linux/fs/eventpoll.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  fs/eventpoll.c (Efficient event retrieval implementation)
   4 *  Copyright (C) 2001,...,2009  Davide Libenzi
   5 *
   6 *  Davide Libenzi <davidel@xmailserver.org>
   7 */
   8
   9#include <linux/init.h>
  10#include <linux/kernel.h>
  11#include <linux/sched/signal.h>
  12#include <linux/fs.h>
  13#include <linux/file.h>
  14#include <linux/signal.h>
  15#include <linux/errno.h>
  16#include <linux/mm.h>
  17#include <linux/slab.h>
  18#include <linux/poll.h>
  19#include <linux/string.h>
  20#include <linux/list.h>
  21#include <linux/hash.h>
  22#include <linux/spinlock.h>
  23#include <linux/syscalls.h>
  24#include <linux/rbtree.h>
  25#include <linux/wait.h>
  26#include <linux/eventpoll.h>
  27#include <linux/mount.h>
  28#include <linux/bitops.h>
  29#include <linux/mutex.h>
  30#include <linux/anon_inodes.h>
  31#include <linux/device.h>
  32#include <linux/uaccess.h>
  33#include <asm/io.h>
  34#include <asm/mman.h>
  35#include <linux/atomic.h>
  36#include <linux/proc_fs.h>
  37#include <linux/seq_file.h>
  38#include <linux/compat.h>
  39#include <linux/rculist.h>
  40#include <net/busy_poll.h>
  41
  42/*
  43 * LOCKING:
  44 * There are three level of locking required by epoll :
  45 *
  46 * 1) epmutex (mutex)
  47 * 2) ep->mtx (mutex)
  48 * 3) ep->lock (rwlock)
  49 *
  50 * The acquire order is the one listed above, from 1 to 3.
  51 * We need a rwlock (ep->lock) because we manipulate objects
  52 * from inside the poll callback, that might be triggered from
  53 * a wake_up() that in turn might be called from IRQ context.
  54 * So we can't sleep inside the poll callback and hence we need
  55 * a spinlock. During the event transfer loop (from kernel to
  56 * user space) we could end up sleeping due a copy_to_user(), so
  57 * we need a lock that will allow us to sleep. This lock is a
  58 * mutex (ep->mtx). It is acquired during the event transfer loop,
  59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
  60 * Then we also need a global mutex to serialize eventpoll_release_file()
  61 * and ep_free().
  62 * This mutex is acquired by ep_free() during the epoll file
  63 * cleanup path and it is also acquired by eventpoll_release_file()
  64 * if a file has been pushed inside an epoll set and it is then
  65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
  66 * It is also acquired when inserting an epoll fd onto another epoll
  67 * fd. We do this so that we walk the epoll tree and ensure that this
  68 * insertion does not create a cycle of epoll file descriptors, which
  69 * could lead to deadlock. We need a global mutex to prevent two
  70 * simultaneous inserts (A into B and B into A) from racing and
  71 * constructing a cycle without either insert observing that it is
  72 * going to.
  73 * It is necessary to acquire multiple "ep->mtx"es at once in the
  74 * case when one epoll fd is added to another. In this case, we
  75 * always acquire the locks in the order of nesting (i.e. after
  76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
  77 * before e2->mtx). Since we disallow cycles of epoll file
  78 * descriptors, this ensures that the mutexes are well-ordered. In
  79 * order to communicate this nesting to lockdep, when walking a tree
  80 * of epoll file descriptors, we use the current recursion depth as
  81 * the lockdep subkey.
  82 * It is possible to drop the "ep->mtx" and to use the global
  83 * mutex "epmutex" (together with "ep->lock") to have it working,
  84 * but having "ep->mtx" will make the interface more scalable.
  85 * Events that require holding "epmutex" are very rare, while for
  86 * normal operations the epoll private "ep->mtx" will guarantee
  87 * a better scalability.
  88 */
  89
  90/* Epoll private bits inside the event mask */
  91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
  92
  93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
  94
  95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
  96                                EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
  97
  98/* Maximum number of nesting allowed inside epoll sets */
  99#define EP_MAX_NESTS 4
 100
 101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
 102
 103#define EP_UNACTIVE_PTR ((void *) -1L)
 104
 105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
 106
 107struct epoll_filefd {
 108        struct file *file;
 109        int fd;
 110} __packed;
 111
 112/*
 113 * Structure used to track possible nested calls, for too deep recursions
 114 * and loop cycles.
 115 */
 116struct nested_call_node {
 117        struct list_head llink;
 118        void *cookie;
 119        void *ctx;
 120};
 121
 122/*
 123 * This structure is used as collector for nested calls, to check for
 124 * maximum recursion dept and loop cycles.
 125 */
 126struct nested_calls {
 127        struct list_head tasks_call_list;
 128        spinlock_t lock;
 129};
 130
 131/*
 132 * Each file descriptor added to the eventpoll interface will
 133 * have an entry of this type linked to the "rbr" RB tree.
 134 * Avoid increasing the size of this struct, there can be many thousands
 135 * of these on a server and we do not want this to take another cache line.
 136 */
 137struct epitem {
 138        union {
 139                /* RB tree node links this structure to the eventpoll RB tree */
 140                struct rb_node rbn;
 141                /* Used to free the struct epitem */
 142                struct rcu_head rcu;
 143        };
 144
 145        /* List header used to link this structure to the eventpoll ready list */
 146        struct list_head rdllink;
 147
 148        /*
 149         * Works together "struct eventpoll"->ovflist in keeping the
 150         * single linked chain of items.
 151         */
 152        struct epitem *next;
 153
 154        /* The file descriptor information this item refers to */
 155        struct epoll_filefd ffd;
 156
 157        /* Number of active wait queue attached to poll operations */
 158        int nwait;
 159
 160        /* List containing poll wait queues */
 161        struct list_head pwqlist;
 162
 163        /* The "container" of this item */
 164        struct eventpoll *ep;
 165
 166        /* List header used to link this item to the "struct file" items list */
 167        struct list_head fllink;
 168
 169        /* wakeup_source used when EPOLLWAKEUP is set */
 170        struct wakeup_source __rcu *ws;
 171
 172        /* The structure that describe the interested events and the source fd */
 173        struct epoll_event event;
 174};
 175
 176/*
 177 * This structure is stored inside the "private_data" member of the file
 178 * structure and represents the main data structure for the eventpoll
 179 * interface.
 180 */
 181struct eventpoll {
 182        /*
 183         * This mutex is used to ensure that files are not removed
 184         * while epoll is using them. This is held during the event
 185         * collection loop, the file cleanup path, the epoll file exit
 186         * code and the ctl operations.
 187         */
 188        struct mutex mtx;
 189
 190        /* Wait queue used by sys_epoll_wait() */
 191        wait_queue_head_t wq;
 192
 193        /* Wait queue used by file->poll() */
 194        wait_queue_head_t poll_wait;
 195
 196        /* List of ready file descriptors */
 197        struct list_head rdllist;
 198
 199        /* Lock which protects rdllist and ovflist */
 200        rwlock_t lock;
 201
 202        /* RB tree root used to store monitored fd structs */
 203        struct rb_root_cached rbr;
 204
 205        /*
 206         * This is a single linked list that chains all the "struct epitem" that
 207         * happened while transferring ready events to userspace w/out
 208         * holding ->lock.
 209         */
 210        struct epitem *ovflist;
 211
 212        /* wakeup_source used when ep_scan_ready_list is running */
 213        struct wakeup_source *ws;
 214
 215        /* The user that created the eventpoll descriptor */
 216        struct user_struct *user;
 217
 218        struct file *file;
 219
 220        /* used to optimize loop detection check */
 221        u64 gen;
 222
 223#ifdef CONFIG_NET_RX_BUSY_POLL
 224        /* used to track busy poll napi_id */
 225        unsigned int napi_id;
 226#endif
 227
 228#ifdef CONFIG_DEBUG_LOCK_ALLOC
 229        /* tracks wakeup nests for lockdep validation */
 230        u8 nests;
 231#endif
 232};
 233
 234/* Wait structure used by the poll hooks */
 235struct eppoll_entry {
 236        /* List header used to link this structure to the "struct epitem" */
 237        struct list_head llink;
 238
 239        /* The "base" pointer is set to the container "struct epitem" */
 240        struct epitem *base;
 241
 242        /*
 243         * Wait queue item that will be linked to the target file wait
 244         * queue head.
 245         */
 246        wait_queue_entry_t wait;
 247
 248        /* The wait queue head that linked the "wait" wait queue item */
 249        wait_queue_head_t *whead;
 250};
 251
 252/* Wrapper struct used by poll queueing */
 253struct ep_pqueue {
 254        poll_table pt;
 255        struct epitem *epi;
 256};
 257
 258/* Used by the ep_send_events() function as callback private data */
 259struct ep_send_events_data {
 260        int maxevents;
 261        struct epoll_event __user *events;
 262        int res;
 263};
 264
 265/*
 266 * Configuration options available inside /proc/sys/fs/epoll/
 267 */
 268/* Maximum number of epoll watched descriptors, per user */
 269static long max_user_watches __read_mostly;
 270
 271/*
 272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
 273 */
 274static DEFINE_MUTEX(epmutex);
 275
 276static u64 loop_check_gen = 0;
 277
 278/* Used to check for epoll file descriptor inclusion loops */
 279static struct nested_calls poll_loop_ncalls;
 280
 281/* Slab cache used to allocate "struct epitem" */
 282static struct kmem_cache *epi_cache __read_mostly;
 283
 284/* Slab cache used to allocate "struct eppoll_entry" */
 285static struct kmem_cache *pwq_cache __read_mostly;
 286
 287/*
 288 * List of files with newly added links, where we may need to limit the number
 289 * of emanating paths. Protected by the epmutex.
