linux/fs/nfs/dir.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996  Added silly rename for unlink   --okir
  10 * 28 Sep 1996  Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/time.h>
  23#include <linux/errno.h>
  24#include <linux/stat.h>
  25#include <linux/fcntl.h>
  26#include <linux/string.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/sunrpc/clnt.h>
  31#include <linux/nfs_fs.h>
  32#include <linux/nfs_mount.h>
  33#include <linux/pagemap.h>
  34#include <linux/pagevec.h>
  35#include <linux/namei.h>
  36#include <linux/mount.h>
  37#include <linux/swap.h>
  38#include <linux/sched.h>
  39#include <linux/kmemleak.h>
  40#include <linux/xattr.h>
  41
  42#include "delegation.h"
  43#include "iostat.h"
  44#include "internal.h"
  45#include "fscache.h"
  46
  47#include "nfstrace.h"
  48
  49/* #define NFS_DEBUG_VERBOSE 1 */
  50
  51static int nfs_opendir(struct inode *, struct file *);
  52static int nfs_closedir(struct inode *, struct file *);
  53static int nfs_readdir(struct file *, struct dir_context *);
  54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  55static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  56static void nfs_readdir_clear_array(struct page*);
  57
  58const struct file_operations nfs_dir_operations = {
  59        .llseek         = nfs_llseek_dir,
  60        .read           = generic_read_dir,
  61        .iterate_shared = nfs_readdir,
  62        .open           = nfs_opendir,
  63        .release        = nfs_closedir,
  64        .fsync          = nfs_fsync_dir,
  65};
  66
  67const struct address_space_operations nfs_dir_aops = {
  68        .freepage = nfs_readdir_clear_array,
  69};
  70
  71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
  72{
  73        struct nfs_inode *nfsi = NFS_I(dir);
  74        struct nfs_open_dir_context *ctx;
  75        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  76        if (ctx != NULL) {
  77                ctx->duped = 0;
  78                ctx->attr_gencount = nfsi->attr_gencount;
  79                ctx->dir_cookie = 0;
  80                ctx->dup_cookie = 0;
  81                ctx->cred = get_cred(cred);
  82                spin_lock(&dir->i_lock);
  83                if (list_empty(&nfsi->open_files) &&
  84                    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  85                        nfsi->cache_validity |= NFS_INO_INVALID_DATA |
  86                                NFS_INO_REVAL_FORCED;
  87                list_add(&ctx->list, &nfsi->open_files);
  88                spin_unlock(&dir->i_lock);
  89                return ctx;
  90        }
  91        return  ERR_PTR(-ENOMEM);
  92}
  93
  94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  95{
  96        spin_lock(&dir->i_lock);
  97        list_del(&ctx->list);
  98        spin_unlock(&dir->i_lock);
  99        put_cred(ctx->cred);
 100        kfree(ctx);
 101}
 102
 103/*
 104 * Open file
 105 */
 106static int
 107nfs_opendir(struct inode *inode, struct file *filp)
 108{
 109        int res = 0;
 110        struct nfs_open_dir_context *ctx;
 111
 112        dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 113
 114        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 115
 116        ctx = alloc_nfs_open_dir_context(inode, current_cred());
 117        if (IS_ERR(ctx)) {
 118                res = PTR_ERR(ctx);
 119                goto out;
 120        }
 121        filp->private_data = ctx;
 122out:
 123        return res;
 124}
 125
 126static int
 127nfs_closedir(struct inode *inode, struct file *filp)
 128{
 129        put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 130        return 0;
 131}
 132
 133struct nfs_cache_array_entry {
 134        u64 cookie;
 135        u64 ino;
 136        struct qstr string;
 137        unsigned char d_type;
 138};
 139
 140struct nfs_cache_array {
 141        int size;
 142        int eof_index;
 143        u64 last_cookie;
 144        struct nfs_cache_array_entry array[];
 145};
 146
 147typedef struct {
 148        struct file     *file;
 149        struct page     *page;
 150        struct dir_context *ctx;
 151        unsigned long   page_index;
 152        u64             *dir_cookie;
 153        u64             last_cookie;
 154        loff_t          current_index;
 155        loff_t          prev_index;
 156
 157        unsigned long   dir_verifier;
 158        unsigned long   timestamp;
 159        unsigned long   gencount;
 160        unsigned int    cache_entry_index;
 161        bool plus;
 162        bool eof;
 163} nfs_readdir_descriptor_t;
 164
 165static
 166void nfs_readdir_init_array(struct page *page)
 167{
 168        struct nfs_cache_array *array;
 169
 170        array = kmap_atomic(page);
 171        memset(array, 0, sizeof(struct nfs_cache_array));
 172        array->eof_index = -1;
 173        kunmap_atomic(array);
 174}
 175
 176/*
 177 * we are freeing strings created by nfs_add_to_readdir_array()
 178 */
 179static
 180void nfs_readdir_clear_array(struct page *page)
 181{
 182        struct nfs_cache_array *array;
 183        int i;
 184
 185        array = kmap_atomic(page);
 186        for (i = 0; i < array->size; i++)
 187                kfree(array->array[i].string.name);
 188        array->size = 0;
 189        kunmap_atomic(array);
 190}
 191
 192/*
 193 * the caller is responsible for freeing qstr.name
 194 * when called by nfs_readdir_add_to_array, the strings will be freed in
 195 * nfs_clear_readdir_array()
 196 */
 197static
 198int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 199{
 200        string->len = len;
 201        string->name = kmemdup_nul(name, len, GFP_KERNEL);
 202        if (string->name == NULL)
 203                return -ENOMEM;
 204        /*
 205         * Avoid a kmemleak false positive. The pointer to the name is stored
 206         * in a page cache page which kmemleak does not scan.
 207         */
 208        kmemleak_not_leak(string->name);
 209        string->hash = full_name_hash(NULL, name, len);
 210        return 0;
 211}
 212
 213static
 214int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 215{
 216        struct nfs_cache_array *array = kmap(page);
 217        struct nfs_cache_array_entry *cache_entry;
 218        int ret;
 219
 220        cache_entry = &array->array[array->size];
 221
 222        /* Check that this entry lies within the page bounds */
 223        ret = -ENOSPC;
 224        if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 225                goto out;
 226
 227        cache_entry->cookie = entry->prev_cookie;
 228        cache_entry->ino = entry->ino;
 229        cache_entry->d_type = entry->d_type;
 230        ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 231        if (ret)
 232                goto out;
 233        array->last_cookie = entry->cookie;
 234        array->size++;
 235        if (entry->eof != 0)
 236                array->eof_index = array->size;
 237out:
 238        kunmap(page);
 239        return ret;
 240}
 241
 242static inline
 243int is_32bit_api(void)
 244{
 245#ifdef CONFIG_COMPAT
 246        return in_compat_syscall();
 247#else
 248        return (BITS_PER_LONG == 32);
 249#endif
 250}
 251
 252static
 253bool nfs_readdir_use_cookie(const struct file *filp)
 254{
 255        if ((filp->f_mode & FMODE_32BITHASH) ||
 256            (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 257                return false;
 258        return true;
 259}
 260
 261static
 262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 263{
 264        loff_t diff = desc->ctx->pos - desc->current_index;
 265        unsigned int index;
 266
 267        if (diff < 0)
 268                goto out_eof;
 269        if (diff >= array->size) {
 270                if (array->eof_index >= 0)
 271                        goto out_eof;
 272                return -EAGAIN;
 273        }
 274
 275        index = (unsigned int)diff;
 276        *desc->dir_cookie = array->array[index].cookie;
 277        desc->cache_entry_index = index;
 278        return 0;
 279out_eof:
 280        desc->eof = true;
 281        return -EBADCOOKIE;
 282}
 283
 284static bool
 285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 286{
 287        if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 288                return false;
 289        smp_rmb();
 290        return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 291}
 292
 293static
 294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 295{
 296        int i;
 297        loff_t new_pos;
 298        int status = -EAGAIN;
 299
 300        for (i = 0; i < array->size; i++) {
 301                if (array->array[i].cookie == *desc->dir_cookie) {
 302                        struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 303                        struct nfs_open_dir_context *ctx = desc->file->private_data;
 304
 305                        new_pos = desc->current_index + i;
 306                        if (ctx->attr_gencount != nfsi->attr_gencount ||
 307                            !nfs_readdir_inode_mapping_valid(nfsi)) {
 308                                ctx->duped = 0;
 309                                ctx->attr_gencount = nfsi->attr_gencount;
 310                        } else if (new_pos < desc->prev_index) {
 311                                if (ctx->duped > 0
 312                                    && ctx->dup_cookie == *desc->dir_cookie) {
 313                                        if (printk_ratelimit()) {
 314                                                pr_notice("NFS: directory %pD2 contains a readdir loop."
