linux/fs/btrfs/scrub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
  19#include "check-integrity.h"
  20#include "rcu-string.h"
  21#include "raid56.h"
  22#include "block-group.h"
  23
  24/*
  25 * This is only the first step towards a full-features scrub. It reads all
  26 * extent and super block and verifies the checksums. In case a bad checksum
  27 * is found or the extent cannot be read, good data will be written back if
  28 * any can be found.
  29 *
  30 * Future enhancements:
  31 *  - In case an unrepairable extent is encountered, track which files are
  32 *    affected and report them
  33 *  - track and record media errors, throw out bad devices
  34 *  - add a mode to also read unallocated space
  35 */
  36
  37struct scrub_block;
  38struct scrub_ctx;
  39
  40/*
  41 * the following three values only influence the performance.
  42 * The last one configures the number of parallel and outstanding I/O
  43 * operations. The first two values configure an upper limit for the number
  44 * of (dynamically allocated) pages that are added to a bio.
  45 */
  46#define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
  47#define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
  48#define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
  49
  50/*
  51 * the following value times PAGE_SIZE needs to be large enough to match the
  52 * largest node/leaf/sector size that shall be supported.
  53 * Values larger than BTRFS_STRIPE_LEN are not supported.
  54 */
  55#define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
  56
  57struct scrub_recover {
  58        refcount_t              refs;
  59        struct btrfs_bio        *bbio;
  60        u64                     map_length;
  61};
  62
  63struct scrub_page {
  64        struct scrub_block      *sblock;
  65        struct page             *page;
  66        struct btrfs_device     *dev;
  67        struct list_head        list;
  68        u64                     flags;  /* extent flags */
  69        u64                     generation;
  70        u64                     logical;
  71        u64                     physical;
  72        u64                     physical_for_dev_replace;
  73        atomic_t                refs;
  74        struct {
  75                unsigned int    mirror_num:8;
  76                unsigned int    have_csum:1;
  77                unsigned int    io_error:1;
  78        };
  79        u8                      csum[BTRFS_CSUM_SIZE];
  80
  81        struct scrub_recover    *recover;
  82};
  83
  84struct scrub_bio {
  85        int                     index;
  86        struct scrub_ctx        *sctx;
  87        struct btrfs_device     *dev;
  88        struct bio              *bio;
  89        blk_status_t            status;
  90        u64                     logical;
  91        u64                     physical;
  92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  93        struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
  94#else
  95        struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
  96#endif
  97        int                     page_count;
  98        int                     next_free;
  99        struct btrfs_work       work;
 100};
 101
 102struct scrub_block {
 103        struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 104        int                     page_count;
 105        atomic_t                outstanding_pages;
 106        refcount_t              refs; /* free mem on transition to zero */
 107        struct scrub_ctx        *sctx;
 108        struct scrub_parity     *sparity;
 109        struct {
 110                unsigned int    header_error:1;
 111                unsigned int    checksum_error:1;
 112                unsigned int    no_io_error_seen:1;
 113                unsigned int    generation_error:1; /* also sets header_error */
 114
 115                /* The following is for the data used to check parity */
 116                /* It is for the data with checksum */
 117                unsigned int    data_corrected:1;
 118        };
 119        struct btrfs_work       work;
 120};
 121
 122/* Used for the chunks with parity stripe such RAID5/6 */
 123struct scrub_parity {
 124        struct scrub_ctx        *sctx;
 125
 126        struct btrfs_device     *scrub_dev;
 127
 128        u64                     logic_start;
 129
 130        u64                     logic_end;
 131
 132        int                     nsectors;
 133
 134        u64                     stripe_len;
 135
 136        refcount_t              refs;
 137
 138        struct list_head        spages;
 139
 140        /* Work of parity check and repair */
 141        struct btrfs_work       work;
 142
 143        /* Mark the parity blocks which have data */
 144        unsigned long           *dbitmap;
 145
 146        /*
 147         * Mark the parity blocks which have data, but errors happen when
 148         * read data or check data
 149         */
 150        unsigned long           *ebitmap;
 151
 152        unsigned long           bitmap[];
 153};
 154
 155struct scrub_ctx {
 156        struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
 157        struct btrfs_fs_info    *fs_info;
 158        int                     first_free;
 159        int                     curr;
 160        atomic_t                bios_in_flight;
 161        atomic_t                workers_pending;
 162        spinlock_t              list_lock;
 163        wait_queue_head_t       list_wait;
 164        u16                     csum_size;
 165        struct list_head        csum_list;
 166        atomic_t                cancel_req;
 167        int                     readonly;
 168        int                     pages_per_rd_bio;
 169
 170        int                     is_dev_replace;
 171
 172        struct scrub_bio        *wr_curr_bio;
 173        struct mutex            wr_lock;
 174        int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 175        struct btrfs_device     *wr_tgtdev;
 176        bool                    flush_all_writes;
 177
 178        /*
 179         * statistics
 180         */
 181        struct btrfs_scrub_progress stat;
 182        spinlock_t              stat_lock;
 183
 184        /*
 185         * Use a ref counter to avoid use-after-free issues. Scrub workers
 186         * decrement bios_in_flight and workers_pending and then do a wakeup
 187         * on the list_wait wait queue. We must ensure the main scrub task
 188         * doesn't free the scrub context before or while the workers are
 189         * doing the wakeup() call.
 190         */
 191        refcount_t              refs;
 192};
 193
 194struct scrub_warning {
 195        struct btrfs_path       *path;
 196        u64                     extent_item_size;
 197        const char              *errstr;
 198        u64                     physical;
 199        u64                     logical;
 200        struct btrfs_device     *dev;
 201};
 202
 203struct full_stripe_lock {
 204        struct rb_node node;
 205        u64 logical;
 206        u64 refs;
 207        struct mutex mutex;
 208};
 209
 210static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 211static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 212static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 213static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 214                                     struct scrub_block *sblocks_for_recheck);
 215static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 216                                struct scrub_block *sblock,
 217                                int retry_failed_mirror);
 218static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 219static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 220                                             struct scrub_block *sblock_good);
 221static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 222                                            struct scrub_block *sblock_good,
 223                                            int page_num, int force_write);
 224static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 225static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 226                                           int page_num);
 227static int scrub_checksum_data(struct scrub_block *sblock);
 228static int scrub_checksum_tree_block(struct scrub_block *sblock);
 229static int scrub_checksum_super(struct scrub_block *sblock);
 230static void scrub_block_get(struct scrub_block *sblock);
 231static void scrub_block_put(struct scrub_block *sblock);
 232static void scrub_page_get(struct scrub_page *spage);
 233static void scrub_page_put(struct scrub_page *spage);
 234static void scrub_parity_get(struct scrub_parity *sparity);
 235static void scrub_parity_put(struct scrub_parity *sparity);
 236static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 237                                    struct scrub_page *spage);
 238static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 239                       u64 physical, struct btrfs_device *dev, u64 flags,
 240                       u64 gen, int mirror_num, u8 *csum, int force,
 241                       u64 physical_for_dev_replace);
 242static void scrub_bio_end_io(struct bio *bio);
 243static void scrub_bio_end_io_worker(struct btrfs_work *work);
 244static void scrub_block_complete(struct scrub_block *sblock);
 245static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 246                               u64 extent_logical, u64 extent_len,
 247                               u64 *extent_physical,
 248                               struct btrfs_device **extent_dev,
 249                               int *extent_mirror_num);
 250static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 251                                    struct scrub_page *spage);
 252static void scrub_wr_submit(struct scrub_ctx *sctx);
 253static void scrub_wr_bio_end_io(struct bio *bio);
 254static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 255static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 256static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 257static void scrub_put_ctx(struct scrub_ctx *sctx);
 258
 259static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 260{
 261        return page->recover &&
 262               (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 263}
 264
 265static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 266{
 267        refcount_inc(&sctx->refs);
 268        atomic_inc(&sctx->bios_in_flight);
 269}
 270
 271static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 272{
 273        atomic_dec(&sctx->bios_in_flight);
 274        wake_up(&sctx->list_wait);
 275        scrub_put_ctx(sctx);
 276}
 277
 278static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 279{
 280        while (atomic_read(&fs_info->scrub_pause_req)) {
 281                mutex_unlock(&fs_info->scrub_lock);
 282                wait_event(fs_info->scrub_pause_wait,
 283                   atomic_read(&fs_info->scrub_pause_req) == 0);
 284                mutex_lock(&fs_info->scrub_lock);
 285        }
 286}
 287
 288static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 289{
 290        atomic_inc(&fs_info->scrubs_paused);
 291        wake_up(&fs_info->scrub_pause_wait);
 292}
 293
 294static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 295{
 296        mutex_lock(&fs_info->scrub_lock);
 297        __scrub_blocked_if_needed(fs_info);
 298        atomic_dec(&fs_info->scrubs_paused);
 299        mutex_unlock(&fs_info->scrub_lock);
 300
 301        wake_up(&fs_info->scrub_pause_wait);
 302}
 303
 304static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 305{
 306        scrub_pause_on(fs_info);
 307        scrub_pause_off(fs_info);
 308}
 309
 310/*
 311 * Insert new full stripe lock into full stripe locks tree
 312 *
 313 * Return pointer to existing or newly inserted full_stripe_lock structure if
 314 * everything works well.
 315 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 316 *
 317 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 318 * function
 319 */
 320static struct full_stripe_lock *insert_full_stripe_lock(
 321                struct btrfs_full_stripe_locks_tree *locks_root,
 322                u64 fstripe_logical)
 323{
 324        struct rb_node **p;
 325        struct rb_node *parent = NULL;
 326        struct full_stripe_lock *entry;
 327        struct full_stripe_lock *ret;
 328
 329        lockdep_assert_held(&locks_root->lock);
 330
 331        p = &locks_root->root.rb_node;
 332        while (*p) {
 333                parent = *p;
 334                entry = rb_entry(parent, struct full_stripe_lock, node);
 335                if (fstripe_logical < entry->logical) {
 336                        p = &(*p)->rb_left;
 337                } else if (fstripe_logical > entry->logical) {
 338                        p = &(*p)->rb_right;
 339                } else {
 340                        entry->refs++;
 341                        return entry;
 342                }
 343        }
 344
 345        /*
 346         * Insert new lock.
 347         */
 348        ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 349        if (!ret)
 350                return ERR_PTR(-ENOMEM);
 351        ret->logical = fstripe_logical;
 352        ret->refs = 1;
 353        mutex_init(&ret->mutex);
 354
 355        rb_link_node(&ret->node, parent, p);
 356        rb_insert_color(&ret->node, &locks_root->root);
 357        return ret;
 358}
 359
 360/*
 361 * Search for a full stripe lock of a block group
 362 *
 363 * Return pointer to existing full stripe lock if found
 364 * Return NULL if not found
 365 */
 366static struct full_stripe_lock *search_full_stripe_lock(
 367                struct btrfs_full_stripe_locks_tree *locks_root,
 368                u64 fstripe_logical)
 369{
 370        struct rb_node *node;
 371        struct full_stripe_lock *entry;
 372
 373        lockdep_assert_held(&locks_root->lock);
 374
 375        node = locks_root->root.rb_node;
 376        while (node) {
 377                entry = rb_entry(node, struct full_stripe_lock, node);
 378                if (fstripe_logical < entry->logical)
 379                        node = node->rb_left;
 380                else if (fstripe_logical > entry->logical)
 381                        node = node->rb_right;
 382                else
 383                        return entry;
 384        }
 385        return NULL;
 386}
 387
 388/*
 389 * Helper to get full stripe logical from a normal bytenr.
 390 *
 391 * Caller must ensure @cache is a RAID56 block group.
 392 */
 393static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
 394{
 395        u64 ret;
 396
 397        /*
 398         * Due to chunk item size limit, full stripe length should not be
 399         * larger than U32_MAX. Just a sanity check here.
 400         */
 401        WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 402
 403        /*
 404         * round_down() can only handle power of 2, while RAID56 full
 405         * stripe length can be 64KiB * n, so we need to manually round down.
 406         */
 407        ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
 408                        cache->full_stripe_len + cache->start;
 409        return ret;
 410}
 411
 412/*
 413 * Lock a full stripe to avoid concurrency of recovery and read
 414 *
 415 * It's only used for profiles with parities (RAID5/6), for other profiles it
 416 * does nothing.
 417 *
 418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 419 * So caller must call unlock_full_stripe() at the same context.
 420 *
 421 * Return <0 if encounters error.
 422 */
 423static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 424                            bool *locked_ret)
 425{
 426        struct btrfs_block_group *bg_cache;
 427        struct btrfs_full_stripe_locks_tree *locks_root;
 428        struct full_stripe_lock *existing;
 429        u64 fstripe_start;
 430        int ret = 0;
 431
 432        *locked_ret = false;
 433        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 434        if (!bg_cache) {
 435                ASSERT(0);
 436                return -ENOENT;
 437        }
 438
 439        /* Profiles not based on parity don't need full stripe lock */
 440        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 441                goto out;
 442        locks_root = &bg_cache->full_stripe_locks_root;
 443
 444        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 445
 446        /* Now insert the full stripe lock */
 447        mutex_lock(&locks_root->lock);
 448        existing = insert_full_stripe_lock(locks_root, fstripe_start);
 449        mutex_unlock(&locks_root->lock);
 450        if (IS_ERR(existing)) {
 451                ret = PTR_ERR(existing);
 452                goto out;
 453        }
 454        mutex_lock(&existing->mutex);
 455        *locked_ret = true;
 456out:
 457        btrfs_put_block_group(bg_cache);
 458        return ret;
 459}
 460
 461/*
 462 * Unlock a full stripe.
 463 *
 464 * NOTE: Caller must ensure it's the same context calling corresponding
 465 * lock_full_stripe().
 466 *
 467 * Return 0 if we unlock full stripe without problem.
