linux/fs/proc/base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/generic-radix-tree.h>
  63#include <linux/string.h>
  64#include <linux/seq_file.h>
  65#include <linux/namei.h>
  66#include <linux/mnt_namespace.h>
  67#include <linux/mm.h>
  68#include <linux/swap.h>
  69#include <linux/rcupdate.h>
  70#include <linux/kallsyms.h>
  71#include <linux/stacktrace.h>
  72#include <linux/resource.h>
  73#include <linux/module.h>
  74#include <linux/mount.h>
  75#include <linux/security.h>
  76#include <linux/ptrace.h>
  77#include <linux/tracehook.h>
  78#include <linux/printk.h>
  79#include <linux/cache.h>
  80#include <linux/cgroup.h>
  81#include <linux/cpuset.h>
  82#include <linux/audit.h>
  83#include <linux/poll.h>
  84#include <linux/nsproxy.h>
  85#include <linux/oom.h>
  86#include <linux/elf.h>
  87#include <linux/pid_namespace.h>
  88#include <linux/user_namespace.h>
  89#include <linux/fs_struct.h>
  90#include <linux/slab.h>
  91#include <linux/sched/autogroup.h>
  92#include <linux/sched/mm.h>
  93#include <linux/sched/coredump.h>
  94#include <linux/sched/debug.h>
  95#include <linux/sched/stat.h>
  96#include <linux/posix-timers.h>
  97#include <linux/time_namespace.h>
  98#include <linux/resctrl.h>
  99#include <trace/events/oom.h>
 100#include "internal.h"
 101#include "fd.h"
 102
 103#include "../../lib/kstrtox.h"
 104
 105/* NOTE:
 106 *      Implementing inode permission operations in /proc is almost
 107 *      certainly an error.  Permission checks need to happen during
 108 *      each system call not at open time.  The reason is that most of
 109 *      what we wish to check for permissions in /proc varies at runtime.
 110 *
 111 *      The classic example of a problem is opening file descriptors
 112 *      in /proc for a task before it execs a suid executable.
 113 */
 114
 115static u8 nlink_tid __ro_after_init;
 116static u8 nlink_tgid __ro_after_init;
 117
 118struct pid_entry {
 119        const char *name;
 120        unsigned int len;
 121        umode_t mode;
 122        const struct inode_operations *iop;
 123        const struct file_operations *fop;
 124        union proc_op op;
 125};
 126
 127#define NOD(NAME, MODE, IOP, FOP, OP) {                 \
 128        .name = (NAME),                                 \
 129        .len  = sizeof(NAME) - 1,                       \
 130        .mode = MODE,                                   \
 131        .iop  = IOP,                                    \
 132        .fop  = FOP,                                    \
 133        .op   = OP,                                     \
 134}
 135
 136#define DIR(NAME, MODE, iops, fops)     \
 137        NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 138#define LNK(NAME, get_link)                                     \
 139        NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
 140                &proc_pid_link_inode_operations, NULL,          \
 141                { .proc_get_link = get_link } )
 142#define REG(NAME, MODE, fops)                           \
 143        NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 144#define ONE(NAME, MODE, show)                           \
 145        NOD(NAME, (S_IFREG|(MODE)),                     \
 146                NULL, &proc_single_file_operations,     \
 147                { .proc_show = show } )
 148#define ATTR(LSM, NAME, MODE)                           \
 149        NOD(NAME, (S_IFREG|(MODE)),                     \
 150                NULL, &proc_pid_attr_operations,        \
 151                { .lsm = LSM })
 152
 153/*
 154 * Count the number of hardlinks for the pid_entry table, excluding the .
 155 * and .. links.
 156 */
 157static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 158        unsigned int n)
 159{
 160        unsigned int i;
 161        unsigned int count;
 162
 163        count = 2;
 164        for (i = 0; i < n; ++i) {
 165                if (S_ISDIR(entries[i].mode))
 166                        ++count;
 167        }
 168
 169        return count;
 170}
 171
 172static int get_task_root(struct task_struct *task, struct path *root)
 173{
 174        int result = -ENOENT;
 175
 176        task_lock(task);
 177        if (task->fs) {
 178                get_fs_root(task->fs, root);
 179                result = 0;
 180        }
 181        task_unlock(task);
 182        return result;
 183}
 184
 185static int proc_cwd_link(struct dentry *dentry, struct path *path)
 186{
 187        struct task_struct *task = get_proc_task(d_inode(dentry));
 188        int result = -ENOENT;
 189
 190        if (task) {
 191                task_lock(task);
 192                if (task->fs) {
 193                        get_fs_pwd(task->fs, path);
 194                        result = 0;
 195                }
 196                task_unlock(task);
 197                put_task_struct(task);
 198        }
 199        return result;
 200}
 201
 202static int proc_root_link(struct dentry *dentry, struct path *path)
 203{
 204        struct task_struct *task = get_proc_task(d_inode(dentry));
 205        int result = -ENOENT;
 206
 207        if (task) {
 208                result = get_task_root(task, path);
 209                put_task_struct(task);
 210        }
 211        return result;
 212}
 213
 214/*
 215 * If the user used setproctitle(), we just get the string from
 216 * user space at arg_start, and limit it to a maximum of one page.