 290 */
 291static LIST_HEAD(tfile_check_list);
 292
 293#ifdef CONFIG_SYSCTL
 294
 295#include <linux/sysctl.h>
 296
 297static long long_zero;
 298static long long_max = LONG_MAX;
 299
 300struct ctl_table epoll_table[] = {
 301        {
 302                .procname       = "max_user_watches",
 303                .data           = &max_user_watches,
 304                .maxlen         = sizeof(max_user_watches),
 305                .mode           = 0644,
 306                .proc_handler   = proc_doulongvec_minmax,
 307                .extra1         = &long_zero,
 308                .extra2         = &long_max,
 309        },
 310        { }
 311};
 312#endif /* CONFIG_SYSCTL */
 313
 314static const struct file_operations eventpoll_fops;
 315
 316static inline int is_file_epoll(struct file *f)
 317{
 318        return f->f_op == &eventpoll_fops;
 319}
 320
 321/* Setup the structure that is used as key for the RB tree */
 322static inline void ep_set_ffd(struct epoll_filefd *ffd,
 323                              struct file *file, int fd)
 324{
 325        ffd->file = file;
 326        ffd->fd = fd;
 327}
 328
 329/* Compare RB tree keys */
 330static inline int ep_cmp_ffd(struct epoll_filefd *p1,
 331                             struct epoll_filefd *p2)
 332{
 333        return (p1->file > p2->file ? +1:
 334                (p1->file < p2->file ? -1 : p1->fd - p2->fd));
 335}
 336
 337/* Tells us if the item is currently linked */
 338static inline int ep_is_linked(struct epitem *epi)
 339{
 340        return !list_empty(&epi->rdllink);
 341}
 342
 343static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
 344{
 345        return container_of(p, struct eppoll_entry, wait);
 346}
 347
 348/* Get the "struct epitem" from a wait queue pointer */
 349static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
 350{
 351        return container_of(p, struct eppoll_entry, wait)->base;
 352}
 353
 354/* Get the "struct epitem" from an epoll queue wrapper */
 355static inline struct epitem *ep_item_from_epqueue(poll_table *p)
 356{
 357        return container_of(p, struct ep_pqueue, pt)->epi;
 358}
 359
 360/* Initialize the poll safe wake up structure */
 361static void ep_nested_calls_init(struct nested_calls *ncalls)
 362{
 363        INIT_LIST_HEAD(&ncalls->tasks_call_list);
 364        spin_lock_init(&ncalls->lock);
 365}
 366
 367/**
 368 * ep_events_available - Checks if ready events might be available.
 369 *
 370 * @ep: Pointer to the eventpoll context.
 371 *
 372 * Returns: Returns a value different than zero if ready events are available,
 373 *          or zero otherwise.
 374 */
 375static inline int ep_events_available(struct eventpoll *ep)
 376{
 377        return !list_empty_careful(&ep->rdllist) ||
 378                READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
 379}
 380
 381#ifdef CONFIG_NET_RX_BUSY_POLL
 382static bool ep_busy_loop_end(void *p, unsigned long start_time)
 383{
 384        struct eventpoll *ep = p;
 385
 386        return ep_events_available(ep) || busy_loop_timeout(start_time);
 387}
 388
 389/*
 390 * Busy poll if globally on and supporting sockets found && no events,
 391 * busy loop will return if need_resched or ep_events_available.
 392 *
 393 * we must do our busy polling with irqs enabled
 394 */
 395static void ep_busy_loop(struct eventpoll *ep, int nonblock)
 396{
 397        unsigned int napi_id = READ_ONCE(ep->napi_id);
 398
 399        if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
 400                napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
 401}
 402
 403static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
 404{
 405        if (ep->napi_id)
 406                ep->napi_id = 0;
 407}
 408
 409/*
 410 * Set epoll busy poll NAPI ID from sk.
 411 */
 412static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 413{
 414        struct eventpoll *ep;
 415        unsigned int napi_id;
 416        struct socket *sock;
 417        struct sock *sk;
 418        int err;
 419
 420        if (!net_busy_loop_on())
 421                return;
 422
 423        sock = sock_from_file(epi->ffd.file, &err);
 424        if (!sock)
 425                return;
 426
 427        sk = sock->sk;
 428        if (!sk)
 429                return;
 430
 431        napi_id = READ_ONCE(sk->sk_napi_id);
 432        ep = epi->ep;
 433
 434        /* Non-NAPI IDs can be rejected
 435         *      or
 436         * Nothing to do if we already have this ID
 437         */
 438        if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
 439                return;
 440
 441        /* record NAPI ID for use in next busy poll */
 442        ep->napi_id = napi_id;
 443}
 444
 445#else
 446
 447static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
 448{
 449}
 450
 451static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
 452{
 453}
 454
 455static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 456{
 457}
 458
 459#endif /* CONFIG_NET_RX_BUSY_POLL */
 460
 461/**
 462 * ep_call_nested - Perform a bound (possibly) nested call, by checking
 463 *                  that the recursion limit is not exceeded, and that
 464 *                  the same nested call (by the meaning of same cookie) is
 465 *                  no re-entered.
 466 *
 467 * @ncalls: Pointer to the nested_calls structure to be used for this call.
 468 * @nproc: Nested call core function pointer.
 469 * @priv: Opaque data to be passed to the @nproc callback.
 470 * @cookie: Cookie to be used to identify this nested call.
 471 * @ctx: This instance context.
 472 *
 473 * Returns: Returns the code returned by the @nproc callback, or -1 if
 474 *          the maximum recursion limit has been exceeded.
 475 */
 476static int ep_call_nested(struct nested_calls *ncalls,
 477                          int (*nproc)(void *, void *, int), void *priv,
 478                          void *cookie, void *ctx)
 479{
 480        int error, call_nests = 0;
 481        unsigned long flags;
 482        struct list_head *lsthead = &ncalls->tasks_call_list;
 483        struct nested_call_node *tncur;
 484        struct nested_call_node tnode;
 485
 486        spin_lock_irqsave(&ncalls->lock, flags);
 487
 488        /*
 489         * Try to see if the current task is already inside this wakeup call.
 490         * We use a list here, since the population inside this set is always
 491         * very much limited.
 492         */
 493        list_for_each_entry(tncur, lsthead, llink) {
 494                if (tncur->ctx == ctx &&
 495                    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
 496                        /*
 497                         * Ops ... loop detected or maximum nest level reached.
 498                         * We abort this wake by breaking the cycle itself.
 499                         */
 500                        error = -1;
 501                        goto out_unlock;
 502                }
 503        }
 504
 505        /* Add the current task and cookie to the list */
 506        tnode.ctx = ctx;
 507        tnode.cookie = cookie;
 508        list_add(&tnode.llink, lsthead);
 509
 510        spin_unlock_irqrestore(&ncalls->lock, flags);
 511
 512        /* Call the nested function */
 513        error = (*nproc)(priv, cookie, call_nests);
 514
 515        /* Remove the current task from the list */
 516        spin_lock_irqsave(&ncalls->lock, flags);
 517        list_del(&tnode.llink);
 518out_unlock:
 519        spin_unlock_irqrestore(&ncalls->lock, flags);
 520
 521        return error;
 522}
 523
 524/*
 525 * As described in commit 0ccf831cb lockdep: annotate epoll
 526 * the use of wait queues used by epoll is done in a very controlled
 527 * manner. Wake ups can nest inside each other, but are never done
 528 * with the same locking. For example:
 529 *
 530 *   dfd = socket(...);
 531 *   efd1 = epoll_create();
 532 *   efd2 = epoll_create();
 533 *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
 534 *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
 535 *
 536 * When a packet arrives to the device underneath "dfd", the net code will
 537 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
 538 * callback wakeup entry on that queue, and the wake_up() performed by the
 539 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
 540 * (efd1) notices that it may have some event ready, so it needs to wake up
 541 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
 542 * that ends up in another wake_up(), after having checked about the
 543 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
 544 * avoid stack blasting.
 545 *
 546 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
 547 * this special case of epoll.
 548 */
 549#ifdef CONFIG_DEBUG_LOCK_ALLOC
 550
 551static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
 552{
 553        struct eventpoll *ep_src;
 554        unsigned long flags;
 555        u8 nests = 0;
 556
 557        /*
 558         * To set the subclass or nesting level for spin_lock_irqsave_nested()
 559         * it might be natural to create a per-cpu nest count. However, since
 560         * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
 561         * schedule() in the -rt kernel, the per-cpu variable are no longer
 562         * protected. Thus, we are introducing a per eventpoll nest field.
 563         * If we are not being call from ep_poll_callback(), epi is NULL and
 564         * we are at the first level of nesting, 0. Otherwise, we are being
 565         * called from ep_poll_callback() and if a previous wakeup source is
 566         * not an epoll file itself, we are at depth 1 since the wakeup source
 567         * is depth 0. If the wakeup source is a previous epoll file in the
 568         * wakeup chain then we use its nests value and record ours as
 569         * nests + 1. The previous epoll file nests value is stable since its
 570         * already holding its own poll_wait.lock.
 571         */
 572        if (epi) {
 573                if ((is_file_epoll(epi->ffd.file))) {
 574                        ep_src = epi->ffd.file->private_data;
 575                        nests = ep_src->nests;
 576                } else {
 577                        nests = 1;
 578                }
 579        }
 580        spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
 581        ep->nests = nests + 1;
 582        wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
 583        ep->nests = 0;
 584        spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
 585}
 586
 587#else
 588
 589static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
 590{
 591        wake_up_poll(&ep->poll_wait, EPOLLIN);
 592}
 593
 594#endif
 595
 596static void ep_remove_wait_queue(struct eppoll_entry *pwq)
 597{
 598        wait_queue_head_t *whead;
 599
 600        rcu_read_lock();
 601        /*
 602         * If it is cleared by POLLFREE, it should be rcu-safe.
 603         * If we read NULL we need a barrier paired with
 604         * smp_store_release() in ep_poll_callback(), otherwise
 605         * we rely on whead->lock.