 315                                                                "Please contact your server vendor.  "
 316                                                                "The file: %.*s has duplicate cookie %llu\n",
 317                                                                desc->file, array->array[i].string.len,
 318                                                                array->array[i].string.name, *desc->dir_cookie);
 319                                        }
 320                                        status = -ELOOP;
 321                                        goto out;
 322                                }
 323                                ctx->dup_cookie = *desc->dir_cookie;
 324                                ctx->duped = -1;
 325                        }
 326                        if (nfs_readdir_use_cookie(desc->file))
 327                                desc->ctx->pos = *desc->dir_cookie;
 328                        else
 329                                desc->ctx->pos = new_pos;
 330                        desc->prev_index = new_pos;
 331                        desc->cache_entry_index = i;
 332                        return 0;
 333                }
 334        }
 335        if (array->eof_index >= 0) {
 336                status = -EBADCOOKIE;
 337                if (*desc->dir_cookie == array->last_cookie)
 338                        desc->eof = true;
 339        }
 340out:
 341        return status;
 342}
 343
 344static
 345int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 346{
 347        struct nfs_cache_array *array;
 348        int status;
 349
 350        array = kmap(desc->page);
 351
 352        if (*desc->dir_cookie == 0)
 353                status = nfs_readdir_search_for_pos(array, desc);
 354        else
 355                status = nfs_readdir_search_for_cookie(array, desc);
 356
 357        if (status == -EAGAIN) {
 358                desc->last_cookie = array->last_cookie;
 359                desc->current_index += array->size;
 360                desc->page_index++;
 361        }
 362        kunmap(desc->page);
 363        return status;
 364}
 365
 366/* Fill a page with xdr information before transferring to the cache page */
 367static
 368int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 369                        struct nfs_entry *entry, struct file *file, struct inode *inode)
 370{
 371        struct nfs_open_dir_context *ctx = file->private_data;
 372        const struct cred *cred = ctx->cred;
 373        unsigned long   timestamp, gencount;
 374        int             error;
 375
 376 again:
 377        timestamp = jiffies;
 378        gencount = nfs_inc_attr_generation_counter();
 379        desc->dir_verifier = nfs_save_change_attribute(inode);
 380        error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
 381                                          NFS_SERVER(inode)->dtsize, desc->plus);
 382        if (error < 0) {
 383                /* We requested READDIRPLUS, but the server doesn't grok it */
 384                if (error == -ENOTSUPP && desc->plus) {
 385                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 386                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 387                        desc->plus = false;
 388                        goto again;
 389                }
 390                goto error;
 391        }
 392        desc->timestamp = timestamp;
 393        desc->gencount = gencount;
 394error:
 395        return error;
 396}
 397
 398static int xdr_decode(nfs_readdir_descriptor_t *desc,
 399                      struct nfs_entry *entry, struct xdr_stream *xdr)
 400{
 401        struct inode *inode = file_inode(desc->file);
 402        int error;
 403
 404        error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 405        if (error)
 406                return error;
 407        entry->fattr->time_start = desc->timestamp;
 408        entry->fattr->gencount = desc->gencount;
 409        return 0;
 410}
 411
 412/* Match file and dirent using either filehandle or fileid
 413 * Note: caller is responsible for checking the fsid
 414 */
 415static
 416int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 417{
 418        struct inode *inode;
 419        struct nfs_inode *nfsi;
 420
 421        if (d_really_is_negative(dentry))
 422                return 0;
 423
 424        inode = d_inode(dentry);
 425        if (is_bad_inode(inode) || NFS_STALE(inode))
 426                return 0;
 427
 428        nfsi = NFS_I(inode);
 429        if (entry->fattr->fileid != nfsi->fileid)
 430                return 0;
 431        if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 432                return 0;
 433        return 1;
 434}
 435
 436static
 437bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 438{
 439        if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 440                return false;
 441        if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 442                return true;
 443        if (ctx->pos == 0)
 444                return true;
 445        return false;
 446}
 447
 448/*
 449 * This function is called by the lookup and getattr code to request the
 450 * use of readdirplus to accelerate any future lookups in the same
 451 * directory.
 452 */
 453void nfs_advise_use_readdirplus(struct inode *dir)
 454{
 455        struct nfs_inode *nfsi = NFS_I(dir);
 456
 457        if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 458            !list_empty(&nfsi->open_files))
 459                set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 460}
 461
 462/*
 463 * This function is mainly for use by nfs_getattr().
 464 *
 465 * If this is an 'ls -l', we want to force use of readdirplus.
 466 * Do this by checking if there is an active file descriptor
 467 * and calling nfs_advise_use_readdirplus, then forcing a
 468 * cache flush.
 469 */
 470void nfs_force_use_readdirplus(struct inode *dir)
 471{
 472        struct nfs_inode *nfsi = NFS_I(dir);
 473
 474        if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 475            !list_empty(&nfsi->open_files)) {
 476                set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 477                invalidate_mapping_pages(dir->i_mapping,
 478                        nfsi->page_index + 1, -1);
 479        }
 480}
 481
 482static
 483void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 484                unsigned long dir_verifier)
 485{
 486        struct qstr filename = QSTR_INIT(entry->name, entry->len);
 487        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 488        struct dentry *dentry;
 489        struct dentry *alias;
 490        struct inode *inode;
 491        int status;
 492
 493        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 494                return;
 495        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 496                return;
 497        if (filename.len == 0)
 498                return;
 499        /* Validate that the name doesn't contain any illegal '\0' */
 500        if (strnlen(filename.name, filename.len) != filename.len)
 501                return;
 502        /* ...or '/' */
 503        if (strnchr(filename.name, filename.len, '/'))
 504                return;
 505        if (filename.name[0] == '.') {
 506                if (filename.len == 1)
 507                        return;
 508                if (filename.len == 2 && filename.name[1] == '.')
 509                        return;
 510        }
 511        filename.hash = full_name_hash(parent, filename.name, filename.len);
 512
 513        dentry = d_lookup(parent, &filename);
 514again:
 515        if (!dentry) {
 516                dentry = d_alloc_parallel(parent, &filename, &wq);
 517                if (IS_ERR(dentry))
 518                        return;
 519        }
 520        if (!d_in_lookup(dentry)) {
 521                /* Is there a mountpoint here? If so, just exit */
 522                if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 523                                        &entry->fattr->fsid))
 524                        goto out;
 525                if (nfs_same_file(dentry, entry)) {
 526                        if (!entry->fh->size)
 527                                goto out;
 528                        nfs_set_verifier(dentry, dir_verifier);
 529                        status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 530                        if (!status)
 531                                nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 532                        goto out;
 533                } else {
 534                        d_invalidate(dentry);
 535                        dput(dentry);
 536                        dentry = NULL;
 537                        goto again;
 538                }
 539        }
 540        if (!entry->fh->size) {
 541                d_lookup_done(dentry);
 542                goto out;
 543        }
 544
 545        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 546        alias = d_splice_alias(inode, dentry);
 547        d_lookup_done(dentry);
 548        if (alias) {
 549                if (IS_ERR(alias))
 550                        goto out;
 551                dput(dentry);
 552                dentry = alias;
 553        }
 554        nfs_set_verifier(dentry, dir_verifier);
 555out:
 556        dput(dentry);
 557}
 558
 559/* Perform conversion from xdr to cache array */
 560static
 561int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 562                                struct page **xdr_pages, struct page *page, unsigned int buflen)
 563{
 564        struct xdr_stream stream;
 565        struct xdr_buf buf;
 566        struct page *scratch;
 567        struct nfs_cache_array *array;
 568        unsigned int count = 0;
 569        int status;
 570
 571        scratch = alloc_page(GFP_KERNEL);
 572        if (scratch == NULL)
 573                return -ENOMEM;
 574
 575        if (buflen == 0)
 576                goto out_nopages;
 577
 578        xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 579        xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 580
 581        do {
 582                if (entry->label)
 583                        entry->label->len = NFS4_MAXLABELLEN;
 584
 585                status = xdr_decode(desc, entry, &stream);
 586                if (status != 0) {
 587                        if (status == -EAGAIN)
 588                                status = 0;
 589                        break;
 590                }
 591
 592                count++;
 593
 594                if (desc->plus)
 595                        nfs_prime_dcache(file_dentry(desc->file), entry,
 596                                        desc->dir_verifier);
 597
 598                status = nfs_readdir_add_to_array(entry, page);
 599                if (status != 0)
 600                        break;
 601        } while (!entry->eof);
 602
 603out_nopages:
 604        if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 605                array = kmap(page);
 606                array->eof_index = array->size;
 607                status = 0;
 608                kunmap(page);
 609        }
 610
 611        put_page(scratch);
 612        return status;
 613}
 614
 615static
 616void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
 617{
 618        unsigned int i;
 619        for (i = 0; i < npages; i++)
 620                put_page(pages[i]);
 621}
 622
 623/*
 624 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 625 * to nfs_readdir_free_pages()
 626 */
 627static
 628int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
 629{
 630        unsigned int i;
 631
 632        for (i = 0; i < npages; i++) {
 633                struct page *page = alloc_page(GFP_KERNEL);
 634                if (page == NULL)
 635                        goto out_freepages;
 636                pages[i] = page;
 637        }
 638        return 0;
 639
 640out_freepages:
 641        nfs_readdir_free_pages(pages, i);
 642        return -ENOMEM;
 643}
 644
 645static
 646int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 647{
 648        struct page *pages[NFS_MAX_READDIR_PAGES];
 649        struct nfs_entry entry;
 650        struct file     *file = desc->file;
 651        struct nfs_cache_array *array;
 652        int status = -ENOMEM;
 653        unsigned int array_size = ARRAY_SIZE(pages);
 654
 655        nfs_readdir_init_array(page);
 656
 657        entry.prev_cookie = 0;
 658        entry.cookie = desc->last_cookie;
 659        entry.eof = 0;
 660        entry.fh = nfs_alloc_fhandle();
 661        entry.fattr = nfs_alloc_fattr();
 662        entry.server = NFS_SERVER(inode);
 663        if (entry.fh == NULL || entry.fattr == NULL)
 664                goto out;
 665
 666        entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 667        if (IS_ERR(entry.label)) {
 668                status = PTR_ERR(entry.label);
 669                goto out;
 670        }
 671
 672        array = kmap(page);
 673
 674        status = nfs_readdir_alloc_pages(pages, array_size);
 675        if (status < 0)
 676                goto out_release_array;
 677        do {
 678                unsigned int pglen;
 679                status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 680
 681                if (status < 0)
 682                        break;
 683                pglen = status;
 684                status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 685                if (status < 0) {
 686                        if (status == -ENOSPC)
 687                                status = 0;
 688                        break;
 689                }
 690        } while (array->eof_index < 0);
 691
 692        nfs_readdir_free_pages(pages, array_size);
 693out_release_array:
 694        kunmap(page);
 695        nfs4_label_free(entry.label);
 696out:
 697        nfs_free_fattr(entry.fattr);
 698        nfs_free_fhandle(entry.fh);
 699        return status;
 700}
 701
 702/*
 703 * Now we cache directories properly, by converting xdr information
 704 * to an array that can be used for lookups later.  This results in
 705 * fewer cache pages, since we can store more information on each page.
