linux/fs/btrfs/tree-log.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "misc.h"
  12#include "ctree.h"
  13#include "tree-log.h"
  14#include "disk-io.h"
  15#include "locking.h"
  16#include "print-tree.h"
  17#include "backref.h"
  18#include "compression.h"
  19#include "qgroup.h"
  20#include "inode-map.h"
  21#include "block-group.h"
  22#include "space-info.h"
  23
  24/* magic values for the inode_only field in btrfs_log_inode:
  25 *
  26 * LOG_INODE_ALL means to log everything
  27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  28 * during log replay
  29 */
  30enum {
  31        LOG_INODE_ALL,
  32        LOG_INODE_EXISTS,
  33        LOG_OTHER_INODE,
  34        LOG_OTHER_INODE_ALL,
  35};
  36
  37/*
  38 * directory trouble cases
  39 *
  40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  41 * log, we must force a full commit before doing an fsync of the directory
  42 * where the unlink was done.
  43 * ---> record transid of last unlink/rename per directory
  44 *
  45 * mkdir foo/some_dir
  46 * normal commit
  47 * rename foo/some_dir foo2/some_dir
  48 * mkdir foo/some_dir
  49 * fsync foo/some_dir/some_file
  50 *
  51 * The fsync above will unlink the original some_dir without recording
  52 * it in its new location (foo2).  After a crash, some_dir will be gone
  53 * unless the fsync of some_file forces a full commit
  54 *
  55 * 2) we must log any new names for any file or dir that is in the fsync
  56 * log. ---> check inode while renaming/linking.
  57 *
  58 * 2a) we must log any new names for any file or dir during rename
  59 * when the directory they are being removed from was logged.
  60 * ---> check inode and old parent dir during rename
  61 *
  62 *  2a is actually the more important variant.  With the extra logging
  63 *  a crash might unlink the old name without recreating the new one
  64 *
  65 * 3) after a crash, we must go through any directories with a link count
  66 * of zero and redo the rm -rf
  67 *
  68 * mkdir f1/foo
  69 * normal commit
  70 * rm -rf f1/foo
  71 * fsync(f1)
  72 *
  73 * The directory f1 was fully removed from the FS, but fsync was never
  74 * called on f1, only its parent dir.  After a crash the rm -rf must
  75 * be replayed.  This must be able to recurse down the entire
  76 * directory tree.  The inode link count fixup code takes care of the
  77 * ugly details.
  78 */
  79
  80/*
  81 * stages for the tree walking.  The first
  82 * stage (0) is to only pin down the blocks we find
  83 * the second stage (1) is to make sure that all the inodes
  84 * we find in the log are created in the subvolume.
  85 *
  86 * The last stage is to deal with directories and links and extents
  87 * and all the other fun semantics
  88 */
  89enum {
  90        LOG_WALK_PIN_ONLY,
  91        LOG_WALK_REPLAY_INODES,
  92        LOG_WALK_REPLAY_DIR_INDEX,
  93        LOG_WALK_REPLAY_ALL,
  94};
  95
  96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  97                           struct btrfs_root *root, struct btrfs_inode *inode,
  98                           int inode_only,
  99                           struct btrfs_log_ctx *ctx);
 100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 101                             struct btrfs_root *root,
 102                             struct btrfs_path *path, u64 objectid);
 103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 104                                       struct btrfs_root *root,
 105                                       struct btrfs_root *log,
 106                                       struct btrfs_path *path,
 107                                       u64 dirid, int del_all);
 108
 109/*
 110 * tree logging is a special write ahead log used to make sure that
 111 * fsyncs and O_SYNCs can happen without doing full tree commits.
 112 *
 113 * Full tree commits are expensive because they require commonly
 114 * modified blocks to be recowed, creating many dirty pages in the
 115 * extent tree an 4x-6x higher write load than ext3.
 116 *
 117 * Instead of doing a tree commit on every fsync, we use the
 118 * key ranges and transaction ids to find items for a given file or directory
 119 * that have changed in this transaction.  Those items are copied into
 120 * a special tree (one per subvolume root), that tree is written to disk
 121 * and then the fsync is considered complete.
 122 *
 123 * After a crash, items are copied out of the log-tree back into the
 124 * subvolume tree.  Any file data extents found are recorded in the extent
 125 * allocation tree, and the log-tree freed.
 126 *
 127 * The log tree is read three times, once to pin down all the extents it is
 128 * using in ram and once, once to create all the inodes logged in the tree
 129 * and once to do all the other items.
 130 */
 131
 132/*
 133 * start a sub transaction and setup the log tree
 134 * this increments the log tree writer count to make the people
 135 * syncing the tree wait for us to finish
 136 */
 137static int start_log_trans(struct btrfs_trans_handle *trans,
 138                           struct btrfs_root *root,
 139                           struct btrfs_log_ctx *ctx)
 140{
 141        struct btrfs_fs_info *fs_info = root->fs_info;
 142        int ret = 0;
 143
 144        mutex_lock(&root->log_mutex);
 145
 146        if (root->log_root) {
 147                if (btrfs_need_log_full_commit(trans)) {
 148                        ret = -EAGAIN;
 149                        goto out;
 150                }
 151
 152                if (!root->log_start_pid) {
 153                        clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 154                        root->log_start_pid = current->pid;
 155                } else if (root->log_start_pid != current->pid) {
 156                        set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 157                }
 158        } else {
 159                mutex_lock(&fs_info->tree_log_mutex);
 160                if (!fs_info->log_root_tree)
 161                        ret = btrfs_init_log_root_tree(trans, fs_info);
 162                mutex_unlock(&fs_info->tree_log_mutex);
 163                if (ret)
 164                        goto out;
 165
 166                ret = btrfs_add_log_tree(trans, root);
 167                if (ret)
 168                        goto out;
 169
 170                set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
 171                clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 172                root->log_start_pid = current->pid;
 173        }
 174
 175        atomic_inc(&root->log_batch);
 176        atomic_inc(&root->log_writers);
 177        if (ctx && !ctx->logging_new_name) {
 178                int index = root->log_transid % 2;
 179                list_add_tail(&ctx->list, &root->log_ctxs[index]);
 180                ctx->log_transid = root->log_transid;
 181        }
 182
 183out:
 184        mutex_unlock(&root->log_mutex);
 185        return ret;
 186}
 187
 188/*
 189 * returns 0 if there was a log transaction running and we were able
 190 * to join, or returns -ENOENT if there were not transactions
 191 * in progress
 192 */
 193static int join_running_log_trans(struct btrfs_root *root)
 194{
 195        int ret = -ENOENT;
 196
 197        if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
 198                return ret;
 199
 200        mutex_lock(&root->log_mutex);
 201        if (root->log_root) {
 202                ret = 0;
 203                atomic_inc(&root->log_writers);
 204        }
 205        mutex_unlock(&root->log_mutex);
 206        return ret;
 207}
 208
 209/*
 210 * This either makes the current running log transaction wait
 211 * until you call btrfs_end_log_trans() or it makes any future
 212 * log transactions wait until you call btrfs_end_log_trans()
 213 */
 214void btrfs_pin_log_trans(struct btrfs_root *root)
 215{
 216        atomic_inc(&root->log_writers);
 217}
 218
 219/*
 220 * indicate we're done making changes to the log tree
 221 * and wake up anyone waiting to do a sync
 222 */
 223void btrfs_end_log_trans(struct btrfs_root *root)
 224{
 225        if (atomic_dec_and_test(&root->log_writers)) {
 226                /* atomic_dec_and_test implies a barrier */
 227                cond_wake_up_nomb(&root->log_writer_wait);
 228        }
 229}
 230
 231static int btrfs_write_tree_block(struct extent_buffer *buf)
 232{
 233        return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
 234                                        buf->start + buf->len - 1);
 235}
 236
 237static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
 238{
 239        filemap_fdatawait_range(buf->pages[0]->mapping,
 240                                buf->start, buf->start + buf->len - 1);
 241}
 242
 243/*
 244 * the walk control struct is used to pass state down the chain when
 245 * processing the log tree.  The stage field tells us which part
 246 * of the log tree processing we are currently doing.  The others
 247 * are state fields used for that specific part
 248 */
 249struct walk_control {
 250        /* should we free the extent on disk when done?  This is used
 251         * at transaction commit time while freeing a log tree
 252         */
 253        int free;
 254
 255        /* should we write out the extent buffer?  This is used
 256         * while flushing the log tree to disk during a sync
 257         */
 258        int write;
 259
 260        /* should we wait for the extent buffer io to finish?  Also used
 261         * while flushing the log tree to disk for a sync
 262         */
 263        int wait;
 264
 265        /* pin only walk, we record which extents on disk belong to the
 266         * log trees
 267         */
 268        int pin;
 269
 270        /* what stage of the replay code we're currently in */
 271        int stage;
 272
 273        /*
 274         * Ignore any items from the inode currently being processed. Needs
 275         * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 276         * the LOG_WALK_REPLAY_INODES stage.
 277         */
 278        bool ignore_cur_inode;
 279
 280        /* the root we are currently replaying */
 281        struct btrfs_root *replay_dest;
 282
 283        /* the trans handle for the current replay */
 284        struct btrfs_trans_handle *trans;
 285
 286        /* the function that gets used to process blocks we find in the
 287         * tree.  Note the extent_buffer might not be up to date when it is
 288         * passed in, and it must be checked or read if you need the data
 289         * inside it
 290         */
 291        int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 292                            struct walk_control *wc, u64 gen, int level);
 293};
 294
 295/*
 296 * process_func used to pin down extents, write them or wait on them
 297 */
 298static int process_one_buffer(struct btrfs_root *log,
 299                              struct extent_buffer *eb,
 300                              struct walk_control *wc, u64 gen, int level)
 301{
 302        struct btrfs_fs_info *fs_info = log->fs_info;
 303        int ret = 0;
 304
 305        /*
 306         * If this fs is mixed then we need to be able to process the leaves to
 307         * pin down any logged extents, so we have to read the block.
 308         */
 309        if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 310                ret = btrfs_read_buffer(eb, gen, level, NULL);
 311                if (ret)
 312                        return ret;
 313        }
 314
 315        if (wc->pin)
 316                ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
 317                                                      eb->len);
 318
 319        if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 320                if (wc->pin && btrfs_header_level(eb) == 0)
 321                        ret = btrfs_exclude_logged_extents(eb);
 322                if (wc->write)
 323                        btrfs_write_tree_block(eb);
 324                if (wc->wait)
 325                        btrfs_wait_tree_block_writeback(eb);
 326        }
 327        return ret;
 328}
 329
 330/*
 331 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 332 * to the src data we are copying out.
 333 *
 334 * root is the tree we are copying into, and path is a scratch
 335 * path for use in this function (it should be released on entry and
 336 * will be released on exit).
 337 *
 338 * If the key is already in the destination tree the existing item is
 339 * overwritten.  If the existing item isn't big enough, it is extended.
 340 * If it is too large, it is truncated.
 341 *
 342 * If the key isn't in the destination yet, a new item is inserted.
 343 */
 344static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 345                                   struct btrfs_root *root,
 346                                   struct btrfs_path *path,
 347                                   struct extent_buffer *eb, int slot,
 348                                   struct btrfs_key *key)
 349{
 350        int ret;
 351        u32 item_size;
 352        u64 saved_i_size = 0;
 353        int save_old_i_size = 0;
 354        unsigned long src_ptr;
 355        unsigned long dst_ptr;
 356        int overwrite_root = 0;
 357        bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 358
 359        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 360                overwrite_root = 1;
 361
 362        item_size = btrfs_item_size_nr(eb, slot);
 363        src_ptr = btrfs_item_ptr_offset(eb, slot);
 364
 365        /* look for the key in the destination tree */
 366        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 367        if (ret < 0)
 368                return ret;
 369
 370        if (ret == 0) {
 371                char *src_copy;
 372                char *dst_copy;
 373                u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 374                                                  path->slots[0]);
 375                if (dst_size != item_size)
 376                        goto insert;
 377
 378                if (item_size == 0) {
 379                        btrfs_release_path(path);
 380                        return 0;
 381                }
 382                dst_copy = kmalloc(item_size, GFP_NOFS);
 383                src_copy = kmalloc(item_size, GFP_NOFS);
 384                if (!dst_copy || !src_copy) {
 385                        btrfs_release_path(path);
 386                        kfree(dst_copy);
 387                        kfree(src_copy);
 388                        return -ENOMEM;
 389                }
 390
 391                read_extent_buffer(eb, src_copy, src_ptr, item_size);
 392
 393                dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 394                read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 395                                   item_size);
 396                ret = memcmp(dst_copy, src_copy, item_size);
 397
 398                kfree(dst_copy);
 399                kfree(src_copy);
 400                /*
 401                 * they have the same contents, just return, this saves
 402                 * us from cowing blocks in the destination tree and doing
 403                 * extra writes that may not have been done by a previous
 404                 * sync
 405                 */
 406                if (ret == 0) {
 407                        btrfs_release_path(path);
 408                        return 0;
 409                }
 410
 411                /*
 412                 * We need to load the old nbytes into the inode so when we
 413                 * replay the extents we've logged we get the right nbytes.
 414                 */
 415                if (inode_item) {
 416                        struct btrfs_inode_item *item;
 417                        u64 nbytes;
 418                        u32 mode;
 419
 420                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 421                                              struct btrfs_inode_item);
 422                        nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 423                        item = btrfs_item_ptr(eb, slot,
 424                                              struct btrfs_inode_item);
 425                        btrfs_set_inode_nbytes(eb, item, nbytes);
 426
 427                        /*
 428                         * If this is a directory we need to reset the i_size to
 429                         * 0 so that we can set it up properly when replaying
 430                         * the rest of the items in this log.
 431                         */
 432                        mode = btrfs_inode_mode(eb, item);
 433                        if (S_ISDIR(mode))
 434                                btrfs_set_inode_size(eb, item, 0);
 435                }
 436        } else if (inode_item) {
 437                struct btrfs_inode_item *item;
 438                u32 mode;
 439
 440                /*
 441                 * New inode, set nbytes to 0 so that the nbytes comes out
 442                 * properly when we replay the extents.
 443                 */
 444                item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 445                btrfs_set_inode_nbytes(eb, item, 0);
 446
 447                /*
 448                 * If this is a directory we need to reset the i_size to 0 so
 449                 * that we can set it up properly when replaying the rest of
 450                 * the items in this log.
 451                 */
 452                mode = btrfs_inode_mode(eb, item);
 453                if (S_ISDIR(mode))
 454                        btrfs_set_inode_size(eb, item, 0);
 455        }
 456insert:
 457        btrfs_release_path(path);
 458        /* try to insert the key into the destination tree */
 459        path->skip_release_on_error = 1;
 460        ret = btrfs_insert_empty_item(trans, root, path,
 461                                      key, item_size);
 462        path->skip_release_on_error = 0;
 463
 464        /* make sure any existing item is the correct size */
 465        if (ret == -EEXIST || ret == -EOVERFLOW) {
 466                u32 found_size;
 467                found_size = btrfs_item_size_nr(path->nodes[0],
 468                                                path->slots[0]);
 469                if (found_size > item_size)
 470                        btrfs_truncate_item(path, item_size, 1);
 471                else if (found_size < item_size)
 472                        btrfs_extend_item(path, item_size - found_size);
 473        } else if (ret) {
 474                return ret;
 475        }
 476        dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 477                                        path->slots[0]);
 478
 479        /* don't overwrite an existing inode if the generation number
 480         * was logged as zero.  This is done when the tree logging code
 481         * is just logging an inode to make sure it exists after recovery.
 482         *
 483         * Also, don't overwrite i_size on directories during replay.
 484         * log replay inserts and removes directory items based on the
 485         * state of the tree found in the subvolume, and i_size is modified
 486         * as it goes
 487         */
 488        if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 489                struct btrfs_inode_item *src_item;
 490                struct btrfs_inode_item *dst_item;
 491
 492                src_item = (struct btrfs_inode_item *)src_ptr;
 493                dst_item = (struct btrfs_inode_item *)dst_ptr;
 494
 495                if (btrfs_inode_generation(eb, src_item) == 0) {
 496                        struct extent_buffer *dst_eb = path->nodes[0];
 497                        const u64 ino_size = btrfs_inode_size(eb, src_item);
 498
 499                        /*
 500                         * For regular files an ino_size == 0 is used only when
 501                         * logging that an inode exists, as part of a directory
 502                         * fsync, and the inode wasn't fsynced before. In this
 503                         * case don't set the size of the inode in the fs/subvol
 504                         * tree, otherwise we would be throwing valid data away.
 505                         */
 506                        if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 507                            S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 508                            ino_size != 0)
 509                                btrfs_set_inode_size(dst_eb, dst_item, ino_size);
 510                        goto no_copy;
 511                }
 512
 513                if (overwrite_root &&
 514                    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 515                    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 516                        save_old_i_size = 1;
 517                        saved_i_size = btrfs_inode_size(path->nodes[0],
 518                                                        dst_item);
 519                }
 520        }
 521
 522        copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 523                           src_ptr, item_size);
 524
 525        if (save_old_i_size) {
 526                struct btrfs_inode_item *dst_item;
 527                dst_item = (struct btrfs_inode_item *)dst_ptr;
 528                btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 529        }
 530
 531        /* make sure the generation is filled in */
 532        if (key->type == BTRFS_INODE_ITEM_KEY) {
 533                struct btrfs_inode_item *dst_item;
 534                dst_item = (struct btrfs_inode_item *)dst_ptr;
 535                if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 536                        btrfs_set_inode_generation(path->nodes[0], dst_item,
 537                                                   trans->transid);
 538                }
 539        }
 540no_copy:
 541        btrfs_mark_buffer_dirty(path->nodes[0]);
 542        btrfs_release_path(path);
 543        return 0;
 544}
 545
 546/*
 547 * simple helper to read an inode off the disk from a given root
 548 * This can only be called for subvolume roots and not for the log
 549 */
 550static noinline struct inode *read_one_inode(struct btrfs_root *root,
 551                                             u64 objectid)
 552{
 553        struct inode *inode;
 554
 555        inode = btrfs_iget(root->fs_info->sb, objectid, root);
 556        if (IS_ERR(inode))
 557                inode = NULL;
 558        return inode;
 559}
 560
 561/* replays a single extent in 'eb' at 'slot' with 'key' into the
 562 * subvolume 'root'.  path is released on entry and should be released
 563 * on exit.
 564 *
 565 * extents in the log tree have not been allocated out of the extent
 566 * tree yet.  So, this completes the allocation, taking a reference
 567 * as required if the extent already exists or creating a new extent
 568 * if it isn't in the extent allocation tree yet.
 569 *
 570 * The extent is inserted into the file, dropping any existing extents
 571 * from the file that overlap the new one.
 572 */
 573static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 574                                      struct btrfs_root *root,
 575                                      struct btrfs_path *path,
 576                                      struct extent_buffer *eb, int slot,
 577                                      struct btrfs_key *key)
 578{
 579        struct btrfs_fs_info *fs_info = root->fs_info;
 580        int found_type;
 581        u64 extent_end;
 582        u64 start = key->offset;
 583        u64 nbytes = 0;
 584        struct btrfs_file_extent_item *item;
 585        struct inode *inode = NULL;
 586        unsigned long size;
 587        int ret = 0;
 588
 589        item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 590        found_type = btrfs_file_extent_type(eb, item);
 591
 592        if (found_type == BTRFS_FILE_EXTENT_REG ||
 593            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 594                nbytes = btrfs_file_extent_num_bytes(eb, item);
 595                extent_end = start + nbytes;
 596
 597                /*
 598                 * We don't add to the inodes nbytes if we are prealloc or a
 599                 * hole.
 600                 */
 601                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 602                        nbytes = 0;
 603        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 604                size = btrfs_file_extent_ram_bytes(eb, item);
 605                nbytes = btrfs_file_extent_ram_bytes(eb, item);
 606                extent_end = ALIGN(start + size,
 607                                   fs_info->sectorsize);
 608        } else {
 609                ret = 0;
 610                goto out;
 611        }
 612
 613        inode = read_one_inode(root, key->objectid);
 614        if (!inode) {
 615                ret = -EIO;
 616                goto out;
 617        }
 618
 619        /*
 620         * first check to see if we already have this extent in the
 621         * file.  This must be done before the btrfs_drop_extents run
 622         * so we don't try to drop this extent.
 623         */
 624        ret = btrfs_lookup_file_extent(trans, root, path,
 625                        btrfs_ino(BTRFS_I(inode)), start, 0);
 626
 627        if (ret == 0 &&
 628            (found_type == BTRFS_FILE_EXTENT_REG ||
 629             found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 630                struct btrfs_file_extent_item cmp1;
 631                struct btrfs_file_extent_item cmp2;
 632                struct btrfs_file_extent_item *existing;
 633                struct extent_buffer *leaf;
 634
 635                leaf = path->nodes[0];
 636                existing = btrfs_item_ptr(leaf, path->slots[0],
 637                                          struct btrfs_file_extent_item);
 638
 639                read_extent_buffer(eb, &cmp1, (unsigned long)item,
 640                                   sizeof(cmp1));
 641                read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 642                                   sizeof(cmp2));
 643
 644                /*
 645                 * we already have a pointer to this exact extent,
 646                 * we don't have to do anything
 647                 */
 648                if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 649                        btrfs_release_path(path);
 650                        goto out;
 651                }
 652        }
 653        btrfs_release_path(path);
 654
 655        /* drop any overlapping extents */
 656        ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 657        if (ret)
 658                goto out;
 659
 660        if (found_type == BTRFS_FILE_EXTENT_REG ||
 661            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 662                u64 offset;
 663                unsigned long dest_offset;
 664                struct btrfs_key ins;
 665
 666                if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 667                    btrfs_fs_incompat(fs_info, NO_HOLES))
 668                        goto update_inode;
 669
 670                ret = btrfs_insert_empty_item(trans, root, path, key,
 671                                              sizeof(*item));
 672                if (ret)
 673                        goto out;
 674                dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 675                                                    path->slots[0]);
 676                copy_extent_buffer(path->nodes[0], eb, dest_offset,
 677                                (unsigned long)item,  sizeof(*item));
 678
 679                ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 680                ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 681                ins.type = BTRFS_EXTENT_ITEM_KEY;
 682                offset = key->offset - btrfs_file_extent_offset(eb, item);
 683
 684                /*
 685                 * Manually record dirty extent, as here we did a shallow
 686                 * file extent item copy and skip normal backref update,
 687                 * but modifying extent tree all by ourselves.
 688                 * So need to manually record dirty extent for qgroup,
 689                 * as the owner of the file extent changed from log tree
 690                 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 691                 */
 692                ret = btrfs_qgroup_trace_extent(trans,
 693                                btrfs_file_extent_disk_bytenr(eb, item),
 694                                btrfs_file_extent_disk_num_bytes(eb, item),
 695                                GFP_NOFS);
 696                if (ret < 0)
 697                        goto out;
 698
 699                if (ins.objectid > 0) {
 700                        struct btrfs_ref ref = { 0 };
 701                        u64 csum_start;
 702                        u64 csum_end;
 703                        LIST_HEAD(ordered_sums);
 704
 705                        /*
 706                         * is this extent already allocated in the extent
 707                         * allocation tree?  If so, just add a reference
 708                         */
 709                        ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 710                                                ins.offset);
 711                        if (ret == 0) {
 712                                btrfs_init_generic_ref(&ref,
 713                                                BTRFS_ADD_DELAYED_REF,
 714                                                ins.objectid, ins.offset, 0);
 715                                btrfs_init_data_ref(&ref,
 716                                                root->root_key.objectid,
 717                                                key->objectid, offset);
 718                                ret = btrfs_inc_extent_ref(trans, &ref);
 719                                if (ret)
 720                                        goto out;
 721                        } else {
 722                                /*
 723                                 * insert the extent pointer in the extent
 724                                 * allocation tree
 725                                 */
 726                                ret = btrfs_alloc_logged_file_extent(trans,
 727                                                root->root_key.objectid,
 728                                                key->objectid, offset, &ins);
 729                                if (ret)
 730                                        goto out;
 731                        }
 732                        btrfs_release_path(path);
 733
 734                        if (btrfs_file_extent_compression(eb, item)) {
 735                                csum_start = ins.objectid;
 736                                csum_end = csum_start + ins.offset;
 737                        } else {
 738                                csum_start = ins.objectid +
 739                                        btrfs_file_extent_offset(eb, item);
 740                                csum_end = csum_start +
 741                                        btrfs_file_extent_num_bytes(eb, item);
 742                        }
 743
 744                        ret = btrfs_lookup_csums_range(root->log_root,
 745                                                csum_start, csum_end - 1,
 746                                                &ordered_sums, 0);
 747                        if (ret)
 748                                goto out;
 749                        /*
 750                         * Now delete all existing cums in the csum root that
 751                         * cover our range. We do this because we can have an
 752                         * extent that is completely referenced by one file
 753                         * extent item and partially referenced by another
 754                         * file extent item (like after using the clone or
 755                         * extent_same ioctls). In this case if we end up doing
 756                         * the replay of the one that partially references the
 757                         * extent first, and we do not do the csum deletion
 758                         * below, we can get 2 csum items in the csum tree that
 759                         * overlap each other. For example, imagine our log has
 760                         * the two following file extent items:
 761                         *
 762                         * key (257 EXTENT_DATA 409600)
 763                         *     extent data disk byte 12845056 nr 102400
 764                         *     extent data offset 20480 nr 20480 ram 102400
 765                         *
 766                         * key (257 EXTENT_DATA 819200)
 767                         *     extent data disk byte 12845056 nr 102400
 768                         *     extent data offset 0 nr 102400 ram 102400
 769                         *
 770                         * Where the second one fully references the 100K extent
 771                         * that starts at disk byte 12845056, and the log tree
 772                         * has a single csum item that covers the entire range
 773                         * of the extent:
 774                         *
 775                         * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 776                         *
 777                         * After the first file extent item is replayed, the
 778                         * csum tree gets the following csum item:
 779                         *
 780                         * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 781                         *
 782                         * Which covers the 20K sub-range starting at offset 20K
 783                         * of our extent. Now when we replay the second file
 784                         * extent item, if we do not delete existing csum items
 785                         * that cover any of its blocks, we end up getting two
 786                         * csum items in our csum tree that overlap each other:
 787                         *
 788                         * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 789                         * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 790                         *
 791                         * Which is a problem, because after this anyone trying
 792                         * to lookup up for the checksum of any block of our
 793                         * extent starting at an offset of 40K or higher, will
 794                         * end up looking at the second csum item only, which
 795                         * does not contain the checksum for any block starting
 796                         * at offset 40K or higher of our extent.
