linux/fs/ocfs2/journal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* -*- mode: c; c-basic-offset: 8; -*-
   3 * vim: noexpandtab sw=8 ts=8 sts=0:
   4 *
   5 * journal.c
   6 *
   7 * Defines functions of journalling api
   8 *
   9 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/types.h>
  14#include <linux/slab.h>
  15#include <linux/highmem.h>
  16#include <linux/kthread.h>
  17#include <linux/time.h>
  18#include <linux/random.h>
  19#include <linux/delay.h>
  20
  21#include <cluster/masklog.h>
  22
  23#include "ocfs2.h"
  24
  25#include "alloc.h"
  26#include "blockcheck.h"
  27#include "dir.h"
  28#include "dlmglue.h"
  29#include "extent_map.h"
  30#include "heartbeat.h"
  31#include "inode.h"
  32#include "journal.h"
  33#include "localalloc.h"
  34#include "slot_map.h"
  35#include "super.h"
  36#include "sysfile.h"
  37#include "uptodate.h"
  38#include "quota.h"
  39#include "file.h"
  40#include "namei.h"
  41
  42#include "buffer_head_io.h"
  43#include "ocfs2_trace.h"
  44
  45DEFINE_SPINLOCK(trans_inc_lock);
  46
  47#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  48
  49static int ocfs2_force_read_journal(struct inode *inode);
  50static int ocfs2_recover_node(struct ocfs2_super *osb,
  51                              int node_num, int slot_num);
  52static int __ocfs2_recovery_thread(void *arg);
  53static int ocfs2_commit_cache(struct ocfs2_super *osb);
  54static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  55static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  56                                      int dirty, int replayed);
  57static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  58                                 int slot_num);
  59static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  60                                 int slot,
  61                                 enum ocfs2_orphan_reco_type orphan_reco_type);
  62static int ocfs2_commit_thread(void *arg);
  63static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  64                                            int slot_num,
  65                                            struct ocfs2_dinode *la_dinode,
  66                                            struct ocfs2_dinode *tl_dinode,
  67                                            struct ocfs2_quota_recovery *qrec,
  68                                            enum ocfs2_orphan_reco_type orphan_reco_type);
  69
  70static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  71{
  72        return __ocfs2_wait_on_mount(osb, 0);
  73}
  74
  75static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  76{
  77        return __ocfs2_wait_on_mount(osb, 1);
  78}
  79
  80/*
  81 * This replay_map is to track online/offline slots, so we could recover
  82 * offline slots during recovery and mount
  83 */
  84
  85enum ocfs2_replay_state {
  86        REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
  87        REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
  88        REPLAY_DONE             /* Replay was already queued */
  89};
  90
  91struct ocfs2_replay_map {
  92        unsigned int rm_slots;
  93        enum ocfs2_replay_state rm_state;
  94        unsigned char rm_replay_slots[];
  95};
  96
  97static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
  98{
  99        if (!osb->replay_map)
 100                return;
 101
 102        /* If we've already queued the replay, we don't have any more to do */
 103        if (osb->replay_map->rm_state == REPLAY_DONE)
 104                return;
 105
 106        osb->replay_map->rm_state = state;
 107}
 108
 109int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
 110{
 111        struct ocfs2_replay_map *replay_map;
 112        int i, node_num;
 113
 114        /* If replay map is already set, we don't do it again */
 115        if (osb->replay_map)
 116                return 0;
 117
 118        replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
 119                             (osb->max_slots * sizeof(char)), GFP_KERNEL);
 120
 121        if (!replay_map) {
 122                mlog_errno(-ENOMEM);
 123                return -ENOMEM;
 124        }
 125
 126        spin_lock(&osb->osb_lock);
 127
 128        replay_map->rm_slots = osb->max_slots;
 129        replay_map->rm_state = REPLAY_UNNEEDED;
 130
 131        /* set rm_replay_slots for offline slot(s) */
 132        for (i = 0; i < replay_map->rm_slots; i++) {
 133                if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
 134                        replay_map->rm_replay_slots[i] = 1;
 135        }
 136
 137        osb->replay_map = replay_map;
 138        spin_unlock(&osb->osb_lock);
 139        return 0;
 140}
 141
 142static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
 143                enum ocfs2_orphan_reco_type orphan_reco_type)
 144{
 145        struct ocfs2_replay_map *replay_map = osb->replay_map;
 146        int i;
 147
 148        if (!replay_map)
 149                return;
 150
 151        if (replay_map->rm_state != REPLAY_NEEDED)
 152                return;
 153
 154        for (i = 0; i < replay_map->rm_slots; i++)
 155                if (replay_map->rm_replay_slots[i])
 156                        ocfs2_queue_recovery_completion(osb->journal, i, NULL,
 157                                                        NULL, NULL,
 158                                                        orphan_reco_type);
 159        replay_map->rm_state = REPLAY_DONE;
 160}
 161
 162static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
 163{
 164        struct ocfs2_replay_map *replay_map = osb->replay_map;
 165
 166        if (!osb->replay_map)
 167                return;
 168
 169        kfree(replay_map);
 170        osb->replay_map = NULL;
 171}
 172
 173int ocfs2_recovery_init(struct ocfs2_super *osb)
 174{
 175        struct ocfs2_recovery_map *rm;
 176
 177        mutex_init(&osb->recovery_lock);
 178        osb->disable_recovery = 0;
 179        osb->recovery_thread_task = NULL;
 180        init_waitqueue_head(&osb->recovery_event);
 181
 182        rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
 183                     osb->max_slots * sizeof(unsigned int),
 184                     GFP_KERNEL);
 185        if (!rm) {
 186                mlog_errno(-ENOMEM);
 187                return -ENOMEM;
 188        }
 189
 190        rm->rm_entries = (unsigned int *)((char *)rm +
 191                                          sizeof(struct ocfs2_recovery_map));
 192        osb->recovery_map = rm;
 193
 194        return 0;
 195}
 196
 197/* we can't grab the goofy sem lock from inside wait_event, so we use
 198 * memory barriers to make sure that we'll see the null task before
 199 * being woken up */
 200static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
 201{
 202        mb();
 203        return osb->recovery_thread_task != NULL;
 204}
 205
 206void ocfs2_recovery_exit(struct ocfs2_super *osb)
 207{
 208        struct ocfs2_recovery_map *rm;
 209
 210        /* disable any new recovery threads and wait for any currently
 211         * running ones to exit. Do this before setting the vol_state. */
 212        mutex_lock(&osb->recovery_lock);
 213        osb->disable_recovery = 1;
 214        mutex_unlock(&osb->recovery_lock);
 215        wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
 216
 217        /* At this point, we know that no more recovery threads can be
 218         * launched, so wait for any recovery completion work to
 219         * complete. */
 220        if (osb->ocfs2_wq)
 221                flush_workqueue(osb->ocfs2_wq);
 222
 223        /*
 224         * Now that recovery is shut down, and the osb is about to be
 225         * freed,  the osb_lock is not taken here.