 706 * We only need to convert from xdr once so future lookups are much simpler
 707 */
 708static
 709int nfs_readdir_filler(void *data, struct page* page)
 710{
 711        nfs_readdir_descriptor_t *desc = data;
 712        struct inode    *inode = file_inode(desc->file);
 713        int ret;
 714
 715        ret = nfs_readdir_xdr_to_array(desc, page, inode);
 716        if (ret < 0)
 717                goto error;
 718        SetPageUptodate(page);
 719
 720        if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 721                /* Should never happen */
 722                nfs_zap_mapping(inode, inode->i_mapping);
 723        }
 724        unlock_page(page);
 725        return 0;
 726 error:
 727        nfs_readdir_clear_array(page);
 728        unlock_page(page);
 729        return ret;
 730}
 731
 732static
 733void cache_page_release(nfs_readdir_descriptor_t *desc)
 734{
 735        put_page(desc->page);
 736        desc->page = NULL;
 737}
 738
 739static
 740struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 741{
 742        return read_cache_page(desc->file->f_mapping, desc->page_index,
 743                        nfs_readdir_filler, desc);
 744}
 745
 746/*
 747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 748 * and locks the page to prevent removal from the page cache.
 749 */
 750static
 751int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
 752{
 753        struct inode *inode = file_inode(desc->file);
 754        struct nfs_inode *nfsi = NFS_I(inode);
 755        int res;
 756
 757        desc->page = get_cache_page(desc);
 758        if (IS_ERR(desc->page))
 759                return PTR_ERR(desc->page);
 760        res = lock_page_killable(desc->page);
 761        if (res != 0)
 762                goto error;
 763        res = -EAGAIN;
 764        if (desc->page->mapping != NULL) {
 765                res = nfs_readdir_search_array(desc);
 766                if (res == 0) {
 767                        nfsi->page_index = desc->page_index;
 768                        return 0;
 769                }
 770        }
 771        unlock_page(desc->page);
 772error:
 773        cache_page_release(desc);
 774        return res;
 775}
 776
 777/* Search for desc->dir_cookie from the beginning of the page cache */
 778static inline
 779int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 780{
 781        int res;
 782
 783        if (desc->page_index == 0) {
 784                desc->current_index = 0;
 785                desc->prev_index = 0;
 786                desc->last_cookie = 0;
 787        }
 788        do {
 789                res = find_and_lock_cache_page(desc);
 790        } while (res == -EAGAIN);
 791        return res;
 792}
 793
 794/*
 795 * Once we've found the start of the dirent within a page: fill 'er up...
 796 */
 797static 
 798int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 799{
 800        struct file     *file = desc->file;
 801        int i = 0;
 802        int res = 0;
 803        struct nfs_cache_array *array = NULL;
 804        struct nfs_open_dir_context *ctx = file->private_data;
 805
 806        array = kmap(desc->page);
 807        for (i = desc->cache_entry_index; i < array->size; i++) {
 808                struct nfs_cache_array_entry *ent;
 809
 810                ent = &array->array[i];
 811                if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 812                    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 813                        desc->eof = true;
 814                        break;
 815                }
 816                if (i < (array->size-1))
 817                        *desc->dir_cookie = array->array[i+1].cookie;
 818                else
 819                        *desc->dir_cookie = array->last_cookie;
 820                if (nfs_readdir_use_cookie(file))
 821                        desc->ctx->pos = *desc->dir_cookie;
 822                else
 823                        desc->ctx->pos++;
 824                if (ctx->duped != 0)
 825                        ctx->duped = 1;
 826        }
 827        if (array->eof_index >= 0)
 828                desc->eof = true;
 829
 830        kunmap(desc->page);
 831        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 832                        (unsigned long long)*desc->dir_cookie, res);
 833        return res;
 834}
 835
 836/*
 837 * If we cannot find a cookie in our cache, we suspect that this is
 838 * because it points to a deleted file, so we ask the server to return
 839 * whatever it thinks is the next entry. We then feed this to filldir.
 840 * If all goes well, we should then be able to find our way round the
 841 * cache on the next call to readdir_search_pagecache();
 842 *
 843 * NOTE: we cannot add the anonymous page to the pagecache because
 844 *       the data it contains might not be page aligned. Besides,
 845 *       we should already have a complete representation of the
 846 *       directory in the page cache by the time we get here.
 847 */
 848static inline
 849int uncached_readdir(nfs_readdir_descriptor_t *desc)
 850{
 851        struct page     *page = NULL;
 852        int             status;
 853        struct inode *inode = file_inode(desc->file);
 854        struct nfs_open_dir_context *ctx = desc->file->private_data;
 855
 856        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 857                        (unsigned long long)*desc->dir_cookie);
 858
 859        page = alloc_page(GFP_HIGHUSER);
 860        if (!page) {
 861                status = -ENOMEM;
 862                goto out;
 863        }
 864
 865        desc->page_index = 0;
 866        desc->last_cookie = *desc->dir_cookie;
 867        desc->page = page;
 868        ctx->duped = 0;
 869
 870        status = nfs_readdir_xdr_to_array(desc, page, inode);
 871        if (status < 0)
 872                goto out_release;
 873
 874        status = nfs_do_filldir(desc);
 875
 876 out_release:
 877        nfs_readdir_clear_array(desc->page);
 878        cache_page_release(desc);
 879 out:
 880        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 881                        __func__, status);
 882        return status;
 883}
 884
 885/* The file offset position represents the dirent entry number.  A
 886   last cookie cache takes care of the common case of reading the
 887   whole directory.
 888 */
 889static int nfs_readdir(struct file *file, struct dir_context *ctx)
 890{
 891        struct dentry   *dentry = file_dentry(file);
 892        struct inode    *inode = d_inode(dentry);
 893        struct nfs_open_dir_context *dir_ctx = file->private_data;
 894        nfs_readdir_descriptor_t my_desc = {
 895                .file = file,
 896                .ctx = ctx,
 897                .dir_cookie = &dir_ctx->dir_cookie,
 898                .plus = nfs_use_readdirplus(inode, ctx),
 899        },
 900                        *desc = &my_desc;
 901        int res = 0;
 902
 903        dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
 904                        file, (long long)ctx->pos);
 905        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 906
 907        /*
 908         * ctx->pos points to the dirent entry number.
 909         * *desc->dir_cookie has the cookie for the next entry. We have
 910         * to either find the entry with the appropriate number or
 911         * revalidate the cookie.
 912         */
 913        if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
 914                res = nfs_revalidate_mapping(inode, file->f_mapping);
 915        if (res < 0)
 916                goto out;
 917
 918        do {
 919                res = readdir_search_pagecache(desc);
 920
 921                if (res == -EBADCOOKIE) {
 922                        res = 0;
 923                        /* This means either end of directory */
 924                        if (*desc->dir_cookie && !desc->eof) {
 925                                /* Or that the server has 'lost' a cookie */
 926                                res = uncached_readdir(desc);
 927                                if (res == 0)
 928                                        continue;
 929                        }
 930                        break;
 931                }
 932                if (res == -ETOOSMALL && desc->plus) {
 933                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 934                        nfs_zap_caches(inode);
 935                        desc->page_index = 0;
 936                        desc->plus = false;
 937                        desc->eof = false;
 938                        continue;
 939                }
 940                if (res < 0)
 941                        break;
 942
 943                res = nfs_do_filldir(desc);
 944                unlock_page(desc->page);
 945                cache_page_release(desc);
 946                if (res < 0)
 947                        break;
 948        } while (!desc->eof);
 949out:
 950        if (res > 0)
 951                res = 0;
 952        dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 953        return res;
 954}
 955
 956static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 957{
 958        struct nfs_open_dir_context *dir_ctx = filp->private_data;
 959
 960        dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
 961                        filp, offset, whence);
 962
 963        switch (whence) {
 964        default:
 965                return -EINVAL;
 966        case SEEK_SET:
 967                if (offset < 0)
 968                        return -EINVAL;
 969                spin_lock(&filp->f_lock);
 970                break;
 971        case SEEK_CUR:
 972                if (offset == 0)
 973                        return filp->f_pos;
 974                spin_lock(&filp->f_lock);
 975                offset += filp->f_pos;
 976                if (offset < 0) {
 977                        spin_unlock(&filp->f_lock);
 978                        return -EINVAL;
 979                }
 980        }
 981        if (offset != filp->f_pos) {
 982                filp->f_pos = offset;
 983                if (nfs_readdir_use_cookie(filp))
 984                        dir_ctx->dir_cookie = offset;
 985                else
 986                        dir_ctx->dir_cookie = 0;
 987                dir_ctx->duped = 0;
 988        }
 989        spin_unlock(&filp->f_lock);
 990        return offset;
 991}
 992
 993/*
 994 * All directory operations under NFS are synchronous, so fsync()
 995 * is a dummy operation.
 996 */
 997static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 998                         int datasync)
 999{
1000        dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001
1002        nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1003        return 0;
1004}
1005
1006/**
1007 * nfs_force_lookup_revalidate - Mark the directory as having changed
1008 * @dir: pointer to directory inode
1009 *
1010 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1011 * full lookup on all child dentries of 'dir' whenever a change occurs
1012 * on the server that might have invalidated our dcache.
1013 *
1014 * Note that we reserve bit '0' as a tag to let us know when a dentry
1015 * was revalidated while holding a delegation on its inode.
1016 *
1017 * The caller should be holding dir->i_lock
1018 */
1019void nfs_force_lookup_revalidate(struct inode *dir)
1020{
1021        NFS_I(dir)->cache_change_attribute += 2;
1022}
1023EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1024
1025/**
1026 * nfs_verify_change_attribute - Detects NFS remote directory changes
1027 * @dir: pointer to parent directory inode
1028 * @verf: previously saved change attribute
1029 *
1030 * Return "false" if the verifiers doesn't match the change attribute.
1031 * This would usually indicate that the directory contents have changed on
1032 * the server, and that any dentries need revalidating.
1033 */
1034static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1035{
1036        return (verf & ~1UL) == nfs_save_change_attribute(dir);
1037}
1038
1039static void nfs_set_verifier_delegated(unsigned long *verf)
1040{
1041        *verf |= 1UL;
1042}
1043
1044#if IS_ENABLED(CONFIG_NFS_V4)
1045static void nfs_unset_verifier_delegated(unsigned long *verf)
1046{
1047        *verf &= ~1UL;
1048}
1049#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1050
1051static bool nfs_test_verifier_delegated(unsigned long verf)
1052{
1053        return verf & 1;
1054}
1055
1056static bool nfs_verifier_is_delegated(struct dentry *dentry)
1057{
1058        return nfs_test_verifier_delegated(dentry->d_time);
1059}
1060
1061static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1062{
1063        struct inode *inode = d_inode(dentry);
1064
1065        if (!nfs_verifier_is_delegated(dentry) &&
1066            !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1067                goto out;
1068        if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1069                nfs_set_verifier_delegated(&verf);
1070out:
1071        dentry->d_time = verf;
1072}
1073
1074/**
1075 * nfs_set_verifier - save a parent directory verifier in the dentry
1076 * @dentry: pointer to dentry
1077 * @verf: verifier to save
1078 *
1079 * Saves the parent directory verifier in @dentry. If the inode has
1080 * a delegation, we also tag the dentry as having been revalidated
1081 * while holding a delegation so that we know we don't have to
1082 * look it up again after a directory change.