 468 * Return <0 for error
 469 */
 470static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 471                              bool locked)
 472{
 473        struct btrfs_block_group *bg_cache;
 474        struct btrfs_full_stripe_locks_tree *locks_root;
 475        struct full_stripe_lock *fstripe_lock;
 476        u64 fstripe_start;
 477        bool freeit = false;
 478        int ret = 0;
 479
 480        /* If we didn't acquire full stripe lock, no need to continue */
 481        if (!locked)
 482                return 0;
 483
 484        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 485        if (!bg_cache) {
 486                ASSERT(0);
 487                return -ENOENT;
 488        }
 489        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 490                goto out;
 491
 492        locks_root = &bg_cache->full_stripe_locks_root;
 493        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 494
 495        mutex_lock(&locks_root->lock);
 496        fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 497        /* Unpaired unlock_full_stripe() detected */
 498        if (!fstripe_lock) {
 499                WARN_ON(1);
 500                ret = -ENOENT;
 501                mutex_unlock(&locks_root->lock);
 502                goto out;
 503        }
 504
 505        if (fstripe_lock->refs == 0) {
 506                WARN_ON(1);
 507                btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 508                        fstripe_lock->logical);
 509        } else {
 510                fstripe_lock->refs--;
 511        }
 512
 513        if (fstripe_lock->refs == 0) {
 514                rb_erase(&fstripe_lock->node, &locks_root->root);
 515                freeit = true;
 516        }
 517        mutex_unlock(&locks_root->lock);
 518
 519        mutex_unlock(&fstripe_lock->mutex);
 520        if (freeit)
 521                kfree(fstripe_lock);
 522out:
 523        btrfs_put_block_group(bg_cache);
 524        return ret;
 525}
 526
 527static void scrub_free_csums(struct scrub_ctx *sctx)
 528{
 529        while (!list_empty(&sctx->csum_list)) {
 530                struct btrfs_ordered_sum *sum;
 531                sum = list_first_entry(&sctx->csum_list,
 532                                       struct btrfs_ordered_sum, list);
 533                list_del(&sum->list);
 534                kfree(sum);
 535        }
 536}
 537
 538static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 539{
 540        int i;
 541
 542        if (!sctx)
 543                return;
 544
 545        /* this can happen when scrub is cancelled */
 546        if (sctx->curr != -1) {
 547                struct scrub_bio *sbio = sctx->bios[sctx->curr];
 548
 549                for (i = 0; i < sbio->page_count; i++) {
 550                        WARN_ON(!sbio->pagev[i]->page);
 551                        scrub_block_put(sbio->pagev[i]->sblock);
 552                }
 553                bio_put(sbio->bio);
 554        }
 555
 556        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 557                struct scrub_bio *sbio = sctx->bios[i];
 558
 559                if (!sbio)
 560                        break;
 561                kfree(sbio);
 562        }
 563
 564        kfree(sctx->wr_curr_bio);
 565        scrub_free_csums(sctx);
 566        kfree(sctx);
 567}
 568
 569static void scrub_put_ctx(struct scrub_ctx *sctx)
 570{
 571        if (refcount_dec_and_test(&sctx->refs))
 572                scrub_free_ctx(sctx);
 573}
 574
 575static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 576                struct btrfs_fs_info *fs_info, int is_dev_replace)
 577{
 578        struct scrub_ctx *sctx;
 579        int             i;
 580
 581        sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 582        if (!sctx)
 583                goto nomem;
 584        refcount_set(&sctx->refs, 1);
 585        sctx->is_dev_replace = is_dev_replace;
 586        sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 587        sctx->curr = -1;
 588        sctx->fs_info = fs_info;
 589        INIT_LIST_HEAD(&sctx->csum_list);
 590        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 591                struct scrub_bio *sbio;
 592
 593                sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 594                if (!sbio)
 595                        goto nomem;
 596                sctx->bios[i] = sbio;
 597
 598                sbio->index = i;
 599                sbio->sctx = sctx;
 600                sbio->page_count = 0;
 601                btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
 602                                NULL);
 603
 604                if (i != SCRUB_BIOS_PER_SCTX - 1)
 605                        sctx->bios[i]->next_free = i + 1;
 606                else
 607                        sctx->bios[i]->next_free = -1;
 608        }
 609        sctx->first_free = 0;
 610        atomic_set(&sctx->bios_in_flight, 0);
 611        atomic_set(&sctx->workers_pending, 0);
 612        atomic_set(&sctx->cancel_req, 0);
 613        sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 614
 615        spin_lock_init(&sctx->list_lock);
 616        spin_lock_init(&sctx->stat_lock);
 617        init_waitqueue_head(&sctx->list_wait);
 618
 619        WARN_ON(sctx->wr_curr_bio != NULL);
 620        mutex_init(&sctx->wr_lock);
 621        sctx->wr_curr_bio = NULL;
 622        if (is_dev_replace) {
 623                WARN_ON(!fs_info->dev_replace.tgtdev);
 624                sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 625                sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 626                sctx->flush_all_writes = false;
 627        }
 628
 629        return sctx;
 630
 631nomem:
 632        scrub_free_ctx(sctx);
 633        return ERR_PTR(-ENOMEM);
 634}
 635
 636static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 637                                     void *warn_ctx)
 638{
 639        u64 isize;
 640        u32 nlink;
 641        int ret;
 642        int i;
 643        unsigned nofs_flag;
 644        struct extent_buffer *eb;
 645        struct btrfs_inode_item *inode_item;
 646        struct scrub_warning *swarn = warn_ctx;
 647        struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 648        struct inode_fs_paths *ipath = NULL;
 649        struct btrfs_root *local_root;
 650        struct btrfs_key key;
 651
 652        local_root = btrfs_get_fs_root(fs_info, root, true);
 653        if (IS_ERR(local_root)) {
 654                ret = PTR_ERR(local_root);
 655                goto err;
 656        }
 657
 658        /*
 659         * this makes the path point to (inum INODE_ITEM ioff)
 660         */
 661        key.objectid = inum;
 662        key.type = BTRFS_INODE_ITEM_KEY;
 663        key.offset = 0;
 664
 665        ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 666        if (ret) {
 667                btrfs_put_root(local_root);
 668                btrfs_release_path(swarn->path);
 669                goto err;
 670        }
 671
 672        eb = swarn->path->nodes[0];
 673        inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 674                                        struct btrfs_inode_item);
 675        isize = btrfs_inode_size(eb, inode_item);
 676        nlink = btrfs_inode_nlink(eb, inode_item);
 677        btrfs_release_path(swarn->path);
 678
 679        /*
 680         * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 681         * uses GFP_NOFS in this context, so we keep it consistent but it does
 682         * not seem to be strictly necessary.
 683         */
 684        nofs_flag = memalloc_nofs_save();
 685        ipath = init_ipath(4096, local_root, swarn->path);
 686        memalloc_nofs_restore(nofs_flag);
 687        if (IS_ERR(ipath)) {
 688                btrfs_put_root(local_root);
 689                ret = PTR_ERR(ipath);
 690                ipath = NULL;
 691                goto err;
 692        }
 693        ret = paths_from_inode(inum, ipath);
 694
 695        if (ret < 0)
 696                goto err;
 697
 698        /*
 699         * we deliberately ignore the bit ipath might have been too small to
 700         * hold all of the paths here
 701         */
 702        for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 703                btrfs_warn_in_rcu(fs_info,
 704"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 705                                  swarn->errstr, swarn->logical,
 706                                  rcu_str_deref(swarn->dev->name),
 707                                  swarn->physical,
 708                                  root, inum, offset,
 709                                  min(isize - offset, (u64)PAGE_SIZE), nlink,
 710                                  (char *)(unsigned long)ipath->fspath->val[i]);
 711
 712        btrfs_put_root(local_root);
 713        free_ipath(ipath);
 714        return 0;
 715
 716err:
 717        btrfs_warn_in_rcu(fs_info,
 718                          "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 719                          swarn->errstr, swarn->logical,
 720                          rcu_str_deref(swarn->dev->name),
 721                          swarn->physical,
 722                          root, inum, offset, ret);
 723
 724        free_ipath(ipath);
 725        return 0;
 726}
 727
 728static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 729{
 730        struct btrfs_device *dev;
 731        struct btrfs_fs_info *fs_info;
 732        struct btrfs_path *path;
 733        struct btrfs_key found_key;
 734        struct extent_buffer *eb;
 735        struct btrfs_extent_item *ei;
 736        struct scrub_warning swarn;
 737        unsigned long ptr = 0;
 738        u64 extent_item_pos;
 739        u64 flags = 0;
 740        u64 ref_root;
 741        u32 item_size;
 742        u8 ref_level = 0;
 743        int ret;
 744
 745        WARN_ON(sblock->page_count < 1);
 746        dev = sblock->pagev[0]->dev;
 747        fs_info = sblock->sctx->fs_info;
 748
 749        path = btrfs_alloc_path();
 750        if (!path)
 751                return;
 752
 753        swarn.physical = sblock->pagev[0]->physical;
 754        swarn.logical = sblock->pagev[0]->logical;
 755        swarn.errstr = errstr;
 756        swarn.dev = NULL;
 757
 758        ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 759                                  &flags);
 760        if (ret < 0)
 761                goto out;
 762
 763        extent_item_pos = swarn.logical - found_key.objectid;
 764        swarn.extent_item_size = found_key.offset;
 765
 766        eb = path->nodes[0];
 767        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 768        item_size = btrfs_item_size_nr(eb, path->slots[0]);
 769
 770        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 771                do {
 772                        ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 773                                                      item_size, &ref_root,
 774                                                      &ref_level);
 775                        btrfs_warn_in_rcu(fs_info,
 776"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 777                                errstr, swarn.logical,
 778                                rcu_str_deref(dev->name),
 779                                swarn.physical,
 780                                ref_level ? "node" : "leaf",
 781                                ret < 0 ? -1 : ref_level,
 782                                ret < 0 ? -1 : ref_root);
 783                } while (ret != 1);
 784                btrfs_release_path(path);
 785        } else {
 786                btrfs_release_path(path);
 787                swarn.path = path;
 788                swarn.dev = dev;
 789                iterate_extent_inodes(fs_info, found_key.objectid,
 790                                        extent_item_pos, 1,
 791                                        scrub_print_warning_inode, &swarn, false);
 792        }
 793
 794out:
 795        btrfs_free_path(path);
 796}
 797
 798static inline void scrub_get_recover(struct scrub_recover *recover)
 799{
 800        refcount_inc(&recover->refs);
 801}
 802
 803static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 804                                     struct scrub_recover *recover)
 805{
 806        if (refcount_dec_and_test(&recover->refs)) {
 807                btrfs_bio_counter_dec(fs_info);
 808                btrfs_put_bbio(recover->bbio);
 809                kfree(recover);
 810        }
 811}
 812
 813/*
 814 * scrub_handle_errored_block gets called when either verification of the
 815 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 816 * case, this function handles all pages in the bio, even though only one
 817 * may be bad.
 818 * The goal of this function is to repair the errored block by using the
 819 * contents of one of the mirrors.
 820 */
 821static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 822{
 823        struct scrub_ctx *sctx = sblock_to_check->sctx;
 824        struct btrfs_device *dev;
 825        struct btrfs_fs_info *fs_info;
 826        u64 logical;
 827        unsigned int failed_mirror_index;
 828        unsigned int is_metadata;
 829        unsigned int have_csum;
 830        struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 831        struct scrub_block *sblock_bad;
 832        int ret;
 833        int mirror_index;
 834        int page_num;
 835        int success;
 836        bool full_stripe_locked;
 837        unsigned int nofs_flag;
 838        static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 839                                      DEFAULT_RATELIMIT_BURST);
 840
 841        BUG_ON(sblock_to_check->page_count < 1);
 842        fs_info = sctx->fs_info;
 843        if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 844                /*
 845                 * if we find an error in a super block, we just report it.
 846                 * They will get written with the next transaction commit
 847                 * anyway
 848                 */
 849                spin_lock(&sctx->stat_lock);
 850                ++sctx->stat.super_errors;
 851                spin_unlock(&sctx->stat_lock);
 852                return 0;
 853        }
 854        logical = sblock_to_check->pagev[0]->logical;
 855        BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 856        failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 857        is_metadata = !(sblock_to_check->pagev[0]->flags &
 858                        BTRFS_EXTENT_FLAG_DATA);
 859        have_csum = sblock_to_check->pagev[0]->have_csum;
 860        dev = sblock_to_check->pagev[0]->dev;
 861
 862        /*
 863         * We must use GFP_NOFS because the scrub task might be waiting for a
 864         * worker task executing this function and in turn a transaction commit
 865         * might be waiting the scrub task to pause (which needs to wait for all
 866         * the worker tasks to complete before pausing).
 867         * We do allocations in the workers through insert_full_stripe_lock()
 868         * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 869         * this function.
 870         */
 871        nofs_flag = memalloc_nofs_save();
 872        /*
 873         * For RAID5/6, race can happen for a different device scrub thread.
 874         * For data corruption, Parity and Data threads will both try
 875         * to recovery the data.
 876         * Race can lead to doubly added csum error, or even unrecoverable
 877         * error.
 878         */
 879        ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 880        if (ret < 0) {
 881                memalloc_nofs_restore(nofs_flag);
 882                spin_lock(&sctx->stat_lock);
 883                if (ret == -ENOMEM)
 884                        sctx->stat.malloc_errors++;
 885                sctx->stat.read_errors++;
 886                sctx->stat.uncorrectable_errors++;
 887                spin_unlock(&sctx->stat_lock);
 888                return ret;
 889        }
 890
 891        /*
 892         * read all mirrors one after the other. This includes to
 893         * re-read the extent or metadata block that failed (that was
 894         * the cause that this fixup code is called) another time,
 895         * page by page this time in order to know which pages
 896         * caused I/O errors and which ones are good (for all mirrors).
 897         * It is the goal to handle the situation when more than one
 898         * mirror contains I/O errors, but the errors do not
 899         * overlap, i.e. the data can be repaired by selecting the
 900         * pages from those mirrors without I/O error on the
 901         * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 902         * would be that mirror #1 has an I/O error on the first page,
 903         * the second page is good, and mirror #2 has an I/O error on
 904         * the second page, but the first page is good.
 905         * Then the first page of the first mirror can be repaired by
 906         * taking the first page of the second mirror, and the
 907         * second page of the second mirror can be repaired by
 908         * copying the contents of the 2nd page of the 1st mirror.
 909         * One more note: if the pages of one mirror contain I/O
 910         * errors, the checksum cannot be verified. In order to get
 911         * the best data for repairing, the first attempt is to find
 912         * a mirror without I/O errors and with a validated checksum.
 913         * Only if this is not possible, the pages are picked from
 914         * mirrors with I/O errors without considering the checksum.
 915         * If the latter is the case, at the end, the checksum of the
 916         * repaired area is verified in order to correctly maintain
 917         * the statistics.
 918         */
 919
 920        sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 921                                      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 922        if (!sblocks_for_recheck) {
 923                spin_lock(&sctx->stat_lock);
 924                sctx->stat.malloc_errors++;
 925                sctx->stat.read_errors++;
 926                sctx->stat.uncorrectable_errors++;
 927                spin_unlock(&sctx->stat_lock);
 928                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 929                goto out;
 930        }
 931
 932        /* setup the context, map the logical blocks and alloc the pages */
 933        ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 934        if (ret) {
 935                spin_lock(&sctx->stat_lock);
 936                sctx->stat.read_errors++;
 937                sctx->stat.uncorrectable_errors++;
 938                spin_unlock(&sctx->stat_lock);
 939                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 940                goto out;
 941        }
 942        BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 943        sblock_bad = sblocks_for_recheck + failed_mirror_index;
 944
 945        /* build and submit the bios for the failed mirror, check checksums */
 946        scrub_recheck_block(fs_info, sblock_bad, 1);
 947
 948        if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 949            sblock_bad->no_io_error_seen) {
 950                /*
 951                 * the error disappeared after reading page by page, or
 952                 * the area was part of a huge bio and other parts of the
 953                 * bio caused I/O errors, or the block layer merged several
 954                 * read requests into one and the error is caused by a
 955                 * different bio (usually one of the two latter cases is
 956                 * the cause)
 957                 */
 958                spin_lock(&sctx->stat_lock);
 959                sctx->stat.unverified_errors++;
 960                sblock_to_check->data_corrected = 1;
 961                spin_unlock(&sctx->stat_lock);
 962
 963                if (sctx->is_dev_replace)
 964                        scrub_write_block_to_dev_replace(sblock_bad);
 965                goto out;
 966        }
 967
 968        if (!sblock_bad->no_io_error_seen) {
 969                spin_lock(&sctx->stat_lock);
 970                sctx->stat.read_errors++;
 971                spin_unlock(&sctx->stat_lock);
 972                if (__ratelimit(&rs))
 973                        scrub_print_warning("i/o error", sblock_to_check);
 974                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 975        } else if (sblock_bad->checksum_error) {
 976                spin_lock(&sctx->stat_lock);
 977                sctx->stat.csum_errors++;
 978                spin_unlock(&sctx->stat_lock);
 979                if (__ratelimit(&rs))
 980                        scrub_print_warning("checksum error", sblock_to_check);
 981                btrfs_dev_stat_inc_and_print(dev,
 982                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
 983        } else if (sblock_bad->header_error) {
 984                spin_lock(&sctx->stat_lock);
 985                sctx->stat.verify_errors++;
 986                spin_unlock(&sctx->stat_lock);
 987                if (__ratelimit(&rs))
 988                        scrub_print_warning("checksum/header error",
 989                                            sblock_to_check);
 990                if (sblock_bad->generation_error)
 991                        btrfs_dev_stat_inc_and_print(dev,
 992                                BTRFS_DEV_STAT_GENERATION_ERRS);
 993                else
 994                        btrfs_dev_stat_inc_and_print(dev,
 995                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
 996        }
 997
 998        if (sctx->readonly) {
 999                ASSERT(!sctx->is_dev_replace);
1000                goto out;
1001        }
1002
1003        /*
1004         * now build and submit the bios for the other mirrors, check
1005         * checksums.
1006         * First try to pick the mirror which is completely without I/O
1007         * errors and also does not have a checksum error.
1008         * If one is found, and if a checksum is present, the full block
1009         * that is known to contain an error is rewritten. Afterwards
1010         * the block is known to be corrected.
1011         * If a mirror is found which is completely correct, and no
1012         * checksum is present, only those pages are rewritten that had
1013         * an I/O error in the block to be repaired, since it cannot be
1014         * determined, which copy of the other pages is better (and it
1015         * could happen otherwise that a correct page would be
1016         * overwritten by a bad one).