 797                         */
 798                        while (!list_empty(&ordered_sums)) {
 799                                struct btrfs_ordered_sum *sums;
 800                                sums = list_entry(ordered_sums.next,
 801                                                struct btrfs_ordered_sum,
 802                                                list);
 803                                if (!ret)
 804                                        ret = btrfs_del_csums(trans,
 805                                                              fs_info->csum_root,
 806                                                              sums->bytenr,
 807                                                              sums->len);
 808                                if (!ret)
 809                                        ret = btrfs_csum_file_blocks(trans,
 810                                                fs_info->csum_root, sums);
 811                                list_del(&sums->list);
 812                                kfree(sums);
 813                        }
 814                        if (ret)
 815                                goto out;
 816                } else {
 817                        btrfs_release_path(path);
 818                }
 819        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 820                /* inline extents are easy, we just overwrite them */
 821                ret = overwrite_item(trans, root, path, eb, slot, key);
 822                if (ret)
 823                        goto out;
 824        }
 825
 826        ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
 827                                                extent_end - start);
 828        if (ret)
 829                goto out;
 830
 831        inode_add_bytes(inode, nbytes);
 832update_inode:
 833        ret = btrfs_update_inode(trans, root, inode);
 834out:
 835        if (inode)
 836                iput(inode);
 837        return ret;
 838}
 839
 840/*
 841 * when cleaning up conflicts between the directory names in the
 842 * subvolume, directory names in the log and directory names in the
 843 * inode back references, we may have to unlink inodes from directories.
 844 *
 845 * This is a helper function to do the unlink of a specific directory
 846 * item
 847 */
 848static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 849                                      struct btrfs_root *root,
 850                                      struct btrfs_path *path,
 851                                      struct btrfs_inode *dir,
 852                                      struct btrfs_dir_item *di)
 853{
 854        struct inode *inode;
 855        char *name;
 856        int name_len;
 857        struct extent_buffer *leaf;
 858        struct btrfs_key location;
 859        int ret;
 860
 861        leaf = path->nodes[0];
 862
 863        btrfs_dir_item_key_to_cpu(leaf, di, &location);
 864        name_len = btrfs_dir_name_len(leaf, di);
 865        name = kmalloc(name_len, GFP_NOFS);
 866        if (!name)
 867                return -ENOMEM;
 868
 869        read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 870        btrfs_release_path(path);
 871
 872        inode = read_one_inode(root, location.objectid);
 873        if (!inode) {
 874                ret = -EIO;
 875                goto out;
 876        }
 877
 878        ret = link_to_fixup_dir(trans, root, path, location.objectid);
 879        if (ret)
 880                goto out;
 881
 882        ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
 883                        name_len);
 884        if (ret)
 885                goto out;
 886        else
 887                ret = btrfs_run_delayed_items(trans);
 888out:
 889        kfree(name);
 890        iput(inode);
 891        return ret;
 892}
 893
 894/*
 895 * helper function to see if a given name and sequence number found
 896 * in an inode back reference are already in a directory and correctly
 897 * point to this inode
 898 */
 899static noinline int inode_in_dir(struct btrfs_root *root,
 900                                 struct btrfs_path *path,
 901                                 u64 dirid, u64 objectid, u64 index,
 902                                 const char *name, int name_len)
 903{
 904        struct btrfs_dir_item *di;
 905        struct btrfs_key location;
 906        int match = 0;
 907
 908        di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 909                                         index, name, name_len, 0);
 910        if (di && !IS_ERR(di)) {
 911                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 912                if (location.objectid != objectid)
 913                        goto out;
 914        } else
 915                goto out;
 916        btrfs_release_path(path);
 917
 918        di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 919        if (di && !IS_ERR(di)) {
 920                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 921                if (location.objectid != objectid)
 922                        goto out;
 923        } else
 924                goto out;
 925        match = 1;
 926out:
 927        btrfs_release_path(path);
 928        return match;
 929}
 930
 931/*
 932 * helper function to check a log tree for a named back reference in
 933 * an inode.  This is used to decide if a back reference that is
 934 * found in the subvolume conflicts with what we find in the log.
 935 *
 936 * inode backreferences may have multiple refs in a single item,
 937 * during replay we process one reference at a time, and we don't
 938 * want to delete valid links to a file from the subvolume if that
 939 * link is also in the log.
 940 */
 941static noinline int backref_in_log(struct btrfs_root *log,
 942                                   struct btrfs_key *key,
 943                                   u64 ref_objectid,
 944                                   const char *name, int namelen)
 945{
 946        struct btrfs_path *path;
 947        int ret;
 948
 949        path = btrfs_alloc_path();
 950        if (!path)
 951                return -ENOMEM;
 952
 953        ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 954        if (ret < 0) {
 955                goto out;
 956        } else if (ret == 1) {
 957                ret = 0;
 958                goto out;
 959        }
 960
 961        if (key->type == BTRFS_INODE_EXTREF_KEY)
 962                ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
 963                                                       path->slots[0],
 964                                                       ref_objectid,
 965                                                       name, namelen);
 966        else
 967                ret = !!btrfs_find_name_in_backref(path->nodes[0],
 968                                                   path->slots[0],
 969                                                   name, namelen);
 970out:
 971        btrfs_free_path(path);
 972        return ret;
 973}
 974
 975static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 976                                  struct btrfs_root *root,
 977                                  struct btrfs_path *path,
 978                                  struct btrfs_root *log_root,
 979                                  struct btrfs_inode *dir,
 980                                  struct btrfs_inode *inode,
 981                                  u64 inode_objectid, u64 parent_objectid,
 982                                  u64 ref_index, char *name, int namelen,
 983                                  int *search_done)
 984{
 985        int ret;
 986        char *victim_name;
 987        int victim_name_len;
 988        struct extent_buffer *leaf;
 989        struct btrfs_dir_item *di;
 990        struct btrfs_key search_key;
 991        struct btrfs_inode_extref *extref;
 992
 993again:
 994        /* Search old style refs */
 995        search_key.objectid = inode_objectid;
 996        search_key.type = BTRFS_INODE_REF_KEY;
 997        search_key.offset = parent_objectid;
 998        ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 999        if (ret == 0) {
1000                struct btrfs_inode_ref *victim_ref;
1001                unsigned long ptr;
1002                unsigned long ptr_end;
1003
1004                leaf = path->nodes[0];
1005
1006                /* are we trying to overwrite a back ref for the root directory
1007                 * if so, just jump out, we're done
1008                 */
1009                if (search_key.objectid == search_key.offset)
1010                        return 1;
1011
1012                /* check all the names in this back reference to see
1013                 * if they are in the log.  if so, we allow them to stay
1014                 * otherwise they must be unlinked as a conflict
1015                 */
1016                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1017                ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1018                while (ptr < ptr_end) {
1019                        victim_ref = (struct btrfs_inode_ref *)ptr;
1020                        victim_name_len = btrfs_inode_ref_name_len(leaf,
1021                                                                   victim_ref);
1022                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
1023                        if (!victim_name)
1024                                return -ENOMEM;
1025
1026                        read_extent_buffer(leaf, victim_name,
1027                                           (unsigned long)(victim_ref + 1),
1028                                           victim_name_len);
1029
1030                        ret = backref_in_log(log_root, &search_key,
1031                                             parent_objectid, victim_name,
1032                                             victim_name_len);
1033                        if (ret < 0) {
1034                                kfree(victim_name);
1035                                return ret;
1036                        } else if (!ret) {
1037                                inc_nlink(&inode->vfs_inode);
1038                                btrfs_release_path(path);
1039
1040                                ret = btrfs_unlink_inode(trans, root, dir, inode,
1041                                                victim_name, victim_name_len);
1042                                kfree(victim_name);
1043                                if (ret)
1044                                        return ret;
1045                                ret = btrfs_run_delayed_items(trans);
1046                                if (ret)
1047                                        return ret;
1048                                *search_done = 1;
1049                                goto again;
1050                        }
1051                        kfree(victim_name);
1052
1053                        ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1054                }
1055
1056                /*
1057                 * NOTE: we have searched root tree and checked the
1058                 * corresponding ref, it does not need to check again.
1059                 */
1060                *search_done = 1;
1061        }
1062        btrfs_release_path(path);
1063
1064        /* Same search but for extended refs */
1065        extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1066                                           inode_objectid, parent_objectid, 0,
1067                                           0);
1068        if (!IS_ERR_OR_NULL(extref)) {
1069                u32 item_size;
1070                u32 cur_offset = 0;
1071                unsigned long base;
1072                struct inode *victim_parent;
1073
1074                leaf = path->nodes[0];
1075
1076                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1077                base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1078
1079                while (cur_offset < item_size) {
1080                        extref = (struct btrfs_inode_extref *)(base + cur_offset);
1081
1082                        victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1083
1084                        if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1085                                goto next;
1086
1087                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
1088                        if (!victim_name)
1089                                return -ENOMEM;
1090                        read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1091                                           victim_name_len);
1092
1093                        search_key.objectid = inode_objectid;
1094                        search_key.type = BTRFS_INODE_EXTREF_KEY;
1095                        search_key.offset = btrfs_extref_hash(parent_objectid,
1096                                                              victim_name,
1097                                                              victim_name_len);
1098                        ret = backref_in_log(log_root, &search_key,
1099                                             parent_objectid, victim_name,
1100                                             victim_name_len);
1101                        if (ret < 0) {
1102                                return ret;
1103                        } else if (!ret) {
1104                                ret = -ENOENT;
1105                                victim_parent = read_one_inode(root,
1106                                                parent_objectid);
1107                                if (victim_parent) {
1108                                        inc_nlink(&inode->vfs_inode);
1109                                        btrfs_release_path(path);
1110
1111                                        ret = btrfs_unlink_inode(trans, root,
1112                                                        BTRFS_I(victim_parent),
1113                                                        inode,
1114                                                        victim_name,
1115                                                        victim_name_len);
1116                                        if (!ret)
1117                                                ret = btrfs_run_delayed_items(
1118                                                                  trans);
1119                                }
1120                                iput(victim_parent);
1121                                kfree(victim_name);
1122                                if (ret)
1123                                        return ret;
1124                                *search_done = 1;
1125                                goto again;
1126                        }
1127                        kfree(victim_name);
1128next:
1129                        cur_offset += victim_name_len + sizeof(*extref);
1130                }
1131                *search_done = 1;
1132        }
1133        btrfs_release_path(path);
1134
1135        /* look for a conflicting sequence number */
1136        di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1137                                         ref_index, name, namelen, 0);
1138        if (di && !IS_ERR(di)) {
1139                ret = drop_one_dir_item(trans, root, path, dir, di);
1140                if (ret)
1141                        return ret;
1142        }
1143        btrfs_release_path(path);
1144
1145        /* look for a conflicting name */
1146        di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1147                                   name, namelen, 0);
1148        if (di && !IS_ERR(di)) {
1149                ret = drop_one_dir_item(trans, root, path, dir, di);
1150                if (ret)
1151                        return ret;
1152        }
1153        btrfs_release_path(path);
1154
1155        return 0;
1156}
1157
1158static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1159                             u32 *namelen, char **name, u64 *index,
1160                             u64 *parent_objectid)
1161{
1162        struct btrfs_inode_extref *extref;
1163
1164        extref = (struct btrfs_inode_extref *)ref_ptr;
1165
1166        *namelen = btrfs_inode_extref_name_len(eb, extref);
1167        *name = kmalloc(*namelen, GFP_NOFS);
1168        if (*name == NULL)
1169                return -ENOMEM;
1170
1171        read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1172                           *namelen);
1173
1174        if (index)
1175                *index = btrfs_inode_extref_index(eb, extref);
1176        if (parent_objectid)
1177                *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1178
1179        return 0;
1180}
1181
1182static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1183                          u32 *namelen, char **name, u64 *index)
1184{
1185        struct btrfs_inode_ref *ref;
1186
1187        ref = (struct btrfs_inode_ref *)ref_ptr;
1188
1189        *namelen = btrfs_inode_ref_name_len(eb, ref);
1190        *name = kmalloc(*namelen, GFP_NOFS);
1191        if (*name == NULL)
1192                return -ENOMEM;
1193
1194        read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1195
1196        if (index)
1197                *index = btrfs_inode_ref_index(eb, ref);
1198
1199        return 0;
1200}
1201
1202/*
1203 * Take an inode reference item from the log tree and iterate all names from the
1204 * inode reference item in the subvolume tree with the same key (if it exists).
1205 * For any name that is not in the inode reference item from the log tree, do a
1206 * proper unlink of that name (that is, remove its entry from the inode
1207 * reference item and both dir index keys).
1208 */
1209static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1210                                 struct btrfs_root *root,
1211                                 struct btrfs_path *path,
1212                                 struct btrfs_inode *inode,
1213                                 struct extent_buffer *log_eb,
1214                                 int log_slot,
1215                                 struct btrfs_key *key)
1216{
1217        int ret;
1218        unsigned long ref_ptr;
1219        unsigned long ref_end;
1220        struct extent_buffer *eb;
1221
1222again:
1223        btrfs_release_path(path);
1224        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1225        if (ret > 0) {
1226                ret = 0;
1227                goto out;
1228        }
1229        if (ret < 0)
1230                goto out;
1231
1232        eb = path->nodes[0];
1233        ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1234        ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1235        while (ref_ptr < ref_end) {
1236                char *name = NULL;
1237                int namelen;
1238                u64 parent_id;
1239
1240                if (key->type == BTRFS_INODE_EXTREF_KEY) {
1241                        ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1242                                                NULL, &parent_id);
1243                } else {
1244                        parent_id = key->offset;
1245                        ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1246                                             NULL);
1247                }
1248                if (ret)
1249                        goto out;
1250
1251                if (key->type == BTRFS_INODE_EXTREF_KEY)
1252                        ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1253                                                               parent_id, name,
1254                                                               namelen);
1255                else
1256                        ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1257                                                           name, namelen);
1258
1259                if (!ret) {
1260                        struct inode *dir;
1261
1262                        btrfs_release_path(path);
1263                        dir = read_one_inode(root, parent_id);
1264                        if (!dir) {
1265                                ret = -ENOENT;
1266                                kfree(name);
1267                                goto out;
1268                        }
1269                        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1270                                                 inode, name, namelen);
1271                        kfree(name);
1272                        iput(dir);
1273                        if (ret)
1274                                goto out;
1275                        goto again;
1276                }
1277
1278                kfree(name);
1279                ref_ptr += namelen;
1280                if (key->type == BTRFS_INODE_EXTREF_KEY)
1281                        ref_ptr += sizeof(struct btrfs_inode_extref);
1282                else
1283                        ref_ptr += sizeof(struct btrfs_inode_ref);
1284        }
1285        ret = 0;
1286 out:
1287        btrfs_release_path(path);
1288        return ret;
1289}
1290
1291static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1292                                  const u8 ref_type, const char *name,
1293                                  const int namelen)
1294{
1295        struct btrfs_key key;
1296        struct btrfs_path *path;
1297        const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1298        int ret;
1299
1300        path = btrfs_alloc_path();
1301        if (!path)
1302                return -ENOMEM;
1303
1304        key.objectid = btrfs_ino(BTRFS_I(inode));
1305        key.type = ref_type;
1306        if (key.type == BTRFS_INODE_REF_KEY)
1307                key.offset = parent_id;
1308        else
1309                key.offset = btrfs_extref_hash(parent_id, name, namelen);
1310
1311        ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1312        if (ret < 0)
1313                goto out;
1314        if (ret > 0) {
1315                ret = 0;
1316                goto out;
1317        }
1318        if (key.type == BTRFS_INODE_EXTREF_KEY)
1319                ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1320                                path->slots[0], parent_id, name, namelen);
1321        else
1322                ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1323                                                   name, namelen);
1324
1325out:
1326        btrfs_free_path(path);
1327        return ret;
1328}
1329
1330static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1331                    struct inode *dir, struct inode *inode, const char *name,
1332                    int namelen, u64 ref_index)
1333{
1334        struct btrfs_dir_item *dir_item;
1335        struct btrfs_key key;
1336        struct btrfs_path *path;
1337        struct inode *other_inode = NULL;
1338        int ret;
1339
1340        path = btrfs_alloc_path();
1341        if (!path)
1342                return -ENOMEM;
1343
1344        dir_item = btrfs_lookup_dir_item(NULL, root, path,
1345                                         btrfs_ino(BTRFS_I(dir)),
1346                                         name, namelen, 0);
1347        if (!dir_item) {
1348                btrfs_release_path(path);
1349                goto add_link;
1350        } else if (IS_ERR(dir_item)) {
1351                ret = PTR_ERR(dir_item);
1352                goto out;
1353        }
1354
1355        /*
1356         * Our inode's dentry collides with the dentry of another inode which is
1357         * in the log but not yet processed since it has a higher inode number.
1358         * So delete that other dentry.
1359         */
1360        btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1361        btrfs_release_path(path);
1362        other_inode = read_one_inode(root, key.objectid);
1363        if (!other_inode) {
1364                ret = -ENOENT;
1365                goto out;
1366        }
1367        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1368                                 name, namelen);
1369        if (ret)
1370                goto out;
1371        /*
1372         * If we dropped the link count to 0, bump it so that later the iput()
1373         * on the inode will not free it. We will fixup the link count later.
1374         */
1375        if (other_inode->i_nlink == 0)
1376                inc_nlink(other_inode);
1377
1378        ret = btrfs_run_delayed_items(trans);
1379        if (ret)
1380                goto out;
1381add_link:
1382        ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1383                             name, namelen, 0, ref_index);
1384out:
1385        iput(other_inode);
1386        btrfs_free_path(path);
1387
1388        return ret;
1389}
1390
1391/*
1392 * replay one inode back reference item found in the log tree.
1393 * eb, slot and key refer to the buffer and key found in the log tree.
1394 * root is the destination we are replaying into, and path is for temp
1395 * use by this function.  (it should be released on return).
1396 */
1397static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1398                                  struct btrfs_root *root,
1399                                  struct btrfs_root *log,
1400                                  struct btrfs_path *path,
1401                                  struct extent_buffer *eb, int slot,
1402                                  struct btrfs_key *key)
1403{
1404        struct inode *dir = NULL;
1405        struct inode *inode = NULL;
1406        unsigned long ref_ptr;
1407        unsigned long ref_end;
1408        char *name = NULL;
1409        int namelen;
1410        int ret;
1411        int search_done = 0;
1412        int log_ref_ver = 0;
1413        u64 parent_objectid;
1414        u64 inode_objectid;
1415        u64 ref_index = 0;
1416        int ref_struct_size;
1417
1418        ref_ptr = btrfs_item_ptr_offset(eb, slot);
1419        ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1420
1421        if (key->type == BTRFS_INODE_EXTREF_KEY) {
1422                struct btrfs_inode_extref *r;
1423
1424                ref_struct_size = sizeof(struct btrfs_inode_extref);
1425                log_ref_ver = 1;
1426                r = (struct btrfs_inode_extref *)ref_ptr;
1427                parent_objectid = btrfs_inode_extref_parent(eb, r);
1428        } else {
1429                ref_struct_size = sizeof(struct btrfs_inode_ref);
1430                parent_objectid = key->offset;
1431        }
1432        inode_objectid = key->objectid;
1433
1434        /*
1435         * it is possible that we didn't log all the parent directories
1436         * for a given inode.  If we don't find the dir, just don't
1437         * copy the back ref in.  The link count fixup code will take
1438         * care of the rest
1439         */
1440        dir = read_one_inode(root, parent_objectid);
1441        if (!dir) {
1442                ret = -ENOENT;
1443                goto out;
1444        }
1445
1446        inode = read_one_inode(root, inode_objectid);
1447        if (!inode) {
1448                ret = -EIO;
1449                goto out;
1450        }
1451
1452        while (ref_ptr < ref_end) {
1453                if (log_ref_ver) {
1454                        ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1455                                                &ref_index, &parent_objectid);
1456                        /*
1457                         * parent object can change from one array
1458                         * item to another.
1459                         */
1460                        if (!dir)
1461                                dir = read_one_inode(root, parent_objectid);
1462                        if (!dir) {
1463                                ret = -ENOENT;
1464                                goto out;
1465                        }
1466                } else {
1467                        ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1468                                             &ref_index);
1469                }
1470                if (ret)
1471                        goto out;
1472
1473                /* if we already have a perfect match, we're done */
1474                if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1475                                        btrfs_ino(BTRFS_I(inode)), ref_index,
1476                                        name, namelen)) {
1477                        /*
1478                         * look for a conflicting back reference in the
1479                         * metadata. if we find one we have to unlink that name
1480                         * of the file before we add our new link.  Later on, we
1481                         * overwrite any existing back reference, and we don't
1482                         * want to create dangling pointers in the directory.
1483                         */
1484
1485                        if (!search_done) {
1486                                ret = __add_inode_ref(trans, root, path, log,
1487                                                      BTRFS_I(dir),
1488                                                      BTRFS_I(inode),
1489                                                      inode_objectid,
1490                                                      parent_objectid,
1491                                                      ref_index, name, namelen,
1492                                                      &search_done);
1493                                if (ret) {
1494                                        if (ret == 1)
1495                                                ret = 0;
1496                                        goto out;
1497                                }
1498                        }
1499
1500                        /*
1501                         * If a reference item already exists for this inode
1502                         * with the same parent and name, but different index,
1503                         * drop it and the corresponding directory index entries
1504                         * from the parent before adding the new reference item
1505                         * and dir index entries, otherwise we would fail with
1506                         * -EEXIST returned from btrfs_add_link() below.
1507                         */
1508                        ret = btrfs_inode_ref_exists(inode, dir, key->type,
1509                                                     name, namelen);
1510                        if (ret > 0) {
1511                                ret = btrfs_unlink_inode(trans, root,
1512                                                         BTRFS_I(dir),
1513                                                         BTRFS_I(inode),
1514                                                         name, namelen);
1515                                /*
1516                                 * If we dropped the link count to 0, bump it so
1517                                 * that later the iput() on the inode will not
1518                                 * free it. We will fixup the link count later.
1519                                 */
1520                                if (!ret && inode->i_nlink == 0)
1521                                        inc_nlink(inode);
1522                        }
1523                        if (ret < 0)
1524                                goto out;
1525
1526                        /* insert our name */
1527                        ret = add_link(trans, root, dir, inode, name, namelen,
1528                                       ref_index);
1529                        if (ret)
1530                                goto out;
1531
1532                        btrfs_update_inode(trans, root, inode);
1533                }
1534
1535                ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1536                kfree(name);
1537                name = NULL;
1538                if (log_ref_ver) {
1539                        iput(dir);
1540                        dir = NULL;
1541                }
1542        }
1543
1544        /*
1545         * Before we overwrite the inode reference item in the subvolume tree
1546         * with the item from the log tree, we must unlink all names from the
1547         * parent directory that are in the subvolume's tree inode reference
1548         * item, otherwise we end up with an inconsistent subvolume tree where
1549         * dir index entries exist for a name but there is no inode reference
1550         * item with the same name.
1551         */
1552        ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1553                                    key);
1554        if (ret)
1555                goto out;
1556
1557        /* finally write the back reference in the inode */
1558        ret = overwrite_item(trans, root, path, eb, slot, key);
1559out:
1560        btrfs_release_path(path);
1561        kfree(name);
1562        iput(dir);
1563        iput(inode);
1564        return ret;
1565}
1566
1567static int insert_orphan_item(struct btrfs_trans_handle *trans,
1568                              struct btrfs_root *root, u64 ino)
1569{
1570        int ret;
1571
1572        ret = btrfs_insert_orphan_item(trans, root, ino);
1573        if (ret == -EEXIST)
1574                ret = 0;
1575
1576        return ret;
1577}
1578
1579static int count_inode_extrefs(struct btrfs_root *root,
1580                struct btrfs_inode *inode, struct btrfs_path *path)
1581{
1582        int ret = 0;
1583        int name_len;
1584        unsigned int nlink = 0;
1585        u32 item_size;
1586        u32 cur_offset = 0;
1587        u64 inode_objectid = btrfs_ino(inode);
1588        u64 offset = 0;
1589        unsigned long ptr;
1590        struct btrfs_inode_extref *extref;
1591        struct extent_buffer *leaf;
1592
1593        while (1) {
1594                ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1595                                            &extref, &offset);
1596                if (ret)
1597                        break;
1598
1599                leaf = path->nodes[0];
1600                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1601                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1602                cur_offset = 0;
1603
1604                while (cur_offset < item_size) {
1605                        extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1606                        name_len = btrfs_inode_extref_name_len(leaf, extref);
1607
1608                        nlink++;
1609
1610                        cur_offset += name_len + sizeof(*extref);
1611                }
1612
1613                offset++;
1614                btrfs_release_path(path);
1615        }
1616        btrfs_release_path(path);
1617
1618        if (ret < 0 && ret != -ENOENT)
1619                return ret;
1620        return nlink;
1621}
1622
1623static int count_inode_refs(struct btrfs_root *root,
1624                        struct btrfs_inode *inode, struct btrfs_path *path)
1625{
1626        int ret;
1627        struct btrfs_key key;
1628        unsigned int nlink = 0;
1629        unsigned long ptr;
1630        unsigned long ptr_end;
1631        int name_len;
1632        u64 ino = btrfs_ino(inode);
1633
1634        key.objectid = ino;
1635        key.type = BTRFS_INODE_REF_KEY;
1636        key.offset = (u64)-1;
1637
1638        while (1) {
1639                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1640                if (ret < 0)
1641                        break;
1642                if (ret > 0) {
1643                        if (path->slots[0] == 0)
1644                                break;
1645                        path->slots[0]--;
1646                }
1647process_slot:
1648                btrfs_item_key_to_cpu(path->nodes[0], &key,
1649                                      path->slots[0]);
1650                if (key.objectid != ino ||
1651                    key.type != BTRFS_INODE_REF_KEY)
1652                        break;
1653                ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1654                ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1655                                                   path->slots[0]);
1656                while (ptr < ptr_end) {
1657                        struct btrfs_inode_ref *ref;
1658
1659                        ref = (struct btrfs_inode_ref *)ptr;
1660                        name_len = btrfs_inode_ref_name_len(path->nodes[0],
1661                                                            ref);
1662                        ptr = (unsigned long)(ref + 1) + name_len;
1663                        nlink++;
1664                }
1665
1666                if (key.offset == 0)
1667                        break;
1668                if (path->slots[0] > 0) {
1669                        path->slots[0]--;
1670                        goto process_slot;
1671                }
1672                key.offset--;
1673                btrfs_release_path(path);
1674        }
1675        btrfs_release_path(path);
1676
1677        return nlink;
1678}
1679
1680/*
1681 * There are a few corners where the link count of the file can't
1682 * be properly maintained during replay.  So, instead of adding
1683 * lots of complexity to the log code, we just scan the backrefs
1684 * for any file that has been through replay.