1083 */
1084void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1085{
1086
1087        spin_lock(&dentry->d_lock);
1088        nfs_set_verifier_locked(dentry, verf);
1089        spin_unlock(&dentry->d_lock);
1090}
1091EXPORT_SYMBOL_GPL(nfs_set_verifier);
1092
1093#if IS_ENABLED(CONFIG_NFS_V4)
1094/**
1095 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1096 * @inode: pointer to inode
1097 *
1098 * Iterates through the dentries in the inode alias list and clears
1099 * the tag used to indicate that the dentry has been revalidated
1100 * while holding a delegation.
1101 * This function is intended for use when the delegation is being
1102 * returned or revoked.
1103 */
1104void nfs_clear_verifier_delegated(struct inode *inode)
1105{
1106        struct dentry *alias;
1107
1108        if (!inode)
1109                return;
1110        spin_lock(&inode->i_lock);
1111        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1112                spin_lock(&alias->d_lock);
1113                nfs_unset_verifier_delegated(&alias->d_time);
1114                spin_unlock(&alias->d_lock);
1115        }
1116        spin_unlock(&inode->i_lock);
1117}
1118EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1119#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1120
1121/*
1122 * A check for whether or not the parent directory has changed.
1123 * In the case it has, we assume that the dentries are untrustworthy
1124 * and may need to be looked up again.
1125 * If rcu_walk prevents us from performing a full check, return 0.
1126 */
1127static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1128                              int rcu_walk)
1129{
1130        if (IS_ROOT(dentry))
1131                return 1;
1132        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1133                return 0;
1134        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1135                return 0;
1136        /* Revalidate nfsi->cache_change_attribute before we declare a match */
1137        if (nfs_mapping_need_revalidate_inode(dir)) {
1138                if (rcu_walk)
1139                        return 0;
1140                if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1141                        return 0;
1142        }
1143        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1144                return 0;
1145        return 1;
1146}
1147
1148/*
1149 * Use intent information to check whether or not we're going to do
1150 * an O_EXCL create using this path component.
1151 */
1152static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1153{
1154        if (NFS_PROTO(dir)->version == 2)
1155                return 0;
1156        return flags & LOOKUP_EXCL;
1157}
1158
1159/*
1160 * Inode and filehandle revalidation for lookups.
1161 *
1162 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1163 * or if the intent information indicates that we're about to open this
1164 * particular file and the "nocto" mount flag is not set.
1165 *
1166 */
1167static
1168int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1169{
1170        struct nfs_server *server = NFS_SERVER(inode);
1171        int ret;
1172
1173        if (IS_AUTOMOUNT(inode))
1174                return 0;
1175
1176        if (flags & LOOKUP_OPEN) {
1177                switch (inode->i_mode & S_IFMT) {
1178                case S_IFREG:
1179                        /* A NFSv4 OPEN will revalidate later */
1180                        if (server->caps & NFS_CAP_ATOMIC_OPEN)
1181                                goto out;
1182                        fallthrough;
1183                case S_IFDIR:
1184                        if (server->flags & NFS_MOUNT_NOCTO)
1185                                break;
1186                        /* NFS close-to-open cache consistency validation */
1187                        goto out_force;
1188                }
1189        }
1190
1191        /* VFS wants an on-the-wire revalidation */
1192        if (flags & LOOKUP_REVAL)
1193                goto out_force;
1194out:
1195        return (inode->i_nlink == 0) ? -ESTALE : 0;
1196out_force:
1197        if (flags & LOOKUP_RCU)
1198                return -ECHILD;
1199        ret = __nfs_revalidate_inode(server, inode);
1200        if (ret != 0)
1201                return ret;
1202        goto out;
1203}
1204
1205/*
1206 * We judge how long we want to trust negative
1207 * dentries by looking at the parent inode mtime.
1208 *
1209 * If parent mtime has changed, we revalidate, else we wait for a
1210 * period corresponding to the parent's attribute cache timeout value.
1211 *
1212 * If LOOKUP_RCU prevents us from performing a full check, return 1
1213 * suggesting a reval is needed.
1214 *
1215 * Note that when creating a new file, or looking up a rename target,
1216 * then it shouldn't be necessary to revalidate a negative dentry.
1217 */
1218static inline
1219int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1220                       unsigned int flags)
1221{
1222        if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1223                return 0;
1224        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1225                return 1;
1226        return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1227}
1228
1229static int
1230nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1231                           struct inode *inode, int error)
1232{
1233        switch (error) {
1234        case 1:
1235                dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1236                        __func__, dentry);
1237                return 1;
1238        case 0:
1239                nfs_mark_for_revalidate(dir);
1240                if (inode && S_ISDIR(inode->i_mode)) {
1241                        /* Purge readdir caches. */
1242                        nfs_zap_caches(inode);
1243                        /*
1244                         * We can't d_drop the root of a disconnected tree:
1245                         * its d_hash is on the s_anon list and d_drop() would hide
1246                         * it from shrink_dcache_for_unmount(), leading to busy
1247                         * inodes on unmount and further oopses.
1248                         */
1249                        if (IS_ROOT(dentry))
1250                                return 1;
1251                }
1252                dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1253                                __func__, dentry);
1254                return 0;
1255        }
1256        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1257                                __func__, dentry, error);
1258        return error;
1259}
1260
1261static int
1262nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1263                               unsigned int flags)
1264{
1265        int ret = 1;
1266        if (nfs_neg_need_reval(dir, dentry, flags)) {
1267                if (flags & LOOKUP_RCU)
1268                        return -ECHILD;
1269                ret = 0;
1270        }
1271        return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1272}
1273
1274static int
1275nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1276                                struct inode *inode)
1277{
1278        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1279        return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1280}
1281
1282static int
1283nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1284                             struct inode *inode)
1285{
1286        struct nfs_fh *fhandle;
1287        struct nfs_fattr *fattr;
1288        struct nfs4_label *label;
1289        unsigned long dir_verifier;
1290        int ret;
1291
1292        ret = -ENOMEM;
1293        fhandle = nfs_alloc_fhandle();
1294        fattr = nfs_alloc_fattr();
1295        label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1296        if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1297                goto out;
1298
1299        dir_verifier = nfs_save_change_attribute(dir);
1300        ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1301        if (ret < 0) {
1302                switch (ret) {
1303                case -ESTALE:
1304                case -ENOENT:
1305                        ret = 0;
1306                        break;
1307                case -ETIMEDOUT:
1308                        if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1309                                ret = 1;
1310                }
1311                goto out;
1312        }
1313        ret = 0;
1314        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1315                goto out;
1316        if (nfs_refresh_inode(inode, fattr) < 0)
1317                goto out;
1318
1319        nfs_setsecurity(inode, fattr, label);
1320        nfs_set_verifier(dentry, dir_verifier);
1321
1322        /* set a readdirplus hint that we had a cache miss */
1323        nfs_force_use_readdirplus(dir);
1324        ret = 1;
1325out:
1326        nfs_free_fattr(fattr);
1327        nfs_free_fhandle(fhandle);
1328        nfs4_label_free(label);
1329        return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1330}
1331
1332/*
1333 * This is called every time the dcache has a lookup hit,
1334 * and we should check whether we can really trust that
1335 * lookup.
1336 *
1337 * NOTE! The hit can be a negative hit too, don't assume
1338 * we have an inode!
1339 *
1340 * If the parent directory is seen to have changed, we throw out the
1341 * cached dentry and do a new lookup.
1342 */
1343static int
1344nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1345                         unsigned int flags)
1346{
1347        struct inode *inode;
1348        int error;
1349
1350        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1351        inode = d_inode(dentry);
1352
1353        if (!inode)
1354                return nfs_lookup_revalidate_negative(dir, dentry, flags);
1355
1356        if (is_bad_inode(inode)) {
1357                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1358                                __func__, dentry);
1359                goto out_bad;
1360        }
1361
1362        if (nfs_verifier_is_delegated(dentry))
1363                return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1364
1365        /* Force a full look up iff the parent directory has changed */
1366        if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1367            nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1368                error = nfs_lookup_verify_inode(inode, flags);
1369                if (error) {
1370                        if (error == -ESTALE)
1371                                nfs_zap_caches(dir);
1372                        goto out_bad;
1373                }
1374                nfs_advise_use_readdirplus(dir);
1375                goto out_valid;
1376        }
1377
1378        if (flags & LOOKUP_RCU)
1379                return -ECHILD;
1380
1381        if (NFS_STALE(inode))
1382                goto out_bad;
1383
1384        trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1385        error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1386        trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1387        return error;
1388out_valid:
1389        return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1390out_bad:
1391        if (flags & LOOKUP_RCU)
1392                return -ECHILD;
1393        return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1394}
1395
1396static int
1397__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1398                        int (*reval)(struct inode *, struct dentry *, unsigned int))
1399{
1400        struct dentry *parent;
1401        struct inode *dir;
1402        int ret;
1403
1404        if (flags & LOOKUP_RCU) {
1405                parent = READ_ONCE(dentry->d_parent);
1406                dir = d_inode_rcu(parent);
1407                if (!dir)
1408                        return -ECHILD;
1409                ret = reval(dir, dentry, flags);
1410                if (parent != READ_ONCE(dentry->d_parent))
1411                        return -ECHILD;
1412        } else {
1413                parent = dget_parent(dentry);
1414                ret = reval(d_inode(parent), dentry, flags);
1415                dput(parent);
1416        }
1417        return ret;
1418}
1419
1420static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1421{
1422        return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1423}
1424
1425/*
1426 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1427 * when we don't really care about the dentry name. This is called when a
1428 * pathwalk ends on a dentry that was not found via a normal lookup in the
1429 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1430 *
1431 * In this situation, we just want to verify that the inode itself is OK
1432 * since the dentry might have changed on the server.