 606         */
 607        whead = smp_load_acquire(&pwq->whead);
 608        if (whead)
 609                remove_wait_queue(whead, &pwq->wait);
 610        rcu_read_unlock();
 611}
 612
 613/*
 614 * This function unregisters poll callbacks from the associated file
 615 * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
 616 * ep_free).
 617 */
 618static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
 619{
 620        struct list_head *lsthead = &epi->pwqlist;
 621        struct eppoll_entry *pwq;
 622
 623        while (!list_empty(lsthead)) {
 624                pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
 625
 626                list_del(&pwq->llink);
 627                ep_remove_wait_queue(pwq);
 628                kmem_cache_free(pwq_cache, pwq);
 629        }
 630}
 631
 632/* call only when ep->mtx is held */
 633static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
 634{
 635        return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
 636}
 637
 638/* call only when ep->mtx is held */
 639static inline void ep_pm_stay_awake(struct epitem *epi)
 640{
 641        struct wakeup_source *ws = ep_wakeup_source(epi);
 642
 643        if (ws)
 644                __pm_stay_awake(ws);
 645}
 646
 647static inline bool ep_has_wakeup_source(struct epitem *epi)
 648{
 649        return rcu_access_pointer(epi->ws) ? true : false;
 650}
 651
 652/* call when ep->mtx cannot be held (ep_poll_callback) */
 653static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
 654{
 655        struct wakeup_source *ws;
 656
 657        rcu_read_lock();
 658        ws = rcu_dereference(epi->ws);
 659        if (ws)
 660                __pm_stay_awake(ws);
 661        rcu_read_unlock();
 662}
 663
 664/**
 665 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
 666 *                      the scan code, to call f_op->poll(). Also allows for
 667 *                      O(NumReady) performance.
 668 *
 669 * @ep: Pointer to the epoll private data structure.
 670 * @sproc: Pointer to the scan callback.
 671 * @priv: Private opaque data passed to the @sproc callback.
 672 * @depth: The current depth of recursive f_op->poll calls.
 673 * @ep_locked: caller already holds ep->mtx
 674 *
 675 * Returns: The same integer error code returned by the @sproc callback.
 676 */
 677static __poll_t ep_scan_ready_list(struct eventpoll *ep,
 678                              __poll_t (*sproc)(struct eventpoll *,
 679                                           struct list_head *, void *),
 680                              void *priv, int depth, bool ep_locked)
 681{
 682        __poll_t res;
 683        struct epitem *epi, *nepi;
 684        LIST_HEAD(txlist);
 685
 686        lockdep_assert_irqs_enabled();
 687
 688        /*
 689         * We need to lock this because we could be hit by
 690         * eventpoll_release_file() and epoll_ctl().
 691         */
 692
 693        if (!ep_locked)
 694                mutex_lock_nested(&ep->mtx, depth);
 695
 696        /*
 697         * Steal the ready list, and re-init the original one to the
 698         * empty list. Also, set ep->ovflist to NULL so that events
 699         * happening while looping w/out locks, are not lost. We cannot
 700         * have the poll callback to queue directly on ep->rdllist,
 701         * because we want the "sproc" callback to be able to do it
 702         * in a lockless way.
 703         */
 704        write_lock_irq(&ep->lock);
 705        list_splice_init(&ep->rdllist, &txlist);
 706        WRITE_ONCE(ep->ovflist, NULL);
 707        write_unlock_irq(&ep->lock);
 708
 709        /*
 710         * Now call the callback function.
 711         */
 712        res = (*sproc)(ep, &txlist, priv);
 713
 714        write_lock_irq(&ep->lock);
 715        /*
 716         * During the time we spent inside the "sproc" callback, some
 717         * other events might have been queued by the poll callback.
 718         * We re-insert them inside the main ready-list here.
 719         */
 720        for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
 721             nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
 722                /*
 723                 * We need to check if the item is already in the list.
 724                 * During the "sproc" callback execution time, items are
 725                 * queued into ->ovflist but the "txlist" might already
 726                 * contain them, and the list_splice() below takes care of them.
 727                 */
 728                if (!ep_is_linked(epi)) {
 729                        /*
 730                         * ->ovflist is LIFO, so we have to reverse it in order
 731                         * to keep in FIFO.
 732                         */
 733                        list_add(&epi->rdllink, &ep->rdllist);
 734                        ep_pm_stay_awake(epi);
 735                }
 736        }
 737        /*
 738         * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
 739         * releasing the lock, events will be queued in the normal way inside
 740         * ep->rdllist.
 741         */
 742        WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
 743
 744        /*
 745         * Quickly re-inject items left on "txlist".
 746         */
 747        list_splice(&txlist, &ep->rdllist);
 748        __pm_relax(ep->ws);
 749        write_unlock_irq(&ep->lock);
 750
 751        if (!ep_locked)
 752                mutex_unlock(&ep->mtx);
 753
 754        return res;
 755}
 756
 757static void epi_rcu_free(struct rcu_head *head)
 758{
 759        struct epitem *epi = container_of(head, struct epitem, rcu);
 760        kmem_cache_free(epi_cache, epi);
 761}
 762
 763/*
 764 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
 765 * all the associated resources. Must be called with "mtx" held.
 766 */
 767static int ep_remove(struct eventpoll *ep, struct epitem *epi)
 768{
 769        struct file *file = epi->ffd.file;
 770
 771        lockdep_assert_irqs_enabled();
 772
 773        /*
 774         * Removes poll wait queue hooks.
 775         */
 776        ep_unregister_pollwait(ep, epi);
 777
 778        /* Remove the current item from the list of epoll hooks */
 779        spin_lock(&file->f_lock);
 780        list_del_rcu(&epi->fllink);
 781        spin_unlock(&file->f_lock);
 782
 783        rb_erase_cached(&epi->rbn, &ep->rbr);
 784
 785        write_lock_irq(&ep->lock);
 786        if (ep_is_linked(epi))
 787                list_del_init(&epi->rdllink);
 788        write_unlock_irq(&ep->lock);
 789
 790        wakeup_source_unregister(ep_wakeup_source(epi));
 791        /*
 792         * At this point it is safe to free the eventpoll item. Use the union
 793         * field epi->rcu, since we are trying to minimize the size of
 794         * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
 795         * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
 796         * use of the rbn field.
 797         */
 798        call_rcu(&epi->rcu, epi_rcu_free);
 799
 800        atomic_long_dec(&ep->user->epoll_watches);
 801
 802        return 0;
 803}
 804
 805static void ep_free(struct eventpoll *ep)
 806{
 807        struct rb_node *rbp;
 808        struct epitem *epi;
 809
 810        /* We need to release all tasks waiting for these file */
 811        if (waitqueue_active(&ep->poll_wait))
 812                ep_poll_safewake(ep, NULL);
 813
 814        /*
 815         * We need to lock this because we could be hit by
 816         * eventpoll_release_file() while we're freeing the "struct eventpoll".
 817         * We do not need to hold "ep->mtx" here because the epoll file
 818         * is on the way to be removed and no one has references to it
 819         * anymore. The only hit might come from eventpoll_release_file() but
 820         * holding "epmutex" is sufficient here.
 821         */
 822        mutex_lock(&epmutex);
 823
 824        /*
 825         * Walks through the whole tree by unregistering poll callbacks.
 826         */
 827        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 828                epi = rb_entry(rbp, struct epitem, rbn);
 829
 830                ep_unregister_pollwait(ep, epi);
 831                cond_resched();
 832        }
 833
 834        /*
 835         * Walks through the whole tree by freeing each "struct epitem". At this
 836         * point we are sure no poll callbacks will be lingering around, and also by
 837         * holding "epmutex" we can be sure that no file cleanup code will hit
 838         * us during this operation. So we can avoid the lock on "ep->lock".
 839         * We do not need to lock ep->mtx, either, we only do it to prevent
 840         * a lockdep warning.
 841         */
 842        mutex_lock(&ep->mtx);
 843        while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
 844                epi = rb_entry(rbp, struct epitem, rbn);
 845                ep_remove(ep, epi);
 846                cond_resched();
 847        }
 848        mutex_unlock(&ep->mtx);
 849
 850        mutex_unlock(&epmutex);
 851        mutex_destroy(&ep->mtx);
 852        free_uid(ep->user);
 853        wakeup_source_unregister(ep->ws);
 854        kfree(ep);
 855}
 856
 857static int ep_eventpoll_release(struct inode *inode, struct file *file)
 858{
 859        struct eventpoll *ep = file->private_data;
 860
 861        if (ep)
 862                ep_free(ep);
 863
 864        return 0;
 865}
 866
 867static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 868                               void *priv);
 869static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
 870                                 poll_table *pt);
 871
 872/*
 873 * Differs from ep_eventpoll_poll() in that internal callers already have
 874 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
 875 * is correctly annotated.
 876 */
 877static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
 878                                 int depth)
 879{
 880        struct eventpoll *ep;
 881        bool locked;
 882
 883        pt->_key = epi->event.events;
 884        if (!is_file_epoll(epi->ffd.file))
 885                return vfs_poll(epi->ffd.file, pt) & epi->event.events;
 886
 887        ep = epi->ffd.file->private_data;
 888        poll_wait(epi->ffd.file, &ep->poll_wait, pt);
 889        locked = pt && (pt->_qproc == ep_ptable_queue_proc);
 890
 891        return ep_scan_ready_list(epi->ffd.file->private_data,
 892                                  ep_read_events_proc, &depth, depth,
 893                                  locked) & epi->event.events;
 894}
 895
 896static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 897                               void *priv)
 898{
 899        struct epitem *epi, *tmp;
 900        poll_table pt;
 901        int depth = *(int *)priv;
 902
 903        init_poll_funcptr(&pt, NULL);
 904        depth++;
 905
 906        list_for_each_entry_safe(epi, tmp, head, rdllink) {
 907                if (ep_item_poll(epi, &pt, depth)) {
 908                        return EPOLLIN | EPOLLRDNORM;
 909                } else {
 910                        /*
 911                         * Item has been dropped into the ready list by the poll
 912                         * callback, but it's not actually ready, as far as
 913                         * caller requested events goes. We can remove it here.