1685 *
1686 * The scan will update the link count on the inode to reflect the
1687 * number of back refs found.  If it goes down to zero, the iput
1688 * will free the inode.
1689 */
1690static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1691                                           struct btrfs_root *root,
1692                                           struct inode *inode)
1693{
1694        struct btrfs_path *path;
1695        int ret;
1696        u64 nlink = 0;
1697        u64 ino = btrfs_ino(BTRFS_I(inode));
1698
1699        path = btrfs_alloc_path();
1700        if (!path)
1701                return -ENOMEM;
1702
1703        ret = count_inode_refs(root, BTRFS_I(inode), path);
1704        if (ret < 0)
1705                goto out;
1706
1707        nlink = ret;
1708
1709        ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1710        if (ret < 0)
1711                goto out;
1712
1713        nlink += ret;
1714
1715        ret = 0;
1716
1717        if (nlink != inode->i_nlink) {
1718                set_nlink(inode, nlink);
1719                btrfs_update_inode(trans, root, inode);
1720        }
1721        BTRFS_I(inode)->index_cnt = (u64)-1;
1722
1723        if (inode->i_nlink == 0) {
1724                if (S_ISDIR(inode->i_mode)) {
1725                        ret = replay_dir_deletes(trans, root, NULL, path,
1726                                                 ino, 1);
1727                        if (ret)
1728                                goto out;
1729                }
1730                ret = insert_orphan_item(trans, root, ino);
1731        }
1732
1733out:
1734        btrfs_free_path(path);
1735        return ret;
1736}
1737
1738static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1739                                            struct btrfs_root *root,
1740                                            struct btrfs_path *path)
1741{
1742        int ret;
1743        struct btrfs_key key;
1744        struct inode *inode;
1745
1746        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1747        key.type = BTRFS_ORPHAN_ITEM_KEY;
1748        key.offset = (u64)-1;
1749        while (1) {
1750                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1751                if (ret < 0)
1752                        break;
1753
1754                if (ret == 1) {
1755                        if (path->slots[0] == 0)
1756                                break;
1757                        path->slots[0]--;
1758                }
1759
1760                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1761                if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1762                    key.type != BTRFS_ORPHAN_ITEM_KEY)
1763                        break;
1764
1765                ret = btrfs_del_item(trans, root, path);
1766                if (ret)
1767                        goto out;
1768
1769                btrfs_release_path(path);
1770                inode = read_one_inode(root, key.offset);
1771                if (!inode)
1772                        return -EIO;
1773
1774                ret = fixup_inode_link_count(trans, root, inode);
1775                iput(inode);
1776                if (ret)
1777                        goto out;
1778
1779                /*
1780                 * fixup on a directory may create new entries,
1781                 * make sure we always look for the highset possible
1782                 * offset
1783                 */
1784                key.offset = (u64)-1;
1785        }
1786        ret = 0;
1787out:
1788        btrfs_release_path(path);
1789        return ret;
1790}
1791
1792
1793/*
1794 * record a given inode in the fixup dir so we can check its link
1795 * count when replay is done.  The link count is incremented here
1796 * so the inode won't go away until we check it
1797 */
1798static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1799                                      struct btrfs_root *root,
1800                                      struct btrfs_path *path,
1801                                      u64 objectid)
1802{
1803        struct btrfs_key key;
1804        int ret = 0;
1805        struct inode *inode;
1806
1807        inode = read_one_inode(root, objectid);
1808        if (!inode)
1809                return -EIO;
1810
1811        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1812        key.type = BTRFS_ORPHAN_ITEM_KEY;
1813        key.offset = objectid;
1814
1815        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1816
1817        btrfs_release_path(path);
1818        if (ret == 0) {
1819                if (!inode->i_nlink)
1820                        set_nlink(inode, 1);
1821                else
1822                        inc_nlink(inode);
1823                ret = btrfs_update_inode(trans, root, inode);
1824        } else if (ret == -EEXIST) {
1825                ret = 0;
1826        } else {
1827                BUG(); /* Logic Error */
1828        }
1829        iput(inode);
1830
1831        return ret;
1832}
1833
1834/*
1835 * when replaying the log for a directory, we only insert names
1836 * for inodes that actually exist.  This means an fsync on a directory
1837 * does not implicitly fsync all the new files in it
1838 */
1839static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1840                                    struct btrfs_root *root,
1841                                    u64 dirid, u64 index,
1842                                    char *name, int name_len,
1843                                    struct btrfs_key *location)
1844{
1845        struct inode *inode;
1846        struct inode *dir;
1847        int ret;
1848
1849        inode = read_one_inode(root, location->objectid);
1850        if (!inode)
1851                return -ENOENT;
1852
1853        dir = read_one_inode(root, dirid);
1854        if (!dir) {
1855                iput(inode);
1856                return -EIO;
1857        }
1858
1859        ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1860                        name_len, 1, index);
1861
1862        /* FIXME, put inode into FIXUP list */
1863
1864        iput(inode);
1865        iput(dir);
1866        return ret;
1867}
1868
1869/*
1870 * take a single entry in a log directory item and replay it into
1871 * the subvolume.
1872 *
1873 * if a conflicting item exists in the subdirectory already,
1874 * the inode it points to is unlinked and put into the link count
1875 * fix up tree.
1876 *
1877 * If a name from the log points to a file or directory that does
1878 * not exist in the FS, it is skipped.  fsyncs on directories
1879 * do not force down inodes inside that directory, just changes to the
1880 * names or unlinks in a directory.
1881 *
1882 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1883 * non-existing inode) and 1 if the name was replayed.
1884 */
1885static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1886                                    struct btrfs_root *root,
1887                                    struct btrfs_path *path,
1888                                    struct extent_buffer *eb,
1889                                    struct btrfs_dir_item *di,
1890                                    struct btrfs_key *key)
1891{
1892        char *name;
1893        int name_len;
1894        struct btrfs_dir_item *dst_di;
1895        struct btrfs_key found_key;
1896        struct btrfs_key log_key;
1897        struct inode *dir;
1898        u8 log_type;
1899        int exists;
1900        int ret = 0;
1901        bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1902        bool name_added = false;
1903
1904        dir = read_one_inode(root, key->objectid);
1905        if (!dir)
1906                return -EIO;
1907
1908        name_len = btrfs_dir_name_len(eb, di);
1909        name = kmalloc(name_len, GFP_NOFS);
1910        if (!name) {
1911                ret = -ENOMEM;
1912                goto out;
1913        }
1914
1915        log_type = btrfs_dir_type(eb, di);
1916        read_extent_buffer(eb, name, (unsigned long)(di + 1),
1917                   name_len);
1918
1919        btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1920        exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1921        if (exists == 0)
1922                exists = 1;
1923        else
1924                exists = 0;
1925        btrfs_release_path(path);
1926
1927        if (key->type == BTRFS_DIR_ITEM_KEY) {
1928                dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1929                                       name, name_len, 1);
1930        } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1931                dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1932                                                     key->objectid,
1933                                                     key->offset, name,
1934                                                     name_len, 1);
1935        } else {
1936                /* Corruption */
1937                ret = -EINVAL;
1938                goto out;
1939        }
1940        if (IS_ERR_OR_NULL(dst_di)) {
1941                /* we need a sequence number to insert, so we only
1942                 * do inserts for the BTRFS_DIR_INDEX_KEY types
1943                 */
1944                if (key->type != BTRFS_DIR_INDEX_KEY)
1945                        goto out;
1946                goto insert;
1947        }
1948
1949        btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1950        /* the existing item matches the logged item */
1951        if (found_key.objectid == log_key.objectid &&
1952            found_key.type == log_key.type &&
1953            found_key.offset == log_key.offset &&
1954            btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1955                update_size = false;
1956                goto out;
1957        }
1958
1959        /*
1960         * don't drop the conflicting directory entry if the inode
1961         * for the new entry doesn't exist
1962         */
1963        if (!exists)
1964                goto out;
1965
1966        ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1967        if (ret)
1968                goto out;
1969
1970        if (key->type == BTRFS_DIR_INDEX_KEY)
1971                goto insert;
1972out:
1973        btrfs_release_path(path);
1974        if (!ret && update_size) {
1975                btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1976                ret = btrfs_update_inode(trans, root, dir);
1977        }
1978        kfree(name);
1979        iput(dir);
1980        if (!ret && name_added)
1981                ret = 1;
1982        return ret;
1983
1984insert:
1985        /*
1986         * Check if the inode reference exists in the log for the given name,
1987         * inode and parent inode
1988         */
1989        found_key.objectid = log_key.objectid;
1990        found_key.type = BTRFS_INODE_REF_KEY;
1991        found_key.offset = key->objectid;
1992        ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1993        if (ret < 0) {
1994                goto out;
1995        } else if (ret) {
1996                /* The dentry will be added later. */
1997                ret = 0;
1998                update_size = false;
1999                goto out;
2000        }
2001
2002        found_key.objectid = log_key.objectid;
2003        found_key.type = BTRFS_INODE_EXTREF_KEY;
2004        found_key.offset = key->objectid;
2005        ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2006                             name_len);
2007        if (ret < 0) {
2008                goto out;
2009        } else if (ret) {
2010                /* The dentry will be added later. */
2011                ret = 0;
2012                update_size = false;
2013                goto out;
2014        }
2015        btrfs_release_path(path);
2016        ret = insert_one_name(trans, root, key->objectid, key->offset,
2017                              name, name_len, &log_key);
2018        if (ret && ret != -ENOENT && ret != -EEXIST)
2019                goto out;
2020        if (!ret)
2021                name_added = true;
2022        update_size = false;
2023        ret = 0;
2024        goto out;
2025}
2026
2027/*
2028 * find all the names in a directory item and reconcile them into
2029 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2030 * one name in a directory item, but the same code gets used for
2031 * both directory index types
2032 */
2033static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2034                                        struct btrfs_root *root,
2035                                        struct btrfs_path *path,
2036                                        struct extent_buffer *eb, int slot,
2037                                        struct btrfs_key *key)
2038{
2039        int ret = 0;
2040        u32 item_size = btrfs_item_size_nr(eb, slot);
2041        struct btrfs_dir_item *di;
2042        int name_len;
2043        unsigned long ptr;
2044        unsigned long ptr_end;
2045        struct btrfs_path *fixup_path = NULL;
2046
2047        ptr = btrfs_item_ptr_offset(eb, slot);
2048        ptr_end = ptr + item_size;
2049        while (ptr < ptr_end) {
2050                di = (struct btrfs_dir_item *)ptr;
2051                name_len = btrfs_dir_name_len(eb, di);
2052                ret = replay_one_name(trans, root, path, eb, di, key);
2053                if (ret < 0)
2054                        break;
2055                ptr = (unsigned long)(di + 1);
2056                ptr += name_len;
2057
2058                /*
2059                 * If this entry refers to a non-directory (directories can not
2060                 * have a link count > 1) and it was added in the transaction
2061                 * that was not committed, make sure we fixup the link count of
2062                 * the inode it the entry points to. Otherwise something like
2063                 * the following would result in a directory pointing to an
2064                 * inode with a wrong link that does not account for this dir
2065                 * entry:
2066                 *
2067                 * mkdir testdir
2068                 * touch testdir/foo
2069                 * touch testdir/bar
2070                 * sync
2071                 *
2072                 * ln testdir/bar testdir/bar_link
2073                 * ln testdir/foo testdir/foo_link
2074                 * xfs_io -c "fsync" testdir/bar
2075                 *
2076                 * <power failure>
2077                 *
2078                 * mount fs, log replay happens
2079                 *
2080                 * File foo would remain with a link count of 1 when it has two
2081                 * entries pointing to it in the directory testdir. This would
2082                 * make it impossible to ever delete the parent directory has
2083                 * it would result in stale dentries that can never be deleted.
2084                 */
2085                if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2086                        struct btrfs_key di_key;
2087
2088                        if (!fixup_path) {
2089                                fixup_path = btrfs_alloc_path();
2090                                if (!fixup_path) {
2091                                        ret = -ENOMEM;
2092                                        break;
2093                                }
2094                        }
2095
2096                        btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2097                        ret = link_to_fixup_dir(trans, root, fixup_path,
2098                                                di_key.objectid);
2099                        if (ret)
2100                                break;
2101                }
2102                ret = 0;
2103        }
2104        btrfs_free_path(fixup_path);
2105        return ret;
2106}
2107
2108/*
2109 * directory replay has two parts.  There are the standard directory
2110 * items in the log copied from the subvolume, and range items
2111 * created in the log while the subvolume was logged.
2112 *
2113 * The range items tell us which parts of the key space the log
2114 * is authoritative for.  During replay, if a key in the subvolume
2115 * directory is in a logged range item, but not actually in the log
2116 * that means it was deleted from the directory before the fsync
2117 * and should be removed.
2118 */
2119static noinline int find_dir_range(struct btrfs_root *root,
2120                                   struct btrfs_path *path,
2121                                   u64 dirid, int key_type,
2122                                   u64 *start_ret, u64 *end_ret)
2123{
2124        struct btrfs_key key;
2125        u64 found_end;
2126        struct btrfs_dir_log_item *item;
2127        int ret;
2128        int nritems;
2129
2130        if (*start_ret == (u64)-1)
2131                return 1;
2132
2133        key.objectid = dirid;
2134        key.type = key_type;
2135        key.offset = *start_ret;
2136
2137        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2138        if (ret < 0)
2139                goto out;
2140        if (ret > 0) {
2141                if (path->slots[0] == 0)
2142                        goto out;
2143                path->slots[0]--;
2144        }
2145        if (ret != 0)
2146                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2147
2148        if (key.type != key_type || key.objectid != dirid) {
2149                ret = 1;
2150                goto next;
2151        }
2152        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2153                              struct btrfs_dir_log_item);
2154        found_end = btrfs_dir_log_end(path->nodes[0], item);
2155
2156        if (*start_ret >= key.offset && *start_ret <= found_end) {
2157                ret = 0;
2158                *start_ret = key.offset;
2159                *end_ret = found_end;
2160                goto out;
2161        }
2162        ret = 1;
2163next:
2164        /* check the next slot in the tree to see if it is a valid item */
2165        nritems = btrfs_header_nritems(path->nodes[0]);
2166        path->slots[0]++;
2167        if (path->slots[0] >= nritems) {
2168                ret = btrfs_next_leaf(root, path);
2169                if (ret)
2170                        goto out;
2171        }
2172
2173        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2174
2175        if (key.type != key_type || key.objectid != dirid) {
2176                ret = 1;
2177                goto out;
2178        }
2179        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2180                              struct btrfs_dir_log_item);
2181        found_end = btrfs_dir_log_end(path->nodes[0], item);
2182        *start_ret = key.offset;
2183        *end_ret = found_end;
2184        ret = 0;
2185out:
2186        btrfs_release_path(path);
2187        return ret;
2188}
2189
2190/*
2191 * this looks for a given directory item in the log.  If the directory
2192 * item is not in the log, the item is removed and the inode it points
2193 * to is unlinked
2194 */
2195static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2196                                      struct btrfs_root *root,
2197                                      struct btrfs_root *log,
2198                                      struct btrfs_path *path,
2199                                      struct btrfs_path *log_path,
2200                                      struct inode *dir,
2201                                      struct btrfs_key *dir_key)
2202{
2203        int ret;
2204        struct extent_buffer *eb;
2205        int slot;
2206        u32 item_size;
2207        struct btrfs_dir_item *di;
2208        struct btrfs_dir_item *log_di;
2209        int name_len;
2210        unsigned long ptr;
2211        unsigned long ptr_end;
2212        char *name;
2213        struct inode *inode;
2214        struct btrfs_key location;
2215
2216again:
2217        eb = path->nodes[0];
2218        slot = path->slots[0];
2219        item_size = btrfs_item_size_nr(eb, slot);
2220        ptr = btrfs_item_ptr_offset(eb, slot);
2221        ptr_end = ptr + item_size;
2222        while (ptr < ptr_end) {
2223                di = (struct btrfs_dir_item *)ptr;
2224                name_len = btrfs_dir_name_len(eb, di);
2225                name = kmalloc(name_len, GFP_NOFS);
2226                if (!name) {
2227                        ret = -ENOMEM;
2228                        goto out;
2229                }
2230                read_extent_buffer(eb, name, (unsigned long)(di + 1),
2231                                  name_len);
2232                log_di = NULL;
2233                if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2234                        log_di = btrfs_lookup_dir_item(trans, log, log_path,
2235                                                       dir_key->objectid,
2236                                                       name, name_len, 0);
2237                } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2238                        log_di = btrfs_lookup_dir_index_item(trans, log,
2239                                                     log_path,
2240                                                     dir_key->objectid,
2241                                                     dir_key->offset,
2242                                                     name, name_len, 0);
2243                }
2244                if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2245                        btrfs_dir_item_key_to_cpu(eb, di, &location);
2246                        btrfs_release_path(path);
2247                        btrfs_release_path(log_path);
2248                        inode = read_one_inode(root, location.objectid);
2249                        if (!inode) {
2250                                kfree(name);
2251                                return -EIO;
2252                        }
2253
2254                        ret = link_to_fixup_dir(trans, root,
2255                                                path, location.objectid);
2256                        if (ret) {
2257                                kfree(name);
2258                                iput(inode);
2259                                goto out;
2260                        }
2261
2262                        inc_nlink(inode);
2263                        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2264                                        BTRFS_I(inode), name, name_len);
2265                        if (!ret)
2266                                ret = btrfs_run_delayed_items(trans);
2267                        kfree(name);
2268                        iput(inode);
2269                        if (ret)
2270                                goto out;
2271
2272                        /* there might still be more names under this key
2273                         * check and repeat if required
2274                         */
2275                        ret = btrfs_search_slot(NULL, root, dir_key, path,
2276                                                0, 0);
2277                        if (ret == 0)
2278                                goto again;
2279                        ret = 0;
2280                        goto out;
2281                } else if (IS_ERR(log_di)) {
2282                        kfree(name);
2283                        return PTR_ERR(log_di);
2284                }
2285                btrfs_release_path(log_path);
2286                kfree(name);
2287
2288                ptr = (unsigned long)(di + 1);
2289                ptr += name_len;
2290        }
2291        ret = 0;
2292out:
2293        btrfs_release_path(path);
2294        btrfs_release_path(log_path);
2295        return ret;
2296}
2297
2298static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2299                              struct btrfs_root *root,
2300                              struct btrfs_root *log,
2301                              struct btrfs_path *path,
2302                              const u64 ino)
2303{
2304        struct btrfs_key search_key;
2305        struct btrfs_path *log_path;
2306        int i;
2307        int nritems;
2308        int ret;
2309
2310        log_path = btrfs_alloc_path();
2311        if (!log_path)
2312                return -ENOMEM;
2313
2314        search_key.objectid = ino;
2315        search_key.type = BTRFS_XATTR_ITEM_KEY;
2316        search_key.offset = 0;
2317again:
2318        ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2319        if (ret < 0)
2320                goto out;
2321process_leaf:
2322        nritems = btrfs_header_nritems(path->nodes[0]);
2323        for (i = path->slots[0]; i < nritems; i++) {
2324                struct btrfs_key key;
2325                struct btrfs_dir_item *di;
2326                struct btrfs_dir_item *log_di;
2327                u32 total_size;
2328                u32 cur;
2329
2330                btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2331                if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2332                        ret = 0;
2333                        goto out;
2334                }
2335
2336                di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2337                total_size = btrfs_item_size_nr(path->nodes[0], i);
2338                cur = 0;
2339                while (cur < total_size) {
2340                        u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2341                        u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2342                        u32 this_len = sizeof(*di) + name_len + data_len;
2343                        char *name;
2344
2345                        name = kmalloc(name_len, GFP_NOFS);
2346                        if (!name) {
2347                                ret = -ENOMEM;
2348                                goto out;
2349                        }
2350                        read_extent_buffer(path->nodes[0], name,
2351                                           (unsigned long)(di + 1), name_len);
2352
2353                        log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2354                                                    name, name_len, 0);
2355                        btrfs_release_path(log_path);
2356                        if (!log_di) {
2357                                /* Doesn't exist in log tree, so delete it. */
2358                                btrfs_release_path(path);
2359                                di = btrfs_lookup_xattr(trans, root, path, ino,
2360                                                        name, name_len, -1);
2361                                kfree(name);
2362                                if (IS_ERR(di)) {
2363                                        ret = PTR_ERR(di);
2364                                        goto out;
2365                                }
2366                                ASSERT(di);
2367                                ret = btrfs_delete_one_dir_name(trans, root,
2368                                                                path, di);
2369                                if (ret)
2370                                        goto out;
2371                                btrfs_release_path(path);
2372                                search_key = key;
2373                                goto again;
2374                        }
2375                        kfree(name);
2376                        if (IS_ERR(log_di)) {
2377                                ret = PTR_ERR(log_di);
2378                                goto out;
2379                        }
2380                        cur += this_len;
2381                        di = (struct btrfs_dir_item *)((char *)di + this_len);
2382                }
2383        }
2384        ret = btrfs_next_leaf(root, path);
2385        if (ret > 0)
2386                ret = 0;
2387        else if (ret == 0)
2388                goto process_leaf;
2389out:
2390        btrfs_free_path(log_path);
2391        btrfs_release_path(path);
2392        return ret;
2393}
2394
2395
2396/*
2397 * deletion replay happens before we copy any new directory items
2398 * out of the log or out of backreferences from inodes.  It
2399 * scans the log to find ranges of keys that log is authoritative for,
2400 * and then scans the directory to find items in those ranges that are
2401 * not present in the log.
2402 *
2403 * Anything we don't find in the log is unlinked and removed from the
2404 * directory.
2405 */
2406static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2407                                       struct btrfs_root *root,
2408                                       struct btrfs_root *log,
2409                                       struct btrfs_path *path,
2410                                       u64 dirid, int del_all)
2411{
2412        u64 range_start;
2413        u64 range_end;
2414        int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2415        int ret = 0;
2416        struct btrfs_key dir_key;
2417        struct btrfs_key found_key;
2418        struct btrfs_path *log_path;
2419        struct inode *dir;
2420
2421        dir_key.objectid = dirid;
2422        dir_key.type = BTRFS_DIR_ITEM_KEY;
2423        log_path = btrfs_alloc_path();
2424        if (!log_path)
2425                return -ENOMEM;
2426
2427        dir = read_one_inode(root, dirid);
2428        /* it isn't an error if the inode isn't there, that can happen
2429         * because we replay the deletes before we copy in the inode item
2430         * from the log
2431         */
2432        if (!dir) {
2433                btrfs_free_path(log_path);
2434                return 0;
2435        }
2436again:
2437        range_start = 0;
2438        range_end = 0;
2439        while (1) {
2440                if (del_all)
2441                        range_end = (u64)-1;
2442                else {
2443                        ret = find_dir_range(log, path, dirid, key_type,
2444                                             &range_start, &range_end);
2445                        if (ret != 0)
2446                                break;
2447                }
2448
2449                dir_key.offset = range_start;
2450                while (1) {
2451                        int nritems;
2452                        ret = btrfs_search_slot(NULL, root, &dir_key, path,
2453                                                0, 0);
2454                        if (ret < 0)
2455                                goto out;
2456
2457                        nritems = btrfs_header_nritems(path->nodes[0]);
2458                        if (path->slots[0] >= nritems) {
2459                                ret = btrfs_next_leaf(root, path);
2460                                if (ret == 1)
2461                                        break;
2462                                else if (ret < 0)
2463                                        goto out;
2464                        }
2465                        btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2466                                              path->slots[0]);
2467                        if (found_key.objectid != dirid ||
2468                            found_key.type != dir_key.type)
2469                                goto next_type;
2470
2471                        if (found_key.offset > range_end)
2472                                break;
2473
2474                        ret = check_item_in_log(trans, root, log, path,
2475                                                log_path, dir,
2476                                                &found_key);
2477                        if (ret)
2478                                goto out;
2479                        if (found_key.offset == (u64)-1)
2480                                break;
2481                        dir_key.offset = found_key.offset + 1;
2482                }
2483                btrfs_release_path(path);
2484                if (range_end == (u64)-1)
2485                        break;
2486                range_start = range_end + 1;
2487        }
2488
2489next_type:
2490        ret = 0;
2491        if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2492                key_type = BTRFS_DIR_LOG_INDEX_KEY;
2493                dir_key.type = BTRFS_DIR_INDEX_KEY;
2494                btrfs_release_path(path);
2495                goto again;
2496        }
2497out:
2498        btrfs_release_path(path);
2499        btrfs_free_path(log_path);
2500        iput(dir);
2501        return ret;
2502}
2503
2504/*
2505 * the process_func used to replay items from the log tree.  This
2506 * gets called in two different stages.  The first stage just looks
2507 * for inodes and makes sure they are all copied into the subvolume.