 226         */
 227        rm = osb->recovery_map;
 228        /* XXX: Should we bug if there are dirty entries? */
 229
 230        kfree(rm);
 231}
 232
 233static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
 234                                     unsigned int node_num)
 235{
 236        int i;
 237        struct ocfs2_recovery_map *rm = osb->recovery_map;
 238
 239        assert_spin_locked(&osb->osb_lock);
 240
 241        for (i = 0; i < rm->rm_used; i++) {
 242                if (rm->rm_entries[i] == node_num)
 243                        return 1;
 244        }
 245
 246        return 0;
 247}
 248
 249/* Behaves like test-and-set.  Returns the previous value */
 250static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
 251                                  unsigned int node_num)
 252{
 253        struct ocfs2_recovery_map *rm = osb->recovery_map;
 254
 255        spin_lock(&osb->osb_lock);
 256        if (__ocfs2_recovery_map_test(osb, node_num)) {
 257                spin_unlock(&osb->osb_lock);
 258                return 1;
 259        }
 260
 261        /* XXX: Can this be exploited? Not from o2dlm... */
 262        BUG_ON(rm->rm_used >= osb->max_slots);
 263
 264        rm->rm_entries[rm->rm_used] = node_num;
 265        rm->rm_used++;
 266        spin_unlock(&osb->osb_lock);
 267
 268        return 0;
 269}
 270
 271static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
 272                                     unsigned int node_num)
 273{
 274        int i;
 275        struct ocfs2_recovery_map *rm = osb->recovery_map;
 276
 277        spin_lock(&osb->osb_lock);
 278
 279        for (i = 0; i < rm->rm_used; i++) {
 280                if (rm->rm_entries[i] == node_num)
 281                        break;
 282        }
 283
 284        if (i < rm->rm_used) {
 285                /* XXX: be careful with the pointer math */
 286                memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
 287                        (rm->rm_used - i - 1) * sizeof(unsigned int));
 288                rm->rm_used--;
 289        }
 290
 291        spin_unlock(&osb->osb_lock);
 292}
 293
 294static int ocfs2_commit_cache(struct ocfs2_super *osb)
 295{
 296        int status = 0;
 297        unsigned int flushed;
 298        struct ocfs2_journal *journal = NULL;
 299
 300        journal = osb->journal;
 301
 302        /* Flush all pending commits and checkpoint the journal. */
 303        down_write(&journal->j_trans_barrier);
 304
 305        flushed = atomic_read(&journal->j_num_trans);
 306        trace_ocfs2_commit_cache_begin(flushed);
 307        if (flushed == 0) {
 308                up_write(&journal->j_trans_barrier);
 309                goto finally;
 310        }
 311
 312        jbd2_journal_lock_updates(journal->j_journal);
 313        status = jbd2_journal_flush(journal->j_journal);
 314        jbd2_journal_unlock_updates(journal->j_journal);
 315        if (status < 0) {
 316                up_write(&journal->j_trans_barrier);
 317                mlog_errno(status);
 318                goto finally;
 319        }
 320
 321        ocfs2_inc_trans_id(journal);
 322
 323        flushed = atomic_read(&journal->j_num_trans);
 324        atomic_set(&journal->j_num_trans, 0);
 325        up_write(&journal->j_trans_barrier);
 326
 327        trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
 328
 329        ocfs2_wake_downconvert_thread(osb);
 330        wake_up(&journal->j_checkpointed);
 331finally:
 332        return status;
 333}
 334
 335handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
 336{
 337        journal_t *journal = osb->journal->j_journal;
 338        handle_t *handle;
 339
 340        BUG_ON(!osb || !osb->journal->j_journal);
 341
 342        if (ocfs2_is_hard_readonly(osb))
 343                return ERR_PTR(-EROFS);
 344
 345        BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
 346        BUG_ON(max_buffs <= 0);
 347
 348        /* Nested transaction? Just return the handle... */
 349        if (journal_current_handle())
 350                return jbd2_journal_start(journal, max_buffs);
 351
 352        sb_start_intwrite(osb->sb);
 353
 354        down_read(&osb->journal->j_trans_barrier);
 355
 356        handle = jbd2_journal_start(journal, max_buffs);
 357        if (IS_ERR(handle)) {
 358                up_read(&osb->journal->j_trans_barrier);
 359                sb_end_intwrite(osb->sb);
 360
 361                mlog_errno(PTR_ERR(handle));
 362
 363                if (is_journal_aborted(journal)) {
 364                        ocfs2_abort(osb->sb, "Detected aborted journal\n");
 365                        handle = ERR_PTR(-EROFS);
 366                }
 367        } else {
 368                if (!ocfs2_mount_local(osb))
 369                        atomic_inc(&(osb->journal->j_num_trans));
 370        }
 371
 372        return handle;
 373}
 374
 375int ocfs2_commit_trans(struct ocfs2_super *osb,
 376                       handle_t *handle)
 377{
 378        int ret, nested;
 379        struct ocfs2_journal *journal = osb->journal;
 380
 381        BUG_ON(!handle);
 382
 383        nested = handle->h_ref > 1;
 384        ret = jbd2_journal_stop(handle);
 385        if (ret < 0)
 386                mlog_errno(ret);
 387
 388        if (!nested) {
 389                up_read(&journal->j_trans_barrier);
 390                sb_end_intwrite(osb->sb);
 391        }
 392
 393        return ret;
 394}
 395
 396/*
 397 * 'nblocks' is what you want to add to the current transaction.
 398 *
 399 * This might call jbd2_journal_restart() which will commit dirty buffers
 400 * and then restart the transaction. Before calling
 401 * ocfs2_extend_trans(), any changed blocks should have been
 402 * dirtied. After calling it, all blocks which need to be changed must
 403 * go through another set of journal_access/journal_dirty calls.
 404 *
 405 * WARNING: This will not release any semaphores or disk locks taken
 406 * during the transaction, so make sure they were taken *before*
 407 * start_trans or we'll have ordering deadlocks.
 408 *
 409 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 410 * good because transaction ids haven't yet been recorded on the
 411 * cluster locks associated with this handle.
 412 */
 413int ocfs2_extend_trans(handle_t *handle, int nblocks)
 414{
 415        int status, old_nblocks;
 416
 417        BUG_ON(!handle);
 418        BUG_ON(nblocks < 0);
 419
 420        if (!nblocks)
 421                return 0;
 422
 423        old_nblocks = jbd2_handle_buffer_credits(handle);
 424
 425        trace_ocfs2_extend_trans(old_nblocks, nblocks);
 426
 427#ifdef CONFIG_OCFS2_DEBUG_FS
 428        status = 1;
 429#else
 430        status = jbd2_journal_extend(handle, nblocks, 0);
 431        if (status < 0) {
 432                mlog_errno(status);
 433                goto bail;
 434        }
 435#endif
 436
 437        if (status > 0) {
 438                trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
 439                status = jbd2_journal_restart(handle,
 440                                              old_nblocks + nblocks);
 441                if (status < 0) {
 442                        mlog_errno(status);
 443                        goto bail;
 444                }
 445        }
 446
 447        status = 0;
 448bail:
 449        return status;
 450}
 451
 452/*
 453 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
 454 * If that fails, restart the transaction & regain write access for the
 455 * buffer head which is used for metadata modifications.
 456 * Taken from Ext4: extend_or_restart_transaction()
 457 */
 458int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
 459{
 460        int status, old_nblks;
 461
 462        BUG_ON(!handle);
 463
 464        old_nblks = jbd2_handle_buffer_credits(handle);
 465        trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
 466
 467        if (old_nblks < thresh)
 468                return 0;
 469
 470        status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
 471        if (status < 0) {
 472                mlog_errno(status);
 473                goto bail;
 474        }
 475
 476        if (status > 0) {
 477                status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
 478                if (status < 0)
 479                        mlog_errno(status);
 480        }
 481
 482bail:
 483        return status;
 484}
 485
 486
 487struct ocfs2_triggers {
 488        struct jbd2_buffer_trigger_type ot_triggers;
 489        int                             ot_offset;
 490};
 491
 492static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
 493{
 494        return container_of(triggers, struct ocfs2_triggers, ot_triggers);
 495}
 496
 497static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 498                                 struct buffer_head *bh,
 499                                 void *data, size_t size)
 500{
 501        struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 502
 503        /*
 504         * We aren't guaranteed to have the superblock here, so we
 505         * must unconditionally compute the ecc data.
 506         * __ocfs2_journal_access() will only set the triggers if
 507         * metaecc is enabled.
 508         */
 509        ocfs2_block_check_compute(data, size, data + ot->ot_offset);
 510}
 511
 512/*
 513 * Quota blocks have their own trigger because the struct ocfs2_block_check
 514 * offset depends on the blocksize.
 515 */
 516static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 517                                 struct buffer_head *bh,
 518                                 void *data, size_t size)
 519{
 520        struct ocfs2_disk_dqtrailer *dqt =
 521                ocfs2_block_dqtrailer(size, data);
 522
 523        /*
 524         * We aren't guaranteed to have the superblock here, so we
 525         * must unconditionally compute the ecc data.
 526         * __ocfs2_journal_access() will only set the triggers if
 527         * metaecc is enabled.
 528         */
 529        ocfs2_block_check_compute(data, size, &dqt->dq_check);
 530}
 531
 532/*
 533 * Directory blocks also have their own trigger because the
 534 * struct ocfs2_block_check offset depends on the blocksize.
 535 */
 536static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 537                                 struct buffer_head *bh,
 538                                 void *data, size_t size)
 539{
 540        struct ocfs2_dir_block_trailer *trailer =
 541                ocfs2_dir_trailer_from_size(size, data);
 542
 543        /*
 544         * We aren't guaranteed to have the superblock here, so we
 545         * must unconditionally compute the ecc data.
 546         * __ocfs2_journal_access() will only set the triggers if
 547         * metaecc is enabled.