1017         */
1018        for (mirror_index = 0; ;mirror_index++) {
1019                struct scrub_block *sblock_other;
1020
1021                if (mirror_index == failed_mirror_index)
1022                        continue;
1023
1024                /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1025                if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1026                        if (mirror_index >= BTRFS_MAX_MIRRORS)
1027                                break;
1028                        if (!sblocks_for_recheck[mirror_index].page_count)
1029                                break;
1030
1031                        sblock_other = sblocks_for_recheck + mirror_index;
1032                } else {
1033                        struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1034                        int max_allowed = r->bbio->num_stripes -
1035                                                r->bbio->num_tgtdevs;
1036
1037                        if (mirror_index >= max_allowed)
1038                                break;
1039                        if (!sblocks_for_recheck[1].page_count)
1040                                break;
1041
1042                        ASSERT(failed_mirror_index == 0);
1043                        sblock_other = sblocks_for_recheck + 1;
1044                        sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1045                }
1046
1047                /* build and submit the bios, check checksums */
1048                scrub_recheck_block(fs_info, sblock_other, 0);
1049
1050                if (!sblock_other->header_error &&
1051                    !sblock_other->checksum_error &&
1052                    sblock_other->no_io_error_seen) {
1053                        if (sctx->is_dev_replace) {
1054                                scrub_write_block_to_dev_replace(sblock_other);
1055                                goto corrected_error;
1056                        } else {
1057                                ret = scrub_repair_block_from_good_copy(
1058                                                sblock_bad, sblock_other);
1059                                if (!ret)
1060                                        goto corrected_error;
1061                        }
1062                }
1063        }
1064
1065        if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1066                goto did_not_correct_error;
1067
1068        /*
1069         * In case of I/O errors in the area that is supposed to be
1070         * repaired, continue by picking good copies of those pages.
1071         * Select the good pages from mirrors to rewrite bad pages from
1072         * the area to fix. Afterwards verify the checksum of the block
1073         * that is supposed to be repaired. This verification step is
1074         * only done for the purpose of statistic counting and for the
1075         * final scrub report, whether errors remain.
1076         * A perfect algorithm could make use of the checksum and try
1077         * all possible combinations of pages from the different mirrors
1078         * until the checksum verification succeeds. For example, when
1079         * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080         * of mirror #2 is readable but the final checksum test fails,
1081         * then the 2nd page of mirror #3 could be tried, whether now
1082         * the final checksum succeeds. But this would be a rare
1083         * exception and is therefore not implemented. At least it is
1084         * avoided that the good copy is overwritten.
1085         * A more useful improvement would be to pick the sectors
1086         * without I/O error based on sector sizes (512 bytes on legacy
1087         * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088         * mirror could be repaired by taking 512 byte of a different
1089         * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090         * area are unreadable.
1091         */
1092        success = 1;
1093        for (page_num = 0; page_num < sblock_bad->page_count;
1094             page_num++) {
1095                struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1096                struct scrub_block *sblock_other = NULL;
1097
1098                /* skip no-io-error page in scrub */
1099                if (!page_bad->io_error && !sctx->is_dev_replace)
1100                        continue;
1101
1102                if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1103                        /*
1104                         * In case of dev replace, if raid56 rebuild process
1105                         * didn't work out correct data, then copy the content
1106                         * in sblock_bad to make sure target device is identical
1107                         * to source device, instead of writing garbage data in
1108                         * sblock_for_recheck array to target device.
1109                         */
1110                        sblock_other = NULL;
1111                } else if (page_bad->io_error) {
1112                        /* try to find no-io-error page in mirrors */
1113                        for (mirror_index = 0;
1114                             mirror_index < BTRFS_MAX_MIRRORS &&
1115                             sblocks_for_recheck[mirror_index].page_count > 0;
1116                             mirror_index++) {
1117                                if (!sblocks_for_recheck[mirror_index].
1118                                    pagev[page_num]->io_error) {
1119                                        sblock_other = sblocks_for_recheck +
1120                                                       mirror_index;
1121                                        break;
1122                                }
1123                        }
1124                        if (!sblock_other)
1125                                success = 0;
1126                }
1127
1128                if (sctx->is_dev_replace) {
1129                        /*
1130                         * did not find a mirror to fetch the page
1131                         * from. scrub_write_page_to_dev_replace()
1132                         * handles this case (page->io_error), by
1133                         * filling the block with zeros before
1134                         * submitting the write request
1135                         */
1136                        if (!sblock_other)
1137                                sblock_other = sblock_bad;
1138
1139                        if (scrub_write_page_to_dev_replace(sblock_other,
1140                                                            page_num) != 0) {
1141                                atomic64_inc(
1142                                        &fs_info->dev_replace.num_write_errors);
1143                                success = 0;
1144                        }
1145                } else if (sblock_other) {
1146                        ret = scrub_repair_page_from_good_copy(sblock_bad,
1147                                                               sblock_other,
1148                                                               page_num, 0);
1149                        if (0 == ret)
1150                                page_bad->io_error = 0;
1151                        else
1152                                success = 0;
1153                }
1154        }
1155
1156        if (success && !sctx->is_dev_replace) {
1157                if (is_metadata || have_csum) {
1158                        /*
1159                         * need to verify the checksum now that all
1160                         * sectors on disk are repaired (the write
1161                         * request for data to be repaired is on its way).
1162                         * Just be lazy and use scrub_recheck_block()
1163                         * which re-reads the data before the checksum
1164                         * is verified, but most likely the data comes out
1165                         * of the page cache.
1166                         */
1167                        scrub_recheck_block(fs_info, sblock_bad, 1);
1168                        if (!sblock_bad->header_error &&
1169                            !sblock_bad->checksum_error &&
1170                            sblock_bad->no_io_error_seen)
1171                                goto corrected_error;
1172                        else
1173                                goto did_not_correct_error;
1174                } else {
1175corrected_error:
1176                        spin_lock(&sctx->stat_lock);
1177                        sctx->stat.corrected_errors++;
1178                        sblock_to_check->data_corrected = 1;
1179                        spin_unlock(&sctx->stat_lock);
1180                        btrfs_err_rl_in_rcu(fs_info,
1181                                "fixed up error at logical %llu on dev %s",
1182                                logical, rcu_str_deref(dev->name));
1183                }
1184        } else {
1185did_not_correct_error:
1186                spin_lock(&sctx->stat_lock);
1187                sctx->stat.uncorrectable_errors++;
1188                spin_unlock(&sctx->stat_lock);
1189                btrfs_err_rl_in_rcu(fs_info,
1190                        "unable to fixup (regular) error at logical %llu on dev %s",
1191                        logical, rcu_str_deref(dev->name));
1192        }
1193
1194out:
1195        if (sblocks_for_recheck) {
1196                for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1197                     mirror_index++) {
1198                        struct scrub_block *sblock = sblocks_for_recheck +
1199                                                     mirror_index;
1200                        struct scrub_recover *recover;
1201                        int page_index;
1202
1203                        for (page_index = 0; page_index < sblock->page_count;
1204                             page_index++) {
1205                                sblock->pagev[page_index]->sblock = NULL;
1206                                recover = sblock->pagev[page_index]->recover;
1207                                if (recover) {
1208                                        scrub_put_recover(fs_info, recover);
1209                                        sblock->pagev[page_index]->recover =
1210                                                                        NULL;
1211                                }
1212                                scrub_page_put(sblock->pagev[page_index]);
1213                        }
1214                }
1215                kfree(sblocks_for_recheck);
1216        }
1217
1218        ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1219        memalloc_nofs_restore(nofs_flag);
1220        if (ret < 0)
1221                return ret;
1222        return 0;
1223}
1224
1225static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1226{
1227        if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1228                return 2;
1229        else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1230                return 3;
1231        else
1232                return (int)bbio->num_stripes;
1233}
1234
1235static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1236                                                 u64 *raid_map,
1237                                                 u64 mapped_length,
1238                                                 int nstripes, int mirror,
1239                                                 int *stripe_index,
1240                                                 u64 *stripe_offset)
1241{
1242        int i;
1243
1244        if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1245                /* RAID5/6 */
1246                for (i = 0; i < nstripes; i++) {
1247                        if (raid_map[i] == RAID6_Q_STRIPE ||
1248                            raid_map[i] == RAID5_P_STRIPE)
1249                                continue;
1250
1251                        if (logical >= raid_map[i] &&
1252                            logical < raid_map[i] + mapped_length)
1253                                break;
1254                }
1255
1256                *stripe_index = i;
1257                *stripe_offset = logical - raid_map[i];
1258        } else {
1259                /* The other RAID type */
1260                *stripe_index = mirror;
1261                *stripe_offset = 0;
1262        }
1263}
1264
1265static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1266                                     struct scrub_block *sblocks_for_recheck)
1267{
1268        struct scrub_ctx *sctx = original_sblock->sctx;
1269        struct btrfs_fs_info *fs_info = sctx->fs_info;
1270        u64 length = original_sblock->page_count * PAGE_SIZE;
1271        u64 logical = original_sblock->pagev[0]->logical;
1272        u64 generation = original_sblock->pagev[0]->generation;
1273        u64 flags = original_sblock->pagev[0]->flags;
1274        u64 have_csum = original_sblock->pagev[0]->have_csum;
1275        struct scrub_recover *recover;
1276        struct btrfs_bio *bbio;
1277        u64 sublen;
1278        u64 mapped_length;
1279        u64 stripe_offset;
1280        int stripe_index;
1281        int page_index = 0;
1282        int mirror_index;
1283        int nmirrors;
1284        int ret;
1285
1286        /*
1287         * note: the two members refs and outstanding_pages
1288         * are not used (and not set) in the blocks that are used for
1289         * the recheck procedure
1290         */
1291
1292        while (length > 0) {
1293                sublen = min_t(u64, length, PAGE_SIZE);
1294                mapped_length = sublen;
1295                bbio = NULL;
1296
1297                /*
1298                 * with a length of PAGE_SIZE, each returned stripe
1299                 * represents one mirror
1300                 */
1301                btrfs_bio_counter_inc_blocked(fs_info);
1302                ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1303                                logical, &mapped_length, &bbio);
1304                if (ret || !bbio || mapped_length < sublen) {
1305                        btrfs_put_bbio(bbio);
1306                        btrfs_bio_counter_dec(fs_info);
1307                        return -EIO;
1308                }
1309
1310                recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1311                if (!recover) {
1312                        btrfs_put_bbio(bbio);
1313                        btrfs_bio_counter_dec(fs_info);
1314                        return -ENOMEM;
1315                }
1316
1317                refcount_set(&recover->refs, 1);
1318                recover->bbio = bbio;
1319                recover->map_length = mapped_length;
1320
1321                BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1322
1323                nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1324
1325                for (mirror_index = 0; mirror_index < nmirrors;
1326                     mirror_index++) {
1327                        struct scrub_block *sblock;
1328                        struct scrub_page *page;
1329
1330                        sblock = sblocks_for_recheck + mirror_index;
1331                        sblock->sctx = sctx;
1332
1333                        page = kzalloc(sizeof(*page), GFP_NOFS);
1334                        if (!page) {
1335leave_nomem:
1336                                spin_lock(&sctx->stat_lock);
1337                                sctx->stat.malloc_errors++;
1338                                spin_unlock(&sctx->stat_lock);
1339                                scrub_put_recover(fs_info, recover);
1340                                return -ENOMEM;
1341                        }
1342                        scrub_page_get(page);
1343                        sblock->pagev[page_index] = page;
1344                        page->sblock = sblock;
1345                        page->flags = flags;
1346                        page->generation = generation;
1347                        page->logical = logical;
1348                        page->have_csum = have_csum;
1349                        if (have_csum)
1350                                memcpy(page->csum,
1351                                       original_sblock->pagev[0]->csum,
1352                                       sctx->csum_size);
1353
1354                        scrub_stripe_index_and_offset(logical,
1355                                                      bbio->map_type,
1356                                                      bbio->raid_map,
1357                                                      mapped_length,
1358                                                      bbio->num_stripes -
1359                                                      bbio->num_tgtdevs,
1360                                                      mirror_index,
1361                                                      &stripe_index,
1362                                                      &stripe_offset);
1363                        page->physical = bbio->stripes[stripe_index].physical +
1364                                         stripe_offset;
1365                        page->dev = bbio->stripes[stripe_index].dev;
1366
1367                        BUG_ON(page_index >= original_sblock->page_count);
1368                        page->physical_for_dev_replace =
1369                                original_sblock->pagev[page_index]->
1370                                physical_for_dev_replace;
1371                        /* for missing devices, dev->bdev is NULL */
1372                        page->mirror_num = mirror_index + 1;
1373                        sblock->page_count++;
1374                        page->page = alloc_page(GFP_NOFS);
1375                        if (!page->page)
1376                                goto leave_nomem;
1377
1378                        scrub_get_recover(recover);
1379                        page->recover = recover;
1380                }
1381                scrub_put_recover(fs_info, recover);
1382                length -= sublen;
1383                logical += sublen;
1384                page_index++;
1385        }
1386
1387        return 0;
1388}
1389
1390static void scrub_bio_wait_endio(struct bio *bio)
1391{
1392        complete(bio->bi_private);
1393}
1394
1395static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1396                                        struct bio *bio,
1397                                        struct scrub_page *page)
1398{
1399        DECLARE_COMPLETION_ONSTACK(done);
1400        int ret;
1401        int mirror_num;
1402
1403        bio->bi_iter.bi_sector = page->logical >> 9;
1404        bio->bi_private = &done;
1405        bio->bi_end_io = scrub_bio_wait_endio;
1406
1407        mirror_num = page->sblock->pagev[0]->mirror_num;
1408        ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1409                                    page->recover->map_length,
1410                                    mirror_num, 0);
1411        if (ret)
1412                return ret;
1413
1414        wait_for_completion_io(&done);
1415        return blk_status_to_errno(bio->bi_status);
1416}
1417
1418static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1419                                          struct scrub_block *sblock)
1420{
1421        struct scrub_page *first_page = sblock->pagev[0];
1422        struct bio *bio;
1423        int page_num;
1424
1425        /* All pages in sblock belong to the same stripe on the same device. */
1426        ASSERT(first_page->dev);
1427        if (!first_page->dev->bdev)
1428                goto out;
1429
1430        bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1431        bio_set_dev(bio, first_page->dev->bdev);
1432
1433        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1434                struct scrub_page *page = sblock->pagev[page_num];
1435
1436                WARN_ON(!page->page);
1437                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1438        }
1439
1440        if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1441                bio_put(bio);
1442                goto out;
1443        }
1444
1445        bio_put(bio);
1446
1447        scrub_recheck_block_checksum(sblock);
1448
1449        return;
1450out:
1451        for (page_num = 0; page_num < sblock->page_count; page_num++)
1452                sblock->pagev[page_num]->io_error = 1;
1453
1454        sblock->no_io_error_seen = 0;
1455}
1456
1457/*
1458 * this function will check the on disk data for checksum errors, header
1459 * errors and read I/O errors. If any I/O errors happen, the exact pages
1460 * which are errored are marked as being bad. The goal is to enable scrub
1461 * to take those pages that are not errored from all the mirrors so that
1462 * the pages that are errored in the just handled mirror can be repaired.
1463 */
1464static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1465                                struct scrub_block *sblock,
1466                                int retry_failed_mirror)
1467{
1468        int page_num;
1469
1470        sblock->no_io_error_seen = 1;
1471
1472        /* short cut for raid56 */
1473        if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1474                return scrub_recheck_block_on_raid56(fs_info, sblock);
1475
1476        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1477                struct bio *bio;
1478                struct scrub_page *page = sblock->pagev[page_num];
1479
1480                if (page->dev->bdev == NULL) {
1481                        page->io_error = 1;
1482                        sblock->no_io_error_seen = 0;
1483                        continue;
1484                }
1485
1486                WARN_ON(!page->page);
1487                bio = btrfs_io_bio_alloc(1);
1488                bio_set_dev(bio, page->dev->bdev);
1489
1490                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1491                bio->bi_iter.bi_sector = page->physical >> 9;
1492                bio->bi_opf = REQ_OP_READ;
1493
1494                if (btrfsic_submit_bio_wait(bio)) {
1495                        page->io_error = 1;
1496                        sblock->no_io_error_seen = 0;
1497                }
1498
1499                bio_put(bio);
1500        }
1501
1502        if (sblock->no_io_error_seen)
1503                scrub_recheck_block_checksum(sblock);
1504}
1505
1506static inline int scrub_check_fsid(u8 fsid[],
1507                                   struct scrub_page *spage)
1508{
1509        struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1510        int ret;
1511
1512        ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1513        return !ret;
1514}
1515
1516static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1517{
1518        sblock->header_error = 0;
1519        sblock->checksum_error = 0;
1520        sblock->generation_error = 0;
1521
1522        if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1523                scrub_checksum_data(sblock);
1524        else
1525                scrub_checksum_tree_block(sblock);
1526}
1527
1528static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1529                                             struct scrub_block *sblock_good)
1530{
1531        int page_num;
1532        int ret = 0;
1533
1534        for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1535                int ret_sub;
1536
1537                ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1538                                                           sblock_good,
1539                                                           page_num, 1);
1540                if (ret_sub)
1541                        ret = ret_sub;
1542        }
1543
1544        return ret;
1545}
1546
1547static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1548                                            struct scrub_block *sblock_good,
1549                                            int page_num, int force_write)
1550{
1551        struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1552        struct scrub_page *page_good = sblock_good->pagev[page_num];
1553        struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1554
1555        BUG_ON(page_bad->page == NULL);
1556        BUG_ON(page_good->page == NULL);
1557        if (force_write || sblock_bad->header_error ||
1558            sblock_bad->checksum_error || page_bad->io_error) {
1559                struct bio *bio;
1560                int ret;
1561
1562                if (!page_bad->dev->bdev) {
1563                        btrfs_warn_rl(fs_info,
1564                                "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1565                        return -EIO;
1566                }
1567
1568                bio = btrfs_io_bio_alloc(1);
1569                bio_set_dev(bio, page_bad->dev->bdev);
1570                bio->bi_iter.bi_sector = page_bad->physical >> 9;
1571                bio->bi_opf = REQ_OP_WRITE;
1572
1573                ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1574                if (PAGE_SIZE != ret) {
1575                        bio_put(bio);
1576                        return -EIO;
1577                }
1578
1579                if (btrfsic_submit_bio_wait(bio)) {
1580                        btrfs_dev_stat_inc_and_print(page_bad->dev,
1581                                BTRFS_DEV_STAT_WRITE_ERRS);
1582                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1583                        bio_put(bio);
1584                        return -EIO;
1585                }
1586                bio_put(bio);
1587        }
1588
1589        return 0;
1590}
1591
1592static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1593{
1594        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1595        int page_num;
1596
1597        /*
1598         * This block is used for the check of the parity on the source device,
1599         * so the data needn't be written into the destination device.