 914                         */
 915                        __pm_relax(ep_wakeup_source(epi));
 916                        list_del_init(&epi->rdllink);
 917                }
 918        }
 919
 920        return 0;
 921}
 922
 923static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
 924{
 925        struct eventpoll *ep = file->private_data;
 926        int depth = 0;
 927
 928        /* Insert inside our poll wait queue */
 929        poll_wait(file, &ep->poll_wait, wait);
 930
 931        /*
 932         * Proceed to find out if wanted events are really available inside
 933         * the ready list.
 934         */
 935        return ep_scan_ready_list(ep, ep_read_events_proc,
 936                                  &depth, depth, false);
 937}
 938
 939#ifdef CONFIG_PROC_FS
 940static void ep_show_fdinfo(struct seq_file *m, struct file *f)
 941{
 942        struct eventpoll *ep = f->private_data;
 943        struct rb_node *rbp;
 944
 945        mutex_lock(&ep->mtx);
 946        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 947                struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
 948                struct inode *inode = file_inode(epi->ffd.file);
 949
 950                seq_printf(m, "tfd: %8d events: %8x data: %16llx "
 951                           " pos:%lli ino:%lx sdev:%x\n",
 952                           epi->ffd.fd, epi->event.events,
 953                           (long long)epi->event.data,
 954                           (long long)epi->ffd.file->f_pos,
 955                           inode->i_ino, inode->i_sb->s_dev);
 956                if (seq_has_overflowed(m))
 957                        break;
 958        }
 959        mutex_unlock(&ep->mtx);
 960}
 961#endif
 962
 963/* File callbacks that implement the eventpoll file behaviour */
 964static const struct file_operations eventpoll_fops = {
 965#ifdef CONFIG_PROC_FS
 966        .show_fdinfo    = ep_show_fdinfo,
 967#endif
 968        .release        = ep_eventpoll_release,
 969        .poll           = ep_eventpoll_poll,
 970        .llseek         = noop_llseek,
 971};
 972
 973/*
 974 * This is called from eventpoll_release() to unlink files from the eventpoll
 975 * interface. We need to have this facility to cleanup correctly files that are
 976 * closed without being removed from the eventpoll interface.
 977 */
 978void eventpoll_release_file(struct file *file)
 979{
 980        struct eventpoll *ep;
 981        struct epitem *epi, *next;
 982
 983        /*
 984         * We don't want to get "file->f_lock" because it is not
 985         * necessary. It is not necessary because we're in the "struct file"
 986         * cleanup path, and this means that no one is using this file anymore.
 987         * So, for example, epoll_ctl() cannot hit here since if we reach this
 988         * point, the file counter already went to zero and fget() would fail.
 989         * The only hit might come from ep_free() but by holding the mutex
 990         * will correctly serialize the operation. We do need to acquire
 991         * "ep->mtx" after "epmutex" because ep_remove() requires it when called
 992         * from anywhere but ep_free().
 993         *
 994         * Besides, ep_remove() acquires the lock, so we can't hold it here.
 995         */
 996        mutex_lock(&epmutex);
 997        list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
 998                ep = epi->ep;
 999                mutex_lock_nested(&ep->mtx, 0);
1000                ep_remove(ep, epi);
1001                mutex_unlock(&ep->mtx);
1002        }
1003        mutex_unlock(&epmutex);
1004}
1005
1006static int ep_alloc(struct eventpoll **pep)
1007{
1008        int error;
1009        struct user_struct *user;
1010        struct eventpoll *ep;
1011
1012        user = get_current_user();
1013        error = -ENOMEM;
1014        ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1015        if (unlikely(!ep))
1016                goto free_uid;
1017
1018        mutex_init(&ep->mtx);
1019        rwlock_init(&ep->lock);
1020        init_waitqueue_head(&ep->wq);
1021        init_waitqueue_head(&ep->poll_wait);
1022        INIT_LIST_HEAD(&ep->rdllist);
1023        ep->rbr = RB_ROOT_CACHED;
1024        ep->ovflist = EP_UNACTIVE_PTR;
1025        ep->user = user;
1026
1027        *pep = ep;
1028
1029        return 0;
1030
1031free_uid:
1032        free_uid(user);
1033        return error;
1034}
1035
1036/*
1037 * Search the file inside the eventpoll tree. The RB tree operations
1038 * are protected by the "mtx" mutex, and ep_find() must be called with
1039 * "mtx" held.
1040 */
1041static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1042{
1043        int kcmp;
1044        struct rb_node *rbp;
1045        struct epitem *epi, *epir = NULL;
1046        struct epoll_filefd ffd;
1047
1048        ep_set_ffd(&ffd, file, fd);
1049        for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1050                epi = rb_entry(rbp, struct epitem, rbn);
1051                kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1052                if (kcmp > 0)
1053                        rbp = rbp->rb_right;
1054                else if (kcmp < 0)
1055                        rbp = rbp->rb_left;
1056                else {
1057                        epir = epi;
1058                        break;
1059                }
1060        }
1061
1062        return epir;
1063}
1064
1065#ifdef CONFIG_CHECKPOINT_RESTORE
1066static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1067{
1068        struct rb_node *rbp;
1069        struct epitem *epi;
1070
1071        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1072                epi = rb_entry(rbp, struct epitem, rbn);
1073                if (epi->ffd.fd == tfd) {
1074                        if (toff == 0)
1075                                return epi;
1076                        else
1077                                toff--;
1078                }
1079                cond_resched();
1080        }
1081
1082        return NULL;
1083}
1084
1085struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1086                                     unsigned long toff)
1087{
1088        struct file *file_raw;
1089        struct eventpoll *ep;
1090        struct epitem *epi;
1091
1092        if (!is_file_epoll(file))
1093                return ERR_PTR(-EINVAL);
1094
1095        ep = file->private_data;
1096
1097        mutex_lock(&ep->mtx);
1098        epi = ep_find_tfd(ep, tfd, toff);
1099        if (epi)
1100                file_raw = epi->ffd.file;
1101        else
1102                file_raw = ERR_PTR(-ENOENT);
1103        mutex_unlock(&ep->mtx);
1104
1105        return file_raw;
1106}
1107#endif /* CONFIG_CHECKPOINT_RESTORE */
1108
1109/**
1110 * Adds a new entry to the tail of the list in a lockless way, i.e.
1111 * multiple CPUs are allowed to call this function concurrently.
1112 *
1113 * Beware: it is necessary to prevent any other modifications of the
1114 *         existing list until all changes are completed, in other words
1115 *         concurrent list_add_tail_lockless() calls should be protected
1116 *         with a read lock, where write lock acts as a barrier which
1117 *         makes sure all list_add_tail_lockless() calls are fully
1118 *         completed.
1119 *
1120 *        Also an element can be locklessly added to the list only in one
1121 *        direction i.e. either to the tail either to the head, otherwise
1122 *        concurrent access will corrupt the list.
1123 *
1124 * Returns %false if element has been already added to the list, %true
1125 * otherwise.
1126 */
1127static inline bool list_add_tail_lockless(struct list_head *new,
1128                                          struct list_head *head)
1129{
1130        struct list_head *prev;
1131
1132        /*
1133         * This is simple 'new->next = head' operation, but cmpxchg()
1134         * is used in order to detect that same element has been just
1135         * added to the list from another CPU: the winner observes
1136         * new->next == new.
1137         */
1138        if (cmpxchg(&new->next, new, head) != new)
1139                return false;
1140
1141        /*
1142         * Initially ->next of a new element must be updated with the head
1143         * (we are inserting to the tail) and only then pointers are atomically
1144         * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1145         * updated before pointers are actually swapped and pointers are
1146         * swapped before prev->next is updated.
1147         */
1148
1149        prev = xchg(&head->prev, new);
1150
1151        /*
1152         * It is safe to modify prev->next and new->prev, because a new element
1153         * is added only to the tail and new->next is updated before XCHG.
1154         */
1155
1156        prev->next = new;
1157        new->prev = prev;
1158
1159        return true;
1160}
1161
1162/**
1163 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1164 * i.e. multiple CPUs are allowed to call this function concurrently.
1165 *
1166 * Returns %false if epi element has been already chained, %true otherwise.
1167 */
1168static inline bool chain_epi_lockless(struct epitem *epi)
1169{
1170        struct eventpoll *ep = epi->ep;
1171
1172        /* Fast preliminary check */
1173        if (epi->next != EP_UNACTIVE_PTR)
1174                return false;
1175
1176        /* Check that the same epi has not been just chained from another CPU */
1177        if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1178                return false;
1179
1180        /* Atomically exchange tail */
1181        epi->next = xchg(&ep->ovflist, epi);
1182
1183        return true;
1184}
1185
1186/*
1187 * This is the callback that is passed to the wait queue wakeup
1188 * mechanism. It is called by the stored file descriptors when they
1189 * have events to report.
1190 *
1191 * This callback takes a read lock in order not to content with concurrent
1192 * events from another file descriptors, thus all modifications to ->rdllist
1193 * or ->ovflist are lockless.  Read lock is paired with the write lock from
1194 * ep_scan_ready_list(), which stops all list modifications and guarantees
1195 * that lists state is seen correctly.
1196 *
1197 * Another thing worth to mention is that ep_poll_callback() can be called
1198 * concurrently for the same @epi from different CPUs if poll table was inited
1199 * with several wait queues entries.  Plural wakeup from different CPUs of a
1200 * single wait queue is serialized by wq.lock, but the case when multiple wait
1201 * queues are used should be detected accordingly.  This is detected using
1202 * cmpxchg() operation.