 548         */
 549        ocfs2_block_check_compute(data, size, &trailer->db_check);
 550}
 551
 552static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
 553                                struct buffer_head *bh)
 554{
 555        mlog(ML_ERROR,
 556             "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
 557             "bh->b_blocknr = %llu\n",
 558             (unsigned long)bh,
 559             (unsigned long long)bh->b_blocknr);
 560
 561        ocfs2_error(bh->b_bdev->bd_super,
 562                    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
 563}
 564
 565static struct ocfs2_triggers di_triggers = {
 566        .ot_triggers = {
 567                .t_frozen = ocfs2_frozen_trigger,
 568                .t_abort = ocfs2_abort_trigger,
 569        },
 570        .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
 571};
 572
 573static struct ocfs2_triggers eb_triggers = {
 574        .ot_triggers = {
 575                .t_frozen = ocfs2_frozen_trigger,
 576                .t_abort = ocfs2_abort_trigger,
 577        },
 578        .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
 579};
 580
 581static struct ocfs2_triggers rb_triggers = {
 582        .ot_triggers = {
 583                .t_frozen = ocfs2_frozen_trigger,
 584                .t_abort = ocfs2_abort_trigger,
 585        },
 586        .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
 587};
 588
 589static struct ocfs2_triggers gd_triggers = {
 590        .ot_triggers = {
 591                .t_frozen = ocfs2_frozen_trigger,
 592                .t_abort = ocfs2_abort_trigger,
 593        },
 594        .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
 595};
 596
 597static struct ocfs2_triggers db_triggers = {
 598        .ot_triggers = {
 599                .t_frozen = ocfs2_db_frozen_trigger,
 600                .t_abort = ocfs2_abort_trigger,
 601        },
 602};
 603
 604static struct ocfs2_triggers xb_triggers = {
 605        .ot_triggers = {
 606                .t_frozen = ocfs2_frozen_trigger,
 607                .t_abort = ocfs2_abort_trigger,
 608        },
 609        .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
 610};
 611
 612static struct ocfs2_triggers dq_triggers = {
 613        .ot_triggers = {
 614                .t_frozen = ocfs2_dq_frozen_trigger,
 615                .t_abort = ocfs2_abort_trigger,
 616        },
 617};
 618
 619static struct ocfs2_triggers dr_triggers = {
 620        .ot_triggers = {
 621                .t_frozen = ocfs2_frozen_trigger,
 622                .t_abort = ocfs2_abort_trigger,
 623        },
 624        .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
 625};
 626
 627static struct ocfs2_triggers dl_triggers = {
 628        .ot_triggers = {
 629                .t_frozen = ocfs2_frozen_trigger,
 630                .t_abort = ocfs2_abort_trigger,
 631        },
 632        .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
 633};
 634
 635static int __ocfs2_journal_access(handle_t *handle,
 636                                  struct ocfs2_caching_info *ci,
 637                                  struct buffer_head *bh,
 638                                  struct ocfs2_triggers *triggers,
 639                                  int type)
 640{
 641        int status;
 642        struct ocfs2_super *osb =
 643                OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 644
 645        BUG_ON(!ci || !ci->ci_ops);
 646        BUG_ON(!handle);
 647        BUG_ON(!bh);
 648
 649        trace_ocfs2_journal_access(
 650                (unsigned long long)ocfs2_metadata_cache_owner(ci),
 651                (unsigned long long)bh->b_blocknr, type, bh->b_size);
 652
 653        /* we can safely remove this assertion after testing. */
 654        if (!buffer_uptodate(bh)) {
 655                mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
 656                mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
 657                     (unsigned long long)bh->b_blocknr, bh->b_state);
 658
 659                lock_buffer(bh);
 660                /*
 661                 * A previous transaction with a couple of buffer heads fail
 662                 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
 663                 * For current transaction, the bh is just among those error
 664                 * bhs which previous transaction handle. We can't just clear
 665                 * its BH_Write_EIO and reuse directly, since other bhs are
 666                 * not written to disk yet and that will cause metadata
 667                 * inconsistency. So we should set fs read-only to avoid
 668                 * further damage.
 669                 */
 670                if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
 671                        unlock_buffer(bh);
 672                        return ocfs2_error(osb->sb, "A previous attempt to "
 673                                        "write this buffer head failed\n");
 674                }
 675                unlock_buffer(bh);
 676        }
 677
 678        /* Set the current transaction information on the ci so
 679         * that the locking code knows whether it can drop it's locks
 680         * on this ci or not. We're protected from the commit
 681         * thread updating the current transaction id until
 682         * ocfs2_commit_trans() because ocfs2_start_trans() took
 683         * j_trans_barrier for us. */
 684        ocfs2_set_ci_lock_trans(osb->journal, ci);
 685
 686        ocfs2_metadata_cache_io_lock(ci);
 687        switch (type) {
 688        case OCFS2_JOURNAL_ACCESS_CREATE:
 689        case OCFS2_JOURNAL_ACCESS_WRITE:
 690                status = jbd2_journal_get_write_access(handle, bh);
 691                break;
 692
 693        case OCFS2_JOURNAL_ACCESS_UNDO:
 694                status = jbd2_journal_get_undo_access(handle, bh);
 695                break;
 696
 697        default:
 698                status = -EINVAL;
 699                mlog(ML_ERROR, "Unknown access type!\n");
 700        }
 701        if (!status && ocfs2_meta_ecc(osb) && triggers)
 702                jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
 703        ocfs2_metadata_cache_io_unlock(ci);
 704
 705        if (status < 0)
 706                mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
 707                     status, type);
 708
 709        return status;
 710}
 711
 712int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
 713                            struct buffer_head *bh, int type)
 714{
 715        return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
 716}
 717
 718int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
 719                            struct buffer_head *bh, int type)
 720{
 721        return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
 722}
 723
 724int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
 725                            struct buffer_head *bh, int type)
 726{
 727        return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
 728                                      type);
 729}
 730
 731int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
 732                            struct buffer_head *bh, int type)
 733{
 734        return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
 735}
 736
 737int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
 738                            struct buffer_head *bh, int type)
 739{
 740        return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
 741}
 742
 743int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
 744                            struct buffer_head *bh, int type)
 745{
 746        return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
 747}
 748
 749int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
 750                            struct buffer_head *bh, int type)
 751{
 752        return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
 753}
 754
 755int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
 756                            struct buffer_head *bh, int type)
 757{
 758        return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
 759}
 760
 761int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
 762                            struct buffer_head *bh, int type)
 763{
 764        return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
 765}
 766
 767int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
 768                         struct buffer_head *bh, int type)
 769{
 770        return __ocfs2_journal_access(handle, ci, bh, NULL, type);
 771}
 772
 773void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
 774{
 775        int status;
 776
 777        trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
 778
 779        status = jbd2_journal_dirty_metadata(handle, bh);
 780        if (status) {
 781                mlog_errno(status);
 782                if (!is_handle_aborted(handle)) {
 783                        journal_t *journal = handle->h_transaction->t_journal;
 784                        struct super_block *sb = bh->b_bdev->bd_super;
 785
 786                        mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
 787                                        "Aborting transaction and journal.\n");
 788                        handle->h_err = status;
 789                        jbd2_journal_abort_handle(handle);
 790                        jbd2_journal_abort(journal, status);
 791                        ocfs2_abort(sb, "Journal already aborted.\n");
 792                }
 793        }
 794}
 795
 796#define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
 797
 798void ocfs2_set_journal_params(struct ocfs2_super *osb)
 799{
 800        journal_t *journal = osb->journal->j_journal;
 801        unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
 802
 803        if (osb->osb_commit_interval)
 804                commit_interval = osb->osb_commit_interval;
 805
 806        write_lock(&journal->j_state_lock);
 807        journal->j_commit_interval = commit_interval;
 808        if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
 809                journal->j_flags |= JBD2_BARRIER;
 810        else
 811                journal->j_flags &= ~JBD2_BARRIER;
 812        write_unlock(&journal->j_state_lock);
 813}
 814
 815int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
 816{
 817        int status = -1;
 818        struct inode *inode = NULL; /* the journal inode */
 819        journal_t *j_journal = NULL;
 820        struct ocfs2_dinode *di = NULL;
 821        struct buffer_head *bh = NULL;
 822        struct ocfs2_super *osb;
 823        int inode_lock = 0;
 824
 825        BUG_ON(!journal);
 826
 827        osb = journal->j_osb;
 828
 829        /* already have the inode for our journal */
 830        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
 831                                            osb->slot_num);
 832        if (inode == NULL) {
 833                status = -EACCES;
 834                mlog_errno(status);
 835                goto done;
 836        }
 837        if (is_bad_inode(inode)) {
 838                mlog(ML_ERROR, "access error (bad inode)\n");
 839                iput(inode);
 840                inode = NULL;
 841                status = -EACCES;
 842                goto done;
 843        }
 844
 845        SET_INODE_JOURNAL(inode);
 846        OCFS2_I(inode)->ip_open_count++;
 847
 848        /* Skip recovery waits here - journal inode metadata never
 849         * changes in a live cluster so it can be considered an
 850         * exception to the rule. */
 851        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
 852        if (status < 0) {
 853                if (status != -ERESTARTSYS)
 854                        mlog(ML_ERROR, "Could not get lock on journal!\n");
 855                goto done;
 856        }
 857
 858        inode_lock = 1;
 859        di = (struct ocfs2_dinode *)bh->b_data;
 860
 861        if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
 862                mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
 863                     i_size_read(inode));
 864                status = -EINVAL;
 865                goto done;
 866        }
 867
 868        trace_ocfs2_journal_init(i_size_read(inode),
 869                                 (unsigned long long)inode->i_blocks,
 870                                 OCFS2_I(inode)->ip_clusters);
 871
 872        /* call the kernels journal init function now */
 873        j_journal = jbd2_journal_init_inode(inode);
 874        if (j_journal == NULL) {
 875                mlog(ML_ERROR, "Linux journal layer error\n");
 876                status = -EINVAL;
 877                goto done;
 878        }
 879
 880        trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
 881
 882        *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
 883                  OCFS2_JOURNAL_DIRTY_FL);
 884
 885        journal->j_journal = j_journal;
 886        journal->j_journal->j_submit_inode_data_buffers =
 887                jbd2_journal_submit_inode_data_buffers;
 888        journal->j_journal->j_finish_inode_data_buffers =
 889                jbd2_journal_finish_inode_data_buffers;
 890        journal->j_inode = inode;
 891        journal->j_bh = bh;
 892
 893        ocfs2_set_journal_params(osb);
 894
 895        journal->j_state = OCFS2_JOURNAL_LOADED;
 896
 897        status = 0;
 898done:
 899        if (status < 0) {
 900                if (inode_lock)
 901                        ocfs2_inode_unlock(inode, 1);
 902                brelse(bh);
 903                if (inode) {
 904                        OCFS2_I(inode)->ip_open_count--;
 905                        iput(inode);
 906                }
 907        }
 908
 909        return status;
 910}
 911
 912static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
 913{
 914        le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
 915}
 916
 917static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
 918{
 919        return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
 920}
 921
 922static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
 923                                      int dirty, int replayed)
 924{
 925        int status;
 926        unsigned int flags;
 927        struct ocfs2_journal *journal = osb->journal;
 928        struct buffer_head *bh = journal->j_bh;
 929        struct ocfs2_dinode *fe;
 930
 931        fe = (struct ocfs2_dinode *)bh->b_data;
 932
 933        /* The journal bh on the osb always comes from ocfs2_journal_init()
 934         * and was validated there inside ocfs2_inode_lock_full().  It's a
 935         * code bug if we mess it up. */
 936        BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
 937
 938        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
 939        if (dirty)
 940                flags |= OCFS2_JOURNAL_DIRTY_FL;
 941        else
 942                flags &= ~OCFS2_JOURNAL_DIRTY_FL;
 943        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
 944
 945        if (replayed)
 946                ocfs2_bump_recovery_generation(fe);
 947
 948        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
 949        status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
 950        if (status < 0)
 951                mlog_errno(status);
 952
 953        return status;
 954}
 955
 956/*
 957 * If the journal has been kmalloc'd it needs to be freed after this
 958 * call.