2508 *
2509 * The second stage copies all the other item types from the log into
2510 * the subvolume.  The two stage approach is slower, but gets rid of
2511 * lots of complexity around inodes referencing other inodes that exist
2512 * only in the log (references come from either directory items or inode
2513 * back refs).
2514 */
2515static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2516                             struct walk_control *wc, u64 gen, int level)
2517{
2518        int nritems;
2519        struct btrfs_path *path;
2520        struct btrfs_root *root = wc->replay_dest;
2521        struct btrfs_key key;
2522        int i;
2523        int ret;
2524
2525        ret = btrfs_read_buffer(eb, gen, level, NULL);
2526        if (ret)
2527                return ret;
2528
2529        level = btrfs_header_level(eb);
2530
2531        if (level != 0)
2532                return 0;
2533
2534        path = btrfs_alloc_path();
2535        if (!path)
2536                return -ENOMEM;
2537
2538        nritems = btrfs_header_nritems(eb);
2539        for (i = 0; i < nritems; i++) {
2540                btrfs_item_key_to_cpu(eb, &key, i);
2541
2542                /* inode keys are done during the first stage */
2543                if (key.type == BTRFS_INODE_ITEM_KEY &&
2544                    wc->stage == LOG_WALK_REPLAY_INODES) {
2545                        struct btrfs_inode_item *inode_item;
2546                        u32 mode;
2547
2548                        inode_item = btrfs_item_ptr(eb, i,
2549                                            struct btrfs_inode_item);
2550                        /*
2551                         * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2552                         * and never got linked before the fsync, skip it, as
2553                         * replaying it is pointless since it would be deleted
2554                         * later. We skip logging tmpfiles, but it's always
2555                         * possible we are replaying a log created with a kernel
2556                         * that used to log tmpfiles.
2557                         */
2558                        if (btrfs_inode_nlink(eb, inode_item) == 0) {
2559                                wc->ignore_cur_inode = true;
2560                                continue;
2561                        } else {
2562                                wc->ignore_cur_inode = false;
2563                        }
2564                        ret = replay_xattr_deletes(wc->trans, root, log,
2565                                                   path, key.objectid);
2566                        if (ret)
2567                                break;
2568                        mode = btrfs_inode_mode(eb, inode_item);
2569                        if (S_ISDIR(mode)) {
2570                                ret = replay_dir_deletes(wc->trans,
2571                                         root, log, path, key.objectid, 0);
2572                                if (ret)
2573                                        break;
2574                        }
2575                        ret = overwrite_item(wc->trans, root, path,
2576                                             eb, i, &key);
2577                        if (ret)
2578                                break;
2579
2580                        /*
2581                         * Before replaying extents, truncate the inode to its
2582                         * size. We need to do it now and not after log replay
2583                         * because before an fsync we can have prealloc extents
2584                         * added beyond the inode's i_size. If we did it after,
2585                         * through orphan cleanup for example, we would drop
2586                         * those prealloc extents just after replaying them.
2587                         */
2588                        if (S_ISREG(mode)) {
2589                                struct inode *inode;
2590                                u64 from;
2591
2592                                inode = read_one_inode(root, key.objectid);
2593                                if (!inode) {
2594                                        ret = -EIO;
2595                                        break;
2596                                }
2597                                from = ALIGN(i_size_read(inode),
2598                                             root->fs_info->sectorsize);
2599                                ret = btrfs_drop_extents(wc->trans, root, inode,
2600                                                         from, (u64)-1, 1);
2601                                if (!ret) {
2602                                        /* Update the inode's nbytes. */
2603                                        ret = btrfs_update_inode(wc->trans,
2604                                                                 root, inode);
2605                                }
2606                                iput(inode);
2607                                if (ret)
2608                                        break;
2609                        }
2610
2611                        ret = link_to_fixup_dir(wc->trans, root,
2612                                                path, key.objectid);
2613                        if (ret)
2614                                break;
2615                }
2616
2617                if (wc->ignore_cur_inode)
2618                        continue;
2619
2620                if (key.type == BTRFS_DIR_INDEX_KEY &&
2621                    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2622                        ret = replay_one_dir_item(wc->trans, root, path,
2623                                                  eb, i, &key);
2624                        if (ret)
2625                                break;
2626                }
2627
2628                if (wc->stage < LOG_WALK_REPLAY_ALL)
2629                        continue;
2630
2631                /* these keys are simply copied */
2632                if (key.type == BTRFS_XATTR_ITEM_KEY) {
2633                        ret = overwrite_item(wc->trans, root, path,
2634                                             eb, i, &key);
2635                        if (ret)
2636                                break;
2637                } else if (key.type == BTRFS_INODE_REF_KEY ||
2638                           key.type == BTRFS_INODE_EXTREF_KEY) {
2639                        ret = add_inode_ref(wc->trans, root, log, path,
2640                                            eb, i, &key);
2641                        if (ret && ret != -ENOENT)
2642                                break;
2643                        ret = 0;
2644                } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2645                        ret = replay_one_extent(wc->trans, root, path,
2646                                                eb, i, &key);
2647                        if (ret)
2648                                break;
2649                } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2650                        ret = replay_one_dir_item(wc->trans, root, path,
2651                                                  eb, i, &key);
2652                        if (ret)
2653                                break;
2654                }
2655        }
2656        btrfs_free_path(path);
2657        return ret;
2658}
2659
2660/*
2661 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2662 */
2663static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2664{
2665        struct btrfs_block_group *cache;
2666
2667        cache = btrfs_lookup_block_group(fs_info, start);
2668        if (!cache) {
2669                btrfs_err(fs_info, "unable to find block group for %llu", start);
2670                return;
2671        }
2672
2673        spin_lock(&cache->space_info->lock);
2674        spin_lock(&cache->lock);
2675        cache->reserved -= fs_info->nodesize;
2676        cache->space_info->bytes_reserved -= fs_info->nodesize;
2677        spin_unlock(&cache->lock);
2678        spin_unlock(&cache->space_info->lock);
2679
2680        btrfs_put_block_group(cache);
2681}
2682
2683static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2684                                   struct btrfs_root *root,
2685                                   struct btrfs_path *path, int *level,
2686                                   struct walk_control *wc)
2687{
2688        struct btrfs_fs_info *fs_info = root->fs_info;
2689        u64 bytenr;
2690        u64 ptr_gen;
2691        struct extent_buffer *next;
2692        struct extent_buffer *cur;
2693        u32 blocksize;
2694        int ret = 0;
2695
2696        while (*level > 0) {
2697                struct btrfs_key first_key;
2698
2699                cur = path->nodes[*level];
2700
2701                WARN_ON(btrfs_header_level(cur) != *level);
2702
2703                if (path->slots[*level] >=
2704                    btrfs_header_nritems(cur))
2705                        break;
2706
2707                bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2708                ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2709                btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2710                blocksize = fs_info->nodesize;
2711
2712                next = btrfs_find_create_tree_block(fs_info, bytenr);
2713                if (IS_ERR(next))
2714                        return PTR_ERR(next);
2715
2716                if (*level == 1) {
2717                        ret = wc->process_func(root, next, wc, ptr_gen,
2718                                               *level - 1);
2719                        if (ret) {
2720                                free_extent_buffer(next);
2721                                return ret;
2722                        }
2723
2724                        path->slots[*level]++;
2725                        if (wc->free) {
2726                                ret = btrfs_read_buffer(next, ptr_gen,
2727                                                        *level - 1, &first_key);
2728                                if (ret) {
2729                                        free_extent_buffer(next);
2730                                        return ret;
2731                                }
2732
2733                                if (trans) {
2734                                        btrfs_tree_lock(next);
2735                                        btrfs_set_lock_blocking_write(next);
2736                                        btrfs_clean_tree_block(next);
2737                                        btrfs_wait_tree_block_writeback(next);
2738                                        btrfs_tree_unlock(next);
2739                                        ret = btrfs_pin_reserved_extent(trans,
2740                                                        bytenr, blocksize);
2741                                        if (ret) {
2742                                                free_extent_buffer(next);
2743                                                return ret;
2744                                        }
2745                                } else {
2746                                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747                                                clear_extent_buffer_dirty(next);
2748                                        unaccount_log_buffer(fs_info, bytenr);
2749                                }
2750                        }
2751                        free_extent_buffer(next);
2752                        continue;
2753                }
2754                ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2755                if (ret) {
2756                        free_extent_buffer(next);
2757                        return ret;
2758                }
2759
2760                if (path->nodes[*level-1])
2761                        free_extent_buffer(path->nodes[*level-1]);
2762                path->nodes[*level-1] = next;
2763                *level = btrfs_header_level(next);
2764                path->slots[*level] = 0;
2765                cond_resched();
2766        }
2767        path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2768
2769        cond_resched();
2770        return 0;
2771}
2772
2773static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2774                                 struct btrfs_root *root,
2775                                 struct btrfs_path *path, int *level,
2776                                 struct walk_control *wc)
2777{
2778        struct btrfs_fs_info *fs_info = root->fs_info;
2779        int i;
2780        int slot;
2781        int ret;
2782
2783        for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2784                slot = path->slots[i];
2785                if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2786                        path->slots[i]++;
2787                        *level = i;
2788                        WARN_ON(*level == 0);
2789                        return 0;
2790                } else {
2791                        ret = wc->process_func(root, path->nodes[*level], wc,
2792                                 btrfs_header_generation(path->nodes[*level]),
2793                                 *level);
2794                        if (ret)
2795                                return ret;
2796
2797                        if (wc->free) {
2798                                struct extent_buffer *next;
2799
2800                                next = path->nodes[*level];
2801
2802                                if (trans) {
2803                                        btrfs_tree_lock(next);
2804                                        btrfs_set_lock_blocking_write(next);
2805                                        btrfs_clean_tree_block(next);
2806                                        btrfs_wait_tree_block_writeback(next);
2807                                        btrfs_tree_unlock(next);
2808                                        ret = btrfs_pin_reserved_extent(trans,
2809                                                     path->nodes[*level]->start,
2810                                                     path->nodes[*level]->len);
2811                                        if (ret)
2812                                                return ret;
2813                                } else {
2814                                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2815                                                clear_extent_buffer_dirty(next);
2816
2817                                        unaccount_log_buffer(fs_info,
2818                                                path->nodes[*level]->start);
2819                                }
2820                        }
2821                        free_extent_buffer(path->nodes[*level]);
2822                        path->nodes[*level] = NULL;
2823                        *level = i + 1;
2824                }
2825        }
2826        return 1;
2827}
2828
2829/*
2830 * drop the reference count on the tree rooted at 'snap'.  This traverses
2831 * the tree freeing any blocks that have a ref count of zero after being
2832 * decremented.
2833 */
2834static int walk_log_tree(struct btrfs_trans_handle *trans,
2835                         struct btrfs_root *log, struct walk_control *wc)
2836{
2837        struct btrfs_fs_info *fs_info = log->fs_info;
2838        int ret = 0;
2839        int wret;
2840        int level;
2841        struct btrfs_path *path;
2842        int orig_level;
2843
2844        path = btrfs_alloc_path();
2845        if (!path)
2846                return -ENOMEM;
2847
2848        level = btrfs_header_level(log->node);
2849        orig_level = level;
2850        path->nodes[level] = log->node;
2851        atomic_inc(&log->node->refs);
2852        path->slots[level] = 0;
2853
2854        while (1) {
2855                wret = walk_down_log_tree(trans, log, path, &level, wc);
2856                if (wret > 0)
2857                        break;
2858                if (wret < 0) {
2859                        ret = wret;
2860                        goto out;
2861                }
2862
2863                wret = walk_up_log_tree(trans, log, path, &level, wc);
2864                if (wret > 0)
2865                        break;
2866                if (wret < 0) {
2867                        ret = wret;
2868                        goto out;
2869                }
2870        }
2871
2872        /* was the root node processed? if not, catch it here */
2873        if (path->nodes[orig_level]) {
2874                ret = wc->process_func(log, path->nodes[orig_level], wc,
2875                         btrfs_header_generation(path->nodes[orig_level]),
2876                         orig_level);
2877                if (ret)
2878                        goto out;
2879                if (wc->free) {
2880                        struct extent_buffer *next;
2881
2882                        next = path->nodes[orig_level];
2883
2884                        if (trans) {
2885                                btrfs_tree_lock(next);
2886                                btrfs_set_lock_blocking_write(next);
2887                                btrfs_clean_tree_block(next);
2888                                btrfs_wait_tree_block_writeback(next);
2889                                btrfs_tree_unlock(next);
2890                                ret = btrfs_pin_reserved_extent(trans,
2891                                                next->start, next->len);
2892                                if (ret)
2893                                        goto out;
2894                        } else {
2895                                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2896                                        clear_extent_buffer_dirty(next);
2897                                unaccount_log_buffer(fs_info, next->start);
2898                        }
2899                }
2900        }
2901
2902out:
2903        btrfs_free_path(path);
2904        return ret;
2905}
2906
2907/*
2908 * helper function to update the item for a given subvolumes log root
2909 * in the tree of log roots
2910 */
2911static int update_log_root(struct btrfs_trans_handle *trans,
2912                           struct btrfs_root *log,
2913                           struct btrfs_root_item *root_item)
2914{
2915        struct btrfs_fs_info *fs_info = log->fs_info;
2916        int ret;
2917
2918        if (log->log_transid == 1) {
2919                /* insert root item on the first sync */
2920                ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2921                                &log->root_key, root_item);
2922        } else {
2923                ret = btrfs_update_root(trans, fs_info->log_root_tree,
2924                                &log->root_key, root_item);
2925        }
2926        return ret;
2927}
2928
2929static void wait_log_commit(struct btrfs_root *root, int transid)
2930{
2931        DEFINE_WAIT(wait);
2932        int index = transid % 2;
2933
2934        /*
2935         * we only allow two pending log transactions at a time,
2936         * so we know that if ours is more than 2 older than the
2937         * current transaction, we're done
2938         */
2939        for (;;) {
2940                prepare_to_wait(&root->log_commit_wait[index],
2941                                &wait, TASK_UNINTERRUPTIBLE);
2942
2943                if (!(root->log_transid_committed < transid &&
2944                      atomic_read(&root->log_commit[index])))
2945                        break;
2946
2947                mutex_unlock(&root->log_mutex);
2948                schedule();
2949                mutex_lock(&root->log_mutex);
2950        }
2951        finish_wait(&root->log_commit_wait[index], &wait);
2952}
2953
2954static void wait_for_writer(struct btrfs_root *root)
2955{
2956        DEFINE_WAIT(wait);
2957
2958        for (;;) {
2959                prepare_to_wait(&root->log_writer_wait, &wait,
2960                                TASK_UNINTERRUPTIBLE);
2961                if (!atomic_read(&root->log_writers))
2962                        break;
2963
2964                mutex_unlock(&root->log_mutex);
2965                schedule();
2966                mutex_lock(&root->log_mutex);
2967        }
2968        finish_wait(&root->log_writer_wait, &wait);
2969}
2970
2971static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2972                                        struct btrfs_log_ctx *ctx)
2973{
2974        if (!ctx)
2975                return;
2976
2977        mutex_lock(&root->log_mutex);
2978        list_del_init(&ctx->list);
2979        mutex_unlock(&root->log_mutex);
2980}
2981
2982/* 
2983 * Invoked in log mutex context, or be sure there is no other task which
2984 * can access the list.
2985 */
2986static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2987                                             int index, int error)
2988{
2989        struct btrfs_log_ctx *ctx;
2990        struct btrfs_log_ctx *safe;
2991
2992        list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2993                list_del_init(&ctx->list);
2994                ctx->log_ret = error;
2995        }
2996
2997        INIT_LIST_HEAD(&root->log_ctxs[index]);
2998}
2999
3000/*
3001 * btrfs_sync_log does sends a given tree log down to the disk and
3002 * updates the super blocks to record it.  When this call is done,
3003 * you know that any inodes previously logged are safely on disk only
3004 * if it returns 0.
3005 *
3006 * Any other return value means you need to call btrfs_commit_transaction.
3007 * Some of the edge cases for fsyncing directories that have had unlinks
3008 * or renames done in the past mean that sometimes the only safe
3009 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3010 * that has happened.
3011 */
3012int btrfs_sync_log(struct btrfs_trans_handle *trans,
3013                   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3014{
3015        int index1;
3016        int index2;
3017        int mark;
3018        int ret;
3019        struct btrfs_fs_info *fs_info = root->fs_info;
3020        struct btrfs_root *log = root->log_root;
3021        struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3022        struct btrfs_root_item new_root_item;
3023        int log_transid = 0;
3024        struct btrfs_log_ctx root_log_ctx;
3025        struct blk_plug plug;
3026
3027        mutex_lock(&root->log_mutex);
3028        log_transid = ctx->log_transid;
3029        if (root->log_transid_committed >= log_transid) {
3030                mutex_unlock(&root->log_mutex);
3031                return ctx->log_ret;
3032        }
3033
3034        index1 = log_transid % 2;
3035        if (atomic_read(&root->log_commit[index1])) {
3036                wait_log_commit(root, log_transid);
3037                mutex_unlock(&root->log_mutex);
3038                return ctx->log_ret;
3039        }
3040        ASSERT(log_transid == root->log_transid);
3041        atomic_set(&root->log_commit[index1], 1);
3042
3043        /* wait for previous tree log sync to complete */
3044        if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3045                wait_log_commit(root, log_transid - 1);
3046
3047        while (1) {
3048                int batch = atomic_read(&root->log_batch);
3049                /* when we're on an ssd, just kick the log commit out */
3050                if (!btrfs_test_opt(fs_info, SSD) &&
3051                    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3052                        mutex_unlock(&root->log_mutex);
3053                        schedule_timeout_uninterruptible(1);
3054                        mutex_lock(&root->log_mutex);
3055                }
3056                wait_for_writer(root);
3057                if (batch == atomic_read(&root->log_batch))
3058                        break;
3059        }
3060
3061        /* bail out if we need to do a full commit */
3062        if (btrfs_need_log_full_commit(trans)) {
3063                ret = -EAGAIN;
3064                mutex_unlock(&root->log_mutex);
3065                goto out;
3066        }
3067
3068        if (log_transid % 2 == 0)
3069                mark = EXTENT_DIRTY;
3070        else
3071                mark = EXTENT_NEW;
3072
3073        /* we start IO on  all the marked extents here, but we don't actually
3074         * wait for them until later.
3075         */
3076        blk_start_plug(&plug);
3077        ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3078        if (ret) {
3079                blk_finish_plug(&plug);
3080                btrfs_abort_transaction(trans, ret);
3081                btrfs_set_log_full_commit(trans);
3082                mutex_unlock(&root->log_mutex);
3083                goto out;
3084        }
3085
3086        /*
3087         * We _must_ update under the root->log_mutex in order to make sure we
3088         * have a consistent view of the log root we are trying to commit at
3089         * this moment.
3090         *
3091         * We _must_ copy this into a local copy, because we are not holding the
3092         * log_root_tree->log_mutex yet.  This is important because when we
3093         * commit the log_root_tree we must have a consistent view of the
3094         * log_root_tree when we update the super block to point at the
3095         * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3096         * with the commit and possibly point at the new block which we may not
3097         * have written out.
3098         */
3099        btrfs_set_root_node(&log->root_item, log->node);
3100        memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3101
3102        root->log_transid++;
3103        log->log_transid = root->log_transid;
3104        root->log_start_pid = 0;
3105        /*
3106         * IO has been started, blocks of the log tree have WRITTEN flag set
3107         * in their headers. new modifications of the log will be written to
3108         * new positions. so it's safe to allow log writers to go in.
3109         */
3110        mutex_unlock(&root->log_mutex);
3111
3112        btrfs_init_log_ctx(&root_log_ctx, NULL);
3113
3114        mutex_lock(&log_root_tree->log_mutex);
3115
3116        index2 = log_root_tree->log_transid % 2;
3117        list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3118        root_log_ctx.log_transid = log_root_tree->log_transid;
3119
3120        /*
3121         * Now we are safe to update the log_root_tree because we're under the
3122         * log_mutex, and we're a current writer so we're holding the commit
3123         * open until we drop the log_mutex.
3124         */
3125        ret = update_log_root(trans, log, &new_root_item);
3126        if (ret) {
3127                if (!list_empty(&root_log_ctx.list))
3128                        list_del_init(&root_log_ctx.list);
3129
3130                blk_finish_plug(&plug);
3131                btrfs_set_log_full_commit(trans);
3132
3133                if (ret != -ENOSPC) {
3134                        btrfs_abort_transaction(trans, ret);
3135                        mutex_unlock(&log_root_tree->log_mutex);
3136                        goto out;
3137                }
3138                btrfs_wait_tree_log_extents(log, mark);
3139                mutex_unlock(&log_root_tree->log_mutex);
3140                ret = -EAGAIN;
3141                goto out;
3142        }
3143
3144        if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3145                blk_finish_plug(&plug);
3146                list_del_init(&root_log_ctx.list);
3147                mutex_unlock(&log_root_tree->log_mutex);
3148                ret = root_log_ctx.log_ret;
3149                goto out;
3150        }
3151
3152        index2 = root_log_ctx.log_transid % 2;
3153        if (atomic_read(&log_root_tree->log_commit[index2])) {
3154                blk_finish_plug(&plug);
3155                ret = btrfs_wait_tree_log_extents(log, mark);
3156                wait_log_commit(log_root_tree,
3157                                root_log_ctx.log_transid);
3158                mutex_unlock(&log_root_tree->log_mutex);
3159                if (!ret)
3160                        ret = root_log_ctx.log_ret;
3161                goto out;
3162        }
3163        ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3164        atomic_set(&log_root_tree->log_commit[index2], 1);
3165
3166        if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3167                wait_log_commit(log_root_tree,
3168                                root_log_ctx.log_transid - 1);
3169        }
3170
3171        /*
3172         * now that we've moved on to the tree of log tree roots,
3173         * check the full commit flag again
3174         */
3175        if (btrfs_need_log_full_commit(trans)) {
3176                blk_finish_plug(&plug);
3177                btrfs_wait_tree_log_extents(log, mark);
3178                mutex_unlock(&log_root_tree->log_mutex);
3179                ret = -EAGAIN;
3180                goto out_wake_log_root;
3181        }
3182
3183        ret = btrfs_write_marked_extents(fs_info,
3184                                         &log_root_tree->dirty_log_pages,
3185                                         EXTENT_DIRTY | EXTENT_NEW);
3186        blk_finish_plug(&plug);
3187        if (ret) {
3188                btrfs_set_log_full_commit(trans);
3189                btrfs_abort_transaction(trans, ret);
3190                mutex_unlock(&log_root_tree->log_mutex);
3191                goto out_wake_log_root;
3192        }
3193        ret = btrfs_wait_tree_log_extents(log, mark);
3194        if (!ret)
3195                ret = btrfs_wait_tree_log_extents(log_root_tree,
3196                                                  EXTENT_NEW | EXTENT_DIRTY);
3197        if (ret) {
3198                btrfs_set_log_full_commit(trans);
3199                mutex_unlock(&log_root_tree->log_mutex);
3200                goto out_wake_log_root;
3201        }
3202
3203        btrfs_set_super_log_root(fs_info->super_for_commit,
3204                                 log_root_tree->node->start);
3205        btrfs_set_super_log_root_level(fs_info->super_for_commit,
3206                                       btrfs_header_level(log_root_tree->node));
3207
3208        log_root_tree->log_transid++;
3209        mutex_unlock(&log_root_tree->log_mutex);
3210
3211        /*
3212         * Nobody else is going to jump in and write the ctree
3213         * super here because the log_commit atomic below is protecting
3214         * us.  We must be called with a transaction handle pinning
3215         * the running transaction open, so a full commit can't hop
3216         * in and cause problems either.
3217         */
3218        ret = write_all_supers(fs_info, 1);
3219        if (ret) {
3220                btrfs_set_log_full_commit(trans);
3221                btrfs_abort_transaction(trans, ret);
3222                goto out_wake_log_root;
3223        }
3224
3225        mutex_lock(&root->log_mutex);
3226        if (root->last_log_commit < log_transid)
3227                root->last_log_commit = log_transid;
3228        mutex_unlock(&root->log_mutex);
3229
3230out_wake_log_root:
3231        mutex_lock(&log_root_tree->log_mutex);
3232        btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3233
3234        log_root_tree->log_transid_committed++;
3235        atomic_set(&log_root_tree->log_commit[index2], 0);
3236        mutex_unlock(&log_root_tree->log_mutex);
3237
3238        /*
3239         * The barrier before waitqueue_active (in cond_wake_up) is needed so
3240         * all the updates above are seen by the woken threads. It might not be
3241         * necessary, but proving that seems to be hard.
3242         */
3243        cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3244out:
3245        mutex_lock(&root->log_mutex);
3246        btrfs_remove_all_log_ctxs(root, index1, ret);
3247        root->log_transid_committed++;
3248        atomic_set(&root->log_commit[index1], 0);
3249        mutex_unlock(&root->log_mutex);
3250
3251        /*
3252         * The barrier before waitqueue_active (in cond_wake_up) is needed so
3253         * all the updates above are seen by the woken threads. It might not be
3254         * necessary, but proving that seems to be hard.