1203 */
1204static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1205{
1206        int pwake = 0;
1207        struct epitem *epi = ep_item_from_wait(wait);
1208        struct eventpoll *ep = epi->ep;
1209        __poll_t pollflags = key_to_poll(key);
1210        unsigned long flags;
1211        int ewake = 0;
1212
1213        read_lock_irqsave(&ep->lock, flags);
1214
1215        ep_set_busy_poll_napi_id(epi);
1216
1217        /*
1218         * If the event mask does not contain any poll(2) event, we consider the
1219         * descriptor to be disabled. This condition is likely the effect of the
1220         * EPOLLONESHOT bit that disables the descriptor when an event is received,
1221         * until the next EPOLL_CTL_MOD will be issued.
1222         */
1223        if (!(epi->event.events & ~EP_PRIVATE_BITS))
1224                goto out_unlock;
1225
1226        /*
1227         * Check the events coming with the callback. At this stage, not
1228         * every device reports the events in the "key" parameter of the
1229         * callback. We need to be able to handle both cases here, hence the
1230         * test for "key" != NULL before the event match test.
1231         */
1232        if (pollflags && !(pollflags & epi->event.events))
1233                goto out_unlock;
1234
1235        /*
1236         * If we are transferring events to userspace, we can hold no locks
1237         * (because we're accessing user memory, and because of linux f_op->poll()
1238         * semantics). All the events that happen during that period of time are
1239         * chained in ep->ovflist and requeued later on.
1240         */
1241        if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1242                if (chain_epi_lockless(epi))
1243                        ep_pm_stay_awake_rcu(epi);
1244        } else if (!ep_is_linked(epi)) {
1245                /* In the usual case, add event to ready list. */
1246                if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1247                        ep_pm_stay_awake_rcu(epi);
1248        }
1249
1250        /*
1251         * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1252         * wait list.
1253         */
1254        if (waitqueue_active(&ep->wq)) {
1255                if ((epi->event.events & EPOLLEXCLUSIVE) &&
1256                                        !(pollflags & POLLFREE)) {
1257                        switch (pollflags & EPOLLINOUT_BITS) {
1258                        case EPOLLIN:
1259                                if (epi->event.events & EPOLLIN)
1260                                        ewake = 1;
1261                                break;
1262                        case EPOLLOUT:
1263                                if (epi->event.events & EPOLLOUT)
1264                                        ewake = 1;
1265                                break;
1266                        case 0:
1267                                ewake = 1;
1268                                break;
1269                        }
1270                }
1271                wake_up(&ep->wq);
1272        }
1273        if (waitqueue_active(&ep->poll_wait))
1274                pwake++;
1275
1276out_unlock:
1277        read_unlock_irqrestore(&ep->lock, flags);
1278
1279        /* We have to call this outside the lock */
1280        if (pwake)
1281                ep_poll_safewake(ep, epi);
1282
1283        if (!(epi->event.events & EPOLLEXCLUSIVE))
1284                ewake = 1;
1285
1286        if (pollflags & POLLFREE) {
1287                /*
1288                 * If we race with ep_remove_wait_queue() it can miss
1289                 * ->whead = NULL and do another remove_wait_queue() after
1290                 * us, so we can't use __remove_wait_queue().
1291                 */
1292                list_del_init(&wait->entry);
1293                /*
1294                 * ->whead != NULL protects us from the race with ep_free()
1295                 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1296                 * held by the caller. Once we nullify it, nothing protects
1297                 * ep/epi or even wait.
1298                 */
1299                smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1300        }
1301
1302        return ewake;
1303}
1304
1305/*
1306 * This is the callback that is used to add our wait queue to the
1307 * target file wakeup lists.
1308 */
1309static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1310                                 poll_table *pt)
1311{
1312        struct epitem *epi = ep_item_from_epqueue(pt);
1313        struct eppoll_entry *pwq;
1314
1315        if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1316                init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1317                pwq->whead = whead;
1318                pwq->base = epi;
1319                if (epi->event.events & EPOLLEXCLUSIVE)
1320                        add_wait_queue_exclusive(whead, &pwq->wait);
1321                else
1322                        add_wait_queue(whead, &pwq->wait);
1323                list_add_tail(&pwq->llink, &epi->pwqlist);
1324                epi->nwait++;
1325        } else {
1326                /* We have to signal that an error occurred */
1327                epi->nwait = -1;
1328        }
1329}
1330
1331static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1332{
1333        int kcmp;
1334        struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1335        struct epitem *epic;
1336        bool leftmost = true;
1337
1338        while (*p) {
1339                parent = *p;
1340                epic = rb_entry(parent, struct epitem, rbn);
1341                kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1342                if (kcmp > 0) {
1343                        p = &parent->rb_right;
1344                        leftmost = false;
1345                } else
1346                        p = &parent->rb_left;
1347        }
1348        rb_link_node(&epi->rbn, parent, p);
1349        rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1350}
1351
1352
1353
1354#define PATH_ARR_SIZE 5
1355/*
1356 * These are the number paths of length 1 to 5, that we are allowing to emanate
1357 * from a single file of interest. For example, we allow 1000 paths of length
1358 * 1, to emanate from each file of interest. This essentially represents the
1359 * potential wakeup paths, which need to be limited in order to avoid massive
1360 * uncontrolled wakeup storms. The common use case should be a single ep which
1361 * is connected to n file sources. In this case each file source has 1 path
1362 * of length 1. Thus, the numbers below should be more than sufficient. These
1363 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1364 * and delete can't add additional paths. Protected by the epmutex.
1365 */
1366static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1367static int path_count[PATH_ARR_SIZE];
1368
1369static int path_count_inc(int nests)
1370{
1371        /* Allow an arbitrary number of depth 1 paths */
1372        if (nests == 0)
1373                return 0;
1374
1375        if (++path_count[nests] > path_limits[nests])
1376                return -1;
1377        return 0;
1378}
1379
1380static void path_count_init(void)
1381{
1382        int i;
1383
1384        for (i = 0; i < PATH_ARR_SIZE; i++)
1385                path_count[i] = 0;
1386}
1387
1388static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1389{
1390        int error = 0;
1391        struct file *file = priv;
1392        struct file *child_file;
1393        struct epitem *epi;
1394
1395        /* CTL_DEL can remove links here, but that can't increase our count */
1396        rcu_read_lock();
1397        list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1398                child_file = epi->ep->file;
1399                if (is_file_epoll(child_file)) {
1400                        if (list_empty(&child_file->f_ep_links)) {
1401                                if (path_count_inc(call_nests)) {
1402                                        error = -1;
1403                                        break;
1404                                }
1405                        } else {
1406                                error = ep_call_nested(&poll_loop_ncalls,
1407                                                        reverse_path_check_proc,
1408                                                        child_file, child_file,
1409                                                        current);
1410                        }
1411                        if (error != 0)
1412                                break;
1413                } else {
1414                        printk(KERN_ERR "reverse_path_check_proc: "
1415                                "file is not an ep!\n");
1416                }
1417        }
1418        rcu_read_unlock();
1419        return error;
1420}
1421
1422/**
1423 * reverse_path_check - The tfile_check_list is list of file *, which have
1424 *                      links that are proposed to be newly added. We need to
1425 *                      make sure that those added links don't add too many
1426 *                      paths such that we will spend all our time waking up
1427 *                      eventpoll objects.
1428 *
1429 * Returns: Returns zero if the proposed links don't create too many paths,
1430 *          -1 otherwise.
1431 */
1432static int reverse_path_check(void)
1433{
1434        int error = 0;
1435        struct file *current_file;
1436
1437        /* let's call this for all tfiles */
1438        list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1439                path_count_init();
1440                error = ep_call_nested(&poll_loop_ncalls,
1441                                        reverse_path_check_proc, current_file,
1442                                        current_file, current);
1443                if (error)
1444                        break;
1445        }
1446        return error;
1447}
1448
1449static int ep_create_wakeup_source(struct epitem *epi)
1450{
1451        struct name_snapshot n;
1452        struct wakeup_source *ws;
1453
1454        if (!epi->ep->ws) {
1455                epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1456                if (!epi->ep->ws)
1457                        return -ENOMEM;
1458        }
1459
1460        take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1461        ws = wakeup_source_register(NULL, n.name.name);
1462        release_dentry_name_snapshot(&n);
1463
1464        if (!ws)
1465                return -ENOMEM;
1466        rcu_assign_pointer(epi->ws, ws);
1467
1468        return 0;
1469}
1470
1471/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1472static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1473{
1474        struct wakeup_source *ws = ep_wakeup_source(epi);
1475
1476        RCU_INIT_POINTER(epi->ws, NULL);
1477
1478        /*
1479         * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1480         * used internally by wakeup_source_remove, too (called by
1481         * wakeup_source_unregister), so we cannot use call_rcu
1482         */
1483        synchronize_rcu();
1484        wakeup_source_unregister(ws);
1485}
1486
1487/*
1488 * Must be called with "mtx" held.
1489 */
1490static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1491                     struct file *tfile, int fd, int full_check)
1492{
1493        int error, pwake = 0;
1494        __poll_t revents;
1495        long user_watches;
1496        struct epitem *epi;
1497        struct ep_pqueue epq;
1498
1499        lockdep_assert_irqs_enabled();
1500
1501        user_watches = atomic_long_read(&ep->user->epoll_watches);
1502        if (unlikely(user_watches >= max_user_watches))
1503                return -ENOSPC;
1504        if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1505                return -ENOMEM;
1506
1507        /* Item initialization follow here ... */
1508        INIT_LIST_HEAD(&epi->rdllink);
1509        INIT_LIST_HEAD(&epi->fllink);
1510        INIT_LIST_HEAD(&epi->pwqlist);
1511        epi->ep = ep;
1512        ep_set_ffd(&epi->ffd, tfile, fd);
1513        epi->event = *event;
1514        epi->nwait = 0;
1515        epi->next = EP_UNACTIVE_PTR;
1516        if (epi->event.events & EPOLLWAKEUP) {
1517                error = ep_create_wakeup_source(epi);
1518                if (error)
1519                        goto error_create_wakeup_source;
1520        } else {
1521                RCU_INIT_POINTER(epi->ws, NULL);
1522        }
1523
1524        /* Add the current item to the list of active epoll hook for this file */
1525        spin_lock(&tfile->f_lock);
1526        list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1527        spin_unlock(&tfile->f_lock);
1528
1529        /*
1530         * Add the current item to the RB tree. All RB tree operations are
1531         * protected by "mtx", and ep_insert() is called with "mtx" held.