 217 */
 218static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 219                                size_t count, unsigned long pos,
 220                                unsigned long arg_start)
 221{
 222        char *page;
 223        int ret, got;
 224
 225        if (pos >= PAGE_SIZE)
 226                return 0;
 227
 228        page = (char *)__get_free_page(GFP_KERNEL);
 229        if (!page)
 230                return -ENOMEM;
 231
 232        ret = 0;
 233        got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 234        if (got > 0) {
 235                int len = strnlen(page, got);
 236
 237                /* Include the NUL character if it was found */
 238                if (len < got)
 239                        len++;
 240
 241                if (len > pos) {
 242                        len -= pos;
 243                        if (len > count)
 244                                len = count;
 245                        len -= copy_to_user(buf, page+pos, len);
 246                        if (!len)
 247                                len = -EFAULT;
 248                        ret = len;
 249                }
 250        }
 251        free_page((unsigned long)page);
 252        return ret;
 253}
 254
 255static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 256                              size_t count, loff_t *ppos)
 257{
 258        unsigned long arg_start, arg_end, env_start, env_end;
 259        unsigned long pos, len;
 260        char *page, c;
 261
 262        /* Check if process spawned far enough to have cmdline. */
 263        if (!mm->env_end)
 264                return 0;
 265
 266        spin_lock(&mm->arg_lock);
 267        arg_start = mm->arg_start;
 268        arg_end = mm->arg_end;
 269        env_start = mm->env_start;
 270        env_end = mm->env_end;
 271        spin_unlock(&mm->arg_lock);
 272
 273        if (arg_start >= arg_end)
 274                return 0;
 275
 276        /*
 277         * We allow setproctitle() to overwrite the argument
 278         * strings, and overflow past the original end. But
 279         * only when it overflows into the environment area.
 280         */
 281        if (env_start != arg_end || env_end < env_start)
 282                env_start = env_end = arg_end;
 283        len = env_end - arg_start;
 284
 285        /* We're not going to care if "*ppos" has high bits set */
 286        pos = *ppos;
 287        if (pos >= len)
 288                return 0;
 289        if (count > len - pos)
 290                count = len - pos;
 291        if (!count)
 292                return 0;
 293
 294        /*
 295         * Magical special case: if the argv[] end byte is not
 296         * zero, the user has overwritten it with setproctitle(3).
 297         *
 298         * Possible future enhancement: do this only once when
 299         * pos is 0, and set a flag in the 'struct file'.
 300         */
 301        if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 302                return get_mm_proctitle(mm, buf, count, pos, arg_start);
 303
 304        /*
 305         * For the non-setproctitle() case we limit things strictly
 306         * to the [arg_start, arg_end[ range.
 307         */
 308        pos += arg_start;
 309        if (pos < arg_start || pos >= arg_end)
 310                return 0;
 311        if (count > arg_end - pos)
 312                count = arg_end - pos;
 313
 314        page = (char *)__get_free_page(GFP_KERNEL);
 315        if (!page)
 316                return -ENOMEM;
 317
 318        len = 0;
 319        while (count) {
 320                int got;
 321                size_t size = min_t(size_t, PAGE_SIZE, count);
 322
 323                got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 324                if (got <= 0)
 325                        break;
 326                got -= copy_to_user(buf, page, got);
 327                if (unlikely(!got)) {
 328                        if (!len)
 329                                len = -EFAULT;
 330                        break;
 331                }
 332                pos += got;
 333                buf += got;
 334                len += got;
 335                count -= got;
 336        }
 337
 338        free_page((unsigned long)page);
 339        return len;
 340}
 341
 342static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 343                                size_t count, loff_t *pos)
 344{
 345        struct mm_struct *mm;
 346        ssize_t ret;
 347
 348        mm = get_task_mm(tsk);
 349        if (!mm)
 350                return 0;
 351
 352        ret = get_mm_cmdline(mm, buf, count, pos);
 353        mmput(mm);
 354        return ret;
 355}
 356
 357static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 358                                     size_t count, loff_t *pos)
 359{
 360        struct task_struct *tsk;
 361        ssize_t ret;
 362
 363        BUG_ON(*pos < 0);
 364
 365        tsk = get_proc_task(file_inode(file));
 366        if (!tsk)
 367                return -ESRCH;
 368        ret = get_task_cmdline(tsk, buf, count, pos);
 369        put_task_struct(tsk);
 370        if (ret > 0)
 371                *pos += ret;
 372        return ret;
 373}
 374
 375static const struct file_operations proc_pid_cmdline_ops = {
 376        .read   = proc_pid_cmdline_read,
 377        .llseek = generic_file_llseek,
 378};
 379
 380#ifdef CONFIG_KALLSYMS
 381/*
 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 383 * Returns the resolved symbol.  If that fails, simply return the address.