1433 */
1434static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1435{
1436        struct inode *inode = d_inode(dentry);
1437        int error = 0;
1438
1439        /*
1440         * I believe we can only get a negative dentry here in the case of a
1441         * procfs-style symlink. Just assume it's correct for now, but we may
1442         * eventually need to do something more here.
1443         */
1444        if (!inode) {
1445                dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1446                                __func__, dentry);
1447                return 1;
1448        }
1449
1450        if (is_bad_inode(inode)) {
1451                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1452                                __func__, dentry);
1453                return 0;
1454        }
1455
1456        error = nfs_lookup_verify_inode(inode, flags);
1457        dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1458                        __func__, inode->i_ino, error ? "invalid" : "valid");
1459        return !error;
1460}
1461
1462/*
1463 * This is called from dput() when d_count is going to 0.
1464 */
1465static int nfs_dentry_delete(const struct dentry *dentry)
1466{
1467        dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1468                dentry, dentry->d_flags);
1469
1470        /* Unhash any dentry with a stale inode */
1471        if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1472                return 1;
1473
1474        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1475                /* Unhash it, so that ->d_iput() would be called */
1476                return 1;
1477        }
1478        if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1479                /* Unhash it, so that ancestors of killed async unlink
1480                 * files will be cleaned up during umount */
1481                return 1;
1482        }
1483        return 0;
1484
1485}
1486
1487/* Ensure that we revalidate inode->i_nlink */
1488static void nfs_drop_nlink(struct inode *inode)
1489{
1490        spin_lock(&inode->i_lock);
1491        /* drop the inode if we're reasonably sure this is the last link */
1492        if (inode->i_nlink > 0)
1493                drop_nlink(inode);
1494        NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1495        NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1496                | NFS_INO_INVALID_CTIME
1497                | NFS_INO_INVALID_OTHER
1498                | NFS_INO_REVAL_FORCED;
1499        spin_unlock(&inode->i_lock);
1500}
1501
1502/*
1503 * Called when the dentry loses inode.
1504 * We use it to clean up silly-renamed files.
1505 */
1506static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1507{
1508        if (S_ISDIR(inode->i_mode))
1509                /* drop any readdir cache as it could easily be old */
1510                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1511
1512        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1513                nfs_complete_unlink(dentry, inode);
1514                nfs_drop_nlink(inode);
1515        }
1516        iput(inode);
1517}
1518
1519static void nfs_d_release(struct dentry *dentry)
1520{
1521        /* free cached devname value, if it survived that far */
1522        if (unlikely(dentry->d_fsdata)) {
1523                if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1524                        WARN_ON(1);
1525                else
1526                        kfree(dentry->d_fsdata);
1527        }
1528}
1529
1530const struct dentry_operations nfs_dentry_operations = {
1531        .d_revalidate   = nfs_lookup_revalidate,
1532        .d_weak_revalidate      = nfs_weak_revalidate,
1533        .d_delete       = nfs_dentry_delete,
1534        .d_iput         = nfs_dentry_iput,
1535        .d_automount    = nfs_d_automount,
1536        .d_release      = nfs_d_release,
1537};
1538EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1539
1540struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1541{
1542        struct dentry *res;
1543        struct inode *inode = NULL;
1544        struct nfs_fh *fhandle = NULL;
1545        struct nfs_fattr *fattr = NULL;
1546        struct nfs4_label *label = NULL;
1547        unsigned long dir_verifier;
1548        int error;
1549
1550        dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1551        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1552
1553        if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1554                return ERR_PTR(-ENAMETOOLONG);
1555
1556        /*
1557         * If we're doing an exclusive create, optimize away the lookup
1558         * but don't hash the dentry.
1559         */
1560        if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1561                return NULL;
1562
1563        res = ERR_PTR(-ENOMEM);
1564        fhandle = nfs_alloc_fhandle();
1565        fattr = nfs_alloc_fattr();
1566        if (fhandle == NULL || fattr == NULL)
1567                goto out;
1568
1569        label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1570        if (IS_ERR(label))
1571                goto out;
1572
1573        dir_verifier = nfs_save_change_attribute(dir);
1574        trace_nfs_lookup_enter(dir, dentry, flags);
1575        error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1576        if (error == -ENOENT)
1577                goto no_entry;
1578        if (error < 0) {
1579                res = ERR_PTR(error);
1580                goto out_label;
1581        }
1582        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1583        res = ERR_CAST(inode);
1584        if (IS_ERR(res))
1585                goto out_label;
1586
1587        /* Notify readdir to use READDIRPLUS */
1588        nfs_force_use_readdirplus(dir);
1589
1590no_entry:
1591        res = d_splice_alias(inode, dentry);
1592        if (res != NULL) {
1593                if (IS_ERR(res))
1594                        goto out_label;
1595                dentry = res;
1596        }
1597        nfs_set_verifier(dentry, dir_verifier);
1598out_label:
1599        trace_nfs_lookup_exit(dir, dentry, flags, error);
1600        nfs4_label_free(label);
1601out:
1602        nfs_free_fattr(fattr);
1603        nfs_free_fhandle(fhandle);
1604        return res;
1605}
1606EXPORT_SYMBOL_GPL(nfs_lookup);
1607
1608#if IS_ENABLED(CONFIG_NFS_V4)
1609static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1610
1611const struct dentry_operations nfs4_dentry_operations = {
1612        .d_revalidate   = nfs4_lookup_revalidate,
1613        .d_weak_revalidate      = nfs_weak_revalidate,
1614        .d_delete       = nfs_dentry_delete,
1615        .d_iput         = nfs_dentry_iput,
1616        .d_automount    = nfs_d_automount,
1617        .d_release      = nfs_d_release,
1618};
1619EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1620
1621static fmode_t flags_to_mode(int flags)
1622{
1623        fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1624        if ((flags & O_ACCMODE) != O_WRONLY)
1625                res |= FMODE_READ;
1626        if ((flags & O_ACCMODE) != O_RDONLY)
1627                res |= FMODE_WRITE;
1628        return res;
1629}
1630
1631static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1632{
1633        return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1634}
1635
1636static int do_open(struct inode *inode, struct file *filp)
1637{
1638        nfs_fscache_open_file(inode, filp);
1639        return 0;
1640}
1641
1642static int nfs_finish_open(struct nfs_open_context *ctx,
1643                           struct dentry *dentry,
1644                           struct file *file, unsigned open_flags)
1645{
1646        int err;
1647
1648        err = finish_open(file, dentry, do_open);
1649        if (err)
1650                goto out;
1651        if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1652                nfs_file_set_open_context(file, ctx);
1653        else
1654                err = -EOPENSTALE;
1655out:
1656        return err;
1657}
1658
1659int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1660                    struct file *file, unsigned open_flags,
1661                    umode_t mode)
1662{
1663        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1664        struct nfs_open_context *ctx;
1665        struct dentry *res;
1666        struct iattr attr = { .ia_valid = ATTR_OPEN };
1667        struct inode *inode;
1668        unsigned int lookup_flags = 0;
1669        bool switched = false;
1670        int created = 0;
1671        int err;
1672
1673        /* Expect a negative dentry */
1674        BUG_ON(d_inode(dentry));
1675
1676        dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1677                        dir->i_sb->s_id, dir->i_ino, dentry);
1678
1679        err = nfs_check_flags(open_flags);
1680        if (err)
1681                return err;
1682
1683        /* NFS only supports OPEN on regular files */
1684        if ((open_flags & O_DIRECTORY)) {
1685                if (!d_in_lookup(dentry)) {
1686                        /*
1687                         * Hashed negative dentry with O_DIRECTORY: dentry was
1688                         * revalidated and is fine, no need to perform lookup
1689                         * again
1690                         */
1691                        return -ENOENT;
1692                }
1693                lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1694                goto no_open;
1695        }
1696
1697        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1698                return -ENAMETOOLONG;
1699
1700        if (open_flags & O_CREAT) {
1701                struct nfs_server *server = NFS_SERVER(dir);
1702
1703                if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1704                        mode &= ~current_umask();
1705
1706                attr.ia_valid |= ATTR_MODE;
1707                attr.ia_mode = mode;
1708        }
1709        if (open_flags & O_TRUNC) {
1710                attr.ia_valid |= ATTR_SIZE;
1711                attr.ia_size = 0;
1712        }
1713
1714        if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1715                d_drop(dentry);
1716                switched = true;
1717                dentry = d_alloc_parallel(dentry->d_parent,
1718                                          &dentry->d_name, &wq);
1719                if (IS_ERR(dentry))
1720                        return PTR_ERR(dentry);
1721                if (unlikely(!d_in_lookup(dentry)))
1722                        return finish_no_open(file, dentry);
1723        }
1724
1725        ctx = create_nfs_open_context(dentry, open_flags, file);
1726        err = PTR_ERR(ctx);
1727        if (IS_ERR(ctx))
1728                goto out;
1729
1730        trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1731        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1732        if (created)
1733                file->f_mode |= FMODE_CREATED;
1734        if (IS_ERR(inode)) {
1735                err = PTR_ERR(inode);
1736                trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1737                put_nfs_open_context(ctx);
1738                d_drop(dentry);
1739                switch (err) {
1740                case -ENOENT:
1741                        d_splice_alias(NULL, dentry);
1742                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1743                        break;
1744                case -EISDIR:
1745                case -ENOTDIR:
1746                        goto no_open;
1747                case -ELOOP:
1748                        if (!(open_flags & O_NOFOLLOW))
1749                                goto no_open;
1750                        break;
1751                        /* case -EINVAL: */
1752                default:
1753                        break;
1754                }
1755                goto out;
1756        }
1757
1758        err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1759        trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1760        put_nfs_open_context(ctx);
1761out:
1762        if (unlikely(switched)) {
1763                d_lookup_done(dentry);
1764                dput(dentry);
1765        }
1766        return err;
1767
1768no_open:
1769        res = nfs_lookup(dir, dentry, lookup_flags);
1770        if (switched) {
1771                d_lookup_done(dentry);
1772                if (!res)
1773                        res = dentry;
1774                else
1775                        dput(dentry);
1776        }
1777        if (IS_ERR(res))
1778                return PTR_ERR(res);
1779        return finish_no_open(file, res);
1780}
1781EXPORT_SYMBOL_GPL(nfs_atomic_open);
1782
1783static int
1784nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1785                          unsigned int flags)
1786{
1787        struct inode *inode;
1788
1789        if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1790                goto full_reval;
1791        if (d_mountpoint(dentry))
1792                goto full_reval;
1793
1794        inode = d_inode(dentry);
1795
1796        /* We can't create new files in nfs_open_revalidate(), so we
1797         * optimize away revalidation of negative dentries.