1532         */
1533        ep_rbtree_insert(ep, epi);
1534
1535        /* now check if we've created too many backpaths */
1536        error = -EINVAL;
1537        if (full_check && reverse_path_check())
1538                goto error_remove_epi;
1539
1540        /* Initialize the poll table using the queue callback */
1541        epq.epi = epi;
1542        init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1543
1544        /*
1545         * Attach the item to the poll hooks and get current event bits.
1546         * We can safely use the file* here because its usage count has
1547         * been increased by the caller of this function. Note that after
1548         * this operation completes, the poll callback can start hitting
1549         * the new item.
1550         */
1551        revents = ep_item_poll(epi, &epq.pt, 1);
1552
1553        /*
1554         * We have to check if something went wrong during the poll wait queue
1555         * install process. Namely an allocation for a wait queue failed due
1556         * high memory pressure.
1557         */
1558        error = -ENOMEM;
1559        if (epi->nwait < 0)
1560                goto error_unregister;
1561
1562        /* We have to drop the new item inside our item list to keep track of it */
1563        write_lock_irq(&ep->lock);
1564
1565        /* record NAPI ID of new item if present */
1566        ep_set_busy_poll_napi_id(epi);
1567
1568        /* If the file is already "ready" we drop it inside the ready list */
1569        if (revents && !ep_is_linked(epi)) {
1570                list_add_tail(&epi->rdllink, &ep->rdllist);
1571                ep_pm_stay_awake(epi);
1572
1573                /* Notify waiting tasks that events are available */
1574                if (waitqueue_active(&ep->wq))
1575                        wake_up(&ep->wq);
1576                if (waitqueue_active(&ep->poll_wait))
1577                        pwake++;
1578        }
1579
1580        write_unlock_irq(&ep->lock);
1581
1582        atomic_long_inc(&ep->user->epoll_watches);
1583
1584        /* We have to call this outside the lock */
1585        if (pwake)
1586                ep_poll_safewake(ep, NULL);
1587
1588        return 0;
1589
1590error_unregister:
1591        ep_unregister_pollwait(ep, epi);
1592error_remove_epi:
1593        spin_lock(&tfile->f_lock);
1594        list_del_rcu(&epi->fllink);
1595        spin_unlock(&tfile->f_lock);
1596
1597        rb_erase_cached(&epi->rbn, &ep->rbr);
1598
1599        /*
1600         * We need to do this because an event could have been arrived on some
1601         * allocated wait queue. Note that we don't care about the ep->ovflist
1602         * list, since that is used/cleaned only inside a section bound by "mtx".
1603         * And ep_insert() is called with "mtx" held.
1604         */
1605        write_lock_irq(&ep->lock);
1606        if (ep_is_linked(epi))
1607                list_del_init(&epi->rdllink);
1608        write_unlock_irq(&ep->lock);
1609
1610        wakeup_source_unregister(ep_wakeup_source(epi));
1611
1612error_create_wakeup_source:
1613        kmem_cache_free(epi_cache, epi);
1614
1615        return error;
1616}
1617
1618/*
1619 * Modify the interest event mask by dropping an event if the new mask
1620 * has a match in the current file status. Must be called with "mtx" held.
1621 */
1622static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1623                     const struct epoll_event *event)
1624{
1625        int pwake = 0;
1626        poll_table pt;
1627
1628        lockdep_assert_irqs_enabled();
1629
1630        init_poll_funcptr(&pt, NULL);
1631
1632        /*
1633         * Set the new event interest mask before calling f_op->poll();
1634         * otherwise we might miss an event that happens between the
1635         * f_op->poll() call and the new event set registering.
1636         */
1637        epi->event.events = event->events; /* need barrier below */
1638        epi->event.data = event->data; /* protected by mtx */
1639        if (epi->event.events & EPOLLWAKEUP) {
1640                if (!ep_has_wakeup_source(epi))
1641                        ep_create_wakeup_source(epi);
1642        } else if (ep_has_wakeup_source(epi)) {
1643                ep_destroy_wakeup_source(epi);
1644        }
1645
1646        /*
1647         * The following barrier has two effects:
1648         *
1649         * 1) Flush epi changes above to other CPUs.  This ensures
1650         *    we do not miss events from ep_poll_callback if an
1651         *    event occurs immediately after we call f_op->poll().
1652         *    We need this because we did not take ep->lock while
1653         *    changing epi above (but ep_poll_callback does take
1654         *    ep->lock).
1655         *
1656         * 2) We also need to ensure we do not miss _past_ events
1657         *    when calling f_op->poll().  This barrier also
1658         *    pairs with the barrier in wq_has_sleeper (see
1659         *    comments for wq_has_sleeper).
1660         *
1661         * This barrier will now guarantee ep_poll_callback or f_op->poll
1662         * (or both) will notice the readiness of an item.
1663         */
1664        smp_mb();
1665
1666        /*
1667         * Get current event bits. We can safely use the file* here because
1668         * its usage count has been increased by the caller of this function.
1669         * If the item is "hot" and it is not registered inside the ready
1670         * list, push it inside.
1671         */
1672        if (ep_item_poll(epi, &pt, 1)) {
1673                write_lock_irq(&ep->lock);
1674                if (!ep_is_linked(epi)) {
1675                        list_add_tail(&epi->rdllink, &ep->rdllist);
1676                        ep_pm_stay_awake(epi);
1677
1678                        /* Notify waiting tasks that events are available */
1679                        if (waitqueue_active(&ep->wq))
1680                                wake_up(&ep->wq);
1681                        if (waitqueue_active(&ep->poll_wait))
1682                                pwake++;
1683                }
1684                write_unlock_irq(&ep->lock);
1685        }
1686
1687        /* We have to call this outside the lock */
1688        if (pwake)
1689                ep_poll_safewake(ep, NULL);
1690
1691        return 0;
1692}
1693
1694static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1695                               void *priv)
1696{
1697        struct ep_send_events_data *esed = priv;
1698        __poll_t revents;
1699        struct epitem *epi, *tmp;
1700        struct epoll_event __user *uevent = esed->events;
1701        struct wakeup_source *ws;
1702        poll_table pt;
1703
1704        init_poll_funcptr(&pt, NULL);
1705        esed->res = 0;
1706
1707        /*
1708         * We can loop without lock because we are passed a task private list.
1709         * Items cannot vanish during the loop because ep_scan_ready_list() is
1710         * holding "mtx" during this call.
1711         */
1712        lockdep_assert_held(&ep->mtx);
1713
1714        list_for_each_entry_safe(epi, tmp, head, rdllink) {
1715                if (esed->res >= esed->maxevents)
1716                        break;
1717
1718                /*
1719                 * Activate ep->ws before deactivating epi->ws to prevent
1720                 * triggering auto-suspend here (in case we reactive epi->ws
1721                 * below).
1722                 *
1723                 * This could be rearranged to delay the deactivation of epi->ws
1724                 * instead, but then epi->ws would temporarily be out of sync
1725                 * with ep_is_linked().
1726                 */
1727                ws = ep_wakeup_source(epi);
1728                if (ws) {
1729                        if (ws->active)
1730                                __pm_stay_awake(ep->ws);
1731                        __pm_relax(ws);
1732                }
1733
1734                list_del_init(&epi->rdllink);
1735
1736                /*
1737                 * If the event mask intersect the caller-requested one,
1738                 * deliver the event to userspace. Again, ep_scan_ready_list()
1739                 * is holding ep->mtx, so no operations coming from userspace
1740                 * can change the item.
1741                 */
1742                revents = ep_item_poll(epi, &pt, 1);
1743                if (!revents)
1744                        continue;
1745
1746                if (__put_user(revents, &uevent->events) ||
1747                    __put_user(epi->event.data, &uevent->data)) {
1748                        list_add(&epi->rdllink, head);
1749                        ep_pm_stay_awake(epi);
1750                        if (!esed->res)
1751                                esed->res = -EFAULT;
1752                        return 0;
1753                }
1754                esed->res++;
1755                uevent++;
1756                if (epi->event.events & EPOLLONESHOT)
1757                        epi->event.events &= EP_PRIVATE_BITS;
1758                else if (!(epi->event.events & EPOLLET)) {
1759                        /*
1760                         * If this file has been added with Level
1761                         * Trigger mode, we need to insert back inside
1762                         * the ready list, so that the next call to
1763                         * epoll_wait() will check again the events
1764                         * availability. At this point, no one can insert
1765                         * into ep->rdllist besides us. The epoll_ctl()
1766                         * callers are locked out by
1767                         * ep_scan_ready_list() holding "mtx" and the
1768                         * poll callback will queue them in ep->ovflist.
1769                         */
1770                        list_add_tail(&epi->rdllink, &ep->rdllist);
1771                        ep_pm_stay_awake(epi);
1772                }
1773        }
1774
1775        return 0;
1776}
1777
1778static int ep_send_events(struct eventpoll *ep,
1779                          struct epoll_event __user *events, int maxevents)
1780{
1781        struct ep_send_events_data esed;
1782
1783        esed.maxevents = maxevents;
1784        esed.events = events;
1785
1786        ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1787        return esed.res;
1788}
1789
1790static inline struct timespec64 ep_set_mstimeout(long ms)
1791{
1792        struct timespec64 now, ts = {
1793                .tv_sec = ms / MSEC_PER_SEC,
1794                .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1795        };
1796
1797        ktime_get_ts64(&now);
1798        return timespec64_add_safe(now, ts);
1799}
1800
1801/**
1802 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1803 *           event buffer.
