2634        if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2635                rsv_count = 3;
2636        else
2637                rsv_count = 2;
2638
2639        trans = btrfs_start_transaction(root, rsv_count);
2640        if (IS_ERR(trans)) {
2641                ret = PTR_ERR(trans);
2642                trans = NULL;
2643                goto out_free;
2644        }
2645
2646        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2647                                      min_size, false);
2648        BUG_ON(ret);
2649        trans->block_rsv = rsv;
2650
2651        cur_offset = start;
2652        while (cur_offset < end) {
2653                ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
2654                                           cur_offset, end + 1, &drop_end,
2655                                           1, 0, 0, NULL);
2656                if (ret != -ENOSPC) {
2657                        /*
2658                         * When cloning we want to avoid transaction aborts when
2659                         * nothing was done and we are attempting to clone parts
2660                         * of inline extents, in such cases -EOPNOTSUPP is
2661                         * returned by __btrfs_drop_extents() without having
2662                         * changed anything in the file.
2663                         */
2664                        if (extent_info && !extent_info->is_new_extent &&
2665                            ret && ret != -EOPNOTSUPP)
2666                                btrfs_abort_transaction(trans, ret);
2667                        break;
2668                }
2669
2670                trans->block_rsv = &fs_info->trans_block_rsv;
2671
2672                if (!extent_info && cur_offset < drop_end &&
2673                    cur_offset < ino_size) {
2674                        ret = fill_holes(trans, BTRFS_I(inode), path,
2675                                        cur_offset, drop_end);
2676                        if (ret) {
2677                                /*
2678                                 * If we failed then we didn't insert our hole
2679                                 * entries for the area we dropped, so now the
2680                                 * fs is corrupted, so we must abort the
2681                                 * transaction.
2682                                 */
2683                                btrfs_abort_transaction(trans, ret);
2684                                break;
2685                        }
2686                } else if (!extent_info && cur_offset < drop_end) {
2687                        /*
2688                         * We are past the i_size here, but since we didn't
2689                         * insert holes we need to clear the mapped area so we
2690                         * know to not set disk_i_size in this area until a new
2691                         * file extent is inserted here.
2692                         */
2693                        ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2694                                        cur_offset, drop_end - cur_offset);
2695                        if (ret) {
2696                                /*
2697                                 * We couldn't clear our area, so we could
2698                                 * presumably adjust up and corrupt the fs, so
2699                                 * we need to abort.
2700                                 */
2701                                btrfs_abort_transaction(trans, ret);
2702                                break;
2703                        }
2704                }
2705
2706                if (extent_info && drop_end > extent_info->file_offset) {
2707                        u64 replace_len = drop_end - extent_info->file_offset;
2708
2709                        ret = btrfs_insert_replace_extent(trans, inode, path,
2710                                                        extent_info, replace_len);
2711                        if (ret) {
2712                                btrfs_abort_transaction(trans, ret);
2713                                break;
2714                        }
2715                        extent_info->data_len -= replace_len;
2716                        extent_info->data_offset += replace_len;
2717                        extent_info->file_offset += replace_len;
2718                }
2719
2720                cur_offset = drop_end;
2721
2722                ret = btrfs_update_inode(trans, root, inode);
2723                if (ret)
2724                        break;
2725
2726                btrfs_end_transaction(trans);
2727                btrfs_btree_balance_dirty(fs_info);
2728
2729                trans = btrfs_start_transaction(root, rsv_count);
2730                if (IS_ERR(trans)) {
2731                        ret = PTR_ERR(trans);
2732                        trans = NULL;
2733                        break;
2734                }
2735
2736                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2737                                              rsv, min_size, false);
2738                BUG_ON(ret);    /* shouldn't happen */
2739                trans->block_rsv = rsv;
2740
2741                if (!extent_info) {
2742                        ret = find_first_non_hole(inode, &cur_offset, &len);
2743                        if (unlikely(ret < 0))
2744                                break;
2745                        if (ret && !len) {
2746                                ret = 0;
2747                                break;
2748                        }
2749                }
2750        }
2751
2752        /*
2753         * If we were cloning, force the next fsync to be a full one since we
2754         * we replaced (or just dropped in the case of cloning holes when
2755         * NO_HOLES is enabled) extents and extent maps.