 384 */
 385static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 386                          struct pid *pid, struct task_struct *task)
 387{
 388        unsigned long wchan;
 389        char symname[KSYM_NAME_LEN];
 390
 391        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 392                goto print0;
 393
 394        wchan = get_wchan(task);
 395        if (wchan && !lookup_symbol_name(wchan, symname)) {
 396                seq_puts(m, symname);
 397                return 0;
 398        }
 399
 400print0:
 401        seq_putc(m, '0');
 402        return 0;
 403}
 404#endif /* CONFIG_KALLSYMS */
 405
 406static int lock_trace(struct task_struct *task)
 407{
 408        int err = mutex_lock_killable(&task->signal->exec_update_mutex);
 409        if (err)
 410                return err;
 411        if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 412                mutex_unlock(&task->signal->exec_update_mutex);
 413                return -EPERM;
 414        }
 415        return 0;
 416}
 417
 418static void unlock_trace(struct task_struct *task)
 419{
 420        mutex_unlock(&task->signal->exec_update_mutex);
 421}
 422
 423#ifdef CONFIG_STACKTRACE
 424
 425#define MAX_STACK_TRACE_DEPTH   64
 426
 427static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 428                          struct pid *pid, struct task_struct *task)
 429{
 430        unsigned long *entries;
 431        int err;
 432
 433        /*
 434         * The ability to racily run the kernel stack unwinder on a running task
 435         * and then observe the unwinder output is scary; while it is useful for
 436         * debugging kernel issues, it can also allow an attacker to leak kernel
 437         * stack contents.
 438         * Doing this in a manner that is at least safe from races would require
 439         * some work to ensure that the remote task can not be scheduled; and
 440         * even then, this would still expose the unwinder as local attack
 441         * surface.
 442         * Therefore, this interface is restricted to root.
 443         */
 444        if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 445                return -EACCES;
 446
 447        entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 448                                GFP_KERNEL);
 449        if (!entries)
 450                return -ENOMEM;
 451
 452        err = lock_trace(task);
 453        if (!err) {
 454                unsigned int i, nr_entries;
 455
 456                nr_entries = stack_trace_save_tsk(task, entries,
 457                                                  MAX_STACK_TRACE_DEPTH, 0);
 458
 459                for (i = 0; i < nr_entries; i++) {
 460                        seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 461                }
 462
 463                unlock_trace(task);
 464        }
 465        kfree(entries);
 466
 467        return err;
 468}
 469#endif
 470
 471#ifdef CONFIG_SCHED_INFO
 472/*
 473 * Provides /proc/PID/schedstat
 474 */
 475static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 476                              struct pid *pid, struct task_struct *task)
 477{
 478        if (unlikely(!sched_info_on()))
 479                seq_puts(m, "0 0 0\n");
 480        else
 481                seq_printf(m, "%llu %llu %lu\n",
 482                   (unsigned long long)task->se.sum_exec_runtime,
 483                   (unsigned long long)task->sched_info.run_delay,
 484                   task->sched_info.pcount);
 485
 486        return 0;
 487}
 488#endif
 489
 490#ifdef CONFIG_LATENCYTOP
 491static int lstats_show_proc(struct seq_file *m, void *v)
 492{
 493        int i;
 494        struct inode *inode = m->private;
 495        struct task_struct *task = get_proc_task(inode);
 496
 497        if (!task)
 498                return -ESRCH;
 499        seq_puts(m, "Latency Top version : v0.1\n");
 500        for (i = 0; i < LT_SAVECOUNT; i++) {
 501                struct latency_record *lr = &task->latency_record[i];
 502                if (lr->backtrace[0]) {
 503                        int q;
 504                        seq_printf(m, "%i %li %li",
 505                                   lr->count, lr->time, lr->max);
 506                        for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 507                                unsigned long bt = lr->backtrace[q];
 508
 509                                if (!bt)
 510                                        break;
 511                                seq_printf(m, " %ps", (void *)bt);
 512                        }
 513                        seq_putc(m, '\n');
 514                }
 515
 516        }
 517        put_task_struct(task);
 518        return 0;
 519}
 520
 521static int lstats_open(struct inode *inode, struct file *file)
 522{
 523        return single_open(file, lstats_show_proc, inode);
 524}
 525
 526static ssize_t lstats_write(struct file *file, const char __user *buf,
 527                            size_t count, loff_t *offs)
 528{
 529        struct task_struct *task = get_proc_task(file_inode(file));
 530
 531        if (!task)
 532                return -ESRCH;
 533        clear_tsk_latency_tracing(task);
 534        put_task_struct(task);
 535
 536        return count;
 537}
 538
 539static const struct file_operations proc_lstats_operations = {
 540        .open           = lstats_open,