1600         */
1601        if (sblock->sparity)
1602                return;
1603
1604        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1605                int ret;
1606
1607                ret = scrub_write_page_to_dev_replace(sblock, page_num);
1608                if (ret)
1609                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1610        }
1611}
1612
1613static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1614                                           int page_num)
1615{
1616        struct scrub_page *spage = sblock->pagev[page_num];
1617
1618        BUG_ON(spage->page == NULL);
1619        if (spage->io_error)
1620                clear_page(page_address(spage->page));
1621
1622        return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1623}
1624
1625static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1626                                    struct scrub_page *spage)
1627{
1628        struct scrub_bio *sbio;
1629        int ret;
1630
1631        mutex_lock(&sctx->wr_lock);
1632again:
1633        if (!sctx->wr_curr_bio) {
1634                sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1635                                              GFP_KERNEL);
1636                if (!sctx->wr_curr_bio) {
1637                        mutex_unlock(&sctx->wr_lock);
1638                        return -ENOMEM;
1639                }
1640                sctx->wr_curr_bio->sctx = sctx;
1641                sctx->wr_curr_bio->page_count = 0;
1642        }
1643        sbio = sctx->wr_curr_bio;
1644        if (sbio->page_count == 0) {
1645                struct bio *bio;
1646
1647                sbio->physical = spage->physical_for_dev_replace;
1648                sbio->logical = spage->logical;
1649                sbio->dev = sctx->wr_tgtdev;
1650                bio = sbio->bio;
1651                if (!bio) {
1652                        bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1653                        sbio->bio = bio;
1654                }
1655
1656                bio->bi_private = sbio;
1657                bio->bi_end_io = scrub_wr_bio_end_io;
1658                bio_set_dev(bio, sbio->dev->bdev);
1659                bio->bi_iter.bi_sector = sbio->physical >> 9;
1660                bio->bi_opf = REQ_OP_WRITE;
1661                sbio->status = 0;
1662        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1663                   spage->physical_for_dev_replace ||
1664                   sbio->logical + sbio->page_count * PAGE_SIZE !=
1665                   spage->logical) {
1666                scrub_wr_submit(sctx);
1667                goto again;
1668        }
1669
1670        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1671        if (ret != PAGE_SIZE) {
1672                if (sbio->page_count < 1) {
1673                        bio_put(sbio->bio);
1674                        sbio->bio = NULL;
1675                        mutex_unlock(&sctx->wr_lock);
1676                        return -EIO;
1677                }
1678                scrub_wr_submit(sctx);
1679                goto again;
1680        }
1681
1682        sbio->pagev[sbio->page_count] = spage;
1683        scrub_page_get(spage);
1684        sbio->page_count++;
1685        if (sbio->page_count == sctx->pages_per_wr_bio)
1686                scrub_wr_submit(sctx);
1687        mutex_unlock(&sctx->wr_lock);
1688
1689        return 0;
1690}
1691
1692static void scrub_wr_submit(struct scrub_ctx *sctx)
1693{
1694        struct scrub_bio *sbio;
1695
1696        if (!sctx->wr_curr_bio)
1697                return;
1698
1699        sbio = sctx->wr_curr_bio;
1700        sctx->wr_curr_bio = NULL;
1701        WARN_ON(!sbio->bio->bi_disk);
1702        scrub_pending_bio_inc(sctx);
1703        /* process all writes in a single worker thread. Then the block layer
1704         * orders the requests before sending them to the driver which
1705         * doubled the write performance on spinning disks when measured
1706         * with Linux 3.5 */
1707        btrfsic_submit_bio(sbio->bio);
1708}
1709
1710static void scrub_wr_bio_end_io(struct bio *bio)
1711{
1712        struct scrub_bio *sbio = bio->bi_private;
1713        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1714
1715        sbio->status = bio->bi_status;
1716        sbio->bio = bio;
1717
1718        btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1719        btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1720}
1721
1722static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1723{
1724        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1725        struct scrub_ctx *sctx = sbio->sctx;
1726        int i;
1727
1728        WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1729        if (sbio->status) {
1730                struct btrfs_dev_replace *dev_replace =
1731                        &sbio->sctx->fs_info->dev_replace;
1732
1733                for (i = 0; i < sbio->page_count; i++) {
1734                        struct scrub_page *spage = sbio->pagev[i];
1735
1736                        spage->io_error = 1;
1737                        atomic64_inc(&dev_replace->num_write_errors);
1738                }
1739        }
1740
1741        for (i = 0; i < sbio->page_count; i++)
1742                scrub_page_put(sbio->pagev[i]);
1743
1744        bio_put(sbio->bio);
1745        kfree(sbio);
1746        scrub_pending_bio_dec(sctx);
1747}
1748
1749static int scrub_checksum(struct scrub_block *sblock)
1750{
1751        u64 flags;
1752        int ret;
1753
1754        /*
1755         * No need to initialize these stats currently,
1756         * because this function only use return value
1757         * instead of these stats value.
1758         *
1759         * Todo:
1760         * always use stats
1761         */
1762        sblock->header_error = 0;
1763        sblock->generation_error = 0;
1764        sblock->checksum_error = 0;
1765
1766        WARN_ON(sblock->page_count < 1);
1767        flags = sblock->pagev[0]->flags;
1768        ret = 0;
1769        if (flags & BTRFS_EXTENT_FLAG_DATA)
1770                ret = scrub_checksum_data(sblock);
1771        else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1772                ret = scrub_checksum_tree_block(sblock);
1773        else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1774                (void)scrub_checksum_super(sblock);
1775        else
1776                WARN_ON(1);
1777        if (ret)
1778                scrub_handle_errored_block(sblock);
1779
1780        return ret;
1781}
1782
1783static int scrub_checksum_data(struct scrub_block *sblock)
1784{
1785        struct scrub_ctx *sctx = sblock->sctx;
1786        struct btrfs_fs_info *fs_info = sctx->fs_info;
1787        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1788        u8 csum[BTRFS_CSUM_SIZE];
1789        struct scrub_page *spage;
1790        char *kaddr;
1791
1792        BUG_ON(sblock->page_count < 1);
1793        spage = sblock->pagev[0];
1794        if (!spage->have_csum)
1795                return 0;
1796
1797        kaddr = page_address(spage->page);
1798
1799        shash->tfm = fs_info->csum_shash;
1800        crypto_shash_init(shash);
1801        crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
1802
1803        if (memcmp(csum, spage->csum, sctx->csum_size))
1804                sblock->checksum_error = 1;
1805
1806        return sblock->checksum_error;
1807}
1808
1809static int scrub_checksum_tree_block(struct scrub_block *sblock)
1810{
1811        struct scrub_ctx *sctx = sblock->sctx;
1812        struct btrfs_header *h;
1813        struct btrfs_fs_info *fs_info = sctx->fs_info;
1814        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1815        u8 calculated_csum[BTRFS_CSUM_SIZE];
1816        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1817        const int num_pages = sctx->fs_info->nodesize >> PAGE_SHIFT;
1818        int i;
1819        struct scrub_page *spage;
1820        char *kaddr;
1821
1822        BUG_ON(sblock->page_count < 1);
1823        spage = sblock->pagev[0];
1824        kaddr = page_address(spage->page);
1825        h = (struct btrfs_header *)kaddr;
1826        memcpy(on_disk_csum, h->csum, sctx->csum_size);
1827
1828        /*
1829         * we don't use the getter functions here, as we
1830         * a) don't have an extent buffer and
1831         * b) the page is already kmapped
1832         */
1833        if (spage->logical != btrfs_stack_header_bytenr(h))
1834                sblock->header_error = 1;
1835
1836        if (spage->generation != btrfs_stack_header_generation(h)) {
1837                sblock->header_error = 1;
1838                sblock->generation_error = 1;
1839        }
1840
1841        if (!scrub_check_fsid(h->fsid, spage))
1842                sblock->header_error = 1;
1843
1844        if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1845                   BTRFS_UUID_SIZE))
1846                sblock->header_error = 1;
1847
1848        shash->tfm = fs_info->csum_shash;
1849        crypto_shash_init(shash);
1850        crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1851                            PAGE_SIZE - BTRFS_CSUM_SIZE);
1852
1853        for (i = 1; i < num_pages; i++) {
1854                kaddr = page_address(sblock->pagev[i]->page);
1855                crypto_shash_update(shash, kaddr, PAGE_SIZE);
1856        }
1857
1858        crypto_shash_final(shash, calculated_csum);
1859        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1860                sblock->checksum_error = 1;
1861
1862        return sblock->header_error || sblock->checksum_error;
1863}
1864
1865static int scrub_checksum_super(struct scrub_block *sblock)
1866{
1867        struct btrfs_super_block *s;
1868        struct scrub_ctx *sctx = sblock->sctx;
1869        struct btrfs_fs_info *fs_info = sctx->fs_info;
1870        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1871        u8 calculated_csum[BTRFS_CSUM_SIZE];
1872        struct scrub_page *spage;
1873        char *kaddr;
1874        int fail_gen = 0;
1875        int fail_cor = 0;
1876
1877        BUG_ON(sblock->page_count < 1);
1878        spage = sblock->pagev[0];
1879        kaddr = page_address(spage->page);
1880        s = (struct btrfs_super_block *)kaddr;
1881
1882        if (spage->logical != btrfs_super_bytenr(s))
1883                ++fail_cor;
1884
1885        if (spage->generation != btrfs_super_generation(s))
1886                ++fail_gen;
1887
1888        if (!scrub_check_fsid(s->fsid, spage))
1889                ++fail_cor;
1890
1891        shash->tfm = fs_info->csum_shash;
1892        crypto_shash_init(shash);
1893        crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1894                        BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1895
1896        if (memcmp(calculated_csum, s->csum, sctx->csum_size))
1897                ++fail_cor;
1898
1899        if (fail_cor + fail_gen) {
1900                /*
1901                 * if we find an error in a super block, we just report it.
1902                 * They will get written with the next transaction commit
1903                 * anyway
1904                 */
1905                spin_lock(&sctx->stat_lock);
1906                ++sctx->stat.super_errors;
1907                spin_unlock(&sctx->stat_lock);
1908                if (fail_cor)
1909                        btrfs_dev_stat_inc_and_print(spage->dev,
1910                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
1911                else
1912                        btrfs_dev_stat_inc_and_print(spage->dev,
1913                                BTRFS_DEV_STAT_GENERATION_ERRS);
1914        }
1915
1916        return fail_cor + fail_gen;
1917}
1918
1919static void scrub_block_get(struct scrub_block *sblock)
1920{
1921        refcount_inc(&sblock->refs);
1922}
1923
1924static void scrub_block_put(struct scrub_block *sblock)
1925{
1926        if (refcount_dec_and_test(&sblock->refs)) {
1927                int i;
1928
1929                if (sblock->sparity)
1930                        scrub_parity_put(sblock->sparity);
1931
1932                for (i = 0; i < sblock->page_count; i++)
1933                        scrub_page_put(sblock->pagev[i]);
1934                kfree(sblock);
1935        }
1936}
1937
1938static void scrub_page_get(struct scrub_page *spage)
1939{
1940        atomic_inc(&spage->refs);
1941}
1942
1943static void scrub_page_put(struct scrub_page *spage)
1944{
1945        if (atomic_dec_and_test(&spage->refs)) {
1946                if (spage->page)
1947                        __free_page(spage->page);
1948                kfree(spage);
1949        }
1950}
1951
1952static void scrub_submit(struct scrub_ctx *sctx)
1953{
1954        struct scrub_bio *sbio;
1955
1956        if (sctx->curr == -1)
1957                return;
1958
1959        sbio = sctx->bios[sctx->curr];
1960        sctx->curr = -1;
1961        scrub_pending_bio_inc(sctx);
1962        btrfsic_submit_bio(sbio->bio);
1963}
1964
1965static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1966                                    struct scrub_page *spage)
1967{
1968        struct scrub_block *sblock = spage->sblock;
1969        struct scrub_bio *sbio;
1970        int ret;
1971
1972again:
1973        /*
1974         * grab a fresh bio or wait for one to become available
1975         */
1976        while (sctx->curr == -1) {
1977                spin_lock(&sctx->list_lock);
1978                sctx->curr = sctx->first_free;
1979                if (sctx->curr != -1) {
1980                        sctx->first_free = sctx->bios[sctx->curr]->next_free;
1981                        sctx->bios[sctx->curr]->next_free = -1;
1982                        sctx->bios[sctx->curr]->page_count = 0;
1983                        spin_unlock(&sctx->list_lock);
1984                } else {
1985                        spin_unlock(&sctx->list_lock);
1986                        wait_event(sctx->list_wait, sctx->first_free != -1);
1987                }
1988        }
1989        sbio = sctx->bios[sctx->curr];
1990        if (sbio->page_count == 0) {
1991                struct bio *bio;
1992
1993                sbio->physical = spage->physical;
1994                sbio->logical = spage->logical;
1995                sbio->dev = spage->dev;
1996                bio = sbio->bio;
1997                if (!bio) {
1998                        bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
1999                        sbio->bio = bio;
2000                }
2001
2002                bio->bi_private = sbio;
2003                bio->bi_end_io = scrub_bio_end_io;
2004                bio_set_dev(bio, sbio->dev->bdev);
2005                bio->bi_iter.bi_sector = sbio->physical >> 9;
2006                bio->bi_opf = REQ_OP_READ;
2007                sbio->status = 0;
2008        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2009                   spage->physical ||
2010                   sbio->logical + sbio->page_count * PAGE_SIZE !=
2011                   spage->logical ||
2012                   sbio->dev != spage->dev) {
2013                scrub_submit(sctx);
2014                goto again;
2015        }
2016
2017        sbio->pagev[sbio->page_count] = spage;
2018        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2019        if (ret != PAGE_SIZE) {
2020                if (sbio->page_count < 1) {
2021                        bio_put(sbio->bio);
2022                        sbio->bio = NULL;
2023                        return -EIO;
2024                }
2025                scrub_submit(sctx);
2026                goto again;
2027        }
2028
2029        scrub_block_get(sblock); /* one for the page added to the bio */
2030        atomic_inc(&sblock->outstanding_pages);
2031        sbio->page_count++;
2032        if (sbio->page_count == sctx->pages_per_rd_bio)
2033                scrub_submit(sctx);
2034
2035        return 0;
2036}
2037
2038static void scrub_missing_raid56_end_io(struct bio *bio)
2039{
2040        struct scrub_block *sblock = bio->bi_private;
2041        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2042
2043        if (bio->bi_status)
2044                sblock->no_io_error_seen = 0;
2045
2046        bio_put(bio);
2047
2048        btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2049}
2050
2051static void scrub_missing_raid56_worker(struct btrfs_work *work)
2052{
2053        struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2054        struct scrub_ctx *sctx = sblock->sctx;
2055        struct btrfs_fs_info *fs_info = sctx->fs_info;
2056        u64 logical;
2057        struct btrfs_device *dev;
2058
2059        logical = sblock->pagev[0]->logical;
2060        dev = sblock->pagev[0]->dev;
2061
2062        if (sblock->no_io_error_seen)
2063                scrub_recheck_block_checksum(sblock);
2064
2065        if (!sblock->no_io_error_seen) {
2066                spin_lock(&sctx->stat_lock);
2067                sctx->stat.read_errors++;
2068                spin_unlock(&sctx->stat_lock);
2069                btrfs_err_rl_in_rcu(fs_info,
2070                        "IO error rebuilding logical %llu for dev %s",
2071                        logical, rcu_str_deref(dev->name));
2072        } else if (sblock->header_error || sblock->checksum_error) {
2073                spin_lock(&sctx->stat_lock);
2074                sctx->stat.uncorrectable_errors++;
2075                spin_unlock(&sctx->stat_lock);
2076                btrfs_err_rl_in_rcu(fs_info,
2077                        "failed to rebuild valid logical %llu for dev %s",
2078                        logical, rcu_str_deref(dev->name));
2079        } else {
2080                scrub_write_block_to_dev_replace(sblock);
2081        }
2082
2083        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2084                mutex_lock(&sctx->wr_lock);
2085                scrub_wr_submit(sctx);
2086                mutex_unlock(&sctx->wr_lock);
2087        }
2088
2089        scrub_block_put(sblock);
2090        scrub_pending_bio_dec(sctx);
2091}
2092
2093static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2094{
2095        struct scrub_ctx *sctx = sblock->sctx;
2096        struct btrfs_fs_info *fs_info = sctx->fs_info;
2097        u64 length = sblock->page_count * PAGE_SIZE;
2098        u64 logical = sblock->pagev[0]->logical;
2099        struct btrfs_bio *bbio = NULL;
2100        struct bio *bio;
2101        struct btrfs_raid_bio *rbio;
2102        int ret;
2103        int i;
2104
2105        btrfs_bio_counter_inc_blocked(fs_info);
2106        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2107                        &length, &bbio);
2108        if (ret || !bbio || !bbio->raid_map)
2109                goto bbio_out;
2110
2111        if (WARN_ON(!sctx->is_dev_replace ||
2112                    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2113                /*