3255         */
3256        cond_wake_up(&root->log_commit_wait[index1]);
3257        return ret;
3258}
3259
3260static void free_log_tree(struct btrfs_trans_handle *trans,
3261                          struct btrfs_root *log)
3262{
3263        int ret;
3264        struct walk_control wc = {
3265                .free = 1,
3266                .process_func = process_one_buffer
3267        };
3268
3269        ret = walk_log_tree(trans, log, &wc);
3270        if (ret) {
3271                if (trans)
3272                        btrfs_abort_transaction(trans, ret);
3273                else
3274                        btrfs_handle_fs_error(log->fs_info, ret, NULL);
3275        }
3276
3277        clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3278                          EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3279        extent_io_tree_release(&log->log_csum_range);
3280        btrfs_put_root(log);
3281}
3282
3283/*
3284 * free all the extents used by the tree log.  This should be called
3285 * at commit time of the full transaction
3286 */
3287int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3288{
3289        if (root->log_root) {
3290                free_log_tree(trans, root->log_root);
3291                root->log_root = NULL;
3292                clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3293        }
3294        return 0;
3295}
3296
3297int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3298                             struct btrfs_fs_info *fs_info)
3299{
3300        if (fs_info->log_root_tree) {
3301                free_log_tree(trans, fs_info->log_root_tree);
3302                fs_info->log_root_tree = NULL;
3303        }
3304        return 0;
3305}
3306
3307/*
3308 * Check if an inode was logged in the current transaction. We can't always rely
3309 * on an inode's logged_trans value, because it's an in-memory only field and
3310 * therefore not persisted. This means that its value is lost if the inode gets
3311 * evicted and loaded again from disk (in which case it has a value of 0, and
3312 * certainly it is smaller then any possible transaction ID), when that happens
3313 * the full_sync flag is set in the inode's runtime flags, so on that case we
3314 * assume eviction happened and ignore the logged_trans value, assuming the
3315 * worst case, that the inode was logged before in the current transaction.
3316 */
3317static bool inode_logged(struct btrfs_trans_handle *trans,
3318                         struct btrfs_inode *inode)
3319{
3320        if (inode->logged_trans == trans->transid)
3321                return true;
3322
3323        if (inode->last_trans == trans->transid &&
3324            test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3325            !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3326                return true;
3327
3328        return false;
3329}
3330
3331/*
3332 * If both a file and directory are logged, and unlinks or renames are
3333 * mixed in, we have a few interesting corners:
3334 *
3335 * create file X in dir Y
3336 * link file X to X.link in dir Y
3337 * fsync file X
3338 * unlink file X but leave X.link
3339 * fsync dir Y
3340 *
3341 * After a crash we would expect only X.link to exist.  But file X
3342 * didn't get fsync'd again so the log has back refs for X and X.link.
3343 *
3344 * We solve this by removing directory entries and inode backrefs from the
3345 * log when a file that was logged in the current transaction is
3346 * unlinked.  Any later fsync will include the updated log entries, and
3347 * we'll be able to reconstruct the proper directory items from backrefs.
3348 *
3349 * This optimizations allows us to avoid relogging the entire inode
3350 * or the entire directory.
3351 */
3352int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3353                                 struct btrfs_root *root,
3354                                 const char *name, int name_len,
3355                                 struct btrfs_inode *dir, u64 index)
3356{
3357        struct btrfs_root *log;
3358        struct btrfs_dir_item *di;
3359        struct btrfs_path *path;
3360        int ret;
3361        int err = 0;
3362        int bytes_del = 0;
3363        u64 dir_ino = btrfs_ino(dir);
3364
3365        if (!inode_logged(trans, dir))
3366                return 0;
3367
3368        ret = join_running_log_trans(root);
3369        if (ret)
3370                return 0;
3371
3372        mutex_lock(&dir->log_mutex);
3373
3374        log = root->log_root;
3375        path = btrfs_alloc_path();
3376        if (!path) {
3377                err = -ENOMEM;
3378                goto out_unlock;
3379        }
3380
3381        di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3382                                   name, name_len, -1);
3383        if (IS_ERR(di)) {
3384                err = PTR_ERR(di);
3385                goto fail;
3386        }
3387        if (di) {
3388                ret = btrfs_delete_one_dir_name(trans, log, path, di);
3389                bytes_del += name_len;
3390                if (ret) {
3391                        err = ret;
3392                        goto fail;
3393                }
3394        }
3395        btrfs_release_path(path);
3396        di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3397                                         index, name, name_len, -1);
3398        if (IS_ERR(di)) {
3399                err = PTR_ERR(di);
3400                goto fail;
3401        }
3402        if (di) {
3403                ret = btrfs_delete_one_dir_name(trans, log, path, di);
3404                bytes_del += name_len;
3405                if (ret) {
3406                        err = ret;
3407                        goto fail;
3408                }
3409        }
3410
3411        /* update the directory size in the log to reflect the names
3412         * we have removed
3413         */
3414        if (bytes_del) {
3415                struct btrfs_key key;
3416
3417                key.objectid = dir_ino;
3418                key.offset = 0;
3419                key.type = BTRFS_INODE_ITEM_KEY;
3420                btrfs_release_path(path);
3421
3422                ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3423                if (ret < 0) {
3424                        err = ret;
3425                        goto fail;
3426                }
3427                if (ret == 0) {
3428                        struct btrfs_inode_item *item;
3429                        u64 i_size;
3430
3431                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3432                                              struct btrfs_inode_item);
3433                        i_size = btrfs_inode_size(path->nodes[0], item);
3434                        if (i_size > bytes_del)
3435                                i_size -= bytes_del;
3436                        else
3437                                i_size = 0;
3438                        btrfs_set_inode_size(path->nodes[0], item, i_size);
3439                        btrfs_mark_buffer_dirty(path->nodes[0]);
3440                } else
3441                        ret = 0;
3442                btrfs_release_path(path);
3443        }
3444fail:
3445        btrfs_free_path(path);
3446out_unlock:
3447        mutex_unlock(&dir->log_mutex);
3448        if (err == -ENOSPC) {
3449                btrfs_set_log_full_commit(trans);
3450                err = 0;
3451        } else if (err < 0 && err != -ENOENT) {
3452                /* ENOENT can be returned if the entry hasn't been fsynced yet */
3453                btrfs_abort_transaction(trans, err);
3454        }
3455
3456        btrfs_end_log_trans(root);
3457
3458        return err;
3459}
3460
3461/* see comments for btrfs_del_dir_entries_in_log */
3462int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3463                               struct btrfs_root *root,
3464                               const char *name, int name_len,
3465                               struct btrfs_inode *inode, u64 dirid)
3466{
3467        struct btrfs_root *log;
3468        u64 index;
3469        int ret;
3470
3471        if (!inode_logged(trans, inode))
3472                return 0;
3473
3474        ret = join_running_log_trans(root);
3475        if (ret)
3476                return 0;
3477        log = root->log_root;
3478        mutex_lock(&inode->log_mutex);
3479
3480        ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3481                                  dirid, &index);
3482        mutex_unlock(&inode->log_mutex);
3483        if (ret == -ENOSPC) {
3484                btrfs_set_log_full_commit(trans);
3485                ret = 0;
3486        } else if (ret < 0 && ret != -ENOENT)
3487                btrfs_abort_transaction(trans, ret);
3488        btrfs_end_log_trans(root);
3489
3490        return ret;
3491}
3492
3493/*
3494 * creates a range item in the log for 'dirid'.  first_offset and
3495 * last_offset tell us which parts of the key space the log should
3496 * be considered authoritative for.
3497 */
3498static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3499                                       struct btrfs_root *log,
3500                                       struct btrfs_path *path,
3501                                       int key_type, u64 dirid,
3502                                       u64 first_offset, u64 last_offset)
3503{
3504        int ret;
3505        struct btrfs_key key;
3506        struct btrfs_dir_log_item *item;
3507
3508        key.objectid = dirid;
3509        key.offset = first_offset;
3510        if (key_type == BTRFS_DIR_ITEM_KEY)
3511                key.type = BTRFS_DIR_LOG_ITEM_KEY;
3512        else
3513                key.type = BTRFS_DIR_LOG_INDEX_KEY;
3514        ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3515        if (ret)
3516                return ret;
3517
3518        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3519                              struct btrfs_dir_log_item);
3520        btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3521        btrfs_mark_buffer_dirty(path->nodes[0]);
3522        btrfs_release_path(path);
3523        return 0;
3524}
3525
3526/*
3527 * log all the items included in the current transaction for a given
3528 * directory.  This also creates the range items in the log tree required
3529 * to replay anything deleted before the fsync
3530 */
3531static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3532                          struct btrfs_root *root, struct btrfs_inode *inode,
3533                          struct btrfs_path *path,
3534                          struct btrfs_path *dst_path, int key_type,
3535                          struct btrfs_log_ctx *ctx,
3536                          u64 min_offset, u64 *last_offset_ret)
3537{
3538        struct btrfs_key min_key;
3539        struct btrfs_root *log = root->log_root;
3540        struct extent_buffer *src;
3541        int err = 0;
3542        int ret;
3543        int i;
3544        int nritems;
3545        u64 first_offset = min_offset;
3546        u64 last_offset = (u64)-1;
3547        u64 ino = btrfs_ino(inode);
3548
3549        log = root->log_root;
3550
3551        min_key.objectid = ino;
3552        min_key.type = key_type;
3553        min_key.offset = min_offset;
3554
3555        ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3556
3557        /*
3558         * we didn't find anything from this transaction, see if there
3559         * is anything at all
3560         */
3561        if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3562                min_key.objectid = ino;
3563                min_key.type = key_type;
3564                min_key.offset = (u64)-1;
3565                btrfs_release_path(path);
3566                ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3567                if (ret < 0) {
3568                        btrfs_release_path(path);
3569                        return ret;
3570                }
3571                ret = btrfs_previous_item(root, path, ino, key_type);
3572
3573                /* if ret == 0 there are items for this type,
3574                 * create a range to tell us the last key of this type.
3575                 * otherwise, there are no items in this directory after
3576                 * *min_offset, and we create a range to indicate that.
3577                 */
3578                if (ret == 0) {
3579                        struct btrfs_key tmp;
3580                        btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3581                                              path->slots[0]);
3582                        if (key_type == tmp.type)
3583                                first_offset = max(min_offset, tmp.offset) + 1;
3584                }
3585                goto done;
3586        }
3587
3588        /* go backward to find any previous key */
3589        ret = btrfs_previous_item(root, path, ino, key_type);
3590        if (ret == 0) {
3591                struct btrfs_key tmp;
3592                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3593                if (key_type == tmp.type) {
3594                        first_offset = tmp.offset;
3595                        ret = overwrite_item(trans, log, dst_path,
3596                                             path->nodes[0], path->slots[0],
3597                                             &tmp);
3598                        if (ret) {
3599                                err = ret;
3600                                goto done;
3601                        }
3602                }
3603        }
3604        btrfs_release_path(path);
3605
3606        /*
3607         * Find the first key from this transaction again.  See the note for
3608         * log_new_dir_dentries, if we're logging a directory recursively we
3609         * won't be holding its i_mutex, which means we can modify the directory
3610         * while we're logging it.  If we remove an entry between our first
3611         * search and this search we'll not find the key again and can just
3612         * bail.
3613         */
3614search:
3615        ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3616        if (ret != 0)
3617                goto done;
3618
3619        /*
3620         * we have a block from this transaction, log every item in it
3621         * from our directory
3622         */
3623        while (1) {
3624                struct btrfs_key tmp;
3625                src = path->nodes[0];
3626                nritems = btrfs_header_nritems(src);
3627                for (i = path->slots[0]; i < nritems; i++) {
3628                        struct btrfs_dir_item *di;
3629
3630                        btrfs_item_key_to_cpu(src, &min_key, i);
3631
3632                        if (min_key.objectid != ino || min_key.type != key_type)
3633                                goto done;
3634
3635                        if (need_resched()) {
3636                                btrfs_release_path(path);
3637                                cond_resched();
3638                                goto search;
3639                        }
3640
3641                        ret = overwrite_item(trans, log, dst_path, src, i,
3642                                             &min_key);
3643                        if (ret) {
3644                                err = ret;
3645                                goto done;
3646                        }
3647
3648                        /*
3649                         * We must make sure that when we log a directory entry,
3650                         * the corresponding inode, after log replay, has a
3651                         * matching link count. For example:
3652                         *
3653                         * touch foo
3654                         * mkdir mydir
3655                         * sync
3656                         * ln foo mydir/bar
3657                         * xfs_io -c "fsync" mydir
3658                         * <crash>
3659                         * <mount fs and log replay>
3660                         *
3661                         * Would result in a fsync log that when replayed, our
3662                         * file inode would have a link count of 1, but we get
3663                         * two directory entries pointing to the same inode.
3664                         * After removing one of the names, it would not be
3665                         * possible to remove the other name, which resulted
3666                         * always in stale file handle errors, and would not
3667                         * be possible to rmdir the parent directory, since
3668                         * its i_size could never decrement to the value
3669                         * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3670                         */
3671                        di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3672                        btrfs_dir_item_key_to_cpu(src, di, &tmp);
3673                        if (ctx &&
3674                            (btrfs_dir_transid(src, di) == trans->transid ||
3675                             btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3676                            tmp.type != BTRFS_ROOT_ITEM_KEY)
3677                                ctx->log_new_dentries = true;
3678                }
3679                path->slots[0] = nritems;
3680
3681                /*
3682                 * look ahead to the next item and see if it is also
3683                 * from this directory and from this transaction
3684                 */
3685                ret = btrfs_next_leaf(root, path);
3686                if (ret) {
3687                        if (ret == 1)
3688                                last_offset = (u64)-1;
3689                        else
3690                                err = ret;
3691                        goto done;
3692                }
3693                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3694                if (tmp.objectid != ino || tmp.type != key_type) {
3695                        last_offset = (u64)-1;
3696                        goto done;
3697                }
3698                if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3699                        ret = overwrite_item(trans, log, dst_path,
3700                                             path->nodes[0], path->slots[0],
3701                                             &tmp);
3702                        if (ret)
3703                                err = ret;
3704                        else
3705                                last_offset = tmp.offset;
3706                        goto done;
3707                }
3708        }
3709done:
3710        btrfs_release_path(path);
3711        btrfs_release_path(dst_path);
3712
3713        if (err == 0) {
3714                *last_offset_ret = last_offset;
3715                /*
3716                 * insert the log range keys to indicate where the log
3717                 * is valid
3718                 */
3719                ret = insert_dir_log_key(trans, log, path, key_type,
3720                                         ino, first_offset, last_offset);
3721                if (ret)
3722                        err = ret;
3723        }
3724        return err;
3725}
3726
3727/*
3728 * logging directories is very similar to logging inodes, We find all the items
3729 * from the current transaction and write them to the log.
3730 *
3731 * The recovery code scans the directory in the subvolume, and if it finds a
3732 * key in the range logged that is not present in the log tree, then it means
3733 * that dir entry was unlinked during the transaction.
3734 *
3735 * In order for that scan to work, we must include one key smaller than
3736 * the smallest logged by this transaction and one key larger than the largest
3737 * key logged by this transaction.
3738 */
3739static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3740                          struct btrfs_root *root, struct btrfs_inode *inode,
3741                          struct btrfs_path *path,
3742                          struct btrfs_path *dst_path,
3743                          struct btrfs_log_ctx *ctx)
3744{
3745        u64 min_key;
3746        u64 max_key;
3747        int ret;
3748        int key_type = BTRFS_DIR_ITEM_KEY;
3749
3750again:
3751        min_key = 0;
3752        max_key = 0;
3753        while (1) {
3754                ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3755                                ctx, min_key, &max_key);
3756                if (ret)
3757                        return ret;
3758                if (max_key == (u64)-1)
3759                        break;
3760                min_key = max_key + 1;
3761        }
3762
3763        if (key_type == BTRFS_DIR_ITEM_KEY) {
3764                key_type = BTRFS_DIR_INDEX_KEY;
3765                goto again;
3766        }
3767        return 0;
3768}
3769
3770/*
3771 * a helper function to drop items from the log before we relog an
3772 * inode.  max_key_type indicates the highest item type to remove.
3773 * This cannot be run for file data extents because it does not
3774 * free the extents they point to.
3775 */
3776static int drop_objectid_items(struct btrfs_trans_handle *trans,
3777                                  struct btrfs_root *log,
3778                                  struct btrfs_path *path,
3779                                  u64 objectid, int max_key_type)
3780{
3781        int ret;
3782        struct btrfs_key key;
3783        struct btrfs_key found_key;
3784        int start_slot;
3785
3786        key.objectid = objectid;
3787        key.type = max_key_type;
3788        key.offset = (u64)-1;
3789
3790        while (1) {
3791                ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3792                BUG_ON(ret == 0); /* Logic error */
3793                if (ret < 0)
3794                        break;
3795
3796                if (path->slots[0] == 0)
3797                        break;
3798
3799                path->slots[0]--;
3800                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3801                                      path->slots[0]);
3802
3803                if (found_key.objectid != objectid)
3804                        break;
3805
3806                found_key.offset = 0;
3807                found_key.type = 0;
3808                ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3809                if (ret < 0)
3810                        break;
3811
3812                ret = btrfs_del_items(trans, log, path, start_slot,
3813                                      path->slots[0] - start_slot + 1);
3814                /*
3815                 * If start slot isn't 0 then we don't need to re-search, we've
3816                 * found the last guy with the objectid in this tree.
3817                 */
3818                if (ret || start_slot != 0)
3819                        break;
3820                btrfs_release_path(path);
3821        }
3822        btrfs_release_path(path);
3823        if (ret > 0)
3824                ret = 0;
3825        return ret;
3826}
3827
3828static void fill_inode_item(struct btrfs_trans_handle *trans,
3829                            struct extent_buffer *leaf,
3830                            struct btrfs_inode_item *item,
3831                            struct inode *inode, int log_inode_only,
3832                            u64 logged_isize)
3833{
3834        struct btrfs_map_token token;
3835
3836        btrfs_init_map_token(&token, leaf);
3837
3838        if (log_inode_only) {
3839                /* set the generation to zero so the recover code
3840                 * can tell the difference between an logging
3841                 * just to say 'this inode exists' and a logging
3842                 * to say 'update this inode with these values'
3843                 */
3844                btrfs_set_token_inode_generation(&token, item, 0);
3845                btrfs_set_token_inode_size(&token, item, logged_isize);
3846        } else {
3847                btrfs_set_token_inode_generation(&token, item,
3848                                                 BTRFS_I(inode)->generation);
3849                btrfs_set_token_inode_size(&token, item, inode->i_size);
3850        }
3851
3852        btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3853        btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3854        btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3855        btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3856
3857        btrfs_set_token_timespec_sec(&token, &item->atime,
3858                                     inode->i_atime.tv_sec);
3859        btrfs_set_token_timespec_nsec(&token, &item->atime,
3860                                      inode->i_atime.tv_nsec);
3861
3862        btrfs_set_token_timespec_sec(&token, &item->mtime,
3863                                     inode->i_mtime.tv_sec);
3864        btrfs_set_token_timespec_nsec(&token, &item->mtime,
3865                                      inode->i_mtime.tv_nsec);
3866
3867        btrfs_set_token_timespec_sec(&token, &item->ctime,
3868                                     inode->i_ctime.tv_sec);
3869        btrfs_set_token_timespec_nsec(&token, &item->ctime,
3870                                      inode->i_ctime.tv_nsec);
3871
3872        btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3873
3874        btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3875        btrfs_set_token_inode_transid(&token, item, trans->transid);
3876        btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3877        btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3878        btrfs_set_token_inode_block_group(&token, item, 0);
3879}
3880
3881static int log_inode_item(struct btrfs_trans_handle *trans,
3882                          struct btrfs_root *log, struct btrfs_path *path,
3883                          struct btrfs_inode *inode)
3884{
3885        struct btrfs_inode_item *inode_item;
3886        int ret;
3887
3888        ret = btrfs_insert_empty_item(trans, log, path,
3889                                      &inode->location, sizeof(*inode_item));
3890        if (ret && ret != -EEXIST)
3891                return ret;
3892        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3893                                    struct btrfs_inode_item);
3894        fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3895                        0, 0);
3896        btrfs_release_path(path);
3897        return 0;
3898}
3899
3900static int log_csums(struct btrfs_trans_handle *trans,
3901                     struct btrfs_inode *inode,
3902                     struct btrfs_root *log_root,
3903                     struct btrfs_ordered_sum *sums)
3904{
3905        const u64 lock_end = sums->bytenr + sums->len - 1;
3906        struct extent_state *cached_state = NULL;
3907        int ret;
3908
3909        /*
3910         * If this inode was not used for reflink operations in the current
3911         * transaction with new extents, then do the fast path, no need to
3912         * worry about logging checksum items with overlapping ranges.
3913         */
3914        if (inode->last_reflink_trans < trans->transid)
3915                return btrfs_csum_file_blocks(trans, log_root, sums);
3916
3917        /*
3918         * Serialize logging for checksums. This is to avoid racing with the
3919         * same checksum being logged by another task that is logging another
3920         * file which happens to refer to the same extent as well. Such races
3921         * can leave checksum items in the log with overlapping ranges.
3922         */
3923        ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3924                               lock_end, &cached_state);
3925        if (ret)
3926                return ret;
3927        /*
3928         * Due to extent cloning, we might have logged a csum item that covers a
3929         * subrange of a cloned extent, and later we can end up logging a csum
3930         * item for a larger subrange of the same extent or the entire range.
3931         * This would leave csum items in the log tree that cover the same range
3932         * and break the searches for checksums in the log tree, resulting in
3933         * some checksums missing in the fs/subvolume tree. So just delete (or
3934         * trim and adjust) any existing csum items in the log for this range.
3935         */
3936        ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3937        if (!ret)
3938                ret = btrfs_csum_file_blocks(trans, log_root, sums);
3939
3940        unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3941                             &cached_state);
3942
3943        return ret;
3944}
3945
3946static noinline int copy_items(struct btrfs_trans_handle *trans,
3947                               struct btrfs_inode *inode,
3948                               struct btrfs_path *dst_path,
3949                               struct btrfs_path *src_path,
3950                               int start_slot, int nr, int inode_only,
3951                               u64 logged_isize)
3952{
3953        struct btrfs_fs_info *fs_info = trans->fs_info;
3954        unsigned long src_offset;
3955        unsigned long dst_offset;
3956        struct btrfs_root *log = inode->root->log_root;
3957        struct btrfs_file_extent_item *extent;
3958        struct btrfs_inode_item *inode_item;
3959        struct extent_buffer *src = src_path->nodes[0];
3960        int ret;
3961        struct btrfs_key *ins_keys;
3962        u32 *ins_sizes;
3963        char *ins_data;
3964        int i;
3965        struct list_head ordered_sums;
3966        int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3967
3968        INIT_LIST_HEAD(&ordered_sums);
3969
3970        ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3971                           nr * sizeof(u32), GFP_NOFS);
3972        if (!ins_data)
3973                return -ENOMEM;
3974
3975        ins_sizes = (u32 *)ins_data;
3976        ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3977
3978        for (i = 0; i < nr; i++) {
3979                ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3980                btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3981        }
3982        ret = btrfs_insert_empty_items(trans, log, dst_path,
3983                                       ins_keys, ins_sizes, nr);
3984        if (ret) {
3985                kfree(ins_data);
3986                return ret;
3987        }
3988
3989        for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3990                dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3991                                                   dst_path->slots[0]);
3992
3993                src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3994
3995                if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3996                        inode_item = btrfs_item_ptr(dst_path->nodes[0],
3997                                                    dst_path->slots[0],
3998                                                    struct btrfs_inode_item);
3999                        fill_inode_item(trans, dst_path->nodes[0], inode_item,
4000                                        &inode->vfs_inode,
4001                                        inode_only == LOG_INODE_EXISTS,
4002                                        logged_isize);
4003                } else {
4004                        copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4005                                           src_offset, ins_sizes[i]);
4006                }
4007
4008                /* take a reference on file data extents so that truncates
4009                 * or deletes of this inode don't have to relog the inode
4010                 * again
4011                 */
4012                if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4013                    !skip_csum) {
4014                        int found_type;
4015                        extent = btrfs_item_ptr(src, start_slot + i,
4016                                                struct btrfs_file_extent_item);
4017
4018                        if (btrfs_file_extent_generation(src, extent) < trans->transid)
4019                                continue;
4020
4021                        found_type = btrfs_file_extent_type(src, extent);
4022                        if (found_type == BTRFS_FILE_EXTENT_REG) {
4023                                u64 ds, dl, cs, cl;
4024                                ds = btrfs_file_extent_disk_bytenr(src,
4025                                                                extent);
4026                                /* ds == 0 is a hole */
4027                                if (ds == 0)
4028                                        continue;
4029
4030                                dl = btrfs_file_extent_disk_num_bytes(src,
4031                                                                extent);
4032                                cs = btrfs_file_extent_offset(src, extent);
4033                                cl = btrfs_file_extent_num_bytes(src,
4034                                                                extent);
4035                                if (btrfs_file_extent_compression(src,
4036                                                                  extent)) {
4037                                        cs = 0;
4038                                        cl = dl;
4039                                }
4040
4041                                ret = btrfs_lookup_csums_range(
4042                                                fs_info->csum_root,
4043                                                ds + cs, ds + cs + cl - 1,
4044                                                &ordered_sums, 0);
4045                                if (ret)
4046                                        break;
4047                        }
4048                }
4049        }
4050
4051        btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4052        btrfs_release_path(dst_path);
4053        kfree(ins_data);
4054
4055        /*
4056         * we have to do this after the loop above to avoid changing the
4057         * log tree while trying to change the log tree.