 541        .read           = seq_read,
 542        .write          = lstats_write,
 543        .llseek         = seq_lseek,
 544        .release        = single_release,
 545};
 546
 547#endif
 548
 549static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 550                          struct pid *pid, struct task_struct *task)
 551{
 552        unsigned long totalpages = totalram_pages() + total_swap_pages;
 553        unsigned long points = 0;
 554        long badness;
 555
 556        badness = oom_badness(task, totalpages);
 557        /*
 558         * Special case OOM_SCORE_ADJ_MIN for all others scale the
 559         * badness value into [0, 2000] range which we have been
 560         * exporting for a long time so userspace might depend on it.
 561         */
 562        if (badness != LONG_MIN)
 563                points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
 564
 565        seq_printf(m, "%lu\n", points);
 566
 567        return 0;
 568}
 569
 570struct limit_names {
 571        const char *name;
 572        const char *unit;
 573};
 574
 575static const struct limit_names lnames[RLIM_NLIMITS] = {
 576        [RLIMIT_CPU] = {"Max cpu time", "seconds"},
 577        [RLIMIT_FSIZE] = {"Max file size", "bytes"},
 578        [RLIMIT_DATA] = {"Max data size", "bytes"},
 579        [RLIMIT_STACK] = {"Max stack size", "bytes"},
 580        [RLIMIT_CORE] = {"Max core file size", "bytes"},
 581        [RLIMIT_RSS] = {"Max resident set", "bytes"},
 582        [RLIMIT_NPROC] = {"Max processes", "processes"},
 583        [RLIMIT_NOFILE] = {"Max open files", "files"},
 584        [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 585        [RLIMIT_AS] = {"Max address space", "bytes"},
 586        [RLIMIT_LOCKS] = {"Max file locks", "locks"},
 587        [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 588        [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 589        [RLIMIT_NICE] = {"Max nice priority", NULL},
 590        [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 591        [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 592};
 593
 594/* Display limits for a process */
 595static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 596                           struct pid *pid, struct task_struct *task)
 597{
 598        unsigned int i;
 599        unsigned long flags;
 600
 601        struct rlimit rlim[RLIM_NLIMITS];
 602
 603        if (!lock_task_sighand(task, &flags))
 604                return 0;
 605        memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 606        unlock_task_sighand(task, &flags);
 607
 608        /*
 609         * print the file header
 610         */
 611        seq_puts(m, "Limit                     "
 612                "Soft Limit           "
 613                "Hard Limit           "
 614                "Units     \n");
 615
 616        for (i = 0; i < RLIM_NLIMITS; i++) {
 617                if (rlim[i].rlim_cur == RLIM_INFINITY)
 618                        seq_printf(m, "%-25s %-20s ",
 619                                   lnames[i].name, "unlimited");
 620                else
 621                        seq_printf(m, "%-25s %-20lu ",
 622                                   lnames[i].name, rlim[i].rlim_cur);
 623
 624                if (rlim[i].rlim_max == RLIM_INFINITY)
 625                        seq_printf(m, "%-20s ", "unlimited");
 626                else
 627                        seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 628
 629                if (lnames[i].unit)
 630                        seq_printf(m, "%-10s\n", lnames[i].unit);
 631                else
 632                        seq_putc(m, '\n');
 633        }
 634
 635        return 0;
 636}
 637
 638#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 639static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 640                            struct pid *pid, struct task_struct *task)
 641{
 642        struct syscall_info info;
 643        u64 *args = &info.data.args[0];
 644        int res;
 645
 646        res = lock_trace(task);
 647        if (res)
 648                return res;
 649
 650        if (task_current_syscall(task, &info))
 651                seq_puts(m, "running\n");
 652        else if (info.data.nr < 0)
 653                seq_printf(m, "%d 0x%llx 0x%llx\n",
 654                           info.data.nr, info.sp, info.data.instruction_pointer);
 655        else
 656                seq_printf(m,
 657                       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 658                       info.data.nr,
 659                       args[0], args[1], args[2], args[3], args[4], args[5],
 660                       info.sp, info.data.instruction_pointer);
 661        unlock_trace(task);
 662
 663        return 0;
 664}
 665#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 666
 667/************************************************************************/
 668/*                       Here the fs part begins                        */
 669/************************************************************************/
 670
 671/* permission checks */
 672static int proc_fd_access_allowed(struct inode *inode)
 673{
 674        struct task_struct *task;
 675        int allowed = 0;
 676        /* Allow access to a task's file descriptors if it is us or we
 677         * may use ptrace attach to the process and find out that
 678         * information.