2114                 * We shouldn't be scrubbing a missing device. Even for dev
2115                 * replace, we should only get here for RAID 5/6. We either
2116                 * managed to mount something with no mirrors remaining or
2117                 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2118                 */
2119                goto bbio_out;
2120        }
2121
2122        bio = btrfs_io_bio_alloc(0);
2123        bio->bi_iter.bi_sector = logical >> 9;
2124        bio->bi_private = sblock;
2125        bio->bi_end_io = scrub_missing_raid56_end_io;
2126
2127        rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2128        if (!rbio)
2129                goto rbio_out;
2130
2131        for (i = 0; i < sblock->page_count; i++) {
2132                struct scrub_page *spage = sblock->pagev[i];
2133
2134                raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2135        }
2136
2137        btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2138        scrub_block_get(sblock);
2139        scrub_pending_bio_inc(sctx);
2140        raid56_submit_missing_rbio(rbio);
2141        return;
2142
2143rbio_out:
2144        bio_put(bio);
2145bbio_out:
2146        btrfs_bio_counter_dec(fs_info);
2147        btrfs_put_bbio(bbio);
2148        spin_lock(&sctx->stat_lock);
2149        sctx->stat.malloc_errors++;
2150        spin_unlock(&sctx->stat_lock);
2151}
2152
2153static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2154                       u64 physical, struct btrfs_device *dev, u64 flags,
2155                       u64 gen, int mirror_num, u8 *csum, int force,
2156                       u64 physical_for_dev_replace)
2157{
2158        struct scrub_block *sblock;
2159        int index;
2160
2161        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2162        if (!sblock) {
2163                spin_lock(&sctx->stat_lock);
2164                sctx->stat.malloc_errors++;
2165                spin_unlock(&sctx->stat_lock);
2166                return -ENOMEM;
2167        }
2168
2169        /* one ref inside this function, plus one for each page added to
2170         * a bio later on */
2171        refcount_set(&sblock->refs, 1);
2172        sblock->sctx = sctx;
2173        sblock->no_io_error_seen = 1;
2174
2175        for (index = 0; len > 0; index++) {
2176                struct scrub_page *spage;
2177                u64 l = min_t(u64, len, PAGE_SIZE);
2178
2179                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2180                if (!spage) {
2181leave_nomem:
2182                        spin_lock(&sctx->stat_lock);
2183                        sctx->stat.malloc_errors++;
2184                        spin_unlock(&sctx->stat_lock);
2185                        scrub_block_put(sblock);
2186                        return -ENOMEM;
2187                }
2188                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2189                scrub_page_get(spage);
2190                sblock->pagev[index] = spage;
2191                spage->sblock = sblock;
2192                spage->dev = dev;
2193                spage->flags = flags;
2194                spage->generation = gen;
2195                spage->logical = logical;
2196                spage->physical = physical;
2197                spage->physical_for_dev_replace = physical_for_dev_replace;
2198                spage->mirror_num = mirror_num;
2199                if (csum) {
2200                        spage->have_csum = 1;
2201                        memcpy(spage->csum, csum, sctx->csum_size);
2202                } else {
2203                        spage->have_csum = 0;
2204                }
2205                sblock->page_count++;
2206                spage->page = alloc_page(GFP_KERNEL);
2207                if (!spage->page)
2208                        goto leave_nomem;
2209                len -= l;
2210                logical += l;
2211                physical += l;
2212                physical_for_dev_replace += l;
2213        }
2214
2215        WARN_ON(sblock->page_count == 0);
2216        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2217                /*
2218                 * This case should only be hit for RAID 5/6 device replace. See
2219                 * the comment in scrub_missing_raid56_pages() for details.
2220                 */
2221                scrub_missing_raid56_pages(sblock);
2222        } else {
2223                for (index = 0; index < sblock->page_count; index++) {
2224                        struct scrub_page *spage = sblock->pagev[index];
2225                        int ret;
2226
2227                        ret = scrub_add_page_to_rd_bio(sctx, spage);
2228                        if (ret) {
2229                                scrub_block_put(sblock);
2230                                return ret;
2231                        }
2232                }
2233
2234                if (force)
2235                        scrub_submit(sctx);
2236        }
2237
2238        /* last one frees, either here or in bio completion for last page */
2239        scrub_block_put(sblock);
2240        return 0;
2241}
2242
2243static void scrub_bio_end_io(struct bio *bio)
2244{
2245        struct scrub_bio *sbio = bio->bi_private;
2246        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2247
2248        sbio->status = bio->bi_status;
2249        sbio->bio = bio;
2250
2251        btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2252}
2253
2254static void scrub_bio_end_io_worker(struct btrfs_work *work)
2255{
2256        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2257        struct scrub_ctx *sctx = sbio->sctx;
2258        int i;
2259
2260        BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2261        if (sbio->status) {
2262                for (i = 0; i < sbio->page_count; i++) {
2263                        struct scrub_page *spage = sbio->pagev[i];
2264
2265                        spage->io_error = 1;
2266                        spage->sblock->no_io_error_seen = 0;
2267                }
2268        }
2269
2270        /* now complete the scrub_block items that have all pages completed */
2271        for (i = 0; i < sbio->page_count; i++) {
2272                struct scrub_page *spage = sbio->pagev[i];
2273                struct scrub_block *sblock = spage->sblock;
2274
2275                if (atomic_dec_and_test(&sblock->outstanding_pages))
2276                        scrub_block_complete(sblock);
2277                scrub_block_put(sblock);
2278        }
2279
2280        bio_put(sbio->bio);
2281        sbio->bio = NULL;
2282        spin_lock(&sctx->list_lock);
2283        sbio->next_free = sctx->first_free;
2284        sctx->first_free = sbio->index;
2285        spin_unlock(&sctx->list_lock);
2286
2287        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2288                mutex_lock(&sctx->wr_lock);
2289                scrub_wr_submit(sctx);
2290                mutex_unlock(&sctx->wr_lock);
2291        }
2292
2293        scrub_pending_bio_dec(sctx);
2294}
2295
2296static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2297                                       unsigned long *bitmap,
2298                                       u64 start, u64 len)
2299{
2300        u64 offset;
2301        u64 nsectors64;
2302        u32 nsectors;
2303        int sectorsize = sparity->sctx->fs_info->sectorsize;
2304
2305        if (len >= sparity->stripe_len) {
2306                bitmap_set(bitmap, 0, sparity->nsectors);
2307                return;
2308        }
2309
2310        start -= sparity->logic_start;
2311        start = div64_u64_rem(start, sparity->stripe_len, &offset);
2312        offset = div_u64(offset, sectorsize);
2313        nsectors64 = div_u64(len, sectorsize);
2314
2315        ASSERT(nsectors64 < UINT_MAX);
2316        nsectors = (u32)nsectors64;
2317
2318        if (offset + nsectors <= sparity->nsectors) {
2319                bitmap_set(bitmap, offset, nsectors);
2320                return;
2321        }
2322
2323        bitmap_set(bitmap, offset, sparity->nsectors - offset);
2324        bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2325}
2326
2327static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2328                                                   u64 start, u64 len)
2329{
2330        __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2331}
2332
2333static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2334                                                  u64 start, u64 len)
2335{
2336        __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2337}
2338
2339static void scrub_block_complete(struct scrub_block *sblock)
2340{
2341        int corrupted = 0;
2342
2343        if (!sblock->no_io_error_seen) {
2344                corrupted = 1;
2345                scrub_handle_errored_block(sblock);
2346        } else {
2347                /*
2348                 * if has checksum error, write via repair mechanism in
2349                 * dev replace case, otherwise write here in dev replace
2350                 * case.
2351                 */
2352                corrupted = scrub_checksum(sblock);
2353                if (!corrupted && sblock->sctx->is_dev_replace)
2354                        scrub_write_block_to_dev_replace(sblock);
2355        }
2356
2357        if (sblock->sparity && corrupted && !sblock->data_corrected) {
2358                u64 start = sblock->pagev[0]->logical;
2359                u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2360                          PAGE_SIZE;
2361
2362                scrub_parity_mark_sectors_error(sblock->sparity,
2363                                                start, end - start);
2364        }
2365}
2366
2367static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2368{
2369        struct btrfs_ordered_sum *sum = NULL;
2370        unsigned long index;
2371        unsigned long num_sectors;
2372
2373        while (!list_empty(&sctx->csum_list)) {
2374                sum = list_first_entry(&sctx->csum_list,
2375                                       struct btrfs_ordered_sum, list);
2376                if (sum->bytenr > logical)
2377                        return 0;
2378                if (sum->bytenr + sum->len > logical)
2379                        break;
2380
2381                ++sctx->stat.csum_discards;
2382                list_del(&sum->list);
2383                kfree(sum);
2384                sum = NULL;
2385        }
2386        if (!sum)
2387                return 0;
2388
2389        index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2390        ASSERT(index < UINT_MAX);
2391
2392        num_sectors = sum->len / sctx->fs_info->sectorsize;
2393        memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2394        if (index == num_sectors - 1) {
2395                list_del(&sum->list);
2396                kfree(sum);
2397        }
2398        return 1;
2399}
2400
2401/* scrub extent tries to collect up to 64 kB for each bio */
2402static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2403                        u64 logical, u64 len,
2404                        u64 physical, struct btrfs_device *dev, u64 flags,
2405                        u64 gen, int mirror_num, u64 physical_for_dev_replace)
2406{
2407        int ret;
2408        u8 csum[BTRFS_CSUM_SIZE];
2409        u32 blocksize;
2410
2411        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2412                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2413                        blocksize = map->stripe_len;
2414                else
2415                        blocksize = sctx->fs_info->sectorsize;
2416                spin_lock(&sctx->stat_lock);
2417                sctx->stat.data_extents_scrubbed++;
2418                sctx->stat.data_bytes_scrubbed += len;
2419                spin_unlock(&sctx->stat_lock);
2420        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2421                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2422                        blocksize = map->stripe_len;
2423                else
2424                        blocksize = sctx->fs_info->nodesize;
2425                spin_lock(&sctx->stat_lock);
2426                sctx->stat.tree_extents_scrubbed++;
2427                sctx->stat.tree_bytes_scrubbed += len;
2428                spin_unlock(&sctx->stat_lock);
2429        } else {
2430                blocksize = sctx->fs_info->sectorsize;
2431                WARN_ON(1);
2432        }
2433
2434        while (len) {
2435                u64 l = min_t(u64, len, blocksize);
2436                int have_csum = 0;
2437
2438                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2439                        /* push csums to sbio */
2440                        have_csum = scrub_find_csum(sctx, logical, csum);
2441                        if (have_csum == 0)
2442                                ++sctx->stat.no_csum;
2443                }
2444                ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2445                                  mirror_num, have_csum ? csum : NULL, 0,
2446                                  physical_for_dev_replace);
2447                if (ret)
2448                        return ret;
2449                len -= l;
2450                logical += l;
2451                physical += l;
2452                physical_for_dev_replace += l;
2453        }
2454        return 0;
2455}
2456
2457static int scrub_pages_for_parity(struct scrub_parity *sparity,
2458                                  u64 logical, u64 len,
2459                                  u64 physical, struct btrfs_device *dev,
2460                                  u64 flags, u64 gen, int mirror_num, u8 *csum)
2461{
2462        struct scrub_ctx *sctx = sparity->sctx;
2463        struct scrub_block *sblock;
2464        int index;
2465
2466        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2467        if (!sblock) {
2468                spin_lock(&sctx->stat_lock);
2469                sctx->stat.malloc_errors++;
2470                spin_unlock(&sctx->stat_lock);
2471                return -ENOMEM;
2472        }
2473
2474        /* one ref inside this function, plus one for each page added to
2475         * a bio later on */
2476        refcount_set(&sblock->refs, 1);
2477        sblock->sctx = sctx;
2478        sblock->no_io_error_seen = 1;
2479        sblock->sparity = sparity;
2480        scrub_parity_get(sparity);
2481
2482        for (index = 0; len > 0; index++) {
2483                struct scrub_page *spage;
2484                u64 l = min_t(u64, len, PAGE_SIZE);
2485
2486                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2487                if (!spage) {
2488leave_nomem:
2489                        spin_lock(&sctx->stat_lock);
2490                        sctx->stat.malloc_errors++;
2491                        spin_unlock(&sctx->stat_lock);
2492                        scrub_block_put(sblock);
2493                        return -ENOMEM;
2494                }
2495                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2496                /* For scrub block */
2497                scrub_page_get(spage);
2498                sblock->pagev[index] = spage;
2499                /* For scrub parity */
2500                scrub_page_get(spage);
2501                list_add_tail(&spage->list, &sparity->spages);
2502                spage->sblock = sblock;
2503                spage->dev = dev;
2504                spage->flags = flags;
2505                spage->generation = gen;
2506                spage->logical = logical;
2507                spage->physical = physical;
2508                spage->mirror_num = mirror_num;
2509                if (csum) {
2510                        spage->have_csum = 1;
2511                        memcpy(spage->csum, csum, sctx->csum_size);
2512                } else {
2513                        spage->have_csum = 0;
2514                }
2515                sblock->page_count++;
2516                spage->page = alloc_page(GFP_KERNEL);
2517                if (!spage->page)
2518                        goto leave_nomem;
2519                len -= l;
2520                logical += l;
2521                physical += l;
2522        }
2523
2524        WARN_ON(sblock->page_count == 0);
2525        for (index = 0; index < sblock->page_count; index++) {
2526                struct scrub_page *spage = sblock->pagev[index];
2527                int ret;
2528
2529                ret = scrub_add_page_to_rd_bio(sctx, spage);
2530                if (ret) {
2531                        scrub_block_put(sblock);
2532                        return ret;
2533                }
2534        }
2535
2536        /* last one frees, either here or in bio completion for last page */
2537        scrub_block_put(sblock);
2538        return 0;
2539}
2540
2541static int scrub_extent_for_parity(struct scrub_parity *sparity,
2542                                   u64 logical, u64 len,
2543                                   u64 physical, struct btrfs_device *dev,
2544                                   u64 flags, u64 gen, int mirror_num)
2545{
2546        struct scrub_ctx *sctx = sparity->sctx;
2547        int ret;
2548        u8 csum[BTRFS_CSUM_SIZE];
2549        u32 blocksize;
2550
2551        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2552                scrub_parity_mark_sectors_error(sparity, logical, len);
2553                return 0;
2554        }
2555
2556        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2557                blocksize = sparity->stripe_len;
2558        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2559                blocksize = sparity->stripe_len;
2560        } else {
2561                blocksize = sctx->fs_info->sectorsize;
2562                WARN_ON(1);
2563        }
2564
2565        while (len) {
2566                u64 l = min_t(u64, len, blocksize);
2567                int have_csum = 0;
2568
2569                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2570                        /* push csums to sbio */
2571                        have_csum = scrub_find_csum(sctx, logical, csum);
2572                        if (have_csum == 0)
2573                                goto skip;
2574                }
2575                ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2576                                             flags, gen, mirror_num,
2577                                             have_csum ? csum : NULL);
2578                if (ret)
2579                        return ret;
2580skip:
2581                len -= l;
2582                logical += l;
2583                physical += l;
2584        }
2585        return 0;
2586}
2587
2588/*
2589 * Given a physical address, this will calculate it's
2590 * logical offset. if this is a parity stripe, it will return
2591 * the most left data stripe's logical offset.