1798         */
1799        if (inode == NULL)
1800                goto full_reval;
1801
1802        if (nfs_verifier_is_delegated(dentry))
1803                return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1804
1805        /* NFS only supports OPEN on regular files */
1806        if (!S_ISREG(inode->i_mode))
1807                goto full_reval;
1808
1809        /* We cannot do exclusive creation on a positive dentry */
1810        if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1811                goto reval_dentry;
1812
1813        /* Check if the directory changed */
1814        if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1815                goto reval_dentry;
1816
1817        /* Let f_op->open() actually open (and revalidate) the file */
1818        return 1;
1819reval_dentry:
1820        if (flags & LOOKUP_RCU)
1821                return -ECHILD;
1822        return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1823
1824full_reval:
1825        return nfs_do_lookup_revalidate(dir, dentry, flags);
1826}
1827
1828static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1829{
1830        return __nfs_lookup_revalidate(dentry, flags,
1831                        nfs4_do_lookup_revalidate);
1832}
1833
1834#endif /* CONFIG_NFSV4 */
1835
1836struct dentry *
1837nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1838                                struct nfs_fattr *fattr,
1839                                struct nfs4_label *label)
1840{
1841        struct dentry *parent = dget_parent(dentry);
1842        struct inode *dir = d_inode(parent);
1843        struct inode *inode;
1844        struct dentry *d;
1845        int error;
1846
1847        d_drop(dentry);
1848
1849        if (fhandle->size == 0) {
1850                error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1851                if (error)
1852                        goto out_error;
1853        }
1854        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1855        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1856                struct nfs_server *server = NFS_SB(dentry->d_sb);
1857                error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1858                                fattr, NULL, NULL);
1859                if (error < 0)
1860                        goto out_error;
1861        }
1862        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1863        d = d_splice_alias(inode, dentry);
1864out:
1865        dput(parent);
1866        return d;
1867out_error:
1868        nfs_mark_for_revalidate(dir);
1869        d = ERR_PTR(error);
1870        goto out;
1871}
1872EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1873
1874/*
1875 * Code common to create, mkdir, and mknod.
1876 */
1877int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1878                                struct nfs_fattr *fattr,
1879                                struct nfs4_label *label)
1880{
1881        struct dentry *d;
1882
1883        d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1884        if (IS_ERR(d))
1885                return PTR_ERR(d);
1886
1887        /* Callers don't care */
1888        dput(d);
1889        return 0;
1890}
1891EXPORT_SYMBOL_GPL(nfs_instantiate);
1892
1893/*
1894 * Following a failed create operation, we drop the dentry rather
1895 * than retain a negative dentry. This avoids a problem in the event
1896 * that the operation succeeded on the server, but an error in the
1897 * reply path made it appear to have failed.
1898 */
1899int nfs_create(struct inode *dir, struct dentry *dentry,
1900                umode_t mode, bool excl)
1901{
1902        struct iattr attr;
1903        int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1904        int error;
1905
1906        dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1907                        dir->i_sb->s_id, dir->i_ino, dentry);
1908
1909        attr.ia_mode = mode;
1910        attr.ia_valid = ATTR_MODE;
1911
1912        trace_nfs_create_enter(dir, dentry, open_flags);
1913        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1914        trace_nfs_create_exit(dir, dentry, open_flags, error);
1915        if (error != 0)
1916                goto out_err;
1917        return 0;
1918out_err:
1919        d_drop(dentry);
1920        return error;
1921}
1922EXPORT_SYMBOL_GPL(nfs_create);
1923
1924/*
1925 * See comments for nfs_proc_create regarding failed operations.
1926 */
1927int
1928nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1929{
1930        struct iattr attr;
1931        int status;
1932
1933        dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1934                        dir->i_sb->s_id, dir->i_ino, dentry);
1935
1936        attr.ia_mode = mode;
1937        attr.ia_valid = ATTR_MODE;
1938
1939        trace_nfs_mknod_enter(dir, dentry);
1940        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1941        trace_nfs_mknod_exit(dir, dentry, status);
1942        if (status != 0)
1943                goto out_err;
1944        return 0;
1945out_err:
1946        d_drop(dentry);
1947        return status;
1948}
1949EXPORT_SYMBOL_GPL(nfs_mknod);
1950
1951/*
1952 * See comments for nfs_proc_create regarding failed operations.
1953 */
1954int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1955{
1956        struct iattr attr;
1957        int error;
1958
1959        dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1960                        dir->i_sb->s_id, dir->i_ino, dentry);
1961
1962        attr.ia_valid = ATTR_MODE;
1963        attr.ia_mode = mode | S_IFDIR;
1964
1965        trace_nfs_mkdir_enter(dir, dentry);
1966        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1967        trace_nfs_mkdir_exit(dir, dentry, error);
1968        if (error != 0)
1969                goto out_err;
1970        return 0;
1971out_err:
1972        d_drop(dentry);
1973        return error;
1974}
1975EXPORT_SYMBOL_GPL(nfs_mkdir);
1976
1977static void nfs_dentry_handle_enoent(struct dentry *dentry)
1978{
1979        if (simple_positive(dentry))
1980                d_delete(dentry);
1981}
1982
1983int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1984{
1985        int error;
1986
1987        dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1988                        dir->i_sb->s_id, dir->i_ino, dentry);
1989
1990        trace_nfs_rmdir_enter(dir, dentry);
1991        if (d_really_is_positive(dentry)) {
1992                down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1993                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1994                /* Ensure the VFS deletes this inode */
1995                switch (error) {
1996                case 0:
1997                        clear_nlink(d_inode(dentry));
1998                        break;
1999                case -ENOENT:
2000                        nfs_dentry_handle_enoent(dentry);
2001                }
2002                up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2003        } else
2004                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2005        trace_nfs_rmdir_exit(dir, dentry, error);
2006
2007        return error;
2008}
2009EXPORT_SYMBOL_GPL(nfs_rmdir);
2010
2011/*
2012 * Remove a file after making sure there are no pending writes,
2013 * and after checking that the file has only one user. 
2014 *
2015 * We invalidate the attribute cache and free the inode prior to the operation
2016 * to avoid possible races if the server reuses the inode.
2017 */
2018static int nfs_safe_remove(struct dentry *dentry)
2019{
2020        struct inode *dir = d_inode(dentry->d_parent);
2021        struct inode *inode = d_inode(dentry);
2022        int error = -EBUSY;
2023                
2024        dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2025
2026        /* If the dentry was sillyrenamed, we simply call d_delete() */
2027        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2028                error = 0;
2029                goto out;
2030        }
2031
2032        trace_nfs_remove_enter(dir, dentry);
2033        if (inode != NULL) {
2034                error = NFS_PROTO(dir)->remove(dir, dentry);
2035                if (error == 0)
2036                        nfs_drop_nlink(inode);
2037        } else
2038                error = NFS_PROTO(dir)->remove(dir, dentry);
2039        if (error == -ENOENT)
2040                nfs_dentry_handle_enoent(dentry);
2041        trace_nfs_remove_exit(dir, dentry, error);
2042out:
2043        return error;
2044}
2045
2046/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2047 *  belongs to an active ".nfs..." file and we return -EBUSY.
2048 *
2049 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2050 */
2051int nfs_unlink(struct inode *dir, struct dentry *dentry)
2052{
2053        int error;
2054        int need_rehash = 0;
2055
2056        dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2057                dir->i_ino, dentry);
2058
2059        trace_nfs_unlink_enter(dir, dentry);
2060        spin_lock(&dentry->d_lock);
2061        if (d_count(dentry) > 1) {
2062                spin_unlock(&dentry->d_lock);
2063                /* Start asynchronous writeout of the inode */
2064                write_inode_now(d_inode(dentry), 0);
2065                error = nfs_sillyrename(dir, dentry);
2066                goto out;
2067        }
2068        if (!d_unhashed(dentry)) {
2069                __d_drop(dentry);
2070                need_rehash = 1;
2071        }
2072        spin_unlock(&dentry->d_lock);
2073        error = nfs_safe_remove(dentry);
2074        if (!error || error == -ENOENT) {
2075                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2076        } else if (need_rehash)
2077                d_rehash(dentry);
2078out:
2079        trace_nfs_unlink_exit(dir, dentry, error);
2080        return error;
2081}
2082EXPORT_SYMBOL_GPL(nfs_unlink);
2083
2084/*
2085 * To create a symbolic link, most file systems instantiate a new inode,
2086 * add a page to it containing the path, then write it out to the disk
2087 * using prepare_write/commit_write.
2088 *
2089 * Unfortunately the NFS client can't create the in-core inode first
2090 * because it needs a file handle to create an in-core inode (see
2091 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2092 * symlink request has completed on the server.
2093 *
2094 * So instead we allocate a raw page, copy the symname into it, then do
2095 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2096 * now have a new file handle and can instantiate an in-core NFS inode
2097 * and move the raw page into its mapping.
2098 */
2099int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2100{
2101        struct page *page;
2102        char *kaddr;
2103        struct iattr attr;
2104        unsigned int pathlen = strlen(symname);
2105        int error;
2106
2107        dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2108                dir->i_ino, dentry, symname);
2109
2110        if (pathlen > PAGE_SIZE)
2111                return -ENAMETOOLONG;
2112
2113        attr.ia_mode = S_IFLNK | S_IRWXUGO;
2114        attr.ia_valid = ATTR_MODE;
2115
2116        page = alloc_page(GFP_USER);
2117        if (!page)
2118                return -ENOMEM;
2119
2120        kaddr = page_address(page);
2121        memcpy(kaddr, symname, pathlen);
2122        if (pathlen < PAGE_SIZE)
2123                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2124
2125        trace_nfs_symlink_enter(dir, dentry);
2126        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2127        trace_nfs_symlink_exit(dir, dentry, error);
2128        if (error != 0) {
2129                dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2130                        dir->i_sb->s_id, dir->i_ino,
2131                        dentry, symname, error);
2132                d_drop(dentry);
2133                __free_page(page);
2134                return error;
2135        }
2136
2137        /*
2138         * No big deal if we can't add this page to the page cache here.