4058         */
4059        while (!list_empty(&ordered_sums)) {
4060                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4061                                                   struct btrfs_ordered_sum,
4062                                                   list);
4063                if (!ret)
4064                        ret = log_csums(trans, inode, log, sums);
4065                list_del(&sums->list);
4066                kfree(sums);
4067        }
4068
4069        return ret;
4070}
4071
4072static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4073{
4074        struct extent_map *em1, *em2;
4075
4076        em1 = list_entry(a, struct extent_map, list);
4077        em2 = list_entry(b, struct extent_map, list);
4078
4079        if (em1->start < em2->start)
4080                return -1;
4081        else if (em1->start > em2->start)
4082                return 1;
4083        return 0;
4084}
4085
4086static int log_extent_csums(struct btrfs_trans_handle *trans,
4087                            struct btrfs_inode *inode,
4088                            struct btrfs_root *log_root,
4089                            const struct extent_map *em,
4090                            struct btrfs_log_ctx *ctx)
4091{
4092        struct btrfs_ordered_extent *ordered;
4093        u64 csum_offset;
4094        u64 csum_len;
4095        u64 mod_start = em->mod_start;
4096        u64 mod_len = em->mod_len;
4097        LIST_HEAD(ordered_sums);
4098        int ret = 0;
4099
4100        if (inode->flags & BTRFS_INODE_NODATASUM ||
4101            test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4102            em->block_start == EXTENT_MAP_HOLE)
4103                return 0;
4104
4105        list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4106                const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4107                const u64 mod_end = mod_start + mod_len;
4108                struct btrfs_ordered_sum *sums;
4109
4110                if (mod_len == 0)
4111                        break;
4112
4113                if (ordered_end <= mod_start)
4114                        continue;
4115                if (mod_end <= ordered->file_offset)
4116                        break;
4117
4118                /*
4119                 * We are going to copy all the csums on this ordered extent, so
4120                 * go ahead and adjust mod_start and mod_len in case this ordered
4121                 * extent has already been logged.
4122                 */
4123                if (ordered->file_offset > mod_start) {
4124                        if (ordered_end >= mod_end)
4125                                mod_len = ordered->file_offset - mod_start;
4126                        /*
4127                         * If we have this case
4128                         *
4129                         * |--------- logged extent ---------|
4130                         *       |----- ordered extent ----|
4131                         *
4132                         * Just don't mess with mod_start and mod_len, we'll
4133                         * just end up logging more csums than we need and it
4134                         * will be ok.
4135                         */
4136                } else {
4137                        if (ordered_end < mod_end) {
4138                                mod_len = mod_end - ordered_end;
4139                                mod_start = ordered_end;
4140                        } else {
4141                                mod_len = 0;
4142                        }
4143                }
4144
4145                /*
4146                 * To keep us from looping for the above case of an ordered
4147                 * extent that falls inside of the logged extent.
4148                 */
4149                if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4150                        continue;
4151
4152                list_for_each_entry(sums, &ordered->list, list) {
4153                        ret = log_csums(trans, inode, log_root, sums);
4154                        if (ret)
4155                                return ret;
4156                }
4157        }
4158
4159        /* We're done, found all csums in the ordered extents. */
4160        if (mod_len == 0)
4161                return 0;
4162
4163        /* If we're compressed we have to save the entire range of csums. */
4164        if (em->compress_type) {
4165                csum_offset = 0;
4166                csum_len = max(em->block_len, em->orig_block_len);
4167        } else {
4168                csum_offset = mod_start - em->start;
4169                csum_len = mod_len;
4170        }
4171
4172        /* block start is already adjusted for the file extent offset. */
4173        ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4174                                       em->block_start + csum_offset,
4175                                       em->block_start + csum_offset +
4176                                       csum_len - 1, &ordered_sums, 0);
4177        if (ret)
4178                return ret;
4179
4180        while (!list_empty(&ordered_sums)) {
4181                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4182                                                   struct btrfs_ordered_sum,
4183                                                   list);
4184                if (!ret)
4185                        ret = log_csums(trans, inode, log_root, sums);
4186                list_del(&sums->list);
4187                kfree(sums);
4188        }
4189
4190        return ret;
4191}
4192
4193static int log_one_extent(struct btrfs_trans_handle *trans,
4194                          struct btrfs_inode *inode, struct btrfs_root *root,
4195                          const struct extent_map *em,
4196                          struct btrfs_path *path,
4197                          struct btrfs_log_ctx *ctx)
4198{
4199        struct btrfs_root *log = root->log_root;
4200        struct btrfs_file_extent_item *fi;
4201        struct extent_buffer *leaf;
4202        struct btrfs_map_token token;
4203        struct btrfs_key key;
4204        u64 extent_offset = em->start - em->orig_start;
4205        u64 block_len;
4206        int ret;
4207        int extent_inserted = 0;
4208
4209        ret = log_extent_csums(trans, inode, log, em, ctx);
4210        if (ret)
4211                return ret;
4212
4213        ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4214                                   em->start + em->len, NULL, 0, 1,
4215                                   sizeof(*fi), &extent_inserted);
4216        if (ret)
4217                return ret;
4218
4219        if (!extent_inserted) {
4220                key.objectid = btrfs_ino(inode);
4221                key.type = BTRFS_EXTENT_DATA_KEY;
4222                key.offset = em->start;
4223
4224                ret = btrfs_insert_empty_item(trans, log, path, &key,
4225                                              sizeof(*fi));
4226                if (ret)
4227                        return ret;
4228        }
4229        leaf = path->nodes[0];
4230        btrfs_init_map_token(&token, leaf);
4231        fi = btrfs_item_ptr(leaf, path->slots[0],
4232                            struct btrfs_file_extent_item);
4233
4234        btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4235        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4236                btrfs_set_token_file_extent_type(&token, fi,
4237                                                 BTRFS_FILE_EXTENT_PREALLOC);
4238        else
4239                btrfs_set_token_file_extent_type(&token, fi,
4240                                                 BTRFS_FILE_EXTENT_REG);
4241
4242        block_len = max(em->block_len, em->orig_block_len);
4243        if (em->compress_type != BTRFS_COMPRESS_NONE) {
4244                btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4245                                                        em->block_start);
4246                btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4247        } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4248                btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4249                                                        em->block_start -
4250                                                        extent_offset);
4251                btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4252        } else {
4253                btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4254                btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4255        }
4256
4257        btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4258        btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4259        btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4260        btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4261        btrfs_set_token_file_extent_encryption(&token, fi, 0);
4262        btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4263        btrfs_mark_buffer_dirty(leaf);
4264
4265        btrfs_release_path(path);
4266
4267        return ret;
4268}
4269
4270/*
4271 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4272 * lose them after doing a fast fsync and replaying the log. We scan the
4273 * subvolume's root instead of iterating the inode's extent map tree because
4274 * otherwise we can log incorrect extent items based on extent map conversion.
4275 * That can happen due to the fact that extent maps are merged when they
4276 * are not in the extent map tree's list of modified extents.
4277 */
4278static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4279                                      struct btrfs_inode *inode,
4280                                      struct btrfs_path *path)
4281{
4282        struct btrfs_root *root = inode->root;
4283        struct btrfs_key key;
4284        const u64 i_size = i_size_read(&inode->vfs_inode);
4285        const u64 ino = btrfs_ino(inode);
4286        struct btrfs_path *dst_path = NULL;
4287        bool dropped_extents = false;
4288        u64 truncate_offset = i_size;
4289        struct extent_buffer *leaf;
4290        int slot;
4291        int ins_nr = 0;
4292        int start_slot;
4293        int ret;
4294
4295        if (!(inode->flags & BTRFS_INODE_PREALLOC))
4296                return 0;
4297
4298        key.objectid = ino;
4299        key.type = BTRFS_EXTENT_DATA_KEY;
4300        key.offset = i_size;
4301        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4302        if (ret < 0)
4303                goto out;
4304
4305        /*
4306         * We must check if there is a prealloc extent that starts before the
4307         * i_size and crosses the i_size boundary. This is to ensure later we
4308         * truncate down to the end of that extent and not to the i_size, as
4309         * otherwise we end up losing part of the prealloc extent after a log
4310         * replay and with an implicit hole if there is another prealloc extent
4311         * that starts at an offset beyond i_size.
4312         */
4313        ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4314        if (ret < 0)
4315                goto out;
4316
4317        if (ret == 0) {
4318                struct btrfs_file_extent_item *ei;
4319
4320                leaf = path->nodes[0];
4321                slot = path->slots[0];
4322                ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4323
4324                if (btrfs_file_extent_type(leaf, ei) ==
4325                    BTRFS_FILE_EXTENT_PREALLOC) {
4326                        u64 extent_end;
4327
4328                        btrfs_item_key_to_cpu(leaf, &key, slot);
4329                        extent_end = key.offset +
4330                                btrfs_file_extent_num_bytes(leaf, ei);
4331
4332                        if (extent_end > i_size)
4333                                truncate_offset = extent_end;
4334                }
4335        } else {
4336                ret = 0;
4337        }
4338
4339        while (true) {
4340                leaf = path->nodes[0];
4341                slot = path->slots[0];
4342
4343                if (slot >= btrfs_header_nritems(leaf)) {
4344                        if (ins_nr > 0) {
4345                                ret = copy_items(trans, inode, dst_path, path,
4346                                                 start_slot, ins_nr, 1, 0);
4347                                if (ret < 0)
4348                                        goto out;
4349                                ins_nr = 0;
4350                        }
4351                        ret = btrfs_next_leaf(root, path);
4352                        if (ret < 0)
4353                                goto out;
4354                        if (ret > 0) {
4355                                ret = 0;
4356                                break;
4357                        }
4358                        continue;
4359                }
4360
4361                btrfs_item_key_to_cpu(leaf, &key, slot);
4362                if (key.objectid > ino)
4363                        break;
4364                if (WARN_ON_ONCE(key.objectid < ino) ||
4365                    key.type < BTRFS_EXTENT_DATA_KEY ||
4366                    key.offset < i_size) {
4367                        path->slots[0]++;
4368                        continue;
4369                }
4370                if (!dropped_extents) {
4371                        /*
4372                         * Avoid logging extent items logged in past fsync calls
4373                         * and leading to duplicate keys in the log tree.
4374                         */
4375                        do {
4376                                ret = btrfs_truncate_inode_items(trans,
4377                                                         root->log_root,
4378                                                         &inode->vfs_inode,
4379                                                         truncate_offset,
4380                                                         BTRFS_EXTENT_DATA_KEY);
4381                        } while (ret == -EAGAIN);
4382                        if (ret)
4383                                goto out;
4384                        dropped_extents = true;
4385                }
4386                if (ins_nr == 0)
4387                        start_slot = slot;
4388                ins_nr++;
4389                path->slots[0]++;
4390                if (!dst_path) {
4391                        dst_path = btrfs_alloc_path();
4392                        if (!dst_path) {
4393                                ret = -ENOMEM;
4394                                goto out;
4395                        }
4396                }
4397        }
4398        if (ins_nr > 0)
4399                ret = copy_items(trans, inode, dst_path, path,
4400                                 start_slot, ins_nr, 1, 0);
4401out:
4402        btrfs_release_path(path);
4403        btrfs_free_path(dst_path);
4404        return ret;
4405}
4406
4407static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4408                                     struct btrfs_root *root,
4409                                     struct btrfs_inode *inode,
4410                                     struct btrfs_path *path,
4411                                     struct btrfs_log_ctx *ctx)
4412{
4413        struct btrfs_ordered_extent *ordered;
4414        struct btrfs_ordered_extent *tmp;
4415        struct extent_map *em, *n;
4416        struct list_head extents;
4417        struct extent_map_tree *tree = &inode->extent_tree;
4418        u64 test_gen;
4419        int ret = 0;
4420        int num = 0;
4421
4422        INIT_LIST_HEAD(&extents);
4423
4424        write_lock(&tree->lock);
4425        test_gen = root->fs_info->last_trans_committed;
4426
4427        list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4428                list_del_init(&em->list);
4429                /*
4430                 * Just an arbitrary number, this can be really CPU intensive
4431                 * once we start getting a lot of extents, and really once we
4432                 * have a bunch of extents we just want to commit since it will
4433                 * be faster.
4434                 */
4435                if (++num > 32768) {
4436                        list_del_init(&tree->modified_extents);
4437                        ret = -EFBIG;
4438                        goto process;
4439                }
4440
4441                if (em->generation <= test_gen)
4442                        continue;
4443
4444                /* We log prealloc extents beyond eof later. */
4445                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4446                    em->start >= i_size_read(&inode->vfs_inode))
4447                        continue;
4448
4449                /* Need a ref to keep it from getting evicted from cache */
4450                refcount_inc(&em->refs);
4451                set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4452                list_add_tail(&em->list, &extents);
4453                num++;
4454        }
4455
4456        list_sort(NULL, &extents, extent_cmp);
4457process:
4458        while (!list_empty(&extents)) {
4459                em = list_entry(extents.next, struct extent_map, list);
4460
4461                list_del_init(&em->list);
4462
4463                /*
4464                 * If we had an error we just need to delete everybody from our
4465                 * private list.
4466                 */
4467                if (ret) {
4468                        clear_em_logging(tree, em);
4469                        free_extent_map(em);
4470                        continue;
4471                }
4472
4473                write_unlock(&tree->lock);
4474
4475                ret = log_one_extent(trans, inode, root, em, path, ctx);
4476                write_lock(&tree->lock);
4477                clear_em_logging(tree, em);
4478                free_extent_map(em);
4479        }
4480        WARN_ON(!list_empty(&extents));
4481        write_unlock(&tree->lock);
4482
4483        btrfs_release_path(path);
4484        if (!ret)
4485                ret = btrfs_log_prealloc_extents(trans, inode, path);
4486        if (ret)
4487                return ret;
4488
4489        /*
4490         * We have logged all extents successfully, now make sure the commit of
4491         * the current transaction waits for the ordered extents to complete
4492         * before it commits and wipes out the log trees, otherwise we would
4493         * lose data if an ordered extents completes after the transaction
4494         * commits and a power failure happens after the transaction commit.
4495         */
4496        list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4497                list_del_init(&ordered->log_list);
4498                set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4499
4500                if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4501                        spin_lock_irq(&inode->ordered_tree.lock);
4502                        if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4503                                set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4504                                atomic_inc(&trans->transaction->pending_ordered);
4505                        }
4506                        spin_unlock_irq(&inode->ordered_tree.lock);
4507                }
4508                btrfs_put_ordered_extent(ordered);
4509        }
4510
4511        return 0;
4512}
4513
4514static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4515                             struct btrfs_path *path, u64 *size_ret)
4516{
4517        struct btrfs_key key;
4518        int ret;
4519
4520        key.objectid = btrfs_ino(inode);
4521        key.type = BTRFS_INODE_ITEM_KEY;
4522        key.offset = 0;
4523
4524        ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4525        if (ret < 0) {
4526                return ret;
4527        } else if (ret > 0) {
4528                *size_ret = 0;
4529        } else {
4530                struct btrfs_inode_item *item;
4531
4532                item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4533                                      struct btrfs_inode_item);
4534                *size_ret = btrfs_inode_size(path->nodes[0], item);
4535                /*
4536                 * If the in-memory inode's i_size is smaller then the inode
4537                 * size stored in the btree, return the inode's i_size, so
4538                 * that we get a correct inode size after replaying the log
4539                 * when before a power failure we had a shrinking truncate
4540                 * followed by addition of a new name (rename / new hard link).
4541                 * Otherwise return the inode size from the btree, to avoid
4542                 * data loss when replaying a log due to previously doing a
4543                 * write that expands the inode's size and logging a new name
4544                 * immediately after.
4545                 */
4546                if (*size_ret > inode->vfs_inode.i_size)
4547                        *size_ret = inode->vfs_inode.i_size;
4548        }
4549
4550        btrfs_release_path(path);
4551        return 0;
4552}
4553
4554/*
4555 * At the moment we always log all xattrs. This is to figure out at log replay
4556 * time which xattrs must have their deletion replayed. If a xattr is missing
4557 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4558 * because if a xattr is deleted, the inode is fsynced and a power failure
4559 * happens, causing the log to be replayed the next time the fs is mounted,
4560 * we want the xattr to not exist anymore (same behaviour as other filesystems
4561 * with a journal, ext3/4, xfs, f2fs, etc).
4562 */
4563static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4564                                struct btrfs_root *root,
4565                                struct btrfs_inode *inode,
4566                                struct btrfs_path *path,
4567                                struct btrfs_path *dst_path)
4568{
4569        int ret;
4570        struct btrfs_key key;
4571        const u64 ino = btrfs_ino(inode);
4572        int ins_nr = 0;
4573        int start_slot = 0;
4574
4575        key.objectid = ino;
4576        key.type = BTRFS_XATTR_ITEM_KEY;
4577        key.offset = 0;
4578
4579        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4580        if (ret < 0)
4581                return ret;
4582
4583        while (true) {
4584                int slot = path->slots[0];
4585                struct extent_buffer *leaf = path->nodes[0];
4586                int nritems = btrfs_header_nritems(leaf);
4587
4588                if (slot >= nritems) {
4589                        if (ins_nr > 0) {
4590                                ret = copy_items(trans, inode, dst_path, path,
4591                                                 start_slot, ins_nr, 1, 0);
4592                                if (ret < 0)
4593                                        return ret;
4594                                ins_nr = 0;
4595                        }
4596                        ret = btrfs_next_leaf(root, path);
4597                        if (ret < 0)
4598                                return ret;
4599                        else if (ret > 0)
4600                                break;
4601                        continue;
4602                }
4603
4604                btrfs_item_key_to_cpu(leaf, &key, slot);
4605                if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4606                        break;
4607
4608                if (ins_nr == 0)
4609                        start_slot = slot;
4610                ins_nr++;
4611                path->slots[0]++;
4612                cond_resched();
4613        }
4614        if (ins_nr > 0) {
4615                ret = copy_items(trans, inode, dst_path, path,
4616                                 start_slot, ins_nr, 1, 0);
4617                if (ret < 0)
4618                        return ret;
4619        }
4620
4621        return 0;
4622}
4623
4624/*
4625 * When using the NO_HOLES feature if we punched a hole that causes the
4626 * deletion of entire leafs or all the extent items of the first leaf (the one
4627 * that contains the inode item and references) we may end up not processing
4628 * any extents, because there are no leafs with a generation matching the
4629 * current transaction that have extent items for our inode. So we need to find
4630 * if any holes exist and then log them. We also need to log holes after any
4631 * truncate operation that changes the inode's size.
4632 */
4633static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4634                           struct btrfs_root *root,
4635                           struct btrfs_inode *inode,
4636                           struct btrfs_path *path)
4637{
4638        struct btrfs_fs_info *fs_info = root->fs_info;
4639        struct btrfs_key key;
4640        const u64 ino = btrfs_ino(inode);
4641        const u64 i_size = i_size_read(&inode->vfs_inode);
4642        u64 prev_extent_end = 0;
4643        int ret;
4644
4645        if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4646                return 0;
4647
4648        key.objectid = ino;
4649        key.type = BTRFS_EXTENT_DATA_KEY;
4650        key.offset = 0;
4651
4652        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4653        if (ret < 0)
4654                return ret;
4655
4656        while (true) {
4657                struct extent_buffer *leaf = path->nodes[0];
4658
4659                if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4660                        ret = btrfs_next_leaf(root, path);
4661                        if (ret < 0)
4662                                return ret;
4663                        if (ret > 0) {
4664                                ret = 0;
4665                                break;
4666                        }
4667                        leaf = path->nodes[0];
4668                }
4669
4670                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4671                if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4672                        break;
4673
4674                /* We have a hole, log it. */
4675                if (prev_extent_end < key.offset) {
4676                        const u64 hole_len = key.offset - prev_extent_end;
4677
4678                        /*
4679                         * Release the path to avoid deadlocks with other code
4680                         * paths that search the root while holding locks on
4681                         * leafs from the log root.
4682                         */
4683                        btrfs_release_path(path);
4684                        ret = btrfs_insert_file_extent(trans, root->log_root,
4685                                                       ino, prev_extent_end, 0,
4686                                                       0, hole_len, 0, hole_len,
4687                                                       0, 0, 0);
4688                        if (ret < 0)
4689                                return ret;
4690
4691                        /*
4692                         * Search for the same key again in the root. Since it's
4693                         * an extent item and we are holding the inode lock, the
4694                         * key must still exist. If it doesn't just emit warning
4695                         * and return an error to fall back to a transaction
4696                         * commit.
4697                         */
4698                        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4699                        if (ret < 0)
4700                                return ret;
4701                        if (WARN_ON(ret > 0))
4702                                return -ENOENT;
4703                        leaf = path->nodes[0];
4704                }
4705
4706                prev_extent_end = btrfs_file_extent_end(path);
4707                path->slots[0]++;
4708                cond_resched();
4709        }
4710
4711        if (prev_extent_end < i_size) {
4712                u64 hole_len;
4713
4714                btrfs_release_path(path);
4715                hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4716                ret = btrfs_insert_file_extent(trans, root->log_root,
4717                                               ino, prev_extent_end, 0, 0,
4718                                               hole_len, 0, hole_len,
4719                                               0, 0, 0);
4720                if (ret < 0)
4721                        return ret;
4722        }
4723
4724        return 0;
4725}
4726
4727/*
4728 * When we are logging a new inode X, check if it doesn't have a reference that
4729 * matches the reference from some other inode Y created in a past transaction
4730 * and that was renamed in the current transaction. If we don't do this, then at
4731 * log replay time we can lose inode Y (and all its files if it's a directory):
4732 *
4733 * mkdir /mnt/x
4734 * echo "hello world" > /mnt/x/foobar
4735 * sync
4736 * mv /mnt/x /mnt/y
4737 * mkdir /mnt/x                 # or touch /mnt/x
4738 * xfs_io -c fsync /mnt/x
4739 * <power fail>
4740 * mount fs, trigger log replay
4741 *
4742 * After the log replay procedure, we would lose the first directory and all its
4743 * files (file foobar).
4744 * For the case where inode Y is not a directory we simply end up losing it:
4745 *
4746 * echo "123" > /mnt/foo
4747 * sync
4748 * mv /mnt/foo /mnt/bar
4749 * echo "abc" > /mnt/foo
4750 * xfs_io -c fsync /mnt/foo
4751 * <power fail>
4752 *
4753 * We also need this for cases where a snapshot entry is replaced by some other
4754 * entry (file or directory) otherwise we end up with an unreplayable log due to
4755 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4756 * if it were a regular entry:
4757 *
4758 * mkdir /mnt/x
4759 * btrfs subvolume snapshot /mnt /mnt/x/snap
4760 * btrfs subvolume delete /mnt/x/snap
4761 * rmdir /mnt/x
4762 * mkdir /mnt/x
4763 * fsync /mnt/x or fsync some new file inside it
4764 * <power fail>
4765 *
4766 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4767 * the same transaction.
4768 */
4769static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4770                                         const int slot,
4771                                         const struct btrfs_key *key,
4772                                         struct btrfs_inode *inode,
4773                                         u64 *other_ino, u64 *other_parent)
4774{
4775        int ret;
4776        struct btrfs_path *search_path;
4777        char *name = NULL;
4778        u32 name_len = 0;
4779        u32 item_size = btrfs_item_size_nr(eb, slot);
4780        u32 cur_offset = 0;
4781        unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4782
4783        search_path = btrfs_alloc_path();
4784        if (!search_path)
4785                return -ENOMEM;
4786        search_path->search_commit_root = 1;
4787        search_path->skip_locking = 1;
4788
4789        while (cur_offset < item_size) {
4790                u64 parent;
4791                u32 this_name_len;
4792                u32 this_len;
4793                unsigned long name_ptr;
4794                struct btrfs_dir_item *di;
4795
4796                if (key->type == BTRFS_INODE_REF_KEY) {
4797                        struct btrfs_inode_ref *iref;
4798
4799                        iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4800                        parent = key->offset;
4801                        this_name_len = btrfs_inode_ref_name_len(eb, iref);
4802                        name_ptr = (unsigned long)(iref + 1);
4803                        this_len = sizeof(*iref) + this_name_len;
4804                } else {
4805                        struct btrfs_inode_extref *extref;
4806
4807                        extref = (struct btrfs_inode_extref *)(ptr +
4808                                                               cur_offset);
4809                        parent = btrfs_inode_extref_parent(eb, extref);
4810                        this_name_len = btrfs_inode_extref_name_len(eb, extref);
4811                        name_ptr = (unsigned long)&extref->name;
4812                        this_len = sizeof(*extref) + this_name_len;
4813                }
4814
4815                if (this_name_len > name_len) {
4816                        char *new_name;
4817
4818                        new_name = krealloc(name, this_name_len, GFP_NOFS);
4819                        if (!new_name) {
4820                                ret = -ENOMEM;
4821                                goto out;
4822                        }
4823                        name_len = this_name_len;
4824                        name = new_name;
4825                }
4826
4827                read_extent_buffer(eb, name, name_ptr, this_name_len);
4828                di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4829                                parent, name, this_name_len, 0);
4830                if (di && !IS_ERR(di)) {
4831                        struct btrfs_key di_key;
4832
4833                        btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4834                                                  di, &di_key);
4835                        if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4836                                if (di_key.objectid != key->objectid) {
4837                                        ret = 1;
4838                                        *other_ino = di_key.objectid;
4839                                        *other_parent = parent;
4840                                } else {
4841                                        ret = 0;
4842                                }
4843                        } else {
4844                                ret = -EAGAIN;
4845                        }
4846                        goto out;
4847                } else if (IS_ERR(di)) {
4848                        ret = PTR_ERR(di);
4849                        goto out;
4850                }
4851                btrfs_release_path(search_path);
4852
4853                cur_offset += this_len;
4854        }
4855        ret = 0;
4856out:
4857        btrfs_free_path(search_path);
4858        kfree(name);
4859        return ret;
4860}
4861
4862struct btrfs_ino_list {
4863        u64 ino;
4864        u64 parent;
4865        struct list_head list;
4866};
4867
4868static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4869                                  struct btrfs_root *root,
4870                                  struct btrfs_path *path,
4871                                  struct btrfs_log_ctx *ctx,
4872                                  u64 ino, u64 parent)
4873{
4874        struct btrfs_ino_list *ino_elem;
4875        LIST_HEAD(inode_list);
4876        int ret = 0;
4877
4878        ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4879        if (!ino_elem)
4880                return -ENOMEM;
4881        ino_elem->ino = ino;
4882        ino_elem->parent = parent;
4883        list_add_tail(&ino_elem->list, &inode_list);
4884
4885        while (!list_empty(&inode_list)) {
4886                struct btrfs_fs_info *fs_info = root->fs_info;
4887                struct btrfs_key key;
4888                struct inode *inode;
4889
4890                ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4891                                            list);
4892                ino = ino_elem->ino;
4893                parent = ino_elem->parent;
4894                list_del(&ino_elem->list);
4895                kfree(ino_elem);
4896                if (ret)
4897                        continue;
4898
4899                btrfs_release_path(path);
4900
4901                inode = btrfs_iget(fs_info->sb, ino, root);
4902                /*
4903                 * If the other inode that had a conflicting dir entry was
4904                 * deleted in the current transaction, we need to log its parent
4905                 * directory.