2756         * This is for the sake of simplicity, and cloning into files larger
2757         * than 16Mb would force the full fsync any way (when
2758         * try_release_extent_mapping() is invoked during page cache truncation.
2759         */
2760        if (extent_info && !extent_info->is_new_extent)
2761                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2762                        &BTRFS_I(inode)->runtime_flags);
2763
2764        if (ret)
2765                goto out_trans;
2766
2767        trans->block_rsv = &fs_info->trans_block_rsv;
2768        /*
2769         * If we are using the NO_HOLES feature we might have had already an
2770         * hole that overlaps a part of the region [lockstart, lockend] and
2771         * ends at (or beyond) lockend. Since we have no file extent items to
2772         * represent holes, drop_end can be less than lockend and so we must
2773         * make sure we have an extent map representing the existing hole (the
2774         * call to __btrfs_drop_extents() might have dropped the existing extent
2775         * map representing the existing hole), otherwise the fast fsync path
2776         * will not record the existence of the hole region
2777         * [existing_hole_start, lockend].
2778         */
2779        if (drop_end <= end)
2780                drop_end = end + 1;
2781        /*
2782         * Don't insert file hole extent item if it's for a range beyond eof
2783         * (because it's useless) or if it represents a 0 bytes range (when
2784         * cur_offset == drop_end).
2785         */
2786        if (!extent_info && cur_offset < ino_size && cur_offset < drop_end) {
2787                ret = fill_holes(trans, BTRFS_I(inode), path,
2788                                cur_offset, drop_end);
2789                if (ret) {
2790                        /* Same comment as above. */
2791                        btrfs_abort_transaction(trans, ret);
2792                        goto out_trans;
2793                }
2794        } else if (!extent_info && cur_offset < drop_end) {
2795                /* See the comment in the loop above for the reasoning here. */
2796                ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2797                                        cur_offset, drop_end - cur_offset);
2798                if (ret) {
2799                        btrfs_abort_transaction(trans, ret);
2800                        goto out_trans;
2801                }
2802
2803        }
2804        if (extent_info) {
2805                ret = btrfs_insert_replace_extent(trans, inode, path, extent_info,
2806                                                extent_info->data_len);
2807                if (ret) {
2808                        btrfs_abort_transaction(trans, ret);
2809                        goto out_trans;
2810                }
2811        }
2812
2813out_trans:
2814        if (!trans)
2815                goto out_free;
2816
2817        trans->block_rsv = &fs_info->trans_block_rsv;
2818        if (ret)
2819                btrfs_end_transaction(trans);
2820        else
2821                *trans_out = trans;
2822out_free:
2823        btrfs_free_block_rsv(fs_info, rsv);
2824out:
2825        return ret;
2826}
2827
2828static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2829{
2830        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2831        struct btrfs_root *root = BTRFS_I(inode)->root;
2832        struct extent_state *cached_state = NULL;
2833        struct btrfs_path *path;
2834        struct btrfs_trans_handle *trans = NULL;
2835        u64 lockstart;
2836        u64 lockend;
2837        u64 tail_start;
2838        u64 tail_len;
2839        u64 orig_start = offset;
2840        int ret = 0;
2841        bool same_block;
2842        u64 ino_size;
2843        bool truncated_block = false;
2844        bool updated_inode = false;
2845
2846        ret = btrfs_wait_ordered_range(inode, offset, len);
2847        if (ret)
2848                return ret;
2849
2850        inode_lock(inode);
2851        ino_size = round_up(inode->i_size, fs_info->sectorsize);
2852        ret = find_first_non_hole(inode, &offset, &len);
2853        if (ret < 0)
2854                goto out_only_mutex;
2855        if (ret && !len) {
2856                /* Already in a large hole */
2857                ret = 0;
2858                goto out_only_mutex;
2859        }
2860
2861        lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2862        lockend = round_down(offset + len,
2863                             btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2864        same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2865                == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2866        /*
2867         * We needn't truncate any block which is beyond the end of the file
2868         * because we are sure there is no data there.