 959 */
 960void ocfs2_journal_shutdown(struct ocfs2_super *osb)
 961{
 962        struct ocfs2_journal *journal = NULL;
 963        int status = 0;
 964        struct inode *inode = NULL;
 965        int num_running_trans = 0;
 966
 967        BUG_ON(!osb);
 968
 969        journal = osb->journal;
 970        if (!journal)
 971                goto done;
 972
 973        inode = journal->j_inode;
 974
 975        if (journal->j_state != OCFS2_JOURNAL_LOADED)
 976                goto done;
 977
 978        /* need to inc inode use count - jbd2_journal_destroy will iput. */
 979        if (!igrab(inode))
 980                BUG();
 981
 982        num_running_trans = atomic_read(&(osb->journal->j_num_trans));
 983        trace_ocfs2_journal_shutdown(num_running_trans);
 984
 985        /* Do a commit_cache here. It will flush our journal, *and*
 986         * release any locks that are still held.
 987         * set the SHUTDOWN flag and release the trans lock.
 988         * the commit thread will take the trans lock for us below. */
 989        journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
 990
 991        /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
 992         * drop the trans_lock (which we want to hold until we
 993         * completely destroy the journal. */
 994        if (osb->commit_task) {
 995                /* Wait for the commit thread */
 996                trace_ocfs2_journal_shutdown_wait(osb->commit_task);
 997                kthread_stop(osb->commit_task);
 998                osb->commit_task = NULL;
 999        }
1000
1001        BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1002
1003        if (ocfs2_mount_local(osb)) {
1004                jbd2_journal_lock_updates(journal->j_journal);
1005                status = jbd2_journal_flush(journal->j_journal);
1006                jbd2_journal_unlock_updates(journal->j_journal);
1007                if (status < 0)
1008                        mlog_errno(status);
1009        }
1010
1011        /* Shutdown the kernel journal system */
1012        if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1013                /*
1014                 * Do not toggle if flush was unsuccessful otherwise
1015                 * will leave dirty metadata in a "clean" journal
1016                 */
1017                status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1018                if (status < 0)
1019                        mlog_errno(status);
1020        }
1021        journal->j_journal = NULL;
1022
1023        OCFS2_I(inode)->ip_open_count--;
1024
1025        /* unlock our journal */
1026        ocfs2_inode_unlock(inode, 1);
1027
1028        brelse(journal->j_bh);
1029        journal->j_bh = NULL;
1030
1031        journal->j_state = OCFS2_JOURNAL_FREE;
1032
1033//      up_write(&journal->j_trans_barrier);
1034done:
1035        iput(inode);
1036}
1037
1038static void ocfs2_clear_journal_error(struct super_block *sb,
1039                                      journal_t *journal,
1040                                      int slot)
1041{
1042        int olderr;
1043
1044        olderr = jbd2_journal_errno(journal);
1045        if (olderr) {
1046                mlog(ML_ERROR, "File system error %d recorded in "
1047                     "journal %u.\n", olderr, slot);
1048                mlog(ML_ERROR, "File system on device %s needs checking.\n",
1049                     sb->s_id);
1050
1051                jbd2_journal_ack_err(journal);
1052                jbd2_journal_clear_err(journal);
1053        }
1054}
1055
1056int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1057{
1058        int status = 0;
1059        struct ocfs2_super *osb;
1060
1061        BUG_ON(!journal);
1062
1063        osb = journal->j_osb;
1064
1065        status = jbd2_journal_load(journal->j_journal);
1066        if (status < 0) {
1067                mlog(ML_ERROR, "Failed to load journal!\n");
1068                goto done;
1069        }
1070
1071        ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1072
1073        if (replayed) {
1074                jbd2_journal_lock_updates(journal->j_journal);
1075                status = jbd2_journal_flush(journal->j_journal);
1076                jbd2_journal_unlock_updates(journal->j_journal);
1077                if (status < 0)
1078                        mlog_errno(status);
1079        }
1080
1081        status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1082        if (status < 0) {
1083                mlog_errno(status);
1084                goto done;
1085        }
1086
1087        /* Launch the commit thread */
1088        if (!local) {
1089                osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1090                                "ocfs2cmt-%s", osb->uuid_str);
1091                if (IS_ERR(osb->commit_task)) {
1092                        status = PTR_ERR(osb->commit_task);
1093                        osb->commit_task = NULL;
1094                        mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1095                             "error=%d", status);
1096                        goto done;
1097                }
1098        } else
1099                osb->commit_task = NULL;
1100
1101done:
1102        return status;
1103}
1104
1105
1106/* 'full' flag tells us whether we clear out all blocks or if we just
1107 * mark the journal clean */
1108int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1109{
1110        int status;
1111
1112        BUG_ON(!journal);
1113
1114        status = jbd2_journal_wipe(journal->j_journal, full);
1115        if (status < 0) {
1116                mlog_errno(status);
1117                goto bail;
1118        }
1119
1120        status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1121        if (status < 0)
1122                mlog_errno(status);
1123
1124bail:
1125        return status;
1126}
1127
1128static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1129{
1130        int empty;
1131        struct ocfs2_recovery_map *rm = osb->recovery_map;
1132
1133        spin_lock(&osb->osb_lock);
1134        empty = (rm->rm_used == 0);
1135        spin_unlock(&osb->osb_lock);
1136
1137        return empty;
1138}
1139
1140void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1141{
1142        wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1143}
1144
1145/*
1146 * JBD Might read a cached version of another nodes journal file. We
1147 * don't want this as this file changes often and we get no
1148 * notification on those changes. The only way to be sure that we've
1149 * got the most up to date version of those blocks then is to force
1150 * read them off disk. Just searching through the buffer cache won't
1151 * work as there may be pages backing this file which are still marked
1152 * up to date. We know things can't change on this file underneath us
1153 * as we have the lock by now :)
1154 */
1155static int ocfs2_force_read_journal(struct inode *inode)
1156{
1157        int status = 0;
1158        int i;
1159        u64 v_blkno, p_blkno, p_blocks, num_blocks;
1160        struct buffer_head *bh = NULL;
1161        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1162
1163        num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1164        v_blkno = 0;
1165        while (v_blkno < num_blocks) {
1166                status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1167                                                     &p_blkno, &p_blocks, NULL);
1168                if (status < 0) {
1169                        mlog_errno(status);
1170                        goto bail;
1171                }
1172
1173                for (i = 0; i < p_blocks; i++, p_blkno++) {
1174                        bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1175                                        osb->sb->s_blocksize);
1176                        /* block not cached. */
1177                        if (!bh)
1178                                continue;
1179
1180                        brelse(bh);
1181                        bh = NULL;
1182                        /* We are reading journal data which should not
1183                         * be put in the uptodate cache.
1184                         */
1185                        status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1186                        if (status < 0) {
1187                                mlog_errno(status);
1188                                goto bail;
1189                        }
1190
1191                        brelse(bh);
1192                        bh = NULL;
1193                }
1194
1195                v_blkno += p_blocks;
1196        }
1197
1198bail:
1199        return status;
1200}
1201
1202struct ocfs2_la_recovery_item {
1203        struct list_head        lri_list;
1204        int                     lri_slot;
1205        struct ocfs2_dinode     *lri_la_dinode;
1206        struct ocfs2_dinode     *lri_tl_dinode;
1207        struct ocfs2_quota_recovery *lri_qrec;
1208        enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1209};
1210
1211/* Does the second half of the recovery process. By this point, the
1212 * node is marked clean and can actually be considered recovered,
1213 * hence it's no longer in the recovery map, but there's still some
1214 * cleanup we can do which shouldn't happen within the recovery thread
1215 * as locking in that context becomes very difficult if we are to take
1216 * recovering nodes into account.