2139         * READLINK will get the missing page from the server if needed.
2140         */
2141        if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2142                                                        GFP_KERNEL)) {
2143                SetPageUptodate(page);
2144                unlock_page(page);
2145                /*
2146                 * add_to_page_cache_lru() grabs an extra page refcount.
2147                 * Drop it here to avoid leaking this page later.
2148                 */
2149                put_page(page);
2150        } else
2151                __free_page(page);
2152
2153        return 0;
2154}
2155EXPORT_SYMBOL_GPL(nfs_symlink);
2156
2157int
2158nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2159{
2160        struct inode *inode = d_inode(old_dentry);
2161        int error;
2162
2163        dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2164                old_dentry, dentry);
2165
2166        trace_nfs_link_enter(inode, dir, dentry);
2167        d_drop(dentry);
2168        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2169        if (error == 0) {
2170                ihold(inode);
2171                d_add(dentry, inode);
2172        }
2173        trace_nfs_link_exit(inode, dir, dentry, error);
2174        return error;
2175}
2176EXPORT_SYMBOL_GPL(nfs_link);
2177
2178/*
2179 * RENAME
2180 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2181 * different file handle for the same inode after a rename (e.g. when
2182 * moving to a different directory). A fail-safe method to do so would
2183 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2184 * rename the old file using the sillyrename stuff. This way, the original
2185 * file in old_dir will go away when the last process iput()s the inode.
2186 *
2187 * FIXED.
2188 * 
2189 * It actually works quite well. One needs to have the possibility for
2190 * at least one ".nfs..." file in each directory the file ever gets
2191 * moved or linked to which happens automagically with the new
2192 * implementation that only depends on the dcache stuff instead of
2193 * using the inode layer
2194 *
2195 * Unfortunately, things are a little more complicated than indicated
2196 * above. For a cross-directory move, we want to make sure we can get
2197 * rid of the old inode after the operation.  This means there must be
2198 * no pending writes (if it's a file), and the use count must be 1.
2199 * If these conditions are met, we can drop the dentries before doing
2200 * the rename.
2201 */
2202int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2203               struct inode *new_dir, struct dentry *new_dentry,
2204               unsigned int flags)
2205{
2206        struct inode *old_inode = d_inode(old_dentry);
2207        struct inode *new_inode = d_inode(new_dentry);
2208        struct dentry *dentry = NULL, *rehash = NULL;
2209        struct rpc_task *task;
2210        int error = -EBUSY;
2211
2212        if (flags)
2213                return -EINVAL;
2214
2215        dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2216                 old_dentry, new_dentry,
2217                 d_count(new_dentry));
2218
2219        trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2220        /*
2221         * For non-directories, check whether the target is busy and if so,
2222         * make a copy of the dentry and then do a silly-rename. If the
2223         * silly-rename succeeds, the copied dentry is hashed and becomes
2224         * the new target.
2225         */
2226        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2227                /*
2228                 * To prevent any new references to the target during the
2229                 * rename, we unhash the dentry in advance.
2230                 */
2231                if (!d_unhashed(new_dentry)) {
2232                        d_drop(new_dentry);
2233                        rehash = new_dentry;
2234                }
2235
2236                if (d_count(new_dentry) > 2) {
2237                        int err;
2238
2239                        /* copy the target dentry's name */
2240                        dentry = d_alloc(new_dentry->d_parent,
2241                                         &new_dentry->d_name);
2242                        if (!dentry)
2243                                goto out;
2244
2245                        /* silly-rename the existing target ... */
2246                        err = nfs_sillyrename(new_dir, new_dentry);
2247                        if (err)
2248                                goto out;
2249
2250                        new_dentry = dentry;
2251                        rehash = NULL;
2252                        new_inode = NULL;
2253                }
2254        }
2255
2256        task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2257        if (IS_ERR(task)) {
2258                error = PTR_ERR(task);
2259                goto out;
2260        }
2261
2262        error = rpc_wait_for_completion_task(task);
2263        if (error != 0) {
2264                ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2265                /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2266                smp_wmb();
2267        } else
2268                error = task->tk_status;
2269        rpc_put_task(task);
2270        /* Ensure the inode attributes are revalidated */
2271        if (error == 0) {
2272                spin_lock(&old_inode->i_lock);
2273                NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2274                NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2275                        | NFS_INO_INVALID_CTIME
2276                        | NFS_INO_REVAL_FORCED;
2277                spin_unlock(&old_inode->i_lock);
2278        }
2279out:
2280        if (rehash)
2281                d_rehash(rehash);
2282        trace_nfs_rename_exit(old_dir, old_dentry,
2283                        new_dir, new_dentry, error);
2284        if (!error) {
2285                if (new_inode != NULL)
2286                        nfs_drop_nlink(new_inode);
2287                /*
2288                 * The d_move() should be here instead of in an async RPC completion
2289                 * handler because we need the proper locks to move the dentry.  If
2290                 * we're interrupted by a signal, the async RPC completion handler
2291                 * should mark the directories for revalidation.
2292                 */
2293                d_move(old_dentry, new_dentry);
2294                nfs_set_verifier(old_dentry,
2295                                        nfs_save_change_attribute(new_dir));
2296        } else if (error == -ENOENT)
2297                nfs_dentry_handle_enoent(old_dentry);
2298
2299        /* new dentry created? */
2300        if (dentry)
2301                dput(dentry);
2302        return error;
2303}
2304EXPORT_SYMBOL_GPL(nfs_rename);
2305
2306static DEFINE_SPINLOCK(nfs_access_lru_lock);
2307static LIST_HEAD(nfs_access_lru_list);
2308static atomic_long_t nfs_access_nr_entries;
2309
2310static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2311module_param(nfs_access_max_cachesize, ulong, 0644);
2312MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2313
2314static void nfs_access_free_entry(struct nfs_access_entry *entry)
2315{
2316        put_cred(entry->cred);
2317        kfree_rcu(entry, rcu_head);
2318        smp_mb__before_atomic();
2319        atomic_long_dec(&nfs_access_nr_entries);
2320        smp_mb__after_atomic();
2321}
2322
2323static void nfs_access_free_list(struct list_head *head)
2324{
2325        struct nfs_access_entry *cache;
2326
2327        while (!list_empty(head)) {
2328                cache = list_entry(head->next, struct nfs_access_entry, lru);
2329                list_del(&cache->lru);
2330                nfs_access_free_entry(cache);
2331        }
2332}
2333
2334static unsigned long
2335nfs_do_access_cache_scan(unsigned int nr_to_scan)
2336{
2337        LIST_HEAD(head);
2338        struct nfs_inode *nfsi, *next;
2339        struct nfs_access_entry *cache;
2340        long freed = 0;
2341
2342        spin_lock(&nfs_access_lru_lock);
2343        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2344                struct inode *inode;
2345
2346                if (nr_to_scan-- == 0)
2347                        break;
2348                inode = &nfsi->vfs_inode;
2349                spin_lock(&inode->i_lock);
2350                if (list_empty(&nfsi->access_cache_entry_lru))
2351                        goto remove_lru_entry;
2352                cache = list_entry(nfsi->access_cache_entry_lru.next,
2353                                struct nfs_access_entry, lru);
2354                list_move(&cache->lru, &head);
2355                rb_erase(&cache->rb_node, &nfsi->access_cache);
2356                freed++;
2357                if (!list_empty(&nfsi->access_cache_entry_lru))
2358                        list_move_tail(&nfsi->access_cache_inode_lru,
2359                                        &nfs_access_lru_list);
2360                else {
2361remove_lru_entry:
2362                        list_del_init(&nfsi->access_cache_inode_lru);
2363                        smp_mb__before_atomic();
2364                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2365                        smp_mb__after_atomic();
2366                }
2367                spin_unlock(&inode->i_lock);
2368        }
2369        spin_unlock(&nfs_access_lru_lock);
2370        nfs_access_free_list(&head);
2371        return freed;
2372}
2373
2374unsigned long
2375nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2376{
2377        int nr_to_scan = sc->nr_to_scan;
2378        gfp_t gfp_mask = sc->gfp_mask;
2379
2380        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2381                return SHRINK_STOP;
2382        return nfs_do_access_cache_scan(nr_to_scan);
2383}
2384
2385
2386unsigned long
2387nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2388{
2389        return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2390}
2391
2392static void
2393nfs_access_cache_enforce_limit(void)
2394{
2395        long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2396        unsigned long diff;
2397        unsigned int nr_to_scan;
2398
2399        if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2400                return;
2401        nr_to_scan = 100;
2402        diff = nr_entries - nfs_access_max_cachesize;
2403        if (diff < nr_to_scan)
2404                nr_to_scan = diff;
2405        nfs_do_access_cache_scan(nr_to_scan);
2406}
2407
2408static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2409{
2410        struct rb_root *root_node = &nfsi->access_cache;
2411        struct rb_node *n;
2412        struct nfs_access_entry *entry;
2413
2414        /* Unhook entries from the cache */
2415        while ((n = rb_first(root_node)) != NULL) {
2416                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2417                rb_erase(n, root_node);
2418                list_move(&entry->lru, head);
2419        }
2420        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2421}
2422
2423void nfs_access_zap_cache(struct inode *inode)
2424{
2425        LIST_HEAD(head);
2426
2427        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2428                return;
2429        /* Remove from global LRU init */
2430        spin_lock(&nfs_access_lru_lock);
2431        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2432                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2433
2434        spin_lock(&inode->i_lock);
2435        __nfs_access_zap_cache(NFS_I(inode), &head);
2436        spin_unlock(&inode->i_lock);
2437        spin_unlock(&nfs_access_lru_lock);
2438        nfs_access_free_list(&head);
2439}
2440EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2441
2442static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2443{
2444        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2445
2446        while (n != NULL) {
2447                struct nfs_access_entry *entry =
2448                        rb_entry(n, struct nfs_access_entry, rb_node);
2449                int cmp = cred_fscmp(cred, entry->cred);
2450
2451                if (cmp < 0)
2452                        n = n->rb_left;
2453                else if (cmp > 0)
2454                        n = n->rb_right;
2455                else
2456                        return entry;
2457        }
2458        return NULL;
2459}
2460
2461static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2462{
2463        struct nfs_inode *nfsi = NFS_I(inode);
2464        struct nfs_access_entry *cache;
2465        bool retry = true;
2466        int err;
2467
2468        spin_lock(&inode->i_lock);
2469        for(;;) {
2470                if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2471                        goto out_zap;
2472                cache = nfs_access_search_rbtree(inode, cred);
2473                err = -ENOENT;
2474                if (cache == NULL)
2475                        goto out;
2476                /* Found an entry, is our attribute cache valid? */
2477                if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2478                        break;
2479                if (!retry)
2480                        break;
2481                err = -ECHILD;
2482                if (!may_block)
2483                        goto out;
2484                spin_unlock(&inode->i_lock);
2485                err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2486                if (err)
2487                        return err;
2488                spin_lock(&inode->i_lock);
2489                retry = false;
2490        }
2491        res->cred = cache->cred;
2492        res->mask = cache->mask;
2493        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2494        err = 0;
2495out:
2496        spin_unlock(&inode->i_lock);
2497        return err;
2498out_zap:
2499        spin_unlock(&inode->i_lock);
2500        nfs_access_zap_cache(inode);
2501        return -ENOENT;
2502}
2503
2504static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2505{
2506        /* Only check the most recently returned cache entry,
2507         * but do it without locking.