2869         */
2870        /*
2871         * Only do this if we are in the same block and we aren't doing the
2872         * entire block.
2873         */
2874        if (same_block && len < fs_info->sectorsize) {
2875                if (offset < ino_size) {
2876                        truncated_block = true;
2877                        ret = btrfs_truncate_block(inode, offset, len, 0);
2878                } else {
2879                        ret = 0;
2880                }
2881                goto out_only_mutex;
2882        }
2883
2884        /* zero back part of the first block */
2885        if (offset < ino_size) {
2886                truncated_block = true;
2887                ret = btrfs_truncate_block(inode, offset, 0, 0);
2888                if (ret) {
2889                        inode_unlock(inode);
2890                        return ret;
2891                }
2892        }
2893
2894        /* Check the aligned pages after the first unaligned page,
2895         * if offset != orig_start, which means the first unaligned page
2896         * including several following pages are already in holes,
2897         * the extra check can be skipped */
2898        if (offset == orig_start) {
2899                /* after truncate page, check hole again */
2900                len = offset + len - lockstart;
2901                offset = lockstart;
2902                ret = find_first_non_hole(inode, &offset, &len);
2903                if (ret < 0)
2904                        goto out_only_mutex;
2905                if (ret && !len) {
2906                        ret = 0;
2907                        goto out_only_mutex;
2908                }
2909                lockstart = offset;
2910        }
2911
2912        /* Check the tail unaligned part is in a hole */
2913        tail_start = lockend + 1;
2914        tail_len = offset + len - tail_start;
2915        if (tail_len) {
2916                ret = find_first_non_hole(inode, &tail_start, &tail_len);
2917                if (unlikely(ret < 0))
2918                        goto out_only_mutex;
2919                if (!ret) {
2920                        /* zero the front end of the last page */
2921                        if (tail_start + tail_len < ino_size) {
2922                                truncated_block = true;
2923                                ret = btrfs_truncate_block(inode,
2924                                                        tail_start + tail_len,
2925                                                        0, 1);
2926                                if (ret)
2927                                        goto out_only_mutex;
2928                        }
2929                }
2930        }
2931
2932        if (lockend < lockstart) {
2933                ret = 0;
2934                goto out_only_mutex;
2935        }
2936
2937        ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2938                                          &cached_state);
2939        if (ret)
2940                goto out_only_mutex;
2941
2942        path = btrfs_alloc_path();
2943        if (!path) {
2944                ret = -ENOMEM;
2945                goto out;
2946        }
2947
2948        ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL,
2949                                     &trans);
2950        btrfs_free_path(path);
2951        if (ret)
2952                goto out;
2953
2954        ASSERT(trans != NULL);
2955        inode_inc_iversion(inode);
2956        inode->i_mtime = inode->i_ctime = current_time(inode);
2957        ret = btrfs_update_inode(trans, root, inode);
2958        updated_inode = true;
2959        btrfs_end_transaction(trans);
2960        btrfs_btree_balance_dirty(fs_info);
2961out:
2962        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2963                             &cached_state);
2964out_only_mutex:
2965        if (!updated_inode && truncated_block && !ret) {
2966                /*
2967                 * If we only end up zeroing part of a page, we still need to
2968                 * update the inode item, so that all the time fields are
2969                 * updated as well as the necessary btrfs inode in memory fields
2970                 * for detecting, at fsync time, if the inode isn't yet in the
2971                 * log tree or it's there but not up to date.
2972                 */
2973                struct timespec64 now = current_time(inode);
2974
2975                inode_inc_iversion(inode);
2976                inode->i_mtime = now;
2977                inode->i_ctime = now;
2978                trans = btrfs_start_transaction(root, 1);
2979                if (IS_ERR(trans)) {
2980                        ret = PTR_ERR(trans);
2981                } else {
2982                        int ret2;
2983
2984                        ret = btrfs_update_inode(trans, root, inode);
2985                        ret2 = btrfs_end_transaction(trans);
2986                        if (!ret)
2987                                ret = ret2;
2988                }
2989        }
2990        inode_unlock(inode);
2991        return ret;
2992}
2993
2994/* Helper structure to record which range is already reserved */
2995struct falloc_range {
2996        struct list_head list;
2997        u64 start;
2998        u64 len;
2999};
3000
3001/*
3002 * Helper function to add falloc range
3003 *
3004 * Caller should have locked the larger range of extent containing
3005 * [start, len)
3006 */
3007static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3008{
3009        struct falloc_range *prev = NULL;
3010        struct falloc_range *range = NULL;
3011
3012        if (list_empty(head))
3013                goto insert;
3014
3015        /*
3016         * As fallocate iterate by bytenr order, we only need to check
3017         * the last range.