 679         */
 680        task = get_proc_task(inode);
 681        if (task) {
 682                allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 683                put_task_struct(task);
 684        }
 685        return allowed;
 686}
 687
 688int proc_setattr(struct dentry *dentry, struct iattr *attr)
 689{
 690        int error;
 691        struct inode *inode = d_inode(dentry);
 692
 693        if (attr->ia_valid & ATTR_MODE)
 694                return -EPERM;
 695
 696        error = setattr_prepare(dentry, attr);
 697        if (error)
 698                return error;
 699
 700        setattr_copy(inode, attr);
 701        mark_inode_dirty(inode);
 702        return 0;
 703}
 704
 705/*
 706 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 707 * or euid/egid (for hide_pid_min=2)?
 708 */
 709static bool has_pid_permissions(struct proc_fs_info *fs_info,
 710                                 struct task_struct *task,
 711                                 enum proc_hidepid hide_pid_min)
 712{
 713        /*
 714         * If 'hidpid' mount option is set force a ptrace check,
 715         * we indicate that we are using a filesystem syscall
 716         * by passing PTRACE_MODE_READ_FSCREDS
 717         */
 718        if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
 719                return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 720
 721        if (fs_info->hide_pid < hide_pid_min)
 722                return true;
 723        if (in_group_p(fs_info->pid_gid))
 724                return true;
 725        return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 726}
 727
 728
 729static int proc_pid_permission(struct inode *inode, int mask)
 730{
 731        struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
 732        struct task_struct *task;
 733        bool has_perms;
 734
 735        task = get_proc_task(inode);
 736        if (!task)
 737                return -ESRCH;
 738        has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
 739        put_task_struct(task);
 740
 741        if (!has_perms) {
 742                if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
 743                        /*
 744                         * Let's make getdents(), stat(), and open()
 745                         * consistent with each other.  If a process
 746                         * may not stat() a file, it shouldn't be seen
 747                         * in procfs at all.
 748                         */
 749                        return -ENOENT;
 750                }
 751
 752                return -EPERM;
 753        }
 754        return generic_permission(inode, mask);
 755}
 756
 757
 758
 759static const struct inode_operations proc_def_inode_operations = {
 760        .setattr        = proc_setattr,
 761};
 762
 763static int proc_single_show(struct seq_file *m, void *v)
 764{
 765        struct inode *inode = m->private;
 766        struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
 767        struct pid *pid = proc_pid(inode);
 768        struct task_struct *task;
 769        int ret;
 770
 771        task = get_pid_task(pid, PIDTYPE_PID);
 772        if (!task)
 773                return -ESRCH;
 774
 775        ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 776
 777        put_task_struct(task);
 778        return ret;
 779}
 780
 781static int proc_single_open(struct inode *inode, struct file *filp)
 782{
 783        return single_open(filp, proc_single_show, inode);
 784}
 785
 786static const struct file_operations proc_single_file_operations = {
 787        .open           = proc_single_open,
 788        .read           = seq_read,
 789        .llseek         = seq_lseek,
 790        .release        = single_release,
 791};
 792
 793
 794struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 795{
 796        struct task_struct *task = get_proc_task(inode);
 797        struct mm_struct *mm = ERR_PTR(-ESRCH);
 798
 799        if (task) {
 800                mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 801                put_task_struct(task);
 802
 803                if (!IS_ERR_OR_NULL(mm)) {
 804                        /* ensure this mm_struct can't be freed */
 805                        mmgrab(mm);
 806                        /* but do not pin its memory */
 807                        mmput(mm);
 808                }
 809        }
 810
 811        return mm;
 812}
 813
 814static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 815{
 816        struct mm_struct *mm = proc_mem_open(inode, mode);
 817
 818        if (IS_ERR(mm))
 819                return PTR_ERR(mm);
 820
 821        file->private_data = mm;
 822        return 0;
 823}
 824
 825static int mem_open(struct inode *inode, struct file *file)
 826{
 827        int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 828
 829        /* OK to pass negative loff_t, we can catch out-of-range */
 830        file->f_mode |= FMODE_UNSIGNED_OFFSET;
 831
 832        return ret;
 833}
 834
 835static ssize_t mem_rw(struct file *file, char __user *buf,
 836                        size_t count, loff_t *ppos, int write)
 837{
 838        struct mm_struct *mm = file->private_data;
 839        unsigned long addr = *ppos;
 840        ssize_t copied;
 841        char *page;