1217 *
1218 * NOTE: This function can and will sleep on recovery of other nodes
1219 * during cluster locking, just like any other ocfs2 process.
1220 */
1221void ocfs2_complete_recovery(struct work_struct *work)
1222{
1223        int ret = 0;
1224        struct ocfs2_journal *journal =
1225                container_of(work, struct ocfs2_journal, j_recovery_work);
1226        struct ocfs2_super *osb = journal->j_osb;
1227        struct ocfs2_dinode *la_dinode, *tl_dinode;
1228        struct ocfs2_la_recovery_item *item, *n;
1229        struct ocfs2_quota_recovery *qrec;
1230        enum ocfs2_orphan_reco_type orphan_reco_type;
1231        LIST_HEAD(tmp_la_list);
1232
1233        trace_ocfs2_complete_recovery(
1234                (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1235
1236        spin_lock(&journal->j_lock);
1237        list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1238        spin_unlock(&journal->j_lock);
1239
1240        list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1241                list_del_init(&item->lri_list);
1242
1243                ocfs2_wait_on_quotas(osb);
1244
1245                la_dinode = item->lri_la_dinode;
1246                tl_dinode = item->lri_tl_dinode;
1247                qrec = item->lri_qrec;
1248                orphan_reco_type = item->lri_orphan_reco_type;
1249
1250                trace_ocfs2_complete_recovery_slot(item->lri_slot,
1251                        la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1252                        tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1253                        qrec);
1254
1255                if (la_dinode) {
1256                        ret = ocfs2_complete_local_alloc_recovery(osb,
1257                                                                  la_dinode);
1258                        if (ret < 0)
1259                                mlog_errno(ret);
1260
1261                        kfree(la_dinode);
1262                }
1263
1264                if (tl_dinode) {
1265                        ret = ocfs2_complete_truncate_log_recovery(osb,
1266                                                                   tl_dinode);
1267                        if (ret < 0)
1268                                mlog_errno(ret);
1269
1270                        kfree(tl_dinode);
1271                }
1272
1273                ret = ocfs2_recover_orphans(osb, item->lri_slot,
1274                                orphan_reco_type);
1275                if (ret < 0)
1276                        mlog_errno(ret);
1277
1278                if (qrec) {
1279                        ret = ocfs2_finish_quota_recovery(osb, qrec,
1280                                                          item->lri_slot);
1281                        if (ret < 0)
1282                                mlog_errno(ret);
1283                        /* Recovery info is already freed now */
1284                }
1285
1286                kfree(item);
1287        }
1288
1289        trace_ocfs2_complete_recovery_end(ret);
1290}
1291
1292/* NOTE: This function always eats your references to la_dinode and
1293 * tl_dinode, either manually on error, or by passing them to
1294 * ocfs2_complete_recovery */
1295static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1296                                            int slot_num,
1297                                            struct ocfs2_dinode *la_dinode,
1298                                            struct ocfs2_dinode *tl_dinode,
1299                                            struct ocfs2_quota_recovery *qrec,
1300                                            enum ocfs2_orphan_reco_type orphan_reco_type)
1301{
1302        struct ocfs2_la_recovery_item *item;
1303
1304        item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1305        if (!item) {
1306                /* Though we wish to avoid it, we are in fact safe in
1307                 * skipping local alloc cleanup as fsck.ocfs2 is more
1308                 * than capable of reclaiming unused space. */
1309                kfree(la_dinode);
1310                kfree(tl_dinode);
1311
1312                if (qrec)
1313                        ocfs2_free_quota_recovery(qrec);
1314
1315                mlog_errno(-ENOMEM);
1316                return;
1317        }
1318
1319        INIT_LIST_HEAD(&item->lri_list);
1320        item->lri_la_dinode = la_dinode;
1321        item->lri_slot = slot_num;
1322        item->lri_tl_dinode = tl_dinode;
1323        item->lri_qrec = qrec;
1324        item->lri_orphan_reco_type = orphan_reco_type;
1325
1326        spin_lock(&journal->j_lock);
1327        list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1328        queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1329        spin_unlock(&journal->j_lock);
1330}
1331
1332/* Called by the mount code to queue recovery the last part of
1333 * recovery for it's own and offline slot(s). */
1334void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1335{
1336        struct ocfs2_journal *journal = osb->journal;
1337
1338        if (ocfs2_is_hard_readonly(osb))
1339                return;
1340
1341        /* No need to queue up our truncate_log as regular cleanup will catch
1342         * that */
1343        ocfs2_queue_recovery_completion(journal, osb->slot_num,
1344                                        osb->local_alloc_copy, NULL, NULL,
1345                                        ORPHAN_NEED_TRUNCATE);
1346        ocfs2_schedule_truncate_log_flush(osb, 0);
1347
1348        osb->local_alloc_copy = NULL;
1349
1350        /* queue to recover orphan slots for all offline slots */
1351        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1352        ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1353        ocfs2_free_replay_slots(osb);
1354}
1355
1356void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1357{
1358        if (osb->quota_rec) {
1359                ocfs2_queue_recovery_completion(osb->journal,
1360                                                osb->slot_num,
1361                                                NULL,
1362                                                NULL,
1363                                                osb->quota_rec,
1364                                                ORPHAN_NEED_TRUNCATE);
1365                osb->quota_rec = NULL;
1366        }
1367}
1368
1369static int __ocfs2_recovery_thread(void *arg)
1370{
1371        int status, node_num, slot_num;
1372        struct ocfs2_super *osb = arg;
1373        struct ocfs2_recovery_map *rm = osb->recovery_map;
1374        int *rm_quota = NULL;
1375        int rm_quota_used = 0, i;
1376        struct ocfs2_quota_recovery *qrec;
1377
1378        /* Whether the quota supported. */
1379        int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1380                        OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1381                || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1382                        OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1383
1384        status = ocfs2_wait_on_mount(osb);
1385        if (status < 0) {
1386                goto bail;
1387        }
1388
1389        if (quota_enabled) {
1390                rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1391                if (!rm_quota) {
1392                        status = -ENOMEM;
1393                        goto bail;
1394                }
1395        }
1396restart:
1397        status = ocfs2_super_lock(osb, 1);
1398        if (status < 0) {
1399                mlog_errno(status);
1400                goto bail;
1401        }
1402
1403        status = ocfs2_compute_replay_slots(osb);
1404        if (status < 0)
1405                mlog_errno(status);
1406
1407        /* queue recovery for our own slot */
1408        ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1409                                        NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1410
1411        spin_lock(&osb->osb_lock);
1412        while (rm->rm_used) {
1413                /* It's always safe to remove entry zero, as we won't
1414                 * clear it until ocfs2_recover_node() has succeeded. */
1415                node_num = rm->rm_entries[0];
1416                spin_unlock(&osb->osb_lock);
1417                slot_num = ocfs2_node_num_to_slot(osb, node_num);
1418                trace_ocfs2_recovery_thread_node(node_num, slot_num);
1419                if (slot_num == -ENOENT) {
1420                        status = 0;
1421                        goto skip_recovery;
1422                }
1423
1424                /* It is a bit subtle with quota recovery. We cannot do it
1425                 * immediately because we have to obtain cluster locks from
1426                 * quota files and we also don't want to just skip it because
1427                 * then quota usage would be out of sync until some node takes
1428                 * the slot. So we remember which nodes need quota recovery
1429                 * and when everything else is done, we recover quotas. */
1430                if (quota_enabled) {
1431                        for (i = 0; i < rm_quota_used
1432                                        && rm_quota[i] != slot_num; i++)
1433                                ;
1434
1435                        if (i == rm_quota_used)
1436                                rm_quota[rm_quota_used++] = slot_num;
1437                }
1438
1439                status = ocfs2_recover_node(osb, node_num, slot_num);
1440skip_recovery:
1441                if (!status) {
1442                        ocfs2_recovery_map_clear(osb, node_num);
1443                } else {
1444                        mlog(ML_ERROR,
1445                             "Error %d recovering node %d on device (%u,%u)!\n",
1446                             status, node_num,
1447                             MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1448                        mlog(ML_ERROR, "Volume requires unmount.\n");
1449                }
1450
1451                spin_lock(&osb->osb_lock);
1452        }
1453        spin_unlock(&osb->osb_lock);
1454        trace_ocfs2_recovery_thread_end(status);
1455
1456        /* Refresh all journal recovery generations from disk */
1457        status = ocfs2_check_journals_nolocks(osb);
1458        status = (status == -EROFS) ? 0 : status;
1459        if (status < 0)
1460                mlog_errno(status);
1461
1462        /* Now it is right time to recover quotas... We have to do this under
1463         * superblock lock so that no one can start using the slot (and crash)
1464         * before we recover it */
1465        if (quota_enabled) {
1466                for (i = 0; i < rm_quota_used; i++) {
1467                        qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1468                        if (IS_ERR(qrec)) {
1469                                status = PTR_ERR(qrec);
1470                                mlog_errno(status);
1471                                continue;
1472                        }
1473                        ocfs2_queue_recovery_completion(osb->journal,
1474                                        rm_quota[i],
1475                                        NULL, NULL, qrec,
1476                                        ORPHAN_NEED_TRUNCATE);
1477                }
1478        }
1479
1480        ocfs2_super_unlock(osb, 1);
1481
1482        /* queue recovery for offline slots */
1483        ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1484
1485bail:
1486        mutex_lock(&osb->recovery_lock);
1487        if (!status && !ocfs2_recovery_completed(osb)) {
1488                mutex_unlock(&osb->recovery_lock);
1489                goto restart;
1490        }
1491
1492        ocfs2_free_replay_slots(osb);
1493        osb->recovery_thread_task = NULL;
1494        mb(); /* sync with ocfs2_recovery_thread_running */
1495        wake_up(&osb->recovery_event);
1496
1497        mutex_unlock(&osb->recovery_lock);
1498
1499        if (quota_enabled)
1500                kfree(rm_quota);
1501
1502        /* no one is callint kthread_stop() for us so the kthread() api
1503         * requires that we call do_exit().  And it isn't exported, but
1504         * complete_and_exit() seems to be a minimal wrapper around it. */
1505        complete_and_exit(NULL, status);
1506}
1507
1508void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1509{
1510        mutex_lock(&osb->recovery_lock);
1511
1512        trace_ocfs2_recovery_thread(node_num, osb->node_num,
1513                osb->disable_recovery, osb->recovery_thread_task,
1514                osb->disable_recovery ?