3018         */
3019        prev = list_entry(head->prev, struct falloc_range, list);
3020        if (prev->start + prev->len == start) {
3021                prev->len += len;
3022                return 0;
3023        }
3024insert:
3025        range = kmalloc(sizeof(*range), GFP_KERNEL);
3026        if (!range)
3027                return -ENOMEM;
3028        range->start = start;
3029        range->len = len;
3030        list_add_tail(&range->list, head);
3031        return 0;
3032}
3033
3034static int btrfs_fallocate_update_isize(struct inode *inode,
3035                                        const u64 end,
3036                                        const int mode)
3037{
3038        struct btrfs_trans_handle *trans;
3039        struct btrfs_root *root = BTRFS_I(inode)->root;
3040        int ret;
3041        int ret2;
3042
3043        if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3044                return 0;
3045
3046        trans = btrfs_start_transaction(root, 1);
3047        if (IS_ERR(trans))
3048                return PTR_ERR(trans);
3049
3050        inode->i_ctime = current_time(inode);
3051        i_size_write(inode, end);
3052        btrfs_inode_safe_disk_i_size_write(inode, 0);
3053        ret = btrfs_update_inode(trans, root, inode);
3054        ret2 = btrfs_end_transaction(trans);
3055
3056        return ret ? ret : ret2;
3057}
3058
3059enum {
3060        RANGE_BOUNDARY_WRITTEN_EXTENT,
3061        RANGE_BOUNDARY_PREALLOC_EXTENT,
3062        RANGE_BOUNDARY_HOLE,
3063};
3064
3065static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3066                                                 u64 offset)
3067{
3068        const u64 sectorsize = btrfs_inode_sectorsize(inode);
3069        struct extent_map *em;
3070        int ret;
3071
3072        offset = round_down(offset, sectorsize);
3073        em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3074        if (IS_ERR(em))
3075                return PTR_ERR(em);
3076
3077        if (em->block_start == EXTENT_MAP_HOLE)
3078                ret = RANGE_BOUNDARY_HOLE;
3079        else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3080                ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3081        else
3082                ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3083
3084        free_extent_map(em);
3085        return ret;
3086}
3087
3088static int btrfs_zero_range(struct inode *inode,
3089                            loff_t offset,
3090                            loff_t len,
3091                            const int mode)
3092{
3093        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3094        struct extent_map *em;
3095        struct extent_changeset *data_reserved = NULL;
3096        int ret;
3097        u64 alloc_hint = 0;
3098        const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3099        u64 alloc_start = round_down(offset, sectorsize);
3100        u64 alloc_end = round_up(offset + len, sectorsize);
3101        u64 bytes_to_reserve = 0;
3102        bool space_reserved = false;
3103
3104        inode_dio_wait(inode);
3105
3106        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3107                              alloc_end - alloc_start);
3108        if (IS_ERR(em)) {
3109                ret = PTR_ERR(em);
3110                goto out;
3111        }
3112
3113        /*
3114         * Avoid hole punching and extent allocation for some cases. More cases
3115         * could be considered, but these are unlikely common and we keep things
3116         * as simple as possible for now. Also, intentionally, if the target
3117         * range contains one or more prealloc extents together with regular
3118         * extents and holes, we drop all the existing extents and allocate a
3119         * new prealloc extent, so that we get a larger contiguous disk extent.
3120         */
3121        if (em->start <= alloc_start &&
3122            test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3123                const u64 em_end = em->start + em->len;
3124
3125                if (em_end >= offset + len) {
3126                        /*
3127                         * The whole range is already a prealloc extent,
3128                         * do nothing except updating the inode's i_size if
3129                         * needed.