4906                 */
4907                if (IS_ERR(inode)) {
4908                        ret = PTR_ERR(inode);
4909                        if (ret == -ENOENT) {
4910                                inode = btrfs_iget(fs_info->sb, parent, root);
4911                                if (IS_ERR(inode)) {
4912                                        ret = PTR_ERR(inode);
4913                                } else {
4914                                        ret = btrfs_log_inode(trans, root,
4915                                                      BTRFS_I(inode),
4916                                                      LOG_OTHER_INODE_ALL,
4917                                                      ctx);
4918                                        btrfs_add_delayed_iput(inode);
4919                                }
4920                        }
4921                        continue;
4922                }
4923                /*
4924                 * If the inode was already logged skip it - otherwise we can
4925                 * hit an infinite loop. Example:
4926                 *
4927                 * From the commit root (previous transaction) we have the
4928                 * following inodes:
4929                 *
4930                 * inode 257 a directory
4931                 * inode 258 with references "zz" and "zz_link" on inode 257
4932                 * inode 259 with reference "a" on inode 257
4933                 *
4934                 * And in the current (uncommitted) transaction we have:
4935                 *
4936                 * inode 257 a directory, unchanged
4937                 * inode 258 with references "a" and "a2" on inode 257
4938                 * inode 259 with reference "zz_link" on inode 257
4939                 * inode 261 with reference "zz" on inode 257
4940                 *
4941                 * When logging inode 261 the following infinite loop could
4942                 * happen if we don't skip already logged inodes:
4943                 *
4944                 * - we detect inode 258 as a conflicting inode, with inode 261
4945                 *   on reference "zz", and log it;
4946                 *
4947                 * - we detect inode 259 as a conflicting inode, with inode 258
4948                 *   on reference "a", and log it;
4949                 *
4950                 * - we detect inode 258 as a conflicting inode, with inode 259
4951                 *   on reference "zz_link", and log it - again! After this we
4952                 *   repeat the above steps forever.
4953                 */
4954                spin_lock(&BTRFS_I(inode)->lock);
4955                /*
4956                 * Check the inode's logged_trans only instead of
4957                 * btrfs_inode_in_log(). This is because the last_log_commit of
4958                 * the inode is not updated when we only log that it exists and
4959                 * it has the full sync bit set (see btrfs_log_inode()).
4960                 */
4961                if (BTRFS_I(inode)->logged_trans == trans->transid) {
4962                        spin_unlock(&BTRFS_I(inode)->lock);
4963                        btrfs_add_delayed_iput(inode);
4964                        continue;
4965                }
4966                spin_unlock(&BTRFS_I(inode)->lock);
4967                /*
4968                 * We are safe logging the other inode without acquiring its
4969                 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4970                 * are safe against concurrent renames of the other inode as
4971                 * well because during a rename we pin the log and update the
4972                 * log with the new name before we unpin it.
4973                 */
4974                ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4975                                      LOG_OTHER_INODE, ctx);
4976                if (ret) {
4977                        btrfs_add_delayed_iput(inode);
4978                        continue;
4979                }
4980
4981                key.objectid = ino;
4982                key.type = BTRFS_INODE_REF_KEY;
4983                key.offset = 0;
4984                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4985                if (ret < 0) {
4986                        btrfs_add_delayed_iput(inode);
4987                        continue;
4988                }
4989
4990                while (true) {
4991                        struct extent_buffer *leaf = path->nodes[0];
4992                        int slot = path->slots[0];
4993                        u64 other_ino = 0;
4994                        u64 other_parent = 0;
4995
4996                        if (slot >= btrfs_header_nritems(leaf)) {
4997                                ret = btrfs_next_leaf(root, path);
4998                                if (ret < 0) {
4999                                        break;
5000                                } else if (ret > 0) {
5001                                        ret = 0;
5002                                        break;
5003                                }
5004                                continue;
5005                        }
5006
5007                        btrfs_item_key_to_cpu(leaf, &key, slot);
5008                        if (key.objectid != ino ||
5009                            (key.type != BTRFS_INODE_REF_KEY &&
5010                             key.type != BTRFS_INODE_EXTREF_KEY)) {
5011                                ret = 0;
5012                                break;
5013                        }
5014
5015                        ret = btrfs_check_ref_name_override(leaf, slot, &key,
5016                                        BTRFS_I(inode), &other_ino,
5017                                        &other_parent);
5018                        if (ret < 0)
5019                                break;
5020                        if (ret > 0) {
5021                                ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5022                                if (!ino_elem) {
5023                                        ret = -ENOMEM;
5024                                        break;
5025                                }
5026                                ino_elem->ino = other_ino;
5027                                ino_elem->parent = other_parent;
5028                                list_add_tail(&ino_elem->list, &inode_list);
5029                                ret = 0;
5030                        }
5031                        path->slots[0]++;
5032                }
5033                btrfs_add_delayed_iput(inode);
5034        }
5035
5036        return ret;
5037}
5038
5039static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5040                                   struct btrfs_inode *inode,
5041                                   struct btrfs_key *min_key,
5042                                   const struct btrfs_key *max_key,
5043                                   struct btrfs_path *path,
5044                                   struct btrfs_path *dst_path,
5045                                   const u64 logged_isize,
5046                                   const bool recursive_logging,
5047                                   const int inode_only,
5048                                   struct btrfs_log_ctx *ctx,
5049                                   bool *need_log_inode_item)
5050{
5051        struct btrfs_root *root = inode->root;
5052        int ins_start_slot = 0;
5053        int ins_nr = 0;
5054        int ret;
5055
5056        while (1) {
5057                ret = btrfs_search_forward(root, min_key, path, trans->transid);
5058                if (ret < 0)
5059                        return ret;
5060                if (ret > 0) {
5061                        ret = 0;
5062                        break;
5063                }
5064again:
5065                /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5066                if (min_key->objectid != max_key->objectid)
5067                        break;
5068                if (min_key->type > max_key->type)
5069                        break;
5070
5071                if (min_key->type == BTRFS_INODE_ITEM_KEY)
5072                        *need_log_inode_item = false;
5073
5074                if ((min_key->type == BTRFS_INODE_REF_KEY ||
5075                     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5076                    inode->generation == trans->transid &&
5077                    !recursive_logging) {
5078                        u64 other_ino = 0;
5079                        u64 other_parent = 0;
5080
5081                        ret = btrfs_check_ref_name_override(path->nodes[0],
5082                                        path->slots[0], min_key, inode,
5083                                        &other_ino, &other_parent);
5084                        if (ret < 0) {
5085                                return ret;
5086                        } else if (ret > 0 && ctx &&
5087                                   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5088                                if (ins_nr > 0) {
5089                                        ins_nr++;
5090                                } else {
5091                                        ins_nr = 1;
5092                                        ins_start_slot = path->slots[0];
5093                                }
5094                                ret = copy_items(trans, inode, dst_path, path,
5095                                                 ins_start_slot, ins_nr,
5096                                                 inode_only, logged_isize);
5097                                if (ret < 0)
5098                                        return ret;
5099                                ins_nr = 0;
5100
5101                                ret = log_conflicting_inodes(trans, root, path,
5102                                                ctx, other_ino, other_parent);
5103                                if (ret)
5104                                        return ret;
5105                                btrfs_release_path(path);
5106                                goto next_key;
5107                        }
5108                }
5109
5110                /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5111                if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5112                        if (ins_nr == 0)
5113                                goto next_slot;
5114                        ret = copy_items(trans, inode, dst_path, path,
5115                                         ins_start_slot,
5116                                         ins_nr, inode_only, logged_isize);
5117                        if (ret < 0)
5118                                return ret;
5119                        ins_nr = 0;
5120                        goto next_slot;
5121                }
5122
5123                if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5124                        ins_nr++;
5125                        goto next_slot;
5126                } else if (!ins_nr) {
5127                        ins_start_slot = path->slots[0];
5128                        ins_nr = 1;
5129                        goto next_slot;
5130                }
5131
5132                ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5133                                 ins_nr, inode_only, logged_isize);
5134                if (ret < 0)
5135                        return ret;
5136                ins_nr = 1;
5137                ins_start_slot = path->slots[0];
5138next_slot:
5139                path->slots[0]++;
5140                if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5141                        btrfs_item_key_to_cpu(path->nodes[0], min_key,
5142                                              path->slots[0]);
5143                        goto again;
5144                }
5145                if (ins_nr) {
5146                        ret = copy_items(trans, inode, dst_path, path,
5147                                         ins_start_slot, ins_nr, inode_only,
5148                                         logged_isize);
5149                        if (ret < 0)
5150                                return ret;
5151                        ins_nr = 0;
5152                }
5153                btrfs_release_path(path);
5154next_key:
5155                if (min_key->offset < (u64)-1) {
5156                        min_key->offset++;
5157                } else if (min_key->type < max_key->type) {
5158                        min_key->type++;
5159                        min_key->offset = 0;
5160                } else {
5161                        break;
5162                }
5163        }
5164        if (ins_nr)
5165                ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5166                                 ins_nr, inode_only, logged_isize);
5167
5168        return ret;
5169}
5170
5171/* log a single inode in the tree log.
5172 * At least one parent directory for this inode must exist in the tree
5173 * or be logged already.
5174 *
5175 * Any items from this inode changed by the current transaction are copied
5176 * to the log tree.  An extra reference is taken on any extents in this
5177 * file, allowing us to avoid a whole pile of corner cases around logging
5178 * blocks that have been removed from the tree.
5179 *
5180 * See LOG_INODE_ALL and related defines for a description of what inode_only
5181 * does.
5182 *
5183 * This handles both files and directories.
5184 */
5185static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5186                           struct btrfs_root *root, struct btrfs_inode *inode,
5187                           int inode_only,
5188                           struct btrfs_log_ctx *ctx)
5189{
5190        struct btrfs_path *path;
5191        struct btrfs_path *dst_path;
5192        struct btrfs_key min_key;
5193        struct btrfs_key max_key;
5194        struct btrfs_root *log = root->log_root;
5195        int err = 0;
5196        int ret = 0;
5197        bool fast_search = false;
5198        u64 ino = btrfs_ino(inode);
5199        struct extent_map_tree *em_tree = &inode->extent_tree;
5200        u64 logged_isize = 0;
5201        bool need_log_inode_item = true;
5202        bool xattrs_logged = false;
5203        bool recursive_logging = false;
5204
5205        path = btrfs_alloc_path();
5206        if (!path)
5207                return -ENOMEM;
5208        dst_path = btrfs_alloc_path();
5209        if (!dst_path) {
5210                btrfs_free_path(path);
5211                return -ENOMEM;
5212        }
5213
5214        min_key.objectid = ino;
5215        min_key.type = BTRFS_INODE_ITEM_KEY;
5216        min_key.offset = 0;
5217
5218        max_key.objectid = ino;
5219
5220
5221        /* today the code can only do partial logging of directories */
5222        if (S_ISDIR(inode->vfs_inode.i_mode) ||
5223            (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5224                       &inode->runtime_flags) &&
5225             inode_only >= LOG_INODE_EXISTS))
5226                max_key.type = BTRFS_XATTR_ITEM_KEY;
5227        else
5228                max_key.type = (u8)-1;
5229        max_key.offset = (u64)-1;
5230
5231        /*
5232         * Only run delayed items if we are a directory. We want to make sure
5233         * all directory indexes hit the fs/subvolume tree so we can find them
5234         * and figure out which index ranges have to be logged.
5235         *
5236         * Otherwise commit the delayed inode only if the full sync flag is set,
5237         * as we want to make sure an up to date version is in the subvolume
5238         * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5239         * it to the log tree. For a non full sync, we always log the inode item
5240         * based on the in-memory struct btrfs_inode which is always up to date.
5241         */
5242        if (S_ISDIR(inode->vfs_inode.i_mode))
5243                ret = btrfs_commit_inode_delayed_items(trans, inode);
5244        else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5245                ret = btrfs_commit_inode_delayed_inode(inode);
5246
5247        if (ret) {
5248                btrfs_free_path(path);
5249                btrfs_free_path(dst_path);
5250                return ret;
5251        }
5252
5253        if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5254                recursive_logging = true;
5255                if (inode_only == LOG_OTHER_INODE)
5256                        inode_only = LOG_INODE_EXISTS;
5257                else
5258                        inode_only = LOG_INODE_ALL;
5259                mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5260        } else {
5261                mutex_lock(&inode->log_mutex);
5262        }
5263
5264        /*
5265         * a brute force approach to making sure we get the most uptodate
5266         * copies of everything.
5267         */
5268        if (S_ISDIR(inode->vfs_inode.i_mode)) {
5269                int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5270
5271                if (inode_only == LOG_INODE_EXISTS)
5272                        max_key_type = BTRFS_XATTR_ITEM_KEY;
5273                ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5274        } else {
5275                if (inode_only == LOG_INODE_EXISTS) {
5276                        /*
5277                         * Make sure the new inode item we write to the log has
5278                         * the same isize as the current one (if it exists).
5279                         * This is necessary to prevent data loss after log
5280                         * replay, and also to prevent doing a wrong expanding
5281                         * truncate - for e.g. create file, write 4K into offset
5282                         * 0, fsync, write 4K into offset 4096, add hard link,
5283                         * fsync some other file (to sync log), power fail - if
5284                         * we use the inode's current i_size, after log replay
5285                         * we get a 8Kb file, with the last 4Kb extent as a hole
5286                         * (zeroes), as if an expanding truncate happened,
5287                         * instead of getting a file of 4Kb only.
5288                         */
5289                        err = logged_inode_size(log, inode, path, &logged_isize);
5290                        if (err)
5291                                goto out_unlock;
5292                }
5293                if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5294                             &inode->runtime_flags)) {
5295                        if (inode_only == LOG_INODE_EXISTS) {
5296                                max_key.type = BTRFS_XATTR_ITEM_KEY;
5297                                ret = drop_objectid_items(trans, log, path, ino,
5298                                                          max_key.type);
5299                        } else {
5300                                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5301                                          &inode->runtime_flags);
5302                                clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5303                                          &inode->runtime_flags);
5304                                while(1) {
5305                                        ret = btrfs_truncate_inode_items(trans,
5306                                                log, &inode->vfs_inode, 0, 0);
5307                                        if (ret != -EAGAIN)
5308                                                break;
5309                                }
5310                        }
5311                } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5312                                              &inode->runtime_flags) ||
5313                           inode_only == LOG_INODE_EXISTS) {
5314                        if (inode_only == LOG_INODE_ALL)
5315                                fast_search = true;
5316                        max_key.type = BTRFS_XATTR_ITEM_KEY;
5317                        ret = drop_objectid_items(trans, log, path, ino,
5318                                                  max_key.type);
5319                } else {
5320                        if (inode_only == LOG_INODE_ALL)
5321                                fast_search = true;
5322                        goto log_extents;
5323                }
5324
5325        }
5326        if (ret) {
5327                err = ret;
5328                goto out_unlock;
5329        }
5330
5331        err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5332                                      path, dst_path, logged_isize,
5333                                      recursive_logging, inode_only, ctx,
5334                                      &need_log_inode_item);
5335        if (err)
5336                goto out_unlock;
5337
5338        btrfs_release_path(path);
5339        btrfs_release_path(dst_path);
5340        err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5341        if (err)
5342                goto out_unlock;
5343        xattrs_logged = true;
5344        if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5345                btrfs_release_path(path);
5346                btrfs_release_path(dst_path);
5347                err = btrfs_log_holes(trans, root, inode, path);
5348                if (err)
5349                        goto out_unlock;
5350        }
5351log_extents:
5352        btrfs_release_path(path);
5353        btrfs_release_path(dst_path);
5354        if (need_log_inode_item) {
5355                err = log_inode_item(trans, log, dst_path, inode);
5356                if (!err && !xattrs_logged) {
5357                        err = btrfs_log_all_xattrs(trans, root, inode, path,
5358                                                   dst_path);
5359                        btrfs_release_path(path);
5360                }
5361                if (err)
5362                        goto out_unlock;
5363        }
5364        if (fast_search) {
5365                ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5366                                                ctx);
5367                if (ret) {
5368                        err = ret;
5369                        goto out_unlock;
5370                }
5371        } else if (inode_only == LOG_INODE_ALL) {
5372                struct extent_map *em, *n;
5373
5374                write_lock(&em_tree->lock);
5375                list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5376                        list_del_init(&em->list);
5377                write_unlock(&em_tree->lock);
5378        }
5379
5380        if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5381                ret = log_directory_changes(trans, root, inode, path, dst_path,
5382                                        ctx);
5383                if (ret) {
5384                        err = ret;
5385                        goto out_unlock;
5386                }
5387        }
5388
5389        /*
5390         * If we are logging that an ancestor inode exists as part of logging a
5391         * new name from a link or rename operation, don't mark the inode as
5392         * logged - otherwise if an explicit fsync is made against an ancestor,
5393         * the fsync considers the inode in the log and doesn't sync the log,
5394         * resulting in the ancestor missing after a power failure unless the
5395         * log was synced as part of an fsync against any other unrelated inode.
5396         * So keep it simple for this case and just don't flag the ancestors as
5397         * logged.
5398         */
5399        if (!ctx ||
5400            !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5401              &inode->vfs_inode != ctx->inode)) {
5402                spin_lock(&inode->lock);
5403                inode->logged_trans = trans->transid;
5404                /*
5405                 * Don't update last_log_commit if we logged that an inode exists
5406                 * after it was loaded to memory (full_sync bit set).
5407                 * This is to prevent data loss when we do a write to the inode,
5408                 * then the inode gets evicted after all delalloc was flushed,
5409                 * then we log it exists (due to a rename for example) and then
5410                 * fsync it. This last fsync would do nothing (not logging the
5411                 * extents previously written).
5412                 */
5413                if (inode_only != LOG_INODE_EXISTS ||
5414                    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5415                        inode->last_log_commit = inode->last_sub_trans;
5416                spin_unlock(&inode->lock);
5417        }
5418out_unlock:
5419        mutex_unlock(&inode->log_mutex);
5420
5421        btrfs_free_path(path);
5422        btrfs_free_path(dst_path);
5423        return err;
5424}
5425
5426/*
5427 * Check if we must fallback to a transaction commit when logging an inode.
5428 * This must be called after logging the inode and is used only in the context
5429 * when fsyncing an inode requires the need to log some other inode - in which
5430 * case we can't lock the i_mutex of each other inode we need to log as that
5431 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5432 * log inodes up or down in the hierarchy) or rename operations for example. So
5433 * we take the log_mutex of the inode after we have logged it and then check for
5434 * its last_unlink_trans value - this is safe because any task setting
5435 * last_unlink_trans must take the log_mutex and it must do this before it does
5436 * the actual unlink operation, so if we do this check before a concurrent task
5437 * sets last_unlink_trans it means we've logged a consistent version/state of
5438 * all the inode items, otherwise we are not sure and must do a transaction
5439 * commit (the concurrent task might have only updated last_unlink_trans before
5440 * we logged the inode or it might have also done the unlink).
5441 */
5442static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5443                                          struct btrfs_inode *inode)
5444{
5445        struct btrfs_fs_info *fs_info = inode->root->fs_info;
5446        bool ret = false;
5447
5448        mutex_lock(&inode->log_mutex);
5449        if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5450                /*
5451                 * Make sure any commits to the log are forced to be full
5452                 * commits.
5453                 */
5454                btrfs_set_log_full_commit(trans);
5455                ret = true;
5456        }
5457        mutex_unlock(&inode->log_mutex);
5458
5459        return ret;
5460}
5461
5462/*
5463 * follow the dentry parent pointers up the chain and see if any
5464 * of the directories in it require a full commit before they can
5465 * be logged.  Returns zero if nothing special needs to be done or 1 if
5466 * a full commit is required.
5467 */
5468static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5469                                               struct btrfs_inode *inode,
5470                                               struct dentry *parent,
5471                                               struct super_block *sb,
5472                                               u64 last_committed)
5473{
5474        int ret = 0;
5475        struct dentry *old_parent = NULL;
5476
5477        /*
5478         * for regular files, if its inode is already on disk, we don't
5479         * have to worry about the parents at all.  This is because
5480         * we can use the last_unlink_trans field to record renames
5481         * and other fun in this file.
5482         */
5483        if (S_ISREG(inode->vfs_inode.i_mode) &&
5484            inode->generation <= last_committed &&
5485            inode->last_unlink_trans <= last_committed)
5486                goto out;
5487
5488        if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5489                if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5490                        goto out;
5491                inode = BTRFS_I(d_inode(parent));
5492        }
5493
5494        while (1) {
5495                if (btrfs_must_commit_transaction(trans, inode)) {
5496                        ret = 1;
5497                        break;
5498                }
5499
5500                if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5501                        break;
5502
5503                if (IS_ROOT(parent)) {
5504                        inode = BTRFS_I(d_inode(parent));
5505                        if (btrfs_must_commit_transaction(trans, inode))
5506                                ret = 1;
5507                        break;
5508                }
5509
5510                parent = dget_parent(parent);
5511                dput(old_parent);
5512                old_parent = parent;
5513                inode = BTRFS_I(d_inode(parent));
5514
5515        }
5516        dput(old_parent);
5517out:
5518        return ret;
5519}
5520
5521struct btrfs_dir_list {
5522        u64 ino;
5523        struct list_head list;
5524};
5525
5526/*
5527 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5528 * details about the why it is needed.
5529 * This is a recursive operation - if an existing dentry corresponds to a
5530 * directory, that directory's new entries are logged too (same behaviour as
5531 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5532 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5533 * complains about the following circular lock dependency / possible deadlock:
5534 *
5535 *        CPU0                                        CPU1
5536 *        ----                                        ----
5537 * lock(&type->i_mutex_dir_key#3/2);
5538 *                                            lock(sb_internal#2);
5539 *                                            lock(&type->i_mutex_dir_key#3/2);
5540 * lock(&sb->s_type->i_mutex_key#14);
5541 *
5542 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5543 * sb_start_intwrite() in btrfs_start_transaction().
5544 * Not locking i_mutex of the inodes is still safe because:
5545 *
5546 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5547 *    that while logging the inode new references (names) are added or removed
5548 *    from the inode, leaving the logged inode item with a link count that does
5549 *    not match the number of logged inode reference items. This is fine because
5550 *    at log replay time we compute the real number of links and correct the
5551 *    link count in the inode item (see replay_one_buffer() and
5552 *    link_to_fixup_dir());
5553 *
5554 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5555 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5556 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5557 *    has a size that doesn't match the sum of the lengths of all the logged
5558 *    names. This does not result in a problem because if a dir_item key is
5559 *    logged but its matching dir_index key is not logged, at log replay time we
5560 *    don't use it to replay the respective name (see replay_one_name()). On the
5561 *    other hand if only the dir_index key ends up being logged, the respective
5562 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5563 *    keys created (see replay_one_name()).
5564 *    The directory's inode item with a wrong i_size is not a problem as well,
5565 *    since we don't use it at log replay time to set the i_size in the inode
5566 *    item of the fs/subvol tree (see overwrite_item()).