2592 *
2593 * return 0 if it is a data stripe, 1 means parity stripe.
2594 */
2595static int get_raid56_logic_offset(u64 physical, int num,
2596                                   struct map_lookup *map, u64 *offset,
2597                                   u64 *stripe_start)
2598{
2599        int i;
2600        int j = 0;
2601        u64 stripe_nr;
2602        u64 last_offset;
2603        u32 stripe_index;
2604        u32 rot;
2605        const int data_stripes = nr_data_stripes(map);
2606
2607        last_offset = (physical - map->stripes[num].physical) * data_stripes;
2608        if (stripe_start)
2609                *stripe_start = last_offset;
2610
2611        *offset = last_offset;
2612        for (i = 0; i < data_stripes; i++) {
2613                *offset = last_offset + i * map->stripe_len;
2614
2615                stripe_nr = div64_u64(*offset, map->stripe_len);
2616                stripe_nr = div_u64(stripe_nr, data_stripes);
2617
2618                /* Work out the disk rotation on this stripe-set */
2619                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2620                /* calculate which stripe this data locates */
2621                rot += i;
2622                stripe_index = rot % map->num_stripes;
2623                if (stripe_index == num)
2624                        return 0;
2625                if (stripe_index < num)
2626                        j++;
2627        }
2628        *offset = last_offset + j * map->stripe_len;
2629        return 1;
2630}
2631
2632static void scrub_free_parity(struct scrub_parity *sparity)
2633{
2634        struct scrub_ctx *sctx = sparity->sctx;
2635        struct scrub_page *curr, *next;
2636        int nbits;
2637
2638        nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2639        if (nbits) {
2640                spin_lock(&sctx->stat_lock);
2641                sctx->stat.read_errors += nbits;
2642                sctx->stat.uncorrectable_errors += nbits;
2643                spin_unlock(&sctx->stat_lock);
2644        }
2645
2646        list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2647                list_del_init(&curr->list);
2648                scrub_page_put(curr);
2649        }
2650
2651        kfree(sparity);
2652}
2653
2654static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2655{
2656        struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2657                                                    work);
2658        struct scrub_ctx *sctx = sparity->sctx;
2659
2660        scrub_free_parity(sparity);
2661        scrub_pending_bio_dec(sctx);
2662}
2663
2664static void scrub_parity_bio_endio(struct bio *bio)
2665{
2666        struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2667        struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2668
2669        if (bio->bi_status)
2670                bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2671                          sparity->nsectors);
2672
2673        bio_put(bio);
2674
2675        btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2676                        NULL);
2677        btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2678}
2679
2680static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2681{
2682        struct scrub_ctx *sctx = sparity->sctx;
2683        struct btrfs_fs_info *fs_info = sctx->fs_info;
2684        struct bio *bio;
2685        struct btrfs_raid_bio *rbio;
2686        struct btrfs_bio *bbio = NULL;
2687        u64 length;
2688        int ret;
2689
2690        if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2691                           sparity->nsectors))
2692                goto out;
2693
2694        length = sparity->logic_end - sparity->logic_start;
2695
2696        btrfs_bio_counter_inc_blocked(fs_info);
2697        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2698                               &length, &bbio);
2699        if (ret || !bbio || !bbio->raid_map)
2700                goto bbio_out;
2701
2702        bio = btrfs_io_bio_alloc(0);
2703        bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2704        bio->bi_private = sparity;
2705        bio->bi_end_io = scrub_parity_bio_endio;
2706
2707        rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2708                                              length, sparity->scrub_dev,
2709                                              sparity->dbitmap,
2710                                              sparity->nsectors);
2711        if (!rbio)
2712                goto rbio_out;
2713
2714        scrub_pending_bio_inc(sctx);
2715        raid56_parity_submit_scrub_rbio(rbio);
2716        return;
2717
2718rbio_out:
2719        bio_put(bio);
2720bbio_out:
2721        btrfs_bio_counter_dec(fs_info);
2722        btrfs_put_bbio(bbio);
2723        bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2724                  sparity->nsectors);
2725        spin_lock(&sctx->stat_lock);
2726        sctx->stat.malloc_errors++;
2727        spin_unlock(&sctx->stat_lock);
2728out:
2729        scrub_free_parity(sparity);
2730}
2731
2732static inline int scrub_calc_parity_bitmap_len(int nsectors)
2733{
2734        return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2735}
2736
2737static void scrub_parity_get(struct scrub_parity *sparity)
2738{
2739        refcount_inc(&sparity->refs);
2740}
2741
2742static void scrub_parity_put(struct scrub_parity *sparity)
2743{
2744        if (!refcount_dec_and_test(&sparity->refs))
2745                return;
2746
2747        scrub_parity_check_and_repair(sparity);
2748}
2749
2750static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2751                                                  struct map_lookup *map,
2752                                                  struct btrfs_device *sdev,
2753                                                  struct btrfs_path *path,
2754                                                  u64 logic_start,
2755                                                  u64 logic_end)
2756{
2757        struct btrfs_fs_info *fs_info = sctx->fs_info;
2758        struct btrfs_root *root = fs_info->extent_root;
2759        struct btrfs_root *csum_root = fs_info->csum_root;
2760        struct btrfs_extent_item *extent;
2761        struct btrfs_bio *bbio = NULL;
2762        u64 flags;
2763        int ret;
2764        int slot;
2765        struct extent_buffer *l;
2766        struct btrfs_key key;
2767        u64 generation;
2768        u64 extent_logical;
2769        u64 extent_physical;
2770        u64 extent_len;
2771        u64 mapped_length;
2772        struct btrfs_device *extent_dev;
2773        struct scrub_parity *sparity;
2774        int nsectors;
2775        int bitmap_len;
2776        int extent_mirror_num;
2777        int stop_loop = 0;
2778
2779        nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2780        bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2781        sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2782                          GFP_NOFS);
2783        if (!sparity) {
2784                spin_lock(&sctx->stat_lock);
2785                sctx->stat.malloc_errors++;
2786                spin_unlock(&sctx->stat_lock);
2787                return -ENOMEM;
2788        }
2789
2790        sparity->stripe_len = map->stripe_len;
2791        sparity->nsectors = nsectors;
2792        sparity->sctx = sctx;
2793        sparity->scrub_dev = sdev;
2794        sparity->logic_start = logic_start;
2795        sparity->logic_end = logic_end;
2796        refcount_set(&sparity->refs, 1);
2797        INIT_LIST_HEAD(&sparity->spages);
2798        sparity->dbitmap = sparity->bitmap;
2799        sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2800
2801        ret = 0;
2802        while (logic_start < logic_end) {
2803                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2804                        key.type = BTRFS_METADATA_ITEM_KEY;
2805                else
2806                        key.type = BTRFS_EXTENT_ITEM_KEY;
2807                key.objectid = logic_start;
2808                key.offset = (u64)-1;
2809
2810                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2811                if (ret < 0)
2812                        goto out;
2813
2814                if (ret > 0) {
2815                        ret = btrfs_previous_extent_item(root, path, 0);
2816                        if (ret < 0)
2817                                goto out;
2818                        if (ret > 0) {
2819                                btrfs_release_path(path);
2820                                ret = btrfs_search_slot(NULL, root, &key,
2821                                                        path, 0, 0);
2822                                if (ret < 0)
2823                                        goto out;
2824                        }
2825                }
2826
2827                stop_loop = 0;
2828                while (1) {
2829                        u64 bytes;
2830
2831                        l = path->nodes[0];
2832                        slot = path->slots[0];
2833                        if (slot >= btrfs_header_nritems(l)) {
2834                                ret = btrfs_next_leaf(root, path);
2835                                if (ret == 0)
2836                                        continue;
2837                                if (ret < 0)
2838                                        goto out;
2839
2840                                stop_loop = 1;
2841                                break;
2842                        }
2843                        btrfs_item_key_to_cpu(l, &key, slot);
2844
2845                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2846                            key.type != BTRFS_METADATA_ITEM_KEY)
2847                                goto next;
2848
2849                        if (key.type == BTRFS_METADATA_ITEM_KEY)
2850                                bytes = fs_info->nodesize;
2851                        else
2852                                bytes = key.offset;
2853
2854                        if (key.objectid + bytes <= logic_start)
2855                                goto next;
2856
2857                        if (key.objectid >= logic_end) {
2858                                stop_loop = 1;
2859                                break;
2860                        }
2861
2862                        while (key.objectid >= logic_start + map->stripe_len)
2863                                logic_start += map->stripe_len;
2864
2865                        extent = btrfs_item_ptr(l, slot,
2866                                                struct btrfs_extent_item);
2867                        flags = btrfs_extent_flags(l, extent);
2868                        generation = btrfs_extent_generation(l, extent);
2869
2870                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2871                            (key.objectid < logic_start ||
2872                             key.objectid + bytes >
2873                             logic_start + map->stripe_len)) {
2874                                btrfs_err(fs_info,
2875                                          "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2876                                          key.objectid, logic_start);
2877                                spin_lock(&sctx->stat_lock);
2878                                sctx->stat.uncorrectable_errors++;
2879                                spin_unlock(&sctx->stat_lock);
2880                                goto next;
2881                        }
2882again:
2883                        extent_logical = key.objectid;
2884                        extent_len = bytes;
2885
2886                        if (extent_logical < logic_start) {
2887                                extent_len -= logic_start - extent_logical;
2888                                extent_logical = logic_start;
2889                        }
2890
2891                        if (extent_logical + extent_len >
2892                            logic_start + map->stripe_len)
2893                                extent_len = logic_start + map->stripe_len -
2894                                             extent_logical;
2895
2896                        scrub_parity_mark_sectors_data(sparity, extent_logical,
2897                                                       extent_len);
2898
2899                        mapped_length = extent_len;
2900                        bbio = NULL;
2901                        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2902                                        extent_logical, &mapped_length, &bbio,
2903                                        0);
2904                        if (!ret) {
2905                                if (!bbio || mapped_length < extent_len)
2906                                        ret = -EIO;
2907                        }
2908                        if (ret) {
2909                                btrfs_put_bbio(bbio);
2910                                goto out;
2911                        }
2912                        extent_physical = bbio->stripes[0].physical;
2913                        extent_mirror_num = bbio->mirror_num;
2914                        extent_dev = bbio->stripes[0].dev;
2915                        btrfs_put_bbio(bbio);
2916
2917                        ret = btrfs_lookup_csums_range(csum_root,
2918                                                extent_logical,
2919                                                extent_logical + extent_len - 1,
2920                                                &sctx->csum_list, 1);
2921                        if (ret)
2922                                goto out;
2923
2924                        ret = scrub_extent_for_parity(sparity, extent_logical,
2925                                                      extent_len,
2926                                                      extent_physical,
2927                                                      extent_dev, flags,
2928                                                      generation,
2929                                                      extent_mirror_num);
2930
2931                        scrub_free_csums(sctx);
2932
2933                        if (ret)
2934                                goto out;
2935
2936                        if (extent_logical + extent_len <
2937                            key.objectid + bytes) {
2938                                logic_start += map->stripe_len;
2939
2940                                if (logic_start >= logic_end) {
2941                                        stop_loop = 1;
2942                                        break;
2943                                }
2944
2945                                if (logic_start < key.objectid + bytes) {
2946                                        cond_resched();
2947                                        goto again;
2948                                }
2949                        }
2950next:
2951                        path->slots[0]++;
2952                }
2953
2954                btrfs_release_path(path);
2955
2956                if (stop_loop)
2957                        break;
2958
2959                logic_start += map->stripe_len;
2960        }
2961out:
2962        if (ret < 0)
2963                scrub_parity_mark_sectors_error(sparity, logic_start,
2964                                                logic_end - logic_start);
2965        scrub_parity_put(sparity);
2966        scrub_submit(sctx);
2967        mutex_lock(&sctx->wr_lock);
2968        scrub_wr_submit(sctx);
2969        mutex_unlock(&sctx->wr_lock);
2970
2971        btrfs_release_path(path);
2972        return ret < 0 ? ret : 0;
2973}
2974
2975static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2976                                           struct map_lookup *map,
2977                                           struct btrfs_device *scrub_dev,
2978                                           int num, u64 base, u64 length,
2979                                           struct btrfs_block_group *cache)
2980{
2981        struct btrfs_path *path, *ppath;
2982        struct btrfs_fs_info *fs_info = sctx->fs_info;
2983        struct btrfs_root *root = fs_info->extent_root;
2984        struct btrfs_root *csum_root = fs_info->csum_root;
2985        struct btrfs_extent_item *extent;
2986        struct blk_plug plug;
2987        u64 flags;
2988        int ret;
2989        int slot;
2990        u64 nstripes;
2991        struct extent_buffer *l;
2992        u64 physical;
2993        u64 logical;
2994        u64 logic_end;
2995        u64 physical_end;
2996        u64 generation;
2997        int mirror_num;
2998        struct reada_control *reada1;
2999        struct reada_control *reada2;
3000        struct btrfs_key key;
3001        struct btrfs_key key_end;
3002        u64 increment = map->stripe_len;
3003        u64 offset;
3004        u64 extent_logical;
3005        u64 extent_physical;
3006        u64 extent_len;
3007        u64 stripe_logical;
3008        u64 stripe_end;
3009        struct btrfs_device *extent_dev;
3010        int extent_mirror_num;
3011        int stop_loop = 0;
3012
3013        physical = map->stripes[num].physical;
3014        offset = 0;
3015        nstripes = div64_u64(length, map->stripe_len);
3016        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3017                offset = map->stripe_len * num;
3018                increment = map->stripe_len * map->num_stripes;
3019                mirror_num = 1;
3020        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3021                int factor = map->num_stripes / map->sub_stripes;
3022                offset = map->stripe_len * (num / map->sub_stripes);
3023                increment = map->stripe_len * factor;
3024                mirror_num = num % map->sub_stripes + 1;
3025        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3026                increment = map->stripe_len;
3027                mirror_num = num % map->num_stripes + 1;
3028        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3029                increment = map->stripe_len;
3030                mirror_num = num % map->num_stripes + 1;
3031        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3032                get_raid56_logic_offset(physical, num, map, &offset, NULL);
3033                increment = map->stripe_len * nr_data_stripes(map);
3034                mirror_num = 1;
3035        } else {
3036                increment = map->stripe_len;
3037                mirror_num = 1;
3038        }
3039
3040        path = btrfs_alloc_path();
3041        if (!path)
3042                return -ENOMEM;
3043
3044        ppath = btrfs_alloc_path();
3045        if (!ppath) {
3046                btrfs_free_path(path);
3047                return -ENOMEM;
3048        }
3049
3050        /*
3051         * work on commit root. The related disk blocks are static as
3052         * long as COW is applied. This means, it is save to rewrite
3053         * them to repair disk errors without any race conditions
3054         */
3055        path->search_commit_root = 1;
3056        path->skip_locking = 1;
3057
3058        ppath->search_commit_root = 1;
3059        ppath->skip_locking = 1;
3060        /*
3061         * trigger the readahead for extent tree csum tree and wait for
3062         * completion. During readahead, the scrub is officially paused
3063         * to not hold off transaction commits
3064         */
3065        logical = base + offset;
3066        physical_end = physical + nstripes * map->stripe_len;
3067        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3068                get_raid56_logic_offset(physical_end, num,
3069                                        map, &logic_end, NULL);
3070                logic_end += base;
3071        } else {
3072                logic_end = logical + increment * nstripes;
3073        }
3074        wait_event(sctx->list_wait,
3075                   atomic_read(&sctx->bios_in_flight) == 0);
3076        scrub_blocked_if_needed(fs_info);
3077
3078        /* FIXME it might be better to start readahead at commit root */
3079        key.objectid = logical;
3080        key.type = BTRFS_EXTENT_ITEM_KEY;
3081        key.offset = (u64)0;
3082        key_end.objectid = logic_end;
3083        key_end.type = BTRFS_METADATA_ITEM_KEY;
3084        key_end.offset = (u64)-1;
3085        reada1 = btrfs_reada_add(root, &key, &key_end);
3086
3087        key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3088        key.type = BTRFS_EXTENT_CSUM_KEY;
3089        key.offset = logical;
3090        key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3091        key_end.type = BTRFS_EXTENT_CSUM_KEY;
3092        key_end.offset = logic_end;
3093        reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3094
3095        if (!IS_ERR(reada1))
3096                btrfs_reada_wait(reada1);
3097        if (!IS_ERR(reada2))
3098                btrfs_reada_wait(reada2);
3099
3100
3101        /*
3102         * collect all data csums for the stripe to avoid seeking during
3103         * the scrub. This might currently (crc32) end up to be about 1MB
3104         */
3105        blk_start_plug(&plug);
3106
3107        /*
3108         * now find all extents for each stripe and scrub them
3109         */
3110        ret = 0;
3111        while (physical < physical_end) {
3112                /*
3113                 * canceled?