3130                         */
3131                        free_extent_map(em);
3132                        ret = btrfs_fallocate_update_isize(inode, offset + len,
3133                                                           mode);
3134                        goto out;
3135                }
3136                /*
3137                 * Part of the range is already a prealloc extent, so operate
3138                 * only on the remaining part of the range.
3139                 */
3140                alloc_start = em_end;
3141                ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3142                len = offset + len - alloc_start;
3143                offset = alloc_start;
3144                alloc_hint = em->block_start + em->len;
3145        }
3146        free_extent_map(em);
3147
3148        if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3149            BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3150                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3151                                      sectorsize);
3152                if (IS_ERR(em)) {
3153                        ret = PTR_ERR(em);
3154                        goto out;
3155                }
3156
3157                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3158                        free_extent_map(em);
3159                        ret = btrfs_fallocate_update_isize(inode, offset + len,
3160                                                           mode);
3161                        goto out;
3162                }
3163                if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3164                        free_extent_map(em);
3165                        ret = btrfs_truncate_block(inode, offset, len, 0);
3166                        if (!ret)
3167                                ret = btrfs_fallocate_update_isize(inode,
3168                                                                   offset + len,
3169                                                                   mode);
3170                        return ret;
3171                }
3172                free_extent_map(em);
3173                alloc_start = round_down(offset, sectorsize);
3174                alloc_end = alloc_start + sectorsize;
3175                goto reserve_space;
3176        }
3177
3178        alloc_start = round_up(offset, sectorsize);
3179        alloc_end = round_down(offset + len, sectorsize);
3180
3181        /*
3182         * For unaligned ranges, check the pages at the boundaries, they might
3183         * map to an extent, in which case we need to partially zero them, or
3184         * they might map to a hole, in which case we need our allocation range
3185         * to cover them.
3186         */
3187        if (!IS_ALIGNED(offset, sectorsize)) {
3188                ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3189                                                            offset);
3190                if (ret < 0)
3191                        goto out;
3192                if (ret == RANGE_BOUNDARY_HOLE) {
3193                        alloc_start = round_down(offset, sectorsize);
3194                        ret = 0;
3195                } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3196                        ret = btrfs_truncate_block(inode, offset, 0, 0);
3197                        if (ret)
3198                                goto out;
3199                } else {
3200                        ret = 0;
3201                }
3202        }
3203
3204        if (!IS_ALIGNED(offset + len, sectorsize)) {
3205                ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3206                                                            offset + len);
3207                if (ret < 0)
3208                        goto out;
3209                if (ret == RANGE_BOUNDARY_HOLE) {
3210                        alloc_end = round_up(offset + len, sectorsize);
3211                        ret = 0;
3212                } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3213                        ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3214                        if (ret)
3215                                goto out;
3216                } else {
3217                        ret = 0;
3218                }
3219        }
3220
3221reserve_space:
3222        if (alloc_start < alloc_end) {
3223                struct extent_state *cached_state = NULL;
3224                const u64 lockstart = alloc_start;
3225                const u64 lockend = alloc_end - 1;
3226
3227                bytes_to_reserve = alloc_end - alloc_start;
3228                ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3229                                                      bytes_to_reserve);
3230                if (ret < 0)
3231                        goto out;
3232                space_reserved = true;
3233                ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3234                                                  &cached_state);
3235                if (ret)
3236                        goto out;
3237                ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3238                                                alloc_start, bytes_to_reserve);
3239                if (ret)
3240                        goto out;
3241                ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3242                                                alloc_end - alloc_start,