 842        unsigned int flags;
 843
 844        if (!mm)
 845                return 0;
 846
 847        page = (char *)__get_free_page(GFP_KERNEL);
 848        if (!page)
 849                return -ENOMEM;
 850
 851        copied = 0;
 852        if (!mmget_not_zero(mm))
 853                goto free;
 854
 855        flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 856
 857        while (count > 0) {
 858                int this_len = min_t(int, count, PAGE_SIZE);
 859
 860                if (write && copy_from_user(page, buf, this_len)) {
 861                        copied = -EFAULT;
 862                        break;
 863                }
 864
 865                this_len = access_remote_vm(mm, addr, page, this_len, flags);
 866                if (!this_len) {
 867                        if (!copied)
 868                                copied = -EIO;
 869                        break;
 870                }
 871
 872                if (!write && copy_to_user(buf, page, this_len)) {
 873                        copied = -EFAULT;
 874                        break;
 875                }
 876
 877                buf += this_len;
 878                addr += this_len;
 879                copied += this_len;
 880                count -= this_len;
 881        }
 882        *ppos = addr;
 883
 884        mmput(mm);
 885free:
 886        free_page((unsigned long) page);
 887        return copied;
 888}
 889
 890static ssize_t mem_read(struct file *file, char __user *buf,
 891                        size_t count, loff_t *ppos)
 892{
 893        return mem_rw(file, buf, count, ppos, 0);
 894}
 895
 896static ssize_t mem_write(struct file *file, const char __user *buf,
 897                         size_t count, loff_t *ppos)
 898{
 899        return mem_rw(file, (char __user*)buf, count, ppos, 1);
 900}
 901
 902loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 903{
 904        switch (orig) {
 905        case 0:
 906                file->f_pos = offset;
 907                break;
 908        case 1:
 909                file->f_pos += offset;
 910                break;
 911        default:
 912                return -EINVAL;
 913        }
 914        force_successful_syscall_return();
 915        return file->f_pos;
 916}
 917
 918static int mem_release(struct inode *inode, struct file *file)
 919{
 920        struct mm_struct *mm = file->private_data;
 921        if (mm)
 922                mmdrop(mm);
 923        return 0;
 924}
 925
 926static const struct file_operations proc_mem_operations = {
 927        .llseek         = mem_lseek,
 928        .read           = mem_read,
 929        .write          = mem_write,
 930        .open           = mem_open,
 931        .release        = mem_release,
 932};
 933
 934static int environ_open(struct inode *inode, struct file *file)
 935{
 936        return __mem_open(inode, file, PTRACE_MODE_READ);
 937}
 938
 939static ssize_t environ_read(struct file *file, char __user *buf,
 940                        size_t count, loff_t *ppos)
 941{
 942        char *page;
 943        unsigned long src = *ppos;
 944        int ret = 0;
 945        struct mm_struct *mm = file->private_data;
 946        unsigned long env_start, env_end;
 947
 948        /* Ensure the process spawned far enough to have an environment. */
 949        if (!mm || !mm->env_end)
 950                return 0;
 951
 952        page = (char *)__get_free_page(GFP_KERNEL);
 953        if (!page)
 954                return -ENOMEM;
 955
 956        ret = 0;
 957        if (!mmget_not_zero(mm))
 958                goto free;
 959
 960        spin_lock(&mm->arg_lock);
 961        env_start = mm->env_start;
 962        env_end = mm->env_end;
 963        spin_unlock(&mm->arg_lock);
 964
 965        while (count > 0) {
 966                size_t this_len, max_len;
 967                int retval;
 968
 969                if (src >= (env_end - env_start))
 970                        break;
 971
 972                this_len = env_end - (env_start + src);
 973
 974                max_len = min_t(size_t, PAGE_SIZE, count);
 975                this_len = min(max_len, this_len);
 976
 977                retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 978
 979                if (retval <= 0) {
 980                        ret = retval;
 981                        break;
 982                }
 983
 984                if (copy_to_user(buf, page, retval)) {
 985                        ret = -EFAULT;
 986                        break;
 987                }
 988
 989                ret += retval;
 990                src += retval;
 991                buf += retval;
 992                count -= retval;
 993        }
 994        *ppos = src;
 995        mmput(mm);
 996
 997free:
 998        free_page((unsigned long) page);
 999        return ret;
1000}
1001
1002static const struct file_operations proc_environ_operations = {
1003        .open           = environ_open,
1004        .read           = environ_read,
1005        .llseek         = generic_file_llseek,
1006        .release        = mem_release,
1007};
1008
1009static int auxv_open(struct inode *inode, struct file *file)
1010{
1011        return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1012}
1013
1014static ssize_t auxv_read(struct file *file, char __user *buf,