1804 *
1805 * @ep: Pointer to the eventpoll context.
1806 * @events: Pointer to the userspace buffer where the ready events should be
1807 *          stored.
1808 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1809 * @timeout: Maximum timeout for the ready events fetch operation, in
1810 *           milliseconds. If the @timeout is zero, the function will not block,
1811 *           while if the @timeout is less than zero, the function will block
1812 *           until at least one event has been retrieved (or an error
1813 *           occurred).
1814 *
1815 * Returns: Returns the number of ready events which have been fetched, or an
1816 *          error code, in case of error.
1817 */
1818static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1819                   int maxevents, long timeout)
1820{
1821        int res = 0, eavail, timed_out = 0;
1822        u64 slack = 0;
1823        wait_queue_entry_t wait;
1824        ktime_t expires, *to = NULL;
1825
1826        lockdep_assert_irqs_enabled();
1827
1828        if (timeout > 0) {
1829                struct timespec64 end_time = ep_set_mstimeout(timeout);
1830
1831                slack = select_estimate_accuracy(&end_time);
1832                to = &expires;
1833                *to = timespec64_to_ktime(end_time);
1834        } else if (timeout == 0) {
1835                /*
1836                 * Avoid the unnecessary trip to the wait queue loop, if the
1837                 * caller specified a non blocking operation. We still need
1838                 * lock because we could race and not see an epi being added
1839                 * to the ready list while in irq callback. Thus incorrectly
1840                 * returning 0 back to userspace.
1841                 */
1842                timed_out = 1;
1843
1844                write_lock_irq(&ep->lock);
1845                eavail = ep_events_available(ep);
1846                write_unlock_irq(&ep->lock);
1847
1848                goto send_events;
1849        }
1850
1851fetch_events:
1852
1853        if (!ep_events_available(ep))
1854                ep_busy_loop(ep, timed_out);
1855
1856        eavail = ep_events_available(ep);
1857        if (eavail)
1858                goto send_events;
1859
1860        /*
1861         * Busy poll timed out.  Drop NAPI ID for now, we can add
1862         * it back in when we have moved a socket with a valid NAPI
1863         * ID onto the ready list.
1864         */
1865        ep_reset_busy_poll_napi_id(ep);
1866
1867        do {
1868                /*
1869                 * Internally init_wait() uses autoremove_wake_function(),
1870                 * thus wait entry is removed from the wait queue on each
1871                 * wakeup. Why it is important? In case of several waiters
1872                 * each new wakeup will hit the next waiter, giving it the
1873                 * chance to harvest new event. Otherwise wakeup can be
1874                 * lost. This is also good performance-wise, because on
1875                 * normal wakeup path no need to call __remove_wait_queue()
1876                 * explicitly, thus ep->lock is not taken, which halts the
1877                 * event delivery.
1878                 */
1879                init_wait(&wait);
1880
1881                write_lock_irq(&ep->lock);
1882                /*
1883                 * Barrierless variant, waitqueue_active() is called under
1884                 * the same lock on wakeup ep_poll_callback() side, so it
1885                 * is safe to avoid an explicit barrier.
1886                 */
1887                __set_current_state(TASK_INTERRUPTIBLE);
1888
1889                /*
1890                 * Do the final check under the lock. ep_scan_ready_list()
1891                 * plays with two lists (->rdllist and ->ovflist) and there
1892                 * is always a race when both lists are empty for short
1893                 * period of time although events are pending, so lock is
1894                 * important.
1895                 */
1896                eavail = ep_events_available(ep);
1897                if (!eavail) {
1898                        if (signal_pending(current))
1899                                res = -EINTR;
1900                        else
1901                                __add_wait_queue_exclusive(&ep->wq, &wait);
1902                }
1903                write_unlock_irq(&ep->lock);
1904
1905                if (eavail || res)
1906                        break;
1907
1908                if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1909                        timed_out = 1;
1910                        break;
1911                }
1912
1913                /* We were woken up, thus go and try to harvest some events */
1914                eavail = 1;
1915
1916        } while (0);
1917
1918        __set_current_state(TASK_RUNNING);
1919
1920        if (!list_empty_careful(&wait.entry)) {
1921                write_lock_irq(&ep->lock);
1922                __remove_wait_queue(&ep->wq, &wait);
1923                write_unlock_irq(&ep->lock);
1924        }
1925
1926send_events:
1927        if (fatal_signal_pending(current)) {
1928                /*
1929                 * Always short-circuit for fatal signals to allow
1930                 * threads to make a timely exit without the chance of
1931                 * finding more events available and fetching
1932                 * repeatedly.
1933                 */
1934                res = -EINTR;
1935        }
1936        /*
1937         * Try to transfer events to user space. In case we get 0 events and
1938         * there's still timeout left over, we go trying again in search of
1939         * more luck.
1940         */
1941        if (!res && eavail &&
1942            !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1943                goto fetch_events;
1944
1945        return res;
1946}
1947
1948/**
1949 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1950 *                      API, to verify that adding an epoll file inside another
1951 *                      epoll structure, does not violate the constraints, in
1952 *                      terms of closed loops, or too deep chains (which can
1953 *                      result in excessive stack usage).
1954 *
1955 * @priv: Pointer to the epoll file to be currently checked.
1956 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1957 *          data structure pointer.
1958 * @call_nests: Current dept of the @ep_call_nested() call stack.
1959 *
1960 * Returns: Returns zero if adding the epoll @file inside current epoll
1961 *          structure @ep does not violate the constraints, or -1 otherwise.
1962 */
1963static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1964{
1965        int error = 0;
1966        struct file *file = priv;
1967        struct eventpoll *ep = file->private_data;
1968        struct eventpoll *ep_tovisit;
1969        struct rb_node *rbp;
1970        struct epitem *epi;
1971
1972        mutex_lock_nested(&ep->mtx, call_nests + 1);
1973        ep->gen = loop_check_gen;
1974        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1975                epi = rb_entry(rbp, struct epitem, rbn);
1976                if (unlikely(is_file_epoll(epi->ffd.file))) {
1977                        ep_tovisit = epi->ffd.file->private_data;
1978                        if (ep_tovisit->gen == loop_check_gen)
1979                                continue;
1980                        error = ep_call_nested(&poll_loop_ncalls,
1981                                        ep_loop_check_proc, epi->ffd.file,
1982                                        ep_tovisit, current);
1983                        if (error != 0)
1984                                break;
1985                } else {
1986                        /*
1987                         * If we've reached a file that is not associated with
1988                         * an ep, then we need to check if the newly added
1989                         * links are going to add too many wakeup paths. We do
1990                         * this by adding it to the tfile_check_list, if it's
1991                         * not already there, and calling reverse_path_check()
1992                         * during ep_insert().
1993                         */
1994                        if (list_empty(&epi->ffd.file->f_tfile_llink)) {
1995                                if (get_file_rcu(epi->ffd.file))
1996                                        list_add(&epi->ffd.file->f_tfile_llink,
1997                                                 &tfile_check_list);
1998                        }
1999                }
2000        }
2001        mutex_unlock(&ep->mtx);
2002
2003        return error;
2004}
2005
2006/**
2007 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2008 *                 another epoll file (represented by @ep) does not create
2009 *                 closed loops or too deep chains.
2010 *
2011 * @ep: Pointer to the epoll private data structure.
2012 * @file: Pointer to the epoll file to be checked.
2013 *
2014 * Returns: Returns zero if adding the epoll @file inside current epoll
2015 *          structure @ep does not violate the constraints, or -1 otherwise.
2016 */
2017static int ep_loop_check(struct eventpoll *ep, struct file *file)
2018{
2019        return ep_call_nested(&poll_loop_ncalls,
2020                              ep_loop_check_proc, file, ep, current);
2021}
2022
2023static void clear_tfile_check_list(void)
2024{
2025        struct file *file;
2026
2027        /* first clear the tfile_check_list */
2028        while (!list_empty(&tfile_check_list)) {
2029                file = list_first_entry(&tfile_check_list, struct file,
2030                                        f_tfile_llink);
2031                list_del_init(&file->f_tfile_llink);
2032                fput(file);
2033        }
2034        INIT_LIST_HEAD(&tfile_check_list);
2035}
2036
2037/*
2038 * Open an eventpoll file descriptor.
2039 */
2040static int do_epoll_create(int flags)
2041{
2042        int error, fd;
2043        struct eventpoll *ep = NULL;
2044        struct file *file;
2045
2046        /* Check the EPOLL_* constant for consistency.  */
2047        BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2048
2049        if (flags & ~EPOLL_CLOEXEC)
2050                return -EINVAL;
2051        /*
2052         * Create the internal data structure ("struct eventpoll").
2053         */
2054        error = ep_alloc(&ep);
2055        if (error < 0)
2056                return error;
2057        /*
2058         * Creates all the items needed to setup an eventpoll file. That is,
2059         * a file structure and a free file descriptor.