3243                                                i_blocksize(inode),
3244                                                offset + len, &alloc_hint);
3245                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3246                                     lockend, &cached_state);
3247                /* btrfs_prealloc_file_range releases reserved space on error */
3248                if (ret) {
3249                        space_reserved = false;
3250                        goto out;
3251                }
3252        }
3253        ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3254 out:
3255        if (ret && space_reserved)
3256                btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3257                                               alloc_start, bytes_to_reserve);
3258        extent_changeset_free(data_reserved);
3259
3260        return ret;
3261}
3262
3263static long btrfs_fallocate(struct file *file, int mode,
3264                            loff_t offset, loff_t len)
3265{
3266        struct inode *inode = file_inode(file);
3267        struct extent_state *cached_state = NULL;
3268        struct extent_changeset *data_reserved = NULL;
3269        struct falloc_range *range;
3270        struct falloc_range *tmp;
3271        struct list_head reserve_list;
3272        u64 cur_offset;
3273        u64 last_byte;
3274        u64 alloc_start;
3275        u64 alloc_end;
3276        u64 alloc_hint = 0;
3277        u64 locked_end;
3278        u64 actual_end = 0;
3279        struct extent_map *em;
3280        int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3281        int ret;
3282
3283        alloc_start = round_down(offset, blocksize);
3284        alloc_end = round_up(offset + len, blocksize);
3285        cur_offset = alloc_start;
3286
3287        /* Make sure we aren't being give some crap mode */
3288        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3289                     FALLOC_FL_ZERO_RANGE))
3290                return -EOPNOTSUPP;
3291
3292        if (mode & FALLOC_FL_PUNCH_HOLE)
3293                return btrfs_punch_hole(inode, offset, len);
3294
3295        /*
3296         * Only trigger disk allocation, don't trigger qgroup reserve
3297         *
3298         * For qgroup space, it will be checked later.
3299         */
3300        if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3301                ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3302                                                      alloc_end - alloc_start);
3303                if (ret < 0)
3304                        return ret;
3305        }
3306
3307        inode_lock(inode);
3308
3309        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3310                ret = inode_newsize_ok(inode, offset + len);
3311                if (ret)
3312                        goto out;
3313        }
3314
3315        /*
3316         * TODO: Move these two operations after we have checked
3317         * accurate reserved space, or fallocate can still fail but
3318         * with page truncated or size expanded.
3319         *
3320         * But that's a minor problem and won't do much harm BTW.
3321         */
3322        if (alloc_start > inode->i_size) {
3323                ret = btrfs_cont_expand(inode, i_size_read(inode),
3324                                        alloc_start);
3325                if (ret)
3326                        goto out;
3327        } else if (offset + len > inode->i_size) {
3328                /*
3329                 * If we are fallocating from the end of the file onward we
3330                 * need to zero out the end of the block if i_size lands in the
3331                 * middle of a block.
3332                 */
3333                ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3334                if (ret)
3335                        goto out;
3336        }
3337
3338        /*
3339         * wait for ordered IO before we have any locks.  We'll loop again
3340         * below with the locks held.
3341         */
3342        ret = btrfs_wait_ordered_range(inode, alloc_start,
3343                                       alloc_end - alloc_start);
3344        if (ret)
3345                goto out;
3346
3347        if (mode & FALLOC_FL_ZERO_RANGE) {
3348                ret = btrfs_zero_range(inode, offset, len, mode);
3349                inode_unlock(inode);
3350                return ret;
3351        }
3352
3353        locked_end = alloc_end - 1;
3354        while (1) {
3355                struct btrfs_ordered_extent *ordered;
3356
3357                /* the extent lock is ordered inside the running
3358                 * transaction
3359                 */
3360                lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3361                                 locked_end, &cached_state);
3362                ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3363                                                            locked_end);
3364
3365                if (ordered &&
3366                    ordered->file_offset + ordered->num_bytes > alloc_start &&
3367                    ordered->file_offset < alloc_end) {
3368                        btrfs_put_ordered_extent(ordered);
3369                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3370                                             alloc_start, locked_end,