1015                        size_t count, loff_t *ppos)
1016{
1017        struct mm_struct *mm = file->private_data;
1018        unsigned int nwords = 0;
1019
1020        if (!mm)
1021                return 0;
1022        do {
1023                nwords += 2;
1024        } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1025        return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1026                                       nwords * sizeof(mm->saved_auxv[0]));
1027}
1028
1029static const struct file_operations proc_auxv_operations = {
1030        .open           = auxv_open,
1031        .read           = auxv_read,
1032        .llseek         = generic_file_llseek,
1033        .release        = mem_release,
1034};
1035
1036static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1037                            loff_t *ppos)
1038{
1039        struct task_struct *task = get_proc_task(file_inode(file));
1040        char buffer[PROC_NUMBUF];
1041        int oom_adj = OOM_ADJUST_MIN;
1042        size_t len;
1043
1044        if (!task)
1045                return -ESRCH;
1046        if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1047                oom_adj = OOM_ADJUST_MAX;
1048        else
1049                oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1050                          OOM_SCORE_ADJ_MAX;
1051        put_task_struct(task);
1052        if (oom_adj > OOM_ADJUST_MAX)
1053                oom_adj = OOM_ADJUST_MAX;
1054        len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1055        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1056}
1057
1058static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1059{
1060        struct mm_struct *mm = NULL;
1061        struct task_struct *task;
1062        int err = 0;
1063
1064        task = get_proc_task(file_inode(file));
1065        if (!task)
1066                return -ESRCH;
1067
1068        mutex_lock(&oom_adj_mutex);
1069        if (legacy) {
1070                if (oom_adj < task->signal->oom_score_adj &&
1071                                !capable(CAP_SYS_RESOURCE)) {
1072                        err = -EACCES;
1073                        goto err_unlock;
1074                }
1075                /*
1076                 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1077                 * /proc/pid/oom_score_adj instead.
1078                 */
1079                pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1080                          current->comm, task_pid_nr(current), task_pid_nr(task),
1081                          task_pid_nr(task));
1082        } else {
1083                if ((short)oom_adj < task->signal->oom_score_adj_min &&
1084                                !capable(CAP_SYS_RESOURCE)) {
1085                        err = -EACCES;
1086                        goto err_unlock;
1087                }
1088        }
1089
1090        /*
1091         * Make sure we will check other processes sharing the mm if this is
1092         * not vfrok which wants its own oom_score_adj.
1093         * pin the mm so it doesn't go away and get reused after task_unlock
1094         */
1095        if (!task->vfork_done) {
1096                struct task_struct *p = find_lock_task_mm(task);
1097
1098                if (p) {
1099                        if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1100                                mm = p->mm;
1101                                mmgrab(mm);
1102                        }
1103                        task_unlock(p);
1104                }
1105        }
1106
1107        task->signal->oom_score_adj = oom_adj;
1108        if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1109                task->signal->oom_score_adj_min = (short)oom_adj;
1110        trace_oom_score_adj_update(task);
1111
1112        if (mm) {
1113                struct task_struct *p;
1114
1115                rcu_read_lock();
1116                for_each_process(p) {
1117                        if (same_thread_group(task, p))
1118                                continue;
1119
1120                        /* do not touch kernel threads or the global init */
1121                        if (p->flags & PF_KTHREAD || is_global_init(p))
1122                                continue;
1123
1124                        task_lock(p);
1125                        if (!p->vfork_done && process_shares_mm(p, mm)) {
1126                                p->signal->oom_score_adj = oom_adj;
1127                                if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1128                                        p->signal->oom_score_adj_min = (short)oom_adj;
1129                        }
1130                        task_unlock(p);
1131                }
1132                rcu_read_unlock();
1133                mmdrop(mm);
1134        }
1135err_unlock:
1136        mutex_unlock(&oom_adj_mutex);
1137        put_task_struct(task);
1138        return err;
1139}
1140
1141/*
1142 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1143 * kernels.  The effective policy is defined by oom_score_adj, which has a
1144 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1145 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1146 * Processes that become oom disabled via oom_adj will still be oom disabled
1147 * with this implementation.