5567 */
5568static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5569                                struct btrfs_root *root,
5570                                struct btrfs_inode *start_inode,
5571                                struct btrfs_log_ctx *ctx)
5572{
5573        struct btrfs_fs_info *fs_info = root->fs_info;
5574        struct btrfs_root *log = root->log_root;
5575        struct btrfs_path *path;
5576        LIST_HEAD(dir_list);
5577        struct btrfs_dir_list *dir_elem;
5578        int ret = 0;
5579
5580        path = btrfs_alloc_path();
5581        if (!path)
5582                return -ENOMEM;
5583
5584        dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5585        if (!dir_elem) {
5586                btrfs_free_path(path);
5587                return -ENOMEM;
5588        }
5589        dir_elem->ino = btrfs_ino(start_inode);
5590        list_add_tail(&dir_elem->list, &dir_list);
5591
5592        while (!list_empty(&dir_list)) {
5593                struct extent_buffer *leaf;
5594                struct btrfs_key min_key;
5595                int nritems;
5596                int i;
5597
5598                dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5599                                            list);
5600                if (ret)
5601                        goto next_dir_inode;
5602
5603                min_key.objectid = dir_elem->ino;
5604                min_key.type = BTRFS_DIR_ITEM_KEY;
5605                min_key.offset = 0;
5606again:
5607                btrfs_release_path(path);
5608                ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5609                if (ret < 0) {
5610                        goto next_dir_inode;
5611                } else if (ret > 0) {
5612                        ret = 0;
5613                        goto next_dir_inode;
5614                }
5615
5616process_leaf:
5617                leaf = path->nodes[0];
5618                nritems = btrfs_header_nritems(leaf);
5619                for (i = path->slots[0]; i < nritems; i++) {
5620                        struct btrfs_dir_item *di;
5621                        struct btrfs_key di_key;
5622                        struct inode *di_inode;
5623                        struct btrfs_dir_list *new_dir_elem;
5624                        int log_mode = LOG_INODE_EXISTS;
5625                        int type;
5626
5627                        btrfs_item_key_to_cpu(leaf, &min_key, i);
5628                        if (min_key.objectid != dir_elem->ino ||
5629                            min_key.type != BTRFS_DIR_ITEM_KEY)
5630                                goto next_dir_inode;
5631
5632                        di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5633                        type = btrfs_dir_type(leaf, di);
5634                        if (btrfs_dir_transid(leaf, di) < trans->transid &&
5635                            type != BTRFS_FT_DIR)
5636                                continue;
5637                        btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5638                        if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5639                                continue;
5640
5641                        btrfs_release_path(path);
5642                        di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5643                        if (IS_ERR(di_inode)) {
5644                                ret = PTR_ERR(di_inode);
5645                                goto next_dir_inode;
5646                        }
5647
5648                        if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5649                                btrfs_add_delayed_iput(di_inode);
5650                                break;
5651                        }
5652
5653                        ctx->log_new_dentries = false;
5654                        if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5655                                log_mode = LOG_INODE_ALL;
5656                        ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5657                                              log_mode, ctx);
5658                        if (!ret &&
5659                            btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5660                                ret = 1;
5661                        btrfs_add_delayed_iput(di_inode);
5662                        if (ret)
5663                                goto next_dir_inode;
5664                        if (ctx->log_new_dentries) {
5665                                new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5666                                                       GFP_NOFS);
5667                                if (!new_dir_elem) {
5668                                        ret = -ENOMEM;
5669                                        goto next_dir_inode;
5670                                }
5671                                new_dir_elem->ino = di_key.objectid;
5672                                list_add_tail(&new_dir_elem->list, &dir_list);
5673                        }
5674                        break;
5675                }
5676                if (i == nritems) {
5677                        ret = btrfs_next_leaf(log, path);
5678                        if (ret < 0) {
5679                                goto next_dir_inode;
5680                        } else if (ret > 0) {
5681                                ret = 0;
5682                                goto next_dir_inode;
5683                        }
5684                        goto process_leaf;
5685                }
5686                if (min_key.offset < (u64)-1) {
5687                        min_key.offset++;
5688                        goto again;
5689                }
5690next_dir_inode:
5691                list_del(&dir_elem->list);
5692                kfree(dir_elem);
5693        }
5694
5695        btrfs_free_path(path);
5696        return ret;
5697}
5698
5699static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5700                                 struct btrfs_inode *inode,
5701                                 struct btrfs_log_ctx *ctx)
5702{
5703        struct btrfs_fs_info *fs_info = trans->fs_info;
5704        int ret;
5705        struct btrfs_path *path;
5706        struct btrfs_key key;
5707        struct btrfs_root *root = inode->root;
5708        const u64 ino = btrfs_ino(inode);
5709
5710        path = btrfs_alloc_path();
5711        if (!path)
5712                return -ENOMEM;
5713        path->skip_locking = 1;
5714        path->search_commit_root = 1;
5715
5716        key.objectid = ino;
5717        key.type = BTRFS_INODE_REF_KEY;
5718        key.offset = 0;
5719        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5720        if (ret < 0)
5721                goto out;
5722
5723        while (true) {
5724                struct extent_buffer *leaf = path->nodes[0];
5725                int slot = path->slots[0];
5726                u32 cur_offset = 0;
5727                u32 item_size;
5728                unsigned long ptr;
5729
5730                if (slot >= btrfs_header_nritems(leaf)) {
5731                        ret = btrfs_next_leaf(root, path);
5732                        if (ret < 0)
5733                                goto out;
5734                        else if (ret > 0)
5735                                break;
5736                        continue;
5737                }
5738
5739                btrfs_item_key_to_cpu(leaf, &key, slot);
5740                /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5741                if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5742                        break;
5743
5744                item_size = btrfs_item_size_nr(leaf, slot);
5745                ptr = btrfs_item_ptr_offset(leaf, slot);
5746                while (cur_offset < item_size) {
5747                        struct btrfs_key inode_key;
5748                        struct inode *dir_inode;
5749
5750                        inode_key.type = BTRFS_INODE_ITEM_KEY;
5751                        inode_key.offset = 0;
5752
5753                        if (key.type == BTRFS_INODE_EXTREF_KEY) {
5754                                struct btrfs_inode_extref *extref;
5755
5756                                extref = (struct btrfs_inode_extref *)
5757                                        (ptr + cur_offset);
5758                                inode_key.objectid = btrfs_inode_extref_parent(
5759                                        leaf, extref);
5760                                cur_offset += sizeof(*extref);
5761                                cur_offset += btrfs_inode_extref_name_len(leaf,
5762                                        extref);
5763                        } else {
5764                                inode_key.objectid = key.offset;
5765                                cur_offset = item_size;
5766                        }
5767
5768                        dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5769                                               root);
5770                        /*
5771                         * If the parent inode was deleted, return an error to
5772                         * fallback to a transaction commit. This is to prevent
5773                         * getting an inode that was moved from one parent A to
5774                         * a parent B, got its former parent A deleted and then
5775                         * it got fsync'ed, from existing at both parents after
5776                         * a log replay (and the old parent still existing).
5777                         * Example:
5778                         *
5779                         * mkdir /mnt/A
5780                         * mkdir /mnt/B
5781                         * touch /mnt/B/bar
5782                         * sync
5783                         * mv /mnt/B/bar /mnt/A/bar
5784                         * mv -T /mnt/A /mnt/B
5785                         * fsync /mnt/B/bar
5786                         * <power fail>
5787                         *
5788                         * If we ignore the old parent B which got deleted,
5789                         * after a log replay we would have file bar linked
5790                         * at both parents and the old parent B would still
5791                         * exist.
5792                         */
5793                        if (IS_ERR(dir_inode)) {
5794                                ret = PTR_ERR(dir_inode);
5795                                goto out;
5796                        }
5797
5798                        if (ctx)
5799                                ctx->log_new_dentries = false;
5800                        ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5801                                              LOG_INODE_ALL, ctx);
5802                        if (!ret &&
5803                            btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5804                                ret = 1;
5805                        if (!ret && ctx && ctx->log_new_dentries)
5806                                ret = log_new_dir_dentries(trans, root,
5807                                                   BTRFS_I(dir_inode), ctx);
5808                        btrfs_add_delayed_iput(dir_inode);
5809                        if (ret)
5810                                goto out;
5811                }
5812                path->slots[0]++;
5813        }
5814        ret = 0;
5815out:
5816        btrfs_free_path(path);
5817        return ret;
5818}
5819
5820static int log_new_ancestors(struct btrfs_trans_handle *trans,
5821                             struct btrfs_root *root,
5822                             struct btrfs_path *path,
5823                             struct btrfs_log_ctx *ctx)
5824{
5825        struct btrfs_key found_key;
5826
5827        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5828
5829        while (true) {
5830                struct btrfs_fs_info *fs_info = root->fs_info;
5831                const u64 last_committed = fs_info->last_trans_committed;
5832                struct extent_buffer *leaf = path->nodes[0];
5833                int slot = path->slots[0];
5834                struct btrfs_key search_key;
5835                struct inode *inode;
5836                u64 ino;
5837                int ret = 0;
5838
5839                btrfs_release_path(path);
5840
5841                ino = found_key.offset;
5842
5843                search_key.objectid = found_key.offset;
5844                search_key.type = BTRFS_INODE_ITEM_KEY;
5845                search_key.offset = 0;
5846                inode = btrfs_iget(fs_info->sb, ino, root);
5847                if (IS_ERR(inode))
5848                        return PTR_ERR(inode);
5849
5850                if (BTRFS_I(inode)->generation > last_committed)
5851                        ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5852                                              LOG_INODE_EXISTS, ctx);
5853                btrfs_add_delayed_iput(inode);
5854                if (ret)
5855                        return ret;
5856
5857                if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5858                        break;
5859
5860                search_key.type = BTRFS_INODE_REF_KEY;
5861                ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5862                if (ret < 0)
5863                        return ret;
5864
5865                leaf = path->nodes[0];
5866                slot = path->slots[0];
5867                if (slot >= btrfs_header_nritems(leaf)) {
5868                        ret = btrfs_next_leaf(root, path);
5869                        if (ret < 0)
5870                                return ret;
5871                        else if (ret > 0)
5872                                return -ENOENT;
5873                        leaf = path->nodes[0];
5874                        slot = path->slots[0];
5875                }
5876
5877                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5878                if (found_key.objectid != search_key.objectid ||
5879                    found_key.type != BTRFS_INODE_REF_KEY)
5880                        return -ENOENT;
5881        }
5882        return 0;
5883}
5884
5885static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5886                                  struct btrfs_inode *inode,
5887                                  struct dentry *parent,
5888                                  struct btrfs_log_ctx *ctx)
5889{
5890        struct btrfs_root *root = inode->root;
5891        struct btrfs_fs_info *fs_info = root->fs_info;
5892        struct dentry *old_parent = NULL;
5893        struct super_block *sb = inode->vfs_inode.i_sb;
5894        int ret = 0;
5895
5896        while (true) {
5897                if (!parent || d_really_is_negative(parent) ||
5898                    sb != parent->d_sb)
5899                        break;
5900
5901                inode = BTRFS_I(d_inode(parent));
5902                if (root != inode->root)
5903                        break;
5904
5905                if (inode->generation > fs_info->last_trans_committed) {
5906                        ret = btrfs_log_inode(trans, root, inode,
5907                                              LOG_INODE_EXISTS, ctx);
5908                        if (ret)
5909                                break;
5910                }
5911                if (IS_ROOT(parent))
5912                        break;
5913
5914                parent = dget_parent(parent);
5915                dput(old_parent);
5916                old_parent = parent;
5917        }
5918        dput(old_parent);
5919
5920        return ret;
5921}
5922
5923static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5924                                 struct btrfs_inode *inode,
5925                                 struct dentry *parent,
5926                                 struct btrfs_log_ctx *ctx)
5927{
5928        struct btrfs_root *root = inode->root;
5929        const u64 ino = btrfs_ino(inode);
5930        struct btrfs_path *path;
5931        struct btrfs_key search_key;
5932        int ret;
5933
5934        /*
5935         * For a single hard link case, go through a fast path that does not
5936         * need to iterate the fs/subvolume tree.
5937         */
5938        if (inode->vfs_inode.i_nlink < 2)
5939                return log_new_ancestors_fast(trans, inode, parent, ctx);
5940
5941        path = btrfs_alloc_path();
5942        if (!path)
5943                return -ENOMEM;
5944
5945        search_key.objectid = ino;
5946        search_key.type = BTRFS_INODE_REF_KEY;
5947        search_key.offset = 0;
5948again:
5949        ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5950        if (ret < 0)
5951                goto out;
5952        if (ret == 0)
5953                path->slots[0]++;
5954
5955        while (true) {
5956                struct extent_buffer *leaf = path->nodes[0];
5957                int slot = path->slots[0];
5958                struct btrfs_key found_key;
5959
5960                if (slot >= btrfs_header_nritems(leaf)) {
5961                        ret = btrfs_next_leaf(root, path);
5962                        if (ret < 0)
5963                                goto out;
5964                        else if (ret > 0)
5965                                break;
5966                        continue;
5967                }
5968
5969                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5970                if (found_key.objectid != ino ||
5971                    found_key.type > BTRFS_INODE_EXTREF_KEY)
5972                        break;
5973
5974                /*
5975                 * Don't deal with extended references because they are rare
5976                 * cases and too complex to deal with (we would need to keep
5977                 * track of which subitem we are processing for each item in
5978                 * this loop, etc). So just return some error to fallback to
5979                 * a transaction commit.
5980                 */
5981                if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5982                        ret = -EMLINK;
5983                        goto out;
5984                }
5985
5986                /*
5987                 * Logging ancestors needs to do more searches on the fs/subvol
5988                 * tree, so it releases the path as needed to avoid deadlocks.
5989                 * Keep track of the last inode ref key and resume from that key
5990                 * after logging all new ancestors for the current hard link.
5991                 */
5992                memcpy(&search_key, &found_key, sizeof(search_key));
5993
5994                ret = log_new_ancestors(trans, root, path, ctx);
5995                if (ret)
5996                        goto out;
5997                btrfs_release_path(path);
5998                goto again;
5999        }
6000        ret = 0;
6001out:
6002        btrfs_free_path(path);
6003        return ret;
6004}
6005
6006/*
6007 * helper function around btrfs_log_inode to make sure newly created
6008 * parent directories also end up in the log.  A minimal inode and backref
6009 * only logging is done of any parent directories that are older than
6010 * the last committed transaction
6011 */
6012static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6013                                  struct btrfs_inode *inode,
6014                                  struct dentry *parent,
6015                                  int inode_only,
6016                                  struct btrfs_log_ctx *ctx)
6017{
6018        struct btrfs_root *root = inode->root;
6019        struct btrfs_fs_info *fs_info = root->fs_info;
6020        struct super_block *sb;
6021        int ret = 0;
6022        u64 last_committed = fs_info->last_trans_committed;
6023        bool log_dentries = false;
6024
6025        sb = inode->vfs_inode.i_sb;
6026
6027        if (btrfs_test_opt(fs_info, NOTREELOG)) {
6028                ret = 1;
6029                goto end_no_trans;
6030        }
6031
6032        /*
6033         * The prev transaction commit doesn't complete, we need do
6034         * full commit by ourselves.
6035         */
6036        if (fs_info->last_trans_log_full_commit >
6037            fs_info->last_trans_committed) {
6038                ret = 1;
6039                goto end_no_trans;
6040        }
6041
6042        if (btrfs_root_refs(&root->root_item) == 0) {
6043                ret = 1;
6044                goto end_no_trans;
6045        }
6046
6047        ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6048                        last_committed);
6049        if (ret)
6050                goto end_no_trans;
6051
6052        /*
6053         * Skip already logged inodes or inodes corresponding to tmpfiles
6054         * (since logging them is pointless, a link count of 0 means they
6055         * will never be accessible).
6056         */
6057        if (btrfs_inode_in_log(inode, trans->transid) ||
6058            inode->vfs_inode.i_nlink == 0) {
6059                ret = BTRFS_NO_LOG_SYNC;
6060                goto end_no_trans;
6061        }
6062
6063        ret = start_log_trans(trans, root, ctx);
6064        if (ret)
6065                goto end_no_trans;
6066
6067        ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6068        if (ret)
6069                goto end_trans;
6070
6071        /*
6072         * for regular files, if its inode is already on disk, we don't
6073         * have to worry about the parents at all.  This is because
6074         * we can use the last_unlink_trans field to record renames
6075         * and other fun in this file.
6076         */
6077        if (S_ISREG(inode->vfs_inode.i_mode) &&
6078            inode->generation <= last_committed &&
6079            inode->last_unlink_trans <= last_committed) {
6080                ret = 0;
6081                goto end_trans;
6082        }
6083
6084        if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6085                log_dentries = true;
6086
6087        /*
6088         * On unlink we must make sure all our current and old parent directory
6089         * inodes are fully logged. This is to prevent leaving dangling
6090         * directory index entries in directories that were our parents but are
6091         * not anymore. Not doing this results in old parent directory being
6092         * impossible to delete after log replay (rmdir will always fail with
6093         * error -ENOTEMPTY).
6094         *
6095         * Example 1:
6096         *
6097         * mkdir testdir
6098         * touch testdir/foo
6099         * ln testdir/foo testdir/bar
6100         * sync
6101         * unlink testdir/bar
6102         * xfs_io -c fsync testdir/foo
6103         * <power failure>
6104         * mount fs, triggers log replay
6105         *
6106         * If we don't log the parent directory (testdir), after log replay the
6107         * directory still has an entry pointing to the file inode using the bar
6108         * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6109         * the file inode has a link count of 1.
6110         *
6111         * Example 2:
6112         *
6113         * mkdir testdir
6114         * touch foo
6115         * ln foo testdir/foo2
6116         * ln foo testdir/foo3
6117         * sync
6118         * unlink testdir/foo3
6119         * xfs_io -c fsync foo
6120         * <power failure>
6121         * mount fs, triggers log replay
6122         *
6123         * Similar as the first example, after log replay the parent directory
6124         * testdir still has an entry pointing to the inode file with name foo3
6125         * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6126         * and has a link count of 2.
6127         */
6128        if (inode->last_unlink_trans > last_committed) {
6129                ret = btrfs_log_all_parents(trans, inode, ctx);
6130                if (ret)
6131                        goto end_trans;
6132        }
6133
6134        ret = log_all_new_ancestors(trans, inode, parent, ctx);
6135        if (ret)
6136                goto end_trans;
6137
6138        if (log_dentries)
6139                ret = log_new_dir_dentries(trans, root, inode, ctx);
6140        else
6141                ret = 0;
6142end_trans:
6143        if (ret < 0) {
6144                btrfs_set_log_full_commit(trans);
6145                ret = 1;
6146        }
6147
6148        if (ret)
6149                btrfs_remove_log_ctx(root, ctx);
6150        btrfs_end_log_trans(root);
6151end_no_trans:
6152        return ret;
6153}
6154
6155/*
6156 * it is not safe to log dentry if the chunk root has added new
6157 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6158 * If this returns 1, you must commit the transaction to safely get your
6159 * data on disk.
6160 */
6161int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6162                          struct dentry *dentry,
6163                          struct btrfs_log_ctx *ctx)
6164{
6165        struct dentry *parent = dget_parent(dentry);
6166        int ret;
6167
6168        ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6169                                     LOG_INODE_ALL, ctx);
6170        dput(parent);
6171
6172        return ret;
6173}
6174
6175/*
6176 * should be called during mount to recover any replay any log trees
6177 * from the FS
6178 */
6179int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6180{
6181        int ret;
6182        struct btrfs_path *path;
6183        struct btrfs_trans_handle *trans;
6184        struct btrfs_key key;
6185        struct btrfs_key found_key;
6186        struct btrfs_root *log;
6187        struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6188        struct walk_control wc = {
6189                .process_func = process_one_buffer,
6190                .stage = LOG_WALK_PIN_ONLY,
6191        };
6192
6193        path = btrfs_alloc_path();
6194        if (!path)
6195                return -ENOMEM;
6196
6197        set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6198
6199        trans = btrfs_start_transaction(fs_info->tree_root, 0);
6200        if (IS_ERR(trans)) {
6201                ret = PTR_ERR(trans);
6202                goto error;
6203        }
6204
6205        wc.trans = trans;
6206        wc.pin = 1;
6207
6208        ret = walk_log_tree(trans, log_root_tree, &wc);
6209        if (ret) {
6210                btrfs_handle_fs_error(fs_info, ret,
6211                        "Failed to pin buffers while recovering log root tree.");
6212                goto error;
6213        }
6214
6215again:
6216        key.objectid = BTRFS_TREE_LOG_OBJECTID;
6217        key.offset = (u64)-1;
6218        key.type = BTRFS_ROOT_ITEM_KEY;
6219
6220        while (1) {
6221                ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6222
6223                if (ret < 0) {
6224                        btrfs_handle_fs_error(fs_info, ret,
6225                                    "Couldn't find tree log root.");
6226                        goto error;
6227                }
6228                if (ret > 0) {
6229                        if (path->slots[0] == 0)
6230                                break;
6231                        path->slots[0]--;
6232                }
6233                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6234                                      path->slots[0]);
6235                btrfs_release_path(path);
6236                if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6237                        break;
6238
6239                log = btrfs_read_tree_root(log_root_tree, &found_key);
6240                if (IS_ERR(log)) {
6241                        ret = PTR_ERR(log);
6242                        btrfs_handle_fs_error(fs_info, ret,
6243                                    "Couldn't read tree log root.");
6244                        goto error;
6245                }
6246
6247                wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6248                                                   true);
6249                if (IS_ERR(wc.replay_dest)) {
6250                        ret = PTR_ERR(wc.replay_dest);
6251
6252                        /*
6253                         * We didn't find the subvol, likely because it was
6254                         * deleted.  This is ok, simply skip this log and go to
6255                         * the next one.
6256                         *
6257                         * We need to exclude the root because we can't have
6258                         * other log replays overwriting this log as we'll read
6259                         * it back in a few more times.  This will keep our
6260                         * block from being modified, and we'll just bail for
6261                         * each subsequent pass.
6262                         */
6263                        if (ret == -ENOENT)
6264                                ret = btrfs_pin_extent_for_log_replay(trans,
6265                                                        log->node->start,
6266                                                        log->node->len);
6267                        btrfs_put_root(log);
6268
6269                        if (!ret)
6270                                goto next;
6271                        btrfs_handle_fs_error(fs_info, ret,
6272                                "Couldn't read target root for tree log recovery.");
6273                        goto error;
6274                }
6275
6276                wc.replay_dest->log_root = log;
6277                btrfs_record_root_in_trans(trans, wc.replay_dest);
6278                ret = walk_log_tree(trans, log, &wc);
6279
6280                if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6281                        ret = fixup_inode_link_counts(trans, wc.replay_dest,
6282                                                      path);
6283                }
6284
6285                if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6286                        struct btrfs_root *root = wc.replay_dest;
6287
6288                        btrfs_release_path(path);
6289
6290                        /*
6291                         * We have just replayed everything, and the highest
6292                         * objectid of fs roots probably has changed in case
6293                         * some inode_item's got replayed.
6294                         *
6295                         * root->objectid_mutex is not acquired as log replay
6296                         * could only happen during mount.
6297                         */
6298                        ret = btrfs_find_highest_objectid(root,
6299                                                  &root->highest_objectid);
6300                }
6301
6302                wc.replay_dest->log_root = NULL;
6303                btrfs_put_root(wc.replay_dest);
6304                btrfs_put_root(log);
6305
6306                if (ret)
6307                        goto error;
6308next:
6309                if (found_key.offset == 0)
6310                        break;
6311                key.offset = found_key.offset - 1;
6312        }
6313        btrfs_release_path(path);
6314
6315        /* step one is to pin it all, step two is to replay just inodes */
6316        if (wc.pin) {
6317                wc.pin = 0;
6318                wc.process_func = replay_one_buffer;
6319                wc.stage = LOG_WALK_REPLAY_INODES;
6320                goto again;
6321        }
6322        /* step three is to replay everything */
6323        if (wc.stage < LOG_WALK_REPLAY_ALL) {
6324                wc.stage++;
6325                goto again;
6326        }
6327
6328        btrfs_free_path(path);
6329
6330        /* step 4: commit the transaction, which also unpins the blocks */
6331        ret = btrfs_commit_transaction(trans);
6332        if (ret)
6333                return ret;
6334
6335        log_root_tree->log_root = NULL;
6336        clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6337        btrfs_put_root(log_root_tree);
6338
6339        return 0;
6340error:
6341        if (wc.trans)
6342                btrfs_end_transaction(wc.trans);
6343        btrfs_free_path(path);
6344        return ret;
6345}
6346
6347/*
6348 * there are some corner cases where we want to force a full
6349 * commit instead of allowing a directory to be logged.
6350 *
6351 * They revolve around files there were unlinked from the directory, and
6352 * this function updates the parent directory so that a full commit is
6353 * properly done if it is fsync'd later after the unlinks are done.
6354 *
6355 * Must be called before the unlink operations (updates to the subvolume tree,
6356 * inodes, etc) are done.
6357 */
6358void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6359                             struct btrfs_inode *dir, struct btrfs_inode *inode,
6360                             int for_rename)
6361{
6362        /*
6363         * when we're logging a file, if it hasn't been renamed
6364         * or unlinked, and its inode is fully committed on disk,
6365         * we don't have to worry about walking up the directory chain
6366         * to log its parents.
6367         *
6368         * So, we use the last_unlink_trans field to put this transid
6369         * into the file.  When the file is logged we check it and
6370         * don't log the parents if the file is fully on disk.
6371         */
6372        mutex_lock(&inode->log_mutex);
6373        inode->last_unlink_trans = trans->transid;
6374        mutex_unlock(&inode->log_mutex);
6375
6376        /*
6377         * if this directory was already logged any new
6378         * names for this file/dir will get recorded
6379         */
6380        if (dir->logged_trans == trans->transid)
6381                return;
6382
6383        /*
6384         * if the inode we're about to unlink was logged,
6385         * the log will be properly updated for any new names
6386         */
6387        if (inode->logged_trans == trans->transid)
6388                return;
6389
6390        /*
6391         * when renaming files across directories, if the directory
6392         * there we're unlinking from gets fsync'd later on, there's
6393         * no way to find the destination directory later and fsync it
6394         * properly.  So, we have to be conservative and force commits
6395         * so the new name gets discovered.
6396         */
6397        if (for_rename)
6398                goto record;
6399
6400        /* we can safely do the unlink without any special recording */
6401        return;
6402
6403record:
6404        mutex_lock(&dir->log_mutex);
6405        dir->last_unlink_trans = trans->transid;
6406        mutex_unlock(&dir->log_mutex);
6407}
6408
6409/*
6410 * Make sure that if someone attempts to fsync the parent directory of a deleted
6411 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6412 * that after replaying the log tree of the parent directory's root we will not
6413 * see the snapshot anymore and at log replay time we will not see any log tree
6414 * corresponding to the deleted snapshot's root, which could lead to replaying
6415 * it after replaying the log tree of the parent directory (which would replay
6416 * the snapshot delete operation).
6417 *
6418 * Must be called before the actual snapshot destroy operation (updates to the
6419 * parent root and tree of tree roots trees, etc) are done.
6420 */
6421void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6422                                   struct btrfs_inode *dir)
6423{
6424        mutex_lock(&dir->log_mutex);
6425        dir->last_unlink_trans = trans->transid;
6426        mutex_unlock(&dir->log_mutex);
6427}
6428
6429/*
6430 * Call this after adding a new name for a file and it will properly
6431 * update the log to reflect the new name.
6432 */
6433void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6434                        struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6435                        struct dentry *parent)
6436{
6437        struct btrfs_fs_info *fs_info = trans->fs_info;
6438        struct btrfs_log_ctx ctx;
6439
6440        /*
6441         * this will force the logging code to walk the dentry chain
6442         * up for the file
6443         */
6444        if (!S_ISDIR(inode->vfs_inode.i_mode))
6445                inode->last_unlink_trans = trans->transid;
6446
6447        /*
6448         * if this inode hasn't been logged and directory we're renaming it
6449         * from hasn't been logged, we don't need to log it
6450         */
6451        if (inode->logged_trans <= fs_info->last_trans_committed &&
6452            (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6453                return;
6454
6455        btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6456        ctx.logging_new_name = true;
6457        /*
6458         * We don't care about the return value. If we fail to log the new name
6459         * then we know the next attempt to sync the log will fallback to a full
6460         * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6461         * we don't need to worry about getting a log committed that has an
6462         * inconsistent state after a rename operation.
6463         */
6464        btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6465}
6466
6467