3371                                             &cached_state);
3372                        /*
3373                         * we can't wait on the range with the transaction
3374                         * running or with the extent lock held
3375                         */
3376                        ret = btrfs_wait_ordered_range(inode, alloc_start,
3377                                                       alloc_end - alloc_start);
3378                        if (ret)
3379                                goto out;
3380                } else {
3381                        if (ordered)
3382                                btrfs_put_ordered_extent(ordered);
3383                        break;
3384                }
3385        }
3386
3387        /* First, check if we exceed the qgroup limit */
3388        INIT_LIST_HEAD(&reserve_list);
3389        while (cur_offset < alloc_end) {
3390                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3391                                      alloc_end - cur_offset);
3392                if (IS_ERR(em)) {
3393                        ret = PTR_ERR(em);
3394                        break;
3395                }
3396                last_byte = min(extent_map_end(em), alloc_end);
3397                actual_end = min_t(u64, extent_map_end(em), offset + len);
3398                last_byte = ALIGN(last_byte, blocksize);
3399                if (em->block_start == EXTENT_MAP_HOLE ||
3400                    (cur_offset >= inode->i_size &&
3401                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3402                        ret = add_falloc_range(&reserve_list, cur_offset,
3403                                               last_byte - cur_offset);
3404                        if (ret < 0) {
3405                                free_extent_map(em);
3406                                break;
3407                        }
3408                        ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3409                                        &data_reserved, cur_offset,
3410                                        last_byte - cur_offset);
3411                        if (ret < 0) {
3412                                cur_offset = last_byte;
3413                                free_extent_map(em);
3414                                break;
3415                        }
3416                } else {
3417                        /*
3418                         * Do not need to reserve unwritten extent for this
3419                         * range, free reserved data space first, otherwise
3420                         * it'll result in false ENOSPC error.
3421                         */
3422                        btrfs_free_reserved_data_space(BTRFS_I(inode),
3423                                data_reserved, cur_offset,
3424                                last_byte - cur_offset);
3425                }
3426                free_extent_map(em);
3427                cur_offset = last_byte;
3428        }
3429
3430        /*
3431         * If ret is still 0, means we're OK to fallocate.
3432         * Or just cleanup the list and exit.
3433         */
3434        list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3435                if (!ret)
3436                        ret = btrfs_prealloc_file_range(inode, mode,
3437                                        range->start,
3438                                        range->len, i_blocksize(inode),
3439                                        offset + len, &alloc_hint);
3440                else
3441                        btrfs_free_reserved_data_space(BTRFS_I(inode),
3442                                        data_reserved, range->start,
3443                                        range->len);
3444                list_del(&range->list);
3445                kfree(range);
3446        }
3447        if (ret < 0)
3448                goto out_unlock;
3449
3450        /*
3451         * We didn't need to allocate any more space, but we still extended the
3452         * size of the file so we need to update i_size and the inode item.
3453         */
3454        ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3455out_unlock:
3456        unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3457                             &cached_state);
3458out:
3459        inode_unlock(inode);
3460        /* Let go of our reservation. */
3461        if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3462                btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3463                                cur_offset, alloc_end - cur_offset);
3464        extent_changeset_free(data_reserved);
3465        return ret;
3466}
3467
3468static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3469                                  int whence)
3470{
3471        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3472        struct extent_map *em = NULL;
3473        struct extent_state *cached_state = NULL;
3474        loff_t i_size = inode->i_size;
3475        u64 lockstart;
3476        u64 lockend;
3477        u64 start;
3478        u64 len;
3479        int ret = 0;
3480
3481        if (i_size == 0 || offset >= i_size)
3482                return -ENXIO;
3483
3484        /*
3485         * offset can be negative, in this case we start finding DATA/HOLE from
3486         * the very start of the file.