1515                -1 : ocfs2_recovery_map_set(osb, node_num));
1516
1517        if (osb->disable_recovery)
1518                goto out;
1519
1520        if (osb->recovery_thread_task)
1521                goto out;
1522
1523        osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1524                        "ocfs2rec-%s", osb->uuid_str);
1525        if (IS_ERR(osb->recovery_thread_task)) {
1526                mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1527                osb->recovery_thread_task = NULL;
1528        }
1529
1530out:
1531        mutex_unlock(&osb->recovery_lock);
1532        wake_up(&osb->recovery_event);
1533}
1534
1535static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1536                                    int slot_num,
1537                                    struct buffer_head **bh,
1538                                    struct inode **ret_inode)
1539{
1540        int status = -EACCES;
1541        struct inode *inode = NULL;
1542
1543        BUG_ON(slot_num >= osb->max_slots);
1544
1545        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1546                                            slot_num);
1547        if (!inode || is_bad_inode(inode)) {
1548                mlog_errno(status);
1549                goto bail;
1550        }
1551        SET_INODE_JOURNAL(inode);
1552
1553        status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1554        if (status < 0) {
1555                mlog_errno(status);
1556                goto bail;
1557        }
1558
1559        status = 0;
1560
1561bail:
1562        if (inode) {
1563                if (status || !ret_inode)
1564                        iput(inode);
1565                else
1566                        *ret_inode = inode;
1567        }
1568        return status;
1569}
1570
1571/* Does the actual journal replay and marks the journal inode as
1572 * clean. Will only replay if the journal inode is marked dirty. */
1573static int ocfs2_replay_journal(struct ocfs2_super *osb,
1574                                int node_num,
1575                                int slot_num)
1576{
1577        int status;
1578        int got_lock = 0;
1579        unsigned int flags;
1580        struct inode *inode = NULL;
1581        struct ocfs2_dinode *fe;
1582        journal_t *journal = NULL;
1583        struct buffer_head *bh = NULL;
1584        u32 slot_reco_gen;
1585
1586        status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1587        if (status) {
1588                mlog_errno(status);
1589                goto done;
1590        }
1591
1592        fe = (struct ocfs2_dinode *)bh->b_data;
1593        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1594        brelse(bh);
1595        bh = NULL;
1596
1597        /*
1598         * As the fs recovery is asynchronous, there is a small chance that
1599         * another node mounted (and recovered) the slot before the recovery
1600         * thread could get the lock. To handle that, we dirty read the journal
1601         * inode for that slot to get the recovery generation. If it is
1602         * different than what we expected, the slot has been recovered.
1603         * If not, it needs recovery.
1604         */
1605        if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1606                trace_ocfs2_replay_journal_recovered(slot_num,
1607                     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1608                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1609                status = -EBUSY;
1610                goto done;
1611        }
1612
1613        /* Continue with recovery as the journal has not yet been recovered */
1614
1615        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1616        if (status < 0) {
1617                trace_ocfs2_replay_journal_lock_err(status);
1618                if (status != -ERESTARTSYS)
1619                        mlog(ML_ERROR, "Could not lock journal!\n");
1620                goto done;
1621        }
1622        got_lock = 1;
1623
1624        fe = (struct ocfs2_dinode *) bh->b_data;
1625
1626        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1627        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1628
1629        if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1630                trace_ocfs2_replay_journal_skip(node_num);
1631                /* Refresh recovery generation for the slot */
1632                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1633                goto done;
1634        }
1635
1636        /* we need to run complete recovery for offline orphan slots */
1637        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1638
1639        printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1640               "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1641               MINOR(osb->sb->s_dev));
1642
1643        OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1644
1645        status = ocfs2_force_read_journal(inode);
1646        if (status < 0) {
1647                mlog_errno(status);
1648                goto done;
1649        }
1650
1651        journal = jbd2_journal_init_inode(inode);
1652        if (journal == NULL) {
1653                mlog(ML_ERROR, "Linux journal layer error\n");
1654                status = -EIO;
1655                goto done;
1656        }
1657
1658        status = jbd2_journal_load(journal);
1659        if (status < 0) {
1660                mlog_errno(status);
1661                if (!igrab(inode))
1662                        BUG();
1663                jbd2_journal_destroy(journal);
1664                goto done;
1665        }
1666
1667        ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1668
1669        /* wipe the journal */
1670        jbd2_journal_lock_updates(journal);
1671        status = jbd2_journal_flush(journal);
1672        jbd2_journal_unlock_updates(journal);
1673        if (status < 0)
1674                mlog_errno(status);
1675
1676        /* This will mark the node clean */
1677        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1678        flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1679        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1680
1681        /* Increment recovery generation to indicate successful recovery */
1682        ocfs2_bump_recovery_generation(fe);
1683        osb->slot_recovery_generations[slot_num] =
1684                                        ocfs2_get_recovery_generation(fe);
1685
1686        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1687        status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1688        if (status < 0)
1689                mlog_errno(status);
1690
1691        if (!igrab(inode))
1692                BUG();
1693
1694        jbd2_journal_destroy(journal);
1695
1696        printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1697               "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1698               MINOR(osb->sb->s_dev));
1699done:
1700        /* drop the lock on this nodes journal */
1701        if (got_lock)
1702                ocfs2_inode_unlock(inode, 1);
1703
1704        iput(inode);
1705        brelse(bh);
1706
1707        return status;
1708}
1709
1710/*
1711 * Do the most important parts of node recovery:
1712 *  - Replay it's journal
1713 *  - Stamp a clean local allocator file
1714 *  - Stamp a clean truncate log
1715 *  - Mark the node clean
1716 *
1717 * If this function completes without error, a node in OCFS2 can be
1718 * said to have been safely recovered. As a result, failure during the
1719 * second part of a nodes recovery process (local alloc recovery) is
1720 * far less concerning.