3114                 */
3115                if (atomic_read(&fs_info->scrub_cancel_req) ||
3116                    atomic_read(&sctx->cancel_req)) {
3117                        ret = -ECANCELED;
3118                        goto out;
3119                }
3120                /*
3121                 * check to see if we have to pause
3122                 */
3123                if (atomic_read(&fs_info->scrub_pause_req)) {
3124                        /* push queued extents */
3125                        sctx->flush_all_writes = true;
3126                        scrub_submit(sctx);
3127                        mutex_lock(&sctx->wr_lock);
3128                        scrub_wr_submit(sctx);
3129                        mutex_unlock(&sctx->wr_lock);
3130                        wait_event(sctx->list_wait,
3131                                   atomic_read(&sctx->bios_in_flight) == 0);
3132                        sctx->flush_all_writes = false;
3133                        scrub_blocked_if_needed(fs_info);
3134                }
3135
3136                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3137                        ret = get_raid56_logic_offset(physical, num, map,
3138                                                      &logical,
3139                                                      &stripe_logical);
3140                        logical += base;
3141                        if (ret) {
3142                                /* it is parity strip */
3143                                stripe_logical += base;
3144                                stripe_end = stripe_logical + increment;
3145                                ret = scrub_raid56_parity(sctx, map, scrub_dev,
3146                                                          ppath, stripe_logical,
3147                                                          stripe_end);
3148                                if (ret)
3149                                        goto out;
3150                                goto skip;
3151                        }
3152                }
3153
3154                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3155                        key.type = BTRFS_METADATA_ITEM_KEY;
3156                else
3157                        key.type = BTRFS_EXTENT_ITEM_KEY;
3158                key.objectid = logical;
3159                key.offset = (u64)-1;
3160
3161                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3162                if (ret < 0)
3163                        goto out;
3164
3165                if (ret > 0) {
3166                        ret = btrfs_previous_extent_item(root, path, 0);
3167                        if (ret < 0)
3168                                goto out;
3169                        if (ret > 0) {
3170                                /* there's no smaller item, so stick with the
3171                                 * larger one */
3172                                btrfs_release_path(path);
3173                                ret = btrfs_search_slot(NULL, root, &key,
3174                                                        path, 0, 0);
3175                                if (ret < 0)
3176                                        goto out;
3177                        }
3178                }
3179
3180                stop_loop = 0;
3181                while (1) {
3182                        u64 bytes;
3183
3184                        l = path->nodes[0];
3185                        slot = path->slots[0];
3186                        if (slot >= btrfs_header_nritems(l)) {
3187                                ret = btrfs_next_leaf(root, path);
3188                                if (ret == 0)
3189                                        continue;
3190                                if (ret < 0)
3191                                        goto out;
3192
3193                                stop_loop = 1;
3194                                break;
3195                        }
3196                        btrfs_item_key_to_cpu(l, &key, slot);
3197
3198                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3199                            key.type != BTRFS_METADATA_ITEM_KEY)
3200                                goto next;
3201
3202                        if (key.type == BTRFS_METADATA_ITEM_KEY)
3203                                bytes = fs_info->nodesize;
3204                        else
3205                                bytes = key.offset;
3206
3207                        if (key.objectid + bytes <= logical)
3208                                goto next;
3209
3210                        if (key.objectid >= logical + map->stripe_len) {
3211                                /* out of this device extent */
3212                                if (key.objectid >= logic_end)
3213                                        stop_loop = 1;
3214                                break;
3215                        }
3216
3217                        /*
3218                         * If our block group was removed in the meanwhile, just
3219                         * stop scrubbing since there is no point in continuing.
3220                         * Continuing would prevent reusing its device extents
3221                         * for new block groups for a long time.
3222                         */
3223                        spin_lock(&cache->lock);
3224                        if (cache->removed) {
3225                                spin_unlock(&cache->lock);
3226                                ret = 0;
3227                                goto out;
3228                        }
3229                        spin_unlock(&cache->lock);
3230
3231                        extent = btrfs_item_ptr(l, slot,
3232                                                struct btrfs_extent_item);
3233                        flags = btrfs_extent_flags(l, extent);
3234                        generation = btrfs_extent_generation(l, extent);
3235
3236                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3237                            (key.objectid < logical ||
3238                             key.objectid + bytes >
3239                             logical + map->stripe_len)) {
3240                                btrfs_err(fs_info,
3241                                           "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242                                       key.objectid, logical);
3243                                spin_lock(&sctx->stat_lock);
3244                                sctx->stat.uncorrectable_errors++;
3245                                spin_unlock(&sctx->stat_lock);
3246                                goto next;
3247                        }
3248
3249again:
3250                        extent_logical = key.objectid;
3251                        extent_len = bytes;
3252
3253                        /*
3254                         * trim extent to this stripe
3255                         */
3256                        if (extent_logical < logical) {
3257                                extent_len -= logical - extent_logical;
3258                                extent_logical = logical;
3259                        }
3260                        if (extent_logical + extent_len >
3261                            logical + map->stripe_len) {
3262                                extent_len = logical + map->stripe_len -
3263                                             extent_logical;
3264                        }
3265
3266                        extent_physical = extent_logical - logical + physical;
3267                        extent_dev = scrub_dev;
3268                        extent_mirror_num = mirror_num;
3269                        if (sctx->is_dev_replace)
3270                                scrub_remap_extent(fs_info, extent_logical,
3271                                                   extent_len, &extent_physical,
3272                                                   &extent_dev,
3273                                                   &extent_mirror_num);
3274
3275                        if (flags & BTRFS_EXTENT_FLAG_DATA) {
3276                                ret = btrfs_lookup_csums_range(csum_root,
3277                                                extent_logical,
3278                                                extent_logical + extent_len - 1,
3279                                                &sctx->csum_list, 1);
3280                                if (ret)
3281                                        goto out;
3282                        }
3283
3284                        ret = scrub_extent(sctx, map, extent_logical, extent_len,
3285                                           extent_physical, extent_dev, flags,
3286                                           generation, extent_mirror_num,
3287                                           extent_logical - logical + physical);
3288
3289                        scrub_free_csums(sctx);
3290
3291                        if (ret)
3292                                goto out;
3293
3294                        if (extent_logical + extent_len <
3295                            key.objectid + bytes) {
3296                                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3297                                        /*
3298                                         * loop until we find next data stripe
3299                                         * or we have finished all stripes.
3300                                         */
3301loop:
3302                                        physical += map->stripe_len;
3303                                        ret = get_raid56_logic_offset(physical,
3304                                                        num, map, &logical,
3305                                                        &stripe_logical);
3306                                        logical += base;
3307
3308                                        if (ret && physical < physical_end) {
3309                                                stripe_logical += base;
3310                                                stripe_end = stripe_logical +
3311                                                                increment;
3312                                                ret = scrub_raid56_parity(sctx,
3313                                                        map, scrub_dev, ppath,
3314                                                        stripe_logical,
3315                                                        stripe_end);
3316                                                if (ret)
3317                                                        goto out;
3318                                                goto loop;
3319                                        }
3320                                } else {
3321                                        physical += map->stripe_len;
3322                                        logical += increment;
3323                                }
3324                                if (logical < key.objectid + bytes) {
3325                                        cond_resched();
3326                                        goto again;
3327                                }
3328
3329                                if (physical >= physical_end) {
3330                                        stop_loop = 1;
3331                                        break;
3332                                }
3333                        }
3334next:
3335                        path->slots[0]++;
3336                }
3337                btrfs_release_path(path);
3338skip:
3339                logical += increment;
3340                physical += map->stripe_len;
3341                spin_lock(&sctx->stat_lock);
3342                if (stop_loop)
3343                        sctx->stat.last_physical = map->stripes[num].physical +
3344                                                   length;
3345                else
3346                        sctx->stat.last_physical = physical;
3347                spin_unlock(&sctx->stat_lock);
3348                if (stop_loop)
3349                        break;
3350        }
3351out:
3352        /* push queued extents */
3353        scrub_submit(sctx);
3354        mutex_lock(&sctx->wr_lock);
3355        scrub_wr_submit(sctx);
3356        mutex_unlock(&sctx->wr_lock);
3357
3358        blk_finish_plug(&plug);
3359        btrfs_free_path(path);
3360        btrfs_free_path(ppath);
3361        return ret < 0 ? ret : 0;
3362}
3363
3364static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3365                                          struct btrfs_device *scrub_dev,
3366                                          u64 chunk_offset, u64 length,
3367                                          u64 dev_offset,
3368                                          struct btrfs_block_group *cache)
3369{
3370        struct btrfs_fs_info *fs_info = sctx->fs_info;
3371        struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3372        struct map_lookup *map;
3373        struct extent_map *em;
3374        int i;
3375        int ret = 0;
3376
3377        read_lock(&map_tree->lock);
3378        em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3379        read_unlock(&map_tree->lock);
3380
3381        if (!em) {
3382                /*
3383                 * Might have been an unused block group deleted by the cleaner
3384                 * kthread or relocation.
3385                 */
3386                spin_lock(&cache->lock);
3387                if (!cache->removed)
3388                        ret = -EINVAL;
3389                spin_unlock(&cache->lock);
3390
3391                return ret;
3392        }
3393
3394        map = em->map_lookup;
3395        if (em->start != chunk_offset)
3396                goto out;
3397
3398        if (em->len < length)
3399                goto out;
3400
3401        for (i = 0; i < map->num_stripes; ++i) {
3402                if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3403                    map->stripes[i].physical == dev_offset) {
3404                        ret = scrub_stripe(sctx, map, scrub_dev, i,
3405                                           chunk_offset, length, cache);
3406                        if (ret)
3407                                goto out;
3408                }
3409        }
3410out:
3411        free_extent_map(em);
3412
3413        return ret;
3414}
3415
3416static noinline_for_stack
3417int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3418                           struct btrfs_device *scrub_dev, u64 start, u64 end)
3419{
3420        struct btrfs_dev_extent *dev_extent = NULL;
3421        struct btrfs_path *path;
3422        struct btrfs_fs_info *fs_info = sctx->fs_info;
3423        struct btrfs_root *root = fs_info->dev_root;
3424        u64 length;
3425        u64 chunk_offset;
3426        int ret = 0;
3427        int ro_set;
3428        int slot;
3429        struct extent_buffer *l;
3430        struct btrfs_key key;
3431        struct btrfs_key found_key;
3432        struct btrfs_block_group *cache;
3433        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3434
3435        path = btrfs_alloc_path();
3436        if (!path)
3437                return -ENOMEM;
3438
3439        path->reada = READA_FORWARD;
3440        path->search_commit_root = 1;
3441        path->skip_locking = 1;
3442
3443        key.objectid = scrub_dev->devid;
3444        key.offset = 0ull;
3445        key.type = BTRFS_DEV_EXTENT_KEY;
3446
3447        while (1) {
3448                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3449                if (ret < 0)
3450                        break;
3451                if (ret > 0) {
3452                        if (path->slots[0] >=
3453                            btrfs_header_nritems(path->nodes[0])) {
3454                                ret = btrfs_next_leaf(root, path);
3455                                if (ret < 0)
3456                                        break;
3457                                if (ret > 0) {
3458                                        ret = 0;
3459                                        break;
3460                                }
3461                        } else {
3462                                ret = 0;
3463                        }
3464                }
3465
3466                l = path->nodes[0];
3467                slot = path->slots[0];
3468
3469                btrfs_item_key_to_cpu(l, &found_key, slot);
3470
3471                if (found_key.objectid != scrub_dev->devid)
3472                        break;
3473
3474                if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3475                        break;
3476
3477                if (found_key.offset >= end)
3478                        break;
3479
3480                if (found_key.offset < key.offset)
3481                        break;
3482
3483                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3484                length = btrfs_dev_extent_length(l, dev_extent);
3485
3486                if (found_key.offset + length <= start)
3487                        goto skip;
3488
3489                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3490
3491                /*
3492                 * get a reference on the corresponding block group to prevent
3493                 * the chunk from going away while we scrub it
3494                 */
3495                cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3496
3497                /* some chunks are removed but not committed to disk yet,
3498                 * continue scrubbing */
3499                if (!cache)
3500                        goto skip;
3501
3502                /*
3503                 * Make sure that while we are scrubbing the corresponding block
3504                 * group doesn't get its logical address and its device extents
3505                 * reused for another block group, which can possibly be of a
3506                 * different type and different profile. We do this to prevent
3507                 * false error detections and crashes due to bogus attempts to
3508                 * repair extents.
3509                 */
3510                spin_lock(&cache->lock);
3511                if (cache->removed) {
3512                        spin_unlock(&cache->lock);
3513                        btrfs_put_block_group(cache);
3514                        goto skip;
3515                }
3516                btrfs_freeze_block_group(cache);
3517                spin_unlock(&cache->lock);
3518
3519                /*
3520                 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3521                 * to avoid deadlock caused by:
3522                 * btrfs_inc_block_group_ro()
3523                 * -> btrfs_wait_for_commit()
3524                 * -> btrfs_commit_transaction()
3525                 * -> btrfs_scrub_pause()
3526                 */
3527                scrub_pause_on(fs_info);
3528
3529                /*
3530                 * Don't do chunk preallocation for scrub.
3531                 *
3532                 * This is especially important for SYSTEM bgs, or we can hit
3533                 * -EFBIG from btrfs_finish_chunk_alloc() like:
3534                 * 1. The only SYSTEM bg is marked RO.
3535                 *    Since SYSTEM bg is small, that's pretty common.
3536                 * 2. New SYSTEM bg will be allocated
3537                 *    Due to regular version will allocate new chunk.
3538                 * 3. New SYSTEM bg is empty and will get cleaned up
3539                 *    Before cleanup really happens, it's marked RO again.
3540                 * 4. Empty SYSTEM bg get scrubbed
3541                 *    We go back to 2.
3542                 *
3543                 * This can easily boost the amount of SYSTEM chunks if cleaner
3544                 * thread can't be triggered fast enough, and use up all space
3545                 * of btrfs_super_block::sys_chunk_array
3546                 *
3547                 * While for dev replace, we need to try our best to mark block
3548                 * group RO, to prevent race between:
3549                 * - Write duplication
3550                 *   Contains latest data
3551                 * - Scrub copy
3552                 *   Contains data from commit tree
3553                 *
3554                 * If target block group is not marked RO, nocow writes can
3555                 * be overwritten by scrub copy, causing data corruption.
3556                 * So for dev-replace, it's not allowed to continue if a block
3557                 * group is not RO.
3558                 */
3559                ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3560                if (ret == 0) {
3561                        ro_set = 1;
3562                } else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3563                        /*
3564                         * btrfs_inc_block_group_ro return -ENOSPC when it
3565                         * failed in creating new chunk for metadata.
3566                         * It is not a problem for scrub, because
3567                         * metadata are always cowed, and our scrub paused
3568                         * commit_transactions.
3569                         */
3570                        ro_set = 0;
3571                } else {
3572                        btrfs_warn(fs_info,
3573                                   "failed setting block group ro: %d", ret);
3574                        btrfs_unfreeze_block_group(cache);
3575                        btrfs_put_block_group(cache);
3576                        scrub_pause_off(fs_info);
3577                        break;
3578                }
3579
3580                /*
3581                 * Now the target block is marked RO, wait for nocow writes to
3582                 * finish before dev-replace.