3487         */
3488        start = max_t(loff_t, 0, offset);
3489
3490        lockstart = round_down(start, fs_info->sectorsize);
3491        lockend = round_up(i_size, fs_info->sectorsize);
3492        if (lockend <= lockstart)
3493                lockend = lockstart + fs_info->sectorsize;
3494        lockend--;
3495        len = lockend - lockstart + 1;
3496
3497        lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3498                         &cached_state);
3499
3500        while (start < i_size) {
3501                em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3502                if (IS_ERR(em)) {
3503                        ret = PTR_ERR(em);
3504                        em = NULL;
3505                        break;
3506                }
3507
3508                if (whence == SEEK_HOLE &&
3509                    (em->block_start == EXTENT_MAP_HOLE ||
3510                     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3511                        break;
3512                else if (whence == SEEK_DATA &&
3513                           (em->block_start != EXTENT_MAP_HOLE &&
3514                            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3515                        break;
3516
3517                start = em->start + em->len;
3518                free_extent_map(em);
3519                em = NULL;
3520                cond_resched();
3521        }
3522        free_extent_map(em);
3523        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3524                             &cached_state);
3525        if (ret) {
3526                offset = ret;
3527        } else {
3528                if (whence == SEEK_DATA && start >= i_size)
3529                        offset = -ENXIO;
3530                else
3531                        offset = min_t(loff_t, start, i_size);
3532        }
3533
3534        return offset;
3535}
3536
3537static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3538{
3539        struct inode *inode = file->f_mapping->host;
3540
3541        switch (whence) {
3542        default:
3543                return generic_file_llseek(file, offset, whence);
3544        case SEEK_DATA:
3545        case SEEK_HOLE:
3546                inode_lock_shared(inode);
3547                offset = find_desired_extent(inode, offset, whence);
3548                inode_unlock_shared(inode);
3549                break;
3550        }
3551
3552        if (offset < 0)
3553                return offset;
3554
3555        return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3556}
3557
3558static int btrfs_file_open(struct inode *inode, struct file *filp)
3559{
3560        filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3561        return generic_file_open(inode, filp);
3562}
3563
3564static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3565{
3566        ssize_t ret = 0;
3567
3568        if (iocb->ki_flags & IOCB_DIRECT) {
3569                struct inode *inode = file_inode(iocb->ki_filp);
3570
3571                inode_lock_shared(inode);
3572                ret = btrfs_direct_IO(iocb, to);
3573                inode_unlock_shared(inode);
3574                if (ret < 0 || !iov_iter_count(to) ||
3575                    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3576                        return ret;
3577        }
3578
3579        return generic_file_buffered_read(iocb, to, ret);
3580}
3581
3582const struct file_operations btrfs_file_operations = {
3583        .llseek         = btrfs_file_llseek,
3584        .read_iter      = btrfs_file_read_iter,
3585        .splice_read    = generic_file_splice_read,
3586        .write_iter     = btrfs_file_write_iter,
3587        .splice_write   = iter_file_splice_write,
3588        .mmap           = btrfs_file_mmap,
3589        .open           = btrfs_file_open,
3590        .release        = btrfs_release_file,
3591        .fsync          = btrfs_sync_file,
3592        .fallocate      = btrfs_fallocate,
3593        .unlocked_ioctl = btrfs_ioctl,
3594#ifdef CONFIG_COMPAT
3595        .compat_ioctl   = btrfs_compat_ioctl,
3596#endif
3597        .remap_file_range = btrfs_remap_file_range,
3598};
3599
3600void __cold btrfs_auto_defrag_exit(void)
3601{
3602        kmem_cache_destroy(btrfs_inode_defrag_cachep);
3603}
3604
3605int __init btrfs_auto_defrag_init(void)
3606{
3607        btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3608                                        sizeof(struct inode_defrag), 0,
3609                                        SLAB_MEM_SPREAD,
3610                                        NULL);
3611        if (!btrfs_inode_defrag_cachep)
3612                return -ENOMEM;
3613
3614        return 0;
3615}
3616
3617int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3618{
3619        int ret;
3620
3621        /*
3622         * So with compression we will find and lock a dirty page and clear the
3623         * first one as dirty, setup an async extent, and immediately return
3624         * with the entire range locked but with nobody actually marked with
3625         * writeback.  So we can't just filemap_write_and_wait_range() and
3626         * expect it to work since it will just kick off a thread to do the
3627         * actual work.  So we need to call filemap_fdatawrite_range _again_
3628         * since it will wait on the page lock, which won't be unlocked until
3629         * after the pages have been marked as writeback and so we're good to go
3630         * from there.  We have to do this otherwise we'll miss the ordered
3631         * extents and that results in badness.  Please Josef, do not think you
3632         * know better and pull this out at some point in the future, it is
3633         * right and you are wrong.
3634         */
3635        ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3636        if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3637                             &BTRFS_I(inode)->runtime_flags))
3638                ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3639
3640        return ret;
3641}
3642