1721 */
1722static int ocfs2_recover_node(struct ocfs2_super *osb,
1723                              int node_num, int slot_num)
1724{
1725        int status = 0;
1726        struct ocfs2_dinode *la_copy = NULL;
1727        struct ocfs2_dinode *tl_copy = NULL;
1728
1729        trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1730
1731        /* Should not ever be called to recover ourselves -- in that
1732         * case we should've called ocfs2_journal_load instead. */
1733        BUG_ON(osb->node_num == node_num);
1734
1735        status = ocfs2_replay_journal(osb, node_num, slot_num);
1736        if (status < 0) {
1737                if (status == -EBUSY) {
1738                        trace_ocfs2_recover_node_skip(slot_num, node_num);
1739                        status = 0;
1740                        goto done;
1741                }
1742                mlog_errno(status);
1743                goto done;
1744        }
1745
1746        /* Stamp a clean local alloc file AFTER recovering the journal... */
1747        status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1748        if (status < 0) {
1749                mlog_errno(status);
1750                goto done;
1751        }
1752
1753        /* An error from begin_truncate_log_recovery is not
1754         * serious enough to warrant halting the rest of
1755         * recovery. */
1756        status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1757        if (status < 0)
1758                mlog_errno(status);
1759
1760        /* Likewise, this would be a strange but ultimately not so
1761         * harmful place to get an error... */
1762        status = ocfs2_clear_slot(osb, slot_num);
1763        if (status < 0)
1764                mlog_errno(status);
1765
1766        /* This will kfree the memory pointed to by la_copy and tl_copy */
1767        ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1768                                        tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1769
1770        status = 0;
1771done:
1772
1773        return status;
1774}
1775
1776/* Test node liveness by trylocking his journal. If we get the lock,
1777 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1778 * still alive (we couldn't get the lock) and < 0 on error. */
1779static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1780                                 int slot_num)
1781{
1782        int status, flags;
1783        struct inode *inode = NULL;
1784
1785        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1786                                            slot_num);
1787        if (inode == NULL) {
1788                mlog(ML_ERROR, "access error\n");
1789                status = -EACCES;
1790                goto bail;
1791        }
1792        if (is_bad_inode(inode)) {
1793                mlog(ML_ERROR, "access error (bad inode)\n");
1794                iput(inode);
1795                inode = NULL;
1796                status = -EACCES;
1797                goto bail;
1798        }
1799        SET_INODE_JOURNAL(inode);
1800
1801        flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1802        status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1803        if (status < 0) {
1804                if (status != -EAGAIN)
1805                        mlog_errno(status);
1806                goto bail;
1807        }
1808
1809        ocfs2_inode_unlock(inode, 1);
1810bail:
1811        iput(inode);
1812
1813        return status;
1814}
1815
1816/* Call this underneath ocfs2_super_lock. It also assumes that the
1817 * slot info struct has been updated from disk. */
1818int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1819{
1820        unsigned int node_num;
1821        int status, i;
1822        u32 gen;
1823        struct buffer_head *bh = NULL;
1824        struct ocfs2_dinode *di;
1825
1826        /* This is called with the super block cluster lock, so we
1827         * know that the slot map can't change underneath us. */
1828
1829        for (i = 0; i < osb->max_slots; i++) {
1830                /* Read journal inode to get the recovery generation */
1831                status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1832                if (status) {
1833                        mlog_errno(status);
1834                        goto bail;
1835                }
1836                di = (struct ocfs2_dinode *)bh->b_data;
1837                gen = ocfs2_get_recovery_generation(di);
1838                brelse(bh);
1839                bh = NULL;
1840
1841                spin_lock(&osb->osb_lock);
1842                osb->slot_recovery_generations[i] = gen;
1843
1844                trace_ocfs2_mark_dead_nodes(i,
1845                                            osb->slot_recovery_generations[i]);
1846
1847                if (i == osb->slot_num) {
1848                        spin_unlock(&osb->osb_lock);
1849                        continue;
1850                }
1851
1852                status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1853                if (status == -ENOENT) {
1854                        spin_unlock(&osb->osb_lock);
1855                        continue;
1856                }
1857
1858                if (__ocfs2_recovery_map_test(osb, node_num)) {
1859                        spin_unlock(&osb->osb_lock);
1860                        continue;
1861                }
1862                spin_unlock(&osb->osb_lock);
1863
1864                /* Ok, we have a slot occupied by another node which
1865                 * is not in the recovery map. We trylock his journal
1866                 * file here to test if he's alive. */
1867                status = ocfs2_trylock_journal(osb, i);
1868                if (!status) {
1869                        /* Since we're called from mount, we know that
1870                         * the recovery thread can't race us on
1871                         * setting / checking the recovery bits. */
1872                        ocfs2_recovery_thread(osb, node_num);
1873                } else if ((status < 0) && (status != -EAGAIN)) {
1874                        mlog_errno(status);
1875                        goto bail;
1876                }
1877        }
1878
1879        status = 0;
1880bail:
1881        return status;
1882}
1883
1884/*
1885 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1886 * randomness to the timeout to minimize multple nodes firing the timer at the
1887 * same time.
1888 */
1889static inline unsigned long ocfs2_orphan_scan_timeout(void)
1890{
1891        unsigned long time;
1892
1893        get_random_bytes(&time, sizeof(time));
1894        time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1895        return msecs_to_jiffies(time);
1896}
1897
1898/*
1899 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1900 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1901 * is done to catch any orphans that are left over in orphan directories.
1902 *
1903 * It scans all slots, even ones that are in use. It does so to handle the
1904 * case described below:
1905 *
1906 *   Node 1 has an inode it was using. The dentry went away due to memory
1907 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1908 *   has the open lock.
1909 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1910 *   but node 1 has no dentry and doesn't get the message. It trylocks the
1911 *   open lock, sees that another node has a PR, and does nothing.
1912 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1913 *   open lock, sees the PR still, and does nothing.
1914 *   Basically, we have to trigger an orphan iput on node 1. The only way
1915 *   for this to happen is if node 1 runs node 2's orphan dir.
1916 *
1917 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1918 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1919 * stored in LVB. If the sequence number has changed, it means some other
1920 * node has done the scan.  This node skips the scan and tracks the
1921 * sequence number.  If the sequence number didn't change, it means a scan
1922 * hasn't happened.  The node queues a scan and increments the
1923 * sequence number in the LVB.
1924 */
1925static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1926{
1927        struct ocfs2_orphan_scan *os;
1928        int status, i;
1929        u32 seqno = 0;
1930
1931        os = &osb->osb_orphan_scan;
1932
1933        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1934                goto out;
1935
1936        trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1937                                            atomic_read(&os->os_state));
1938
1939        status = ocfs2_orphan_scan_lock(osb, &seqno);
1940        if (status < 0) {
1941                if (status != -EAGAIN)
1942                        mlog_errno(status);
1943                goto out;
1944        }
1945
1946        /* Do no queue the tasks if the volume is being umounted */
1947        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1948                goto unlock;
1949
1950        if (os->os_seqno != seqno) {
1951                os->os_seqno = seqno;
1952                goto unlock;
1953        }
1954
1955        for (i = 0; i < osb->max_slots; i++)
1956                ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1957                                                NULL, ORPHAN_NO_NEED_TRUNCATE);
1958        /*
1959         * We queued a recovery on orphan slots, increment the sequence
1960         * number and update LVB so other node will skip the scan for a while
1961         */
1962        seqno++;
1963        os->os_count++;
1964        os->os_scantime = ktime_get_seconds();
1965unlock:
1966        ocfs2_orphan_scan_unlock(osb, seqno);
1967out:
1968        trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1969                                          atomic_read(&os->os_state));
1970        return;
1971}
1972
1973/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1974static void ocfs2_orphan_scan_work(struct work_struct *work)
1975{
1976        struct ocfs2_orphan_scan *os;
1977        struct ocfs2_super *osb;
1978
1979        os = container_of(work, struct ocfs2_orphan_scan,
1980                          os_orphan_scan_work.work);
1981        osb = os->os_osb;
1982
1983        mutex_lock(&os->os_lock);
1984        ocfs2_queue_orphan_scan(osb);
1985        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1986                queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1987                                      ocfs2_orphan_scan_timeout());
1988        mutex_unlock(&os->os_lock);
1989}
1990
1991void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1992{
1993        struct ocfs2_orphan_scan *os;
1994
1995        os = &osb->osb_orphan_scan;
1996        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1997                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1998                mutex_lock(&os->os_lock);
1999                cancel_delayed_work(&os->os_orphan_scan_work);
2000                mutex_unlock(&os->os_lock);
2001        }
2002}
2003
2004void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2005{
2006        struct ocfs2_orphan_scan *os;
2007
2008        os = &osb->osb_orphan_scan;
2009        os->os_osb = osb;
2010        os->os_count = 0;
2011        os->os_seqno = 0;
2012        mutex_init(&os->os_lock);
2013        INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2014}
2015
2016void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2017{
2018        struct ocfs2_orphan_scan *os;
2019
2020        os = &osb->osb_orphan_scan;
2021        os->os_scantime = ktime_get_seconds();
2022        if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2023                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2024        else {
2025                atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2026                queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2027                                   ocfs2_orphan_scan_timeout());
2028        }
2029}
2030
2031struct ocfs2_orphan_filldir_priv {
2032        struct dir_context      ctx;
2033        struct inode            *head;
2034        struct ocfs2_super      *osb;
2035        enum ocfs2_orphan_reco_type orphan_reco_type;
2036};
2037
2038static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2039                                int name_len, loff_t pos, u64 ino,
2040                                unsigned type)
2041{
2042        struct ocfs2_orphan_filldir_priv *p =
2043                container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2044        struct inode *iter;
2045
2046        if (name_len == 1 && !strncmp(".", name, 1))
2047                return 0;
2048        if (name_len == 2 && !strncmp("..", name, 2))
2049                return 0;
2050
2051        /* do not include dio entry in case of orphan scan */
2052        if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2053                        (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2054                        OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2055                return 0;
2056
2057        /* Skip bad inodes so that recovery can continue */
2058        iter = ocfs2_iget(p->osb, ino,
2059                          OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2060        if (IS_ERR(iter))
2061                return 0;
2062
2063        if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2064                        OCFS2_DIO_ORPHAN_PREFIX_LEN))
2065                OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2066
2067        /* Skip inodes which are already added to recover list, since dio may
2068         * happen concurrently with unlink/rename */
2069        if (OCFS2_I(iter)->ip_next_orphan) {
2070                iput(iter);
2071                return 0;
2072        }
2073
2074        trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2075        /* No locking is required for the next_orphan queue as there
2076         * is only ever a single process doing orphan recovery. */
2077        OCFS2_I(iter)->ip_next_orphan = p->head;
2078        p->head = iter;
2079
2080        return 0;
2081}
2082
2083static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2084                               int slot,
2085                               struct inode **head,
2086                               enum ocfs2_orphan_reco_type orphan_reco_type)
2087{
2088        int status;
2089        struct inode *orphan_dir_inode = NULL;
2090        struct ocfs2_orphan_filldir_priv priv = {
2091                .ctx.actor = ocfs2_orphan_filldir,
2092                .osb = osb,
2093                .head = *head,
2094                .orphan_reco_type = orphan_reco_type
2095        };
2096
2097        orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2098                                                       ORPHAN_DIR_SYSTEM_INODE,
2099                                                       slot);
2100        if  (!orphan_dir_inode) {
2101                status = -ENOENT;
2102                mlog_errno(status);
2103                return status;
2104        }
2105
2106        inode_lock(orphan_dir_inode);
2107        status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2108        if (status < 0) {
2109                mlog_errno(status);
2110                goto out;
2111        }
2112
2113        status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2114        if (status) {
2115                mlog_errno(status);
2116                goto out_cluster;
2117        }
2118
2119        *head = priv.head;
2120
2121out_cluster:
2122        ocfs2_inode_unlock(orphan_dir_inode, 0);
2123out:
2124        inode_unlock(orphan_dir_inode);
2125        iput(orphan_dir_inode);
2126        return status;
2127}
2128
2129static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2130                                              int slot)
2131{
2132        int ret;
2133
2134        spin_lock(&osb->osb_lock);
2135        ret = !osb->osb_orphan_wipes[slot];
2136        spin_unlock(&osb->osb_lock);
2137        return ret;
2138}
2139
2140static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2141                                             int slot)
2142{
2143        spin_lock(&osb->osb_lock);
2144        /* Mark ourselves such that new processes in delete_inode()
2145         * know to quit early. */
2146        ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2147        while (osb->osb_orphan_wipes[slot]) {
2148                /* If any processes are already in the middle of an
2149                 * orphan wipe on this dir, then we need to wait for
2150                 * them. */
2151                spin_unlock(&osb->osb_lock);
2152                wait_event_interruptible(osb->osb_wipe_event,
2153                                         ocfs2_orphan_recovery_can_continue(osb, slot));
2154                spin_lock(&osb->osb_lock);
2155        }
2156        spin_unlock(&osb->osb_lock);
2157}
2158
2159static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2160                                              int slot)
2161{
2162        ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2163}
2164
2165/*
2166 * Orphan recovery. Each mounted node has it's own orphan dir which we
2167 * must run during recovery. Our strategy here is to build a list of
2168 * the inodes in the orphan dir and iget/iput them. The VFS does
2169 * (most) of the rest of the work.