3583                 * COW is fine, as COW never overwrites extents in commit tree.
3584                 */
3585                if (sctx->is_dev_replace) {
3586                        btrfs_wait_nocow_writers(cache);
3587                        btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3588                                        cache->length);
3589                }
3590
3591                scrub_pause_off(fs_info);
3592                down_write(&dev_replace->rwsem);
3593                dev_replace->cursor_right = found_key.offset + length;
3594                dev_replace->cursor_left = found_key.offset;
3595                dev_replace->item_needs_writeback = 1;
3596                up_write(&dev_replace->rwsem);
3597
3598                ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3599                                  found_key.offset, cache);
3600
3601                /*
3602                 * flush, submit all pending read and write bios, afterwards
3603                 * wait for them.
3604                 * Note that in the dev replace case, a read request causes
3605                 * write requests that are submitted in the read completion
3606                 * worker. Therefore in the current situation, it is required
3607                 * that all write requests are flushed, so that all read and
3608                 * write requests are really completed when bios_in_flight
3609                 * changes to 0.
3610                 */
3611                sctx->flush_all_writes = true;
3612                scrub_submit(sctx);
3613                mutex_lock(&sctx->wr_lock);
3614                scrub_wr_submit(sctx);
3615                mutex_unlock(&sctx->wr_lock);
3616
3617                wait_event(sctx->list_wait,
3618                           atomic_read(&sctx->bios_in_flight) == 0);
3619
3620                scrub_pause_on(fs_info);
3621
3622                /*
3623                 * must be called before we decrease @scrub_paused.
3624                 * make sure we don't block transaction commit while
3625                 * we are waiting pending workers finished.
3626                 */
3627                wait_event(sctx->list_wait,
3628                           atomic_read(&sctx->workers_pending) == 0);
3629                sctx->flush_all_writes = false;
3630
3631                scrub_pause_off(fs_info);
3632
3633                down_write(&dev_replace->rwsem);
3634                dev_replace->cursor_left = dev_replace->cursor_right;
3635                dev_replace->item_needs_writeback = 1;
3636                up_write(&dev_replace->rwsem);
3637
3638                if (ro_set)
3639                        btrfs_dec_block_group_ro(cache);
3640
3641                /*
3642                 * We might have prevented the cleaner kthread from deleting
3643                 * this block group if it was already unused because we raced
3644                 * and set it to RO mode first. So add it back to the unused
3645                 * list, otherwise it might not ever be deleted unless a manual
3646                 * balance is triggered or it becomes used and unused again.
3647                 */
3648                spin_lock(&cache->lock);
3649                if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3650                    cache->used == 0) {
3651                        spin_unlock(&cache->lock);
3652                        if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3653                                btrfs_discard_queue_work(&fs_info->discard_ctl,
3654                                                         cache);
3655                        else
3656                                btrfs_mark_bg_unused(cache);
3657                } else {
3658                        spin_unlock(&cache->lock);
3659                }
3660
3661                btrfs_unfreeze_block_group(cache);
3662                btrfs_put_block_group(cache);
3663                if (ret)
3664                        break;
3665                if (sctx->is_dev_replace &&
3666                    atomic64_read(&dev_replace->num_write_errors) > 0) {
3667                        ret = -EIO;
3668                        break;
3669                }
3670                if (sctx->stat.malloc_errors > 0) {
3671                        ret = -ENOMEM;
3672                        break;
3673                }
3674skip:
3675                key.offset = found_key.offset + length;
3676                btrfs_release_path(path);
3677        }
3678
3679        btrfs_free_path(path);
3680
3681        return ret;
3682}
3683
3684static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3685                                           struct btrfs_device *scrub_dev)
3686{
3687        int     i;
3688        u64     bytenr;
3689        u64     gen;
3690        int     ret;
3691        struct btrfs_fs_info *fs_info = sctx->fs_info;
3692
3693        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3694                return -EROFS;
3695
3696        /* Seed devices of a new filesystem has their own generation. */
3697        if (scrub_dev->fs_devices != fs_info->fs_devices)
3698                gen = scrub_dev->generation;
3699        else
3700                gen = fs_info->last_trans_committed;
3701
3702        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3703                bytenr = btrfs_sb_offset(i);
3704                if (bytenr + BTRFS_SUPER_INFO_SIZE >
3705                    scrub_dev->commit_total_bytes)
3706                        break;
3707
3708                ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3709                                  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3710                                  NULL, 1, bytenr);
3711                if (ret)
3712                        return ret;
3713        }
3714        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3715
3716        return 0;
3717}
3718
3719static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3720{
3721        if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3722                                        &fs_info->scrub_lock)) {
3723                struct btrfs_workqueue *scrub_workers = NULL;
3724                struct btrfs_workqueue *scrub_wr_comp = NULL;
3725                struct btrfs_workqueue *scrub_parity = NULL;
3726
3727                scrub_workers = fs_info->scrub_workers;
3728                scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3729                scrub_parity = fs_info->scrub_parity_workers;
3730
3731                fs_info->scrub_workers = NULL;
3732                fs_info->scrub_wr_completion_workers = NULL;
3733                fs_info->scrub_parity_workers = NULL;
3734                mutex_unlock(&fs_info->scrub_lock);
3735
3736                btrfs_destroy_workqueue(scrub_workers);
3737                btrfs_destroy_workqueue(scrub_wr_comp);
3738                btrfs_destroy_workqueue(scrub_parity);
3739        }
3740}
3741
3742/*
3743 * get a reference count on fs_info->scrub_workers. start worker if necessary
3744 */
3745static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3746                                                int is_dev_replace)
3747{
3748        struct btrfs_workqueue *scrub_workers = NULL;
3749        struct btrfs_workqueue *scrub_wr_comp = NULL;
3750        struct btrfs_workqueue *scrub_parity = NULL;
3751        unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3752        int max_active = fs_info->thread_pool_size;
3753        int ret = -ENOMEM;
3754
3755        if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
3756                return 0;
3757
3758        scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
3759                                              is_dev_replace ? 1 : max_active, 4);
3760        if (!scrub_workers)
3761                goto fail_scrub_workers;
3762
3763        scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3764                                              max_active, 2);
3765        if (!scrub_wr_comp)
3766                goto fail_scrub_wr_completion_workers;
3767
3768        scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3769                                             max_active, 2);
3770        if (!scrub_parity)
3771                goto fail_scrub_parity_workers;
3772
3773        mutex_lock(&fs_info->scrub_lock);
3774        if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3775                ASSERT(fs_info->scrub_workers == NULL &&
3776                       fs_info->scrub_wr_completion_workers == NULL &&
3777                       fs_info->scrub_parity_workers == NULL);
3778                fs_info->scrub_workers = scrub_workers;
3779                fs_info->scrub_wr_completion_workers = scrub_wr_comp;
3780                fs_info->scrub_parity_workers = scrub_parity;
3781                refcount_set(&fs_info->scrub_workers_refcnt, 1);
3782                mutex_unlock(&fs_info->scrub_lock);
3783                return 0;
3784        }
3785        /* Other thread raced in and created the workers for us */
3786        refcount_inc(&fs_info->scrub_workers_refcnt);
3787        mutex_unlock(&fs_info->scrub_lock);
3788
3789        ret = 0;
3790        btrfs_destroy_workqueue(scrub_parity);
3791fail_scrub_parity_workers:
3792        btrfs_destroy_workqueue(scrub_wr_comp);
3793fail_scrub_wr_completion_workers:
3794        btrfs_destroy_workqueue(scrub_workers);
3795fail_scrub_workers:
3796        return ret;
3797}
3798
3799int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3800                    u64 end, struct btrfs_scrub_progress *progress,
3801                    int readonly, int is_dev_replace)
3802{
3803        struct scrub_ctx *sctx;
3804        int ret;
3805        struct btrfs_device *dev;
3806        unsigned int nofs_flag;
3807
3808        if (btrfs_fs_closing(fs_info))
3809                return -EAGAIN;
3810
3811        if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3812                /*
3813                 * in this case scrub is unable to calculate the checksum
3814                 * the way scrub is implemented. Do not handle this
3815                 * situation at all because it won't ever happen.
3816                 */
3817                btrfs_err(fs_info,
3818                           "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3819                       fs_info->nodesize,
3820                       BTRFS_STRIPE_LEN);
3821                return -EINVAL;
3822        }
3823
3824        if (fs_info->sectorsize != PAGE_SIZE) {
3825                /* not supported for data w/o checksums */
3826                btrfs_err_rl(fs_info,
3827                           "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3828                       fs_info->sectorsize, PAGE_SIZE);
3829                return -EINVAL;
3830        }
3831
3832        if (fs_info->nodesize >
3833            PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3834            fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3835                /*
3836                 * would exhaust the array bounds of pagev member in
3837                 * struct scrub_block
3838                 */
3839                btrfs_err(fs_info,
3840                          "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3841                       fs_info->nodesize,
3842                       SCRUB_MAX_PAGES_PER_BLOCK,
3843                       fs_info->sectorsize,
3844                       SCRUB_MAX_PAGES_PER_BLOCK);
3845                return -EINVAL;
3846        }
3847
3848        /* Allocate outside of device_list_mutex */
3849        sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3850        if (IS_ERR(sctx))
3851                return PTR_ERR(sctx);
3852
3853        ret = scrub_workers_get(fs_info, is_dev_replace);
3854        if (ret)
3855                goto out_free_ctx;
3856
3857        mutex_lock(&fs_info->fs_devices->device_list_mutex);
3858        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3859        if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3860                     !is_dev_replace)) {
3861                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3862                ret = -ENODEV;
3863                goto out;
3864        }
3865
3866        if (!is_dev_replace && !readonly &&
3867            !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3868                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3869                btrfs_err_in_rcu(fs_info,
3870                        "scrub on devid %llu: filesystem on %s is not writable",
3871                                 devid, rcu_str_deref(dev->name));
3872                ret = -EROFS;
3873                goto out;
3874        }
3875
3876        mutex_lock(&fs_info->scrub_lock);
3877        if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3878            test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3879                mutex_unlock(&fs_info->scrub_lock);
3880                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3881                ret = -EIO;
3882                goto out;
3883        }
3884
3885        down_read(&fs_info->dev_replace.rwsem);
3886        if (dev->scrub_ctx ||
3887            (!is_dev_replace &&
3888             btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3889                up_read(&fs_info->dev_replace.rwsem);
3890                mutex_unlock(&fs_info->scrub_lock);
3891                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3892                ret = -EINPROGRESS;
3893                goto out;
3894        }
3895        up_read(&fs_info->dev_replace.rwsem);
3896
3897        sctx->readonly = readonly;
3898        dev->scrub_ctx = sctx;
3899        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3900
3901        /*
3902         * checking @scrub_pause_req here, we can avoid
3903         * race between committing transaction and scrubbing.
3904         */
3905        __scrub_blocked_if_needed(fs_info);
3906        atomic_inc(&fs_info->scrubs_running);
3907        mutex_unlock(&fs_info->scrub_lock);
3908
3909        /*
3910         * In order to avoid deadlock with reclaim when there is a transaction
3911         * trying to pause scrub, make sure we use GFP_NOFS for all the
3912         * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3913         * invoked by our callees. The pausing request is done when the
3914         * transaction commit starts, and it blocks the transaction until scrub
3915         * is paused (done at specific points at scrub_stripe() or right above
3916         * before incrementing fs_info->scrubs_running).
3917         */
3918        nofs_flag = memalloc_nofs_save();
3919        if (!is_dev_replace) {
3920                btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3921                /*
3922                 * by holding device list mutex, we can
3923                 * kick off writing super in log tree sync.
3924                 */
3925                mutex_lock(&fs_info->fs_devices->device_list_mutex);
3926                ret = scrub_supers(sctx, dev);
3927                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3928        }
3929
3930        if (!ret)
3931                ret = scrub_enumerate_chunks(sctx, dev, start, end);
3932        memalloc_nofs_restore(nofs_flag);
3933
3934        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3935        atomic_dec(&fs_info->scrubs_running);
3936        wake_up(&fs_info->scrub_pause_wait);
3937
3938        wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3939
3940        if (progress)
3941                memcpy(progress, &sctx->stat, sizeof(*progress));
3942
3943        if (!is_dev_replace)
3944                btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3945                        ret ? "not finished" : "finished", devid, ret);
3946
3947        mutex_lock(&fs_info->scrub_lock);
3948        dev->scrub_ctx = NULL;
3949        mutex_unlock(&fs_info->scrub_lock);
3950
3951        scrub_workers_put(fs_info);
3952        scrub_put_ctx(sctx);
3953
3954        return ret;
3955out:
3956        scrub_workers_put(fs_info);
3957out_free_ctx:
3958        scrub_free_ctx(sctx);
3959
3960        return ret;
3961}
3962
3963void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3964{
3965        mutex_lock(&fs_info->scrub_lock);
3966        atomic_inc(&fs_info->scrub_pause_req);
3967        while (atomic_read(&fs_info->scrubs_paused) !=
3968               atomic_read(&fs_info->scrubs_running)) {
3969                mutex_unlock(&fs_info->scrub_lock);
3970                wait_event(fs_info->scrub_pause_wait,
3971                           atomic_read(&fs_info->scrubs_paused) ==
3972                           atomic_read(&fs_info->scrubs_running));
3973                mutex_lock(&fs_info->scrub_lock);
3974        }
3975        mutex_unlock(&fs_info->scrub_lock);
3976}
3977
3978void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3979{
3980        atomic_dec(&fs_info->scrub_pause_req);
3981        wake_up(&fs_info->scrub_pause_wait);
3982}
3983
3984int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3985{
3986        mutex_lock(&fs_info->scrub_lock);
3987        if (!atomic_read(&fs_info->scrubs_running)) {
3988                mutex_unlock(&fs_info->scrub_lock);
3989                return -ENOTCONN;
3990        }
3991
3992        atomic_inc(&fs_info->scrub_cancel_req);
3993        while (atomic_read(&fs_info->scrubs_running)) {
3994                mutex_unlock(&fs_info->scrub_lock);
3995                wait_event(fs_info->scrub_pause_wait,
3996                           atomic_read(&fs_info->scrubs_running) == 0);
3997                mutex_lock(&fs_info->scrub_lock);
3998        }
3999        atomic_dec(&fs_info->scrub_cancel_req);
4000        mutex_unlock(&fs_info->scrub_lock);
4001
4002        return 0;
4003}
4004
4005int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4006{
4007        struct btrfs_fs_info *fs_info = dev->fs_info;
4008        struct scrub_ctx *sctx;
4009
4010        mutex_lock(&fs_info->scrub_lock);
4011        sctx = dev->scrub_ctx;
4012        if (!sctx) {
4013                mutex_unlock(&fs_info->scrub_lock);
4014                return -ENOTCONN;
4015        }
4016        atomic_inc(&sctx->cancel_req);
4017        while (dev->scrub_ctx) {
4018                mutex_unlock(&fs_info->scrub_lock);
4019                wait_event(fs_info->scrub_pause_wait,
4020                           dev->scrub_ctx == NULL);
4021                mutex_lock(&fs_info->scrub_lock);
4022        }
4023        mutex_unlock(&fs_info->scrub_lock);
4024
4025        return 0;
4026}
4027
4028int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4029                         struct btrfs_scrub_progress *progress)
4030{
4031        struct btrfs_device *dev;
4032        struct scrub_ctx *sctx = NULL;
4033
4034        mutex_lock(&fs_info->fs_devices->device_list_mutex);
4035        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4036        if (dev)
4037                sctx = dev->scrub_ctx;
4038        if (sctx)
4039                memcpy(progress, &sctx->stat, sizeof(*progress));
4040        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4041
4042        return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4043}
4044
4045static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4046                               u64 extent_logical, u64 extent_len,
4047                               u64 *extent_physical,
4048                               struct btrfs_device **extent_dev,
4049                               int *extent_mirror_num)
4050{
4051        u64 mapped_length;
4052        struct btrfs_bio *bbio = NULL;
4053        int ret;
4054
4055        mapped_length = extent_len;
4056        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4057                              &mapped_length, &bbio, 0);
4058        if (ret || !bbio || mapped_length < extent_len ||
4059            !bbio->stripes[0].dev->bdev) {
4060                btrfs_put_bbio(bbio);
4061                return;
4062        }
4063
4064        *extent_physical = bbio->stripes[0].physical;
4065        *extent_mirror_num = bbio->mirror_num;
4066        *extent_dev = bbio->stripes[0].dev;
4067        btrfs_put_bbio(bbio);
4068}
4069