2508         */
2509        struct nfs_inode *nfsi = NFS_I(inode);
2510        struct nfs_access_entry *cache;
2511        int err = -ECHILD;
2512        struct list_head *lh;
2513
2514        rcu_read_lock();
2515        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2516                goto out;
2517        lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2518        cache = list_entry(lh, struct nfs_access_entry, lru);
2519        if (lh == &nfsi->access_cache_entry_lru ||
2520            cred_fscmp(cred, cache->cred) != 0)
2521                cache = NULL;
2522        if (cache == NULL)
2523                goto out;
2524        if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2525                goto out;
2526        res->cred = cache->cred;
2527        res->mask = cache->mask;
2528        err = 0;
2529out:
2530        rcu_read_unlock();
2531        return err;
2532}
2533
2534int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2535nfs_access_entry *res, bool may_block)
2536{
2537        int status;
2538
2539        status = nfs_access_get_cached_rcu(inode, cred, res);
2540        if (status != 0)
2541                status = nfs_access_get_cached_locked(inode, cred, res,
2542                    may_block);
2543
2544        return status;
2545}
2546EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2547
2548static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2549{
2550        struct nfs_inode *nfsi = NFS_I(inode);
2551        struct rb_root *root_node = &nfsi->access_cache;
2552        struct rb_node **p = &root_node->rb_node;
2553        struct rb_node *parent = NULL;
2554        struct nfs_access_entry *entry;
2555        int cmp;
2556
2557        spin_lock(&inode->i_lock);
2558        while (*p != NULL) {
2559                parent = *p;
2560                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2561                cmp = cred_fscmp(set->cred, entry->cred);
2562
2563                if (cmp < 0)
2564                        p = &parent->rb_left;
2565                else if (cmp > 0)
2566                        p = &parent->rb_right;
2567                else
2568                        goto found;
2569        }
2570        rb_link_node(&set->rb_node, parent, p);
2571        rb_insert_color(&set->rb_node, root_node);
2572        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2573        spin_unlock(&inode->i_lock);
2574        return;
2575found:
2576        rb_replace_node(parent, &set->rb_node, root_node);
2577        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2578        list_del(&entry->lru);
2579        spin_unlock(&inode->i_lock);
2580        nfs_access_free_entry(entry);
2581}
2582
2583void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2584{
2585        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2586        if (cache == NULL)
2587                return;
2588        RB_CLEAR_NODE(&cache->rb_node);
2589        cache->cred = get_cred(set->cred);
2590        cache->mask = set->mask;
2591
2592        /* The above field assignments must be visible
2593         * before this item appears on the lru.  We cannot easily
2594         * use rcu_assign_pointer, so just force the memory barrier.
2595         */
2596        smp_wmb();
2597        nfs_access_add_rbtree(inode, cache);
2598
2599        /* Update accounting */
2600        smp_mb__before_atomic();
2601        atomic_long_inc(&nfs_access_nr_entries);
2602        smp_mb__after_atomic();
2603
2604        /* Add inode to global LRU list */
2605        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2606                spin_lock(&nfs_access_lru_lock);
2607                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2608                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2609                                        &nfs_access_lru_list);
2610                spin_unlock(&nfs_access_lru_lock);
2611        }
2612        nfs_access_cache_enforce_limit();
2613}
2614EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2615
2616#define NFS_MAY_READ (NFS_ACCESS_READ)
2617#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2618                NFS_ACCESS_EXTEND | \
2619                NFS_ACCESS_DELETE)
2620#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2621                NFS_ACCESS_EXTEND)
2622#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2623#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2624#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2625static int
2626nfs_access_calc_mask(u32 access_result, umode_t umode)
2627{
2628        int mask = 0;
2629
2630        if (access_result & NFS_MAY_READ)
2631                mask |= MAY_READ;
2632        if (S_ISDIR(umode)) {
2633                if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2634                        mask |= MAY_WRITE;
2635                if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2636                        mask |= MAY_EXEC;
2637        } else if (S_ISREG(umode)) {
2638                if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2639                        mask |= MAY_WRITE;
2640                if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2641                        mask |= MAY_EXEC;
2642        } else if (access_result & NFS_MAY_WRITE)
2643                        mask |= MAY_WRITE;
2644        return mask;
2645}
2646
2647void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2648{
2649        entry->mask = access_result;
2650}
2651EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2652
2653static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2654{
2655        struct nfs_access_entry cache;
2656        bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2657        int cache_mask = -1;
2658        int status;
2659
2660        trace_nfs_access_enter(inode);
2661
2662        status = nfs_access_get_cached(inode, cred, &cache, may_block);
2663        if (status == 0)
2664                goto out_cached;
2665
2666        status = -ECHILD;
2667        if (!may_block)
2668                goto out;
2669
2670        /*
2671         * Determine which access bits we want to ask for...
2672         */
2673        cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2674        if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2675                cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2676                    NFS_ACCESS_XALIST;
2677        }
2678        if (S_ISDIR(inode->i_mode))
2679                cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2680        else
2681                cache.mask |= NFS_ACCESS_EXECUTE;
2682        cache.cred = cred;
2683        status = NFS_PROTO(inode)->access(inode, &cache);
2684        if (status != 0) {
2685                if (status == -ESTALE) {
2686                        if (!S_ISDIR(inode->i_mode))
2687                                nfs_set_inode_stale(inode);
2688                        else
2689                                nfs_zap_caches(inode);
2690                }
2691                goto out;
2692        }
2693        nfs_access_add_cache(inode, &cache);
2694out_cached:
2695        cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2696        if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2697                status = -EACCES;
2698out:
2699        trace_nfs_access_exit(inode, mask, cache_mask, status);
2700        return status;
2701}
2702
2703static int nfs_open_permission_mask(int openflags)
2704{
2705        int mask = 0;
2706
2707        if (openflags & __FMODE_EXEC) {
2708                /* ONLY check exec rights */
2709                mask = MAY_EXEC;
2710        } else {
2711                if ((openflags & O_ACCMODE) != O_WRONLY)
2712                        mask |= MAY_READ;
2713                if ((openflags & O_ACCMODE) != O_RDONLY)
2714                        mask |= MAY_WRITE;
2715        }
2716
2717        return mask;
2718}
2719
2720int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2721{
2722        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2723}
2724EXPORT_SYMBOL_GPL(nfs_may_open);
2725
2726static int nfs_execute_ok(struct inode *inode, int mask)
2727{
2728        struct nfs_server *server = NFS_SERVER(inode);
2729        int ret = 0;
2730
2731        if (S_ISDIR(inode->i_mode))
2732                return 0;
2733        if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2734                if (mask & MAY_NOT_BLOCK)
2735                        return -ECHILD;
2736                ret = __nfs_revalidate_inode(server, inode);
2737        }
2738        if (ret == 0 && !execute_ok(inode))
2739                ret = -EACCES;
2740        return ret;
2741}
2742
2743int nfs_permission(struct inode *inode, int mask)
2744{
2745        const struct cred *cred = current_cred();
2746        int res = 0;
2747
2748        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2749
2750        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2751                goto out;
2752        /* Is this sys_access() ? */
2753        if (mask & (MAY_ACCESS | MAY_CHDIR))
2754                goto force_lookup;
2755
2756        switch (inode->i_mode & S_IFMT) {
2757                case S_IFLNK:
2758                        goto out;
2759                case S_IFREG:
2760                        if ((mask & MAY_OPEN) &&
2761                           nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2762                                return 0;
2763                        break;
2764                case S_IFDIR:
2765                        /*
2766                         * Optimize away all write operations, since the server
2767                         * will check permissions when we perform the op.
2768                         */
2769                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2770                                goto out;
2771        }
2772
2773force_lookup:
2774        if (!NFS_PROTO(inode)->access)
2775                goto out_notsup;
2776
2777        res = nfs_do_access(inode, cred, mask);
2778out:
2779        if (!res && (mask & MAY_EXEC))
2780                res = nfs_execute_ok(inode, mask);
2781
2782        dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2783                inode->i_sb->s_id, inode->i_ino, mask, res);
2784        return res;
2785out_notsup:
2786        if (mask & MAY_NOT_BLOCK)
2787                return -ECHILD;
2788
2789        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2790        if (res == 0)
2791                res = generic_permission(inode, mask);
2792        goto out;
2793}
2794EXPORT_SYMBOL_GPL(nfs_permission);
2795
2796/*
2797 * Local variables:
2798 *  version-control: t
2799 *  kept-new-versions: 5
2800 * End:
2801 */
2802