2060         */
2061        fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2062        if (fd < 0) {
2063                error = fd;
2064                goto out_free_ep;
2065        }
2066        file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2067                                 O_RDWR | (flags & O_CLOEXEC));
2068        if (IS_ERR(file)) {
2069                error = PTR_ERR(file);
2070                goto out_free_fd;
2071        }
2072        ep->file = file;
2073        fd_install(fd, file);
2074        return fd;
2075
2076out_free_fd:
2077        put_unused_fd(fd);
2078out_free_ep:
2079        ep_free(ep);
2080        return error;
2081}
2082
2083SYSCALL_DEFINE1(epoll_create1, int, flags)
2084{
2085        return do_epoll_create(flags);
2086}
2087
2088SYSCALL_DEFINE1(epoll_create, int, size)
2089{
2090        if (size <= 0)
2091                return -EINVAL;
2092
2093        return do_epoll_create(0);
2094}
2095
2096static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2097                                   bool nonblock)
2098{
2099        if (!nonblock) {
2100                mutex_lock_nested(mutex, depth);
2101                return 0;
2102        }
2103        if (mutex_trylock(mutex))
2104                return 0;
2105        return -EAGAIN;
2106}
2107
2108int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2109                 bool nonblock)
2110{
2111        int error;
2112        int full_check = 0;
2113        struct fd f, tf;
2114        struct eventpoll *ep;
2115        struct epitem *epi;
2116        struct eventpoll *tep = NULL;
2117
2118        error = -EBADF;
2119        f = fdget(epfd);
2120        if (!f.file)
2121                goto error_return;
2122
2123        /* Get the "struct file *" for the target file */
2124        tf = fdget(fd);
2125        if (!tf.file)
2126                goto error_fput;
2127
2128        /* The target file descriptor must support poll */
2129        error = -EPERM;
2130        if (!file_can_poll(tf.file))
2131                goto error_tgt_fput;
2132
2133        /* Check if EPOLLWAKEUP is allowed */
2134        if (ep_op_has_event(op))
2135                ep_take_care_of_epollwakeup(epds);
2136
2137        /*
2138         * We have to check that the file structure underneath the file descriptor
2139         * the user passed to us _is_ an eventpoll file. And also we do not permit
2140         * adding an epoll file descriptor inside itself.
2141         */
2142        error = -EINVAL;
2143        if (f.file == tf.file || !is_file_epoll(f.file))
2144                goto error_tgt_fput;
2145
2146        /*
2147         * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2148         * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2149         * Also, we do not currently supported nested exclusive wakeups.
2150         */
2151        if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2152                if (op == EPOLL_CTL_MOD)
2153                        goto error_tgt_fput;
2154                if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2155                                (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2156                        goto error_tgt_fput;
2157        }
2158
2159        /*
2160         * At this point it is safe to assume that the "private_data" contains
2161         * our own data structure.
2162         */
2163        ep = f.file->private_data;
2164
2165        /*
2166         * When we insert an epoll file descriptor, inside another epoll file
2167         * descriptor, there is the change of creating closed loops, which are
2168         * better be handled here, than in more critical paths. While we are
2169         * checking for loops we also determine the list of files reachable
2170         * and hang them on the tfile_check_list, so we can check that we
2171         * haven't created too many possible wakeup paths.
2172         *
2173         * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2174         * the epoll file descriptor is attaching directly to a wakeup source,
2175         * unless the epoll file descriptor is nested. The purpose of taking the
2176         * 'epmutex' on add is to prevent complex toplogies such as loops and
2177         * deep wakeup paths from forming in parallel through multiple
2178         * EPOLL_CTL_ADD operations.
2179         */
2180        error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2181        if (error)
2182                goto error_tgt_fput;
2183        if (op == EPOLL_CTL_ADD) {
2184                if (!list_empty(&f.file->f_ep_links) ||
2185                                ep->gen == loop_check_gen ||
2186                                                is_file_epoll(tf.file)) {
2187                        mutex_unlock(&ep->mtx);
2188                        error = epoll_mutex_lock(&epmutex, 0, nonblock);
2189                        if (error)
2190                                goto error_tgt_fput;
2191                        loop_check_gen++;
2192                        full_check = 1;
2193                        if (is_file_epoll(tf.file)) {
2194                                error = -ELOOP;
2195                                if (ep_loop_check(ep, tf.file) != 0)
2196                                        goto error_tgt_fput;
2197                        } else {
2198                                get_file(tf.file);
2199                                list_add(&tf.file->f_tfile_llink,
2200                                                        &tfile_check_list);
2201                        }
2202                        error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2203                        if (error)
2204                                goto error_tgt_fput;
2205                        if (is_file_epoll(tf.file)) {
2206                                tep = tf.file->private_data;
2207                                error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2208                                if (error) {
2209                                        mutex_unlock(&ep->mtx);
2210                                        goto error_tgt_fput;
2211                                }
2212                        }
2213                }
2214        }
2215
2216        /*
2217         * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2218         * above, we can be sure to be able to use the item looked up by
2219         * ep_find() till we release the mutex.
2220         */
2221        epi = ep_find(ep, tf.file, fd);
2222
2223        error = -EINVAL;
2224        switch (op) {
2225        case EPOLL_CTL_ADD:
2226                if (!epi) {
2227                        epds->events |= EPOLLERR | EPOLLHUP;
2228                        error = ep_insert(ep, epds, tf.file, fd, full_check);
2229                } else
2230                        error = -EEXIST;
2231                break;
2232        case EPOLL_CTL_DEL:
2233                if (epi)
2234                        error = ep_remove(ep, epi);
2235                else
2236                        error = -ENOENT;
2237                break;
2238        case EPOLL_CTL_MOD:
2239                if (epi) {
2240                        if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2241                                epds->events |= EPOLLERR | EPOLLHUP;
2242                                error = ep_modify(ep, epi, epds);
2243                        }
2244                } else
2245                        error = -ENOENT;
2246                break;
2247        }
2248        if (tep != NULL)
2249                mutex_unlock(&tep->mtx);
2250        mutex_unlock(&ep->mtx);
2251
2252error_tgt_fput:
2253        if (full_check) {
2254                clear_tfile_check_list();
2255                loop_check_gen++;
2256                mutex_unlock(&epmutex);
2257        }
2258
2259        fdput(tf);
2260error_fput:
2261        fdput(f);
2262error_return:
2263
2264        return error;
2265}
2266
2267/*
2268 * The following function implements the controller interface for
2269 * the eventpoll file that enables the insertion/removal/change of
2270 * file descriptors inside the interest set.
2271 */
2272SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2273                struct epoll_event __user *, event)
2274{
2275        struct epoll_event epds;
2276
2277        if (ep_op_has_event(op) &&
2278            copy_from_user(&epds, event, sizeof(struct epoll_event)))
2279                return -EFAULT;
2280
2281        return do_epoll_ctl(epfd, op, fd, &epds, false);
2282}
2283
2284/*
2285 * Implement the event wait interface for the eventpoll file. It is the kernel
2286 * part of the user space epoll_wait(2).
2287 */
2288static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2289                         int maxevents, int timeout)
2290{
2291        int error;
2292        struct fd f;
2293        struct eventpoll *ep;
2294
2295        /* The maximum number of event must be greater than zero */
2296        if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2297                return -EINVAL;
2298
2299        /* Verify that the area passed by the user is writeable */
2300        if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2301                return -EFAULT;
2302
2303        /* Get the "struct file *" for the eventpoll file */
2304        f = fdget(epfd);
2305        if (!f.file)
2306                return -EBADF;
2307
2308        /*
2309         * We have to check that the file structure underneath the fd
2310         * the user passed to us _is_ an eventpoll file.
2311         */
2312        error = -EINVAL;
2313        if (!is_file_epoll(f.file))
2314                goto error_fput;
2315
2316        /*
2317         * At this point it is safe to assume that the "private_data" contains
2318         * our own data structure.
2319         */
2320        ep = f.file->private_data;
2321
2322        /* Time to fish for events ... */
2323        error = ep_poll(ep, events, maxevents, timeout);
2324
2325error_fput:
2326        fdput(f);
2327        return error;
2328}
2329
2330SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2331                int, maxevents, int, timeout)
2332{
2333        return do_epoll_wait(epfd, events, maxevents, timeout);
2334}
2335
2336/*
2337 * Implement the event wait interface for the eventpoll file. It is the kernel
2338 * part of the user space epoll_pwait(2).
2339 */
2340SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2341                int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2342                size_t, sigsetsize)
2343{
2344        int error;
2345
2346        /*
2347         * If the caller wants a certain signal mask to be set during the wait,
2348         * we apply it here.
2349         */
2350        error = set_user_sigmask(sigmask, sigsetsize);
2351        if (error)
2352                return error;
2353
2354        error = do_epoll_wait(epfd, events, maxevents, timeout);
2355        restore_saved_sigmask_unless(error == -EINTR);
2356
2357        return error;
2358}
2359
2360#ifdef CONFIG_COMPAT
2361COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2362                        struct epoll_event __user *, events,
2363                        int, maxevents, int, timeout,
2364                        const compat_sigset_t __user *, sigmask,
2365                        compat_size_t, sigsetsize)
2366{
2367        long err;
2368
2369        /*
2370         * If the caller wants a certain signal mask to be set during the wait,
2371         * we apply it here.
2372         */
2373        err = set_compat_user_sigmask(sigmask, sigsetsize);
2374        if (err)
2375                return err;
2376
2377        err = do_epoll_wait(epfd, events, maxevents, timeout);
2378        restore_saved_sigmask_unless(err == -EINTR);
2379
2380        return err;
2381}
2382#endif
2383
2384static int __init eventpoll_init(void)
2385{
2386        struct sysinfo si;
2387
2388        si_meminfo(&si);
2389        /*
2390         * Allows top 4% of lomem to be allocated for epoll watches (per user).
2391         */
2392        max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2393                EP_ITEM_COST;
2394        BUG_ON(max_user_watches < 0);
2395
2396        /*
2397         * Initialize the structure used to perform epoll file descriptor
2398         * inclusion loops checks.
2399         */
2400        ep_nested_calls_init(&poll_loop_ncalls);
2401
2402        /*
2403         * We can have many thousands of epitems, so prevent this from
2404         * using an extra cache line on 64-bit (and smaller) CPUs
2405         */
2406        BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2407
2408        /* Allocates slab cache used to allocate "struct epitem" items */
2409        epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2410                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2411
2412        /* Allocates slab cache used to allocate "struct eppoll_entry" */
2413        pwq_cache = kmem_cache_create("eventpoll_pwq",
2414                sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2415
2416        return 0;
2417}
2418fs_initcall(eventpoll_init);
2419