2170 *
2171 * Orphan recovery can happen at any time, not just mount so we have a
2172 * couple of extra considerations.
2173 *
2174 * - We grab as many inodes as we can under the orphan dir lock -
2175 *   doing iget() outside the orphan dir risks getting a reference on
2176 *   an invalid inode.
2177 * - We must be sure not to deadlock with other processes on the
2178 *   system wanting to run delete_inode(). This can happen when they go
2179 *   to lock the orphan dir and the orphan recovery process attempts to
2180 *   iget() inside the orphan dir lock. This can be avoided by
2181 *   advertising our state to ocfs2_delete_inode().
2182 */
2183static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2184                                 int slot,
2185                                 enum ocfs2_orphan_reco_type orphan_reco_type)
2186{
2187        int ret = 0;
2188        struct inode *inode = NULL;
2189        struct inode *iter;
2190        struct ocfs2_inode_info *oi;
2191        struct buffer_head *di_bh = NULL;
2192        struct ocfs2_dinode *di = NULL;
2193
2194        trace_ocfs2_recover_orphans(slot);
2195
2196        ocfs2_mark_recovering_orphan_dir(osb, slot);
2197        ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2198        ocfs2_clear_recovering_orphan_dir(osb, slot);
2199
2200        /* Error here should be noted, but we want to continue with as
2201         * many queued inodes as we've got. */
2202        if (ret)
2203                mlog_errno(ret);
2204
2205        while (inode) {
2206                oi = OCFS2_I(inode);
2207                trace_ocfs2_recover_orphans_iput(
2208                                        (unsigned long long)oi->ip_blkno);
2209
2210                iter = oi->ip_next_orphan;
2211                oi->ip_next_orphan = NULL;
2212
2213                if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2214                        inode_lock(inode);
2215                        ret = ocfs2_rw_lock(inode, 1);
2216                        if (ret < 0) {
2217                                mlog_errno(ret);
2218                                goto unlock_mutex;
2219                        }
2220                        /*
2221                         * We need to take and drop the inode lock to
2222                         * force read inode from disk.
2223                         */
2224                        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2225                        if (ret) {
2226                                mlog_errno(ret);
2227                                goto unlock_rw;
2228                        }
2229
2230                        di = (struct ocfs2_dinode *)di_bh->b_data;
2231
2232                        if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2233                                ret = ocfs2_truncate_file(inode, di_bh,
2234                                                i_size_read(inode));
2235                                if (ret < 0) {
2236                                        if (ret != -ENOSPC)
2237                                                mlog_errno(ret);
2238                                        goto unlock_inode;
2239                                }
2240
2241                                ret = ocfs2_del_inode_from_orphan(osb, inode,
2242                                                di_bh, 0, 0);
2243                                if (ret)
2244                                        mlog_errno(ret);
2245                        }
2246unlock_inode:
2247                        ocfs2_inode_unlock(inode, 1);
2248                        brelse(di_bh);
2249                        di_bh = NULL;
2250unlock_rw:
2251                        ocfs2_rw_unlock(inode, 1);
2252unlock_mutex:
2253                        inode_unlock(inode);
2254
2255                        /* clear dio flag in ocfs2_inode_info */
2256                        oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2257                } else {
2258                        spin_lock(&oi->ip_lock);
2259                        /* Set the proper information to get us going into
2260                         * ocfs2_delete_inode. */
2261                        oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2262                        spin_unlock(&oi->ip_lock);
2263                }
2264
2265                iput(inode);
2266                inode = iter;
2267        }
2268
2269        return ret;
2270}
2271
2272static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2273{
2274        /* This check is good because ocfs2 will wait on our recovery
2275         * thread before changing it to something other than MOUNTED
2276         * or DISABLED. */
2277        wait_event(osb->osb_mount_event,
2278                  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2279                   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2280                   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2281
2282        /* If there's an error on mount, then we may never get to the
2283         * MOUNTED flag, but this is set right before
2284         * dismount_volume() so we can trust it. */
2285        if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2286                trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2287                mlog(0, "mount error, exiting!\n");
2288                return -EBUSY;
2289        }
2290
2291        return 0;
2292}
2293
2294static int ocfs2_commit_thread(void *arg)
2295{
2296        int status;
2297        struct ocfs2_super *osb = arg;
2298        struct ocfs2_journal *journal = osb->journal;
2299
2300        /* we can trust j_num_trans here because _should_stop() is only set in
2301         * shutdown and nobody other than ourselves should be able to start
2302         * transactions.  committing on shutdown might take a few iterations
2303         * as final transactions put deleted inodes on the list */
2304        while (!(kthread_should_stop() &&
2305                 atomic_read(&journal->j_num_trans) == 0)) {
2306
2307                wait_event_interruptible(osb->checkpoint_event,
2308                                         atomic_read(&journal->j_num_trans)
2309                                         || kthread_should_stop());
2310
2311                status = ocfs2_commit_cache(osb);
2312                if (status < 0) {
2313                        static unsigned long abort_warn_time;
2314
2315                        /* Warn about this once per minute */
2316                        if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2317                                mlog(ML_ERROR, "status = %d, journal is "
2318                                                "already aborted.\n", status);
2319                        /*
2320                         * After ocfs2_commit_cache() fails, j_num_trans has a
2321                         * non-zero value.  Sleep here to avoid a busy-wait
2322                         * loop.
2323                         */
2324                        msleep_interruptible(1000);
2325                }
2326
2327                if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2328                        mlog(ML_KTHREAD,
2329                             "commit_thread: %u transactions pending on "
2330                             "shutdown\n",
2331                             atomic_read(&journal->j_num_trans));
2332                }
2333        }
2334
2335        return 0;
2336}
2337
2338/* Reads all the journal inodes without taking any cluster locks. Used
2339 * for hard readonly access to determine whether any journal requires
2340 * recovery. Also used to refresh the recovery generation numbers after
2341 * a journal has been recovered by another node.
2342 */
2343int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2344{
2345        int ret = 0;
2346        unsigned int slot;
2347        struct buffer_head *di_bh = NULL;
2348        struct ocfs2_dinode *di;
2349        int journal_dirty = 0;
2350
2351        for(slot = 0; slot < osb->max_slots; slot++) {
2352                ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2353                if (ret) {
2354                        mlog_errno(ret);
2355                        goto out;
2356                }
2357
2358                di = (struct ocfs2_dinode *) di_bh->b_data;
2359
2360                osb->slot_recovery_generations[slot] =
2361                                        ocfs2_get_recovery_generation(di);
2362
2363                if (le32_to_cpu(di->id1.journal1.ij_flags) &
2364                    OCFS2_JOURNAL_DIRTY_FL)
2365                        journal_dirty = 1;
2366
2367                brelse(di_bh);
2368                di_bh = NULL;
2369        }
2370
2371out:
2372        if (journal_dirty)
2373                ret = -EROFS;
2374        return ret;
2375}
2376