1148 *
1149 * oom_adj cannot be removed since existing userspace binaries use it.
1150 */
1151static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1152                             size_t count, loff_t *ppos)
1153{
1154        char buffer[PROC_NUMBUF];
1155        int oom_adj;
1156        int err;
1157
1158        memset(buffer, 0, sizeof(buffer));
1159        if (count > sizeof(buffer) - 1)
1160                count = sizeof(buffer) - 1;
1161        if (copy_from_user(buffer, buf, count)) {
1162                err = -EFAULT;
1163                goto out;
1164        }
1165
1166        err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1167        if (err)
1168                goto out;
1169        if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1170             oom_adj != OOM_DISABLE) {
1171                err = -EINVAL;
1172                goto out;
1173        }
1174
1175        /*
1176         * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1177         * value is always attainable.
1178         */
1179        if (oom_adj == OOM_ADJUST_MAX)
1180                oom_adj = OOM_SCORE_ADJ_MAX;
1181        else
1182                oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1183
1184        err = __set_oom_adj(file, oom_adj, true);
1185out:
1186        return err < 0 ? err : count;
1187}
1188
1189static const struct file_operations proc_oom_adj_operations = {
1190        .read           = oom_adj_read,
1191        .write          = oom_adj_write,
1192        .llseek         = generic_file_llseek,
1193};
1194
1195static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1196                                        size_t count, loff_t *ppos)
1197{
1198        struct task_struct *task = get_proc_task(file_inode(file));
1199        char buffer[PROC_NUMBUF];
1200        short oom_score_adj = OOM_SCORE_ADJ_MIN;
1201        size_t len;
1202
1203        if (!task)
1204                return -ESRCH;
1205        oom_score_adj = task->signal->oom_score_adj;
1206        put_task_struct(task);
1207        len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1208        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1209}
1210
1211static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1212                                        size_t count, loff_t *ppos)
1213{
1214        char buffer[PROC_NUMBUF];
1215        int oom_score_adj;
1216        int err;
1217
1218        memset(buffer, 0, sizeof(buffer));
1219        if (count > sizeof(buffer) - 1)
1220                count = sizeof(buffer) - 1;
1221        if (copy_from_user(buffer, buf, count)) {
1222                err = -EFAULT;
1223                goto out;
1224        }
1225
1226        err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1227        if (err)
1228                goto out;
1229        if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1230                        oom_score_adj > OOM_SCORE_ADJ_MAX) {
1231                err = -EINVAL;
1232                goto out;
1233        }
1234
1235        err = __set_oom_adj(file, oom_score_adj, false);
1236out:
1237        return err < 0 ? err : count;
1238}
1239
1240static const struct file_operations proc_oom_score_adj_operations = {
1241        .read           = oom_score_adj_read,
1242        .write          = oom_score_adj_write,
1243        .llseek         = default_llseek,
1244};
1245
1246#ifdef CONFIG_AUDIT
1247#define TMPBUFLEN 11
1248static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1249                                  size_t count, loff_t *ppos)
1250{
1251        struct inode * inode = file_inode(file);
1252        struct task_struct *task = get_proc_task(inode);
1253        ssize_t length;
1254        char tmpbuf[TMPBUFLEN];
1255
1256        if (!task)
1257                return -ESRCH;
1258        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1259                           from_kuid(file->f_cred->user_ns,
1260                                     audit_get_loginuid(task)));
1261        put_task_struct(task);
1262        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1263}
1264
1265static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1266                                   size_t count, loff_t *ppos)
1267{
1268        struct inode * inode = file_inode(file);
1269        uid_t loginuid;
1270        kuid_t kloginuid;
1271        int rv;
1272
1273        /* Don't let kthreads write their own loginuid */
1274        if (current->flags & PF_KTHREAD)
1275                return -EPERM;
1276
1277        rcu_read_lock();
1278        if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1279                rcu_read_unlock();
1280                return -EPERM;
1281        }
1282        rcu_read_unlock();
1283
1284        if (*ppos != 0) {
1285                /* No partial writes. */
1286                return -EINVAL;
1287        }
1288
1289        rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1290        if (rv < 0)
1291                return rv;
1292
1293        /* is userspace tring to explicitly UNSET the loginuid? */
1294        if (loginuid == AUDIT_UID_UNSET) {
1295                kloginuid = INVALID_UID;
1296        } else {
1297                kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1298                if (!uid_valid(kloginuid))
1299                        return -EINVAL;
1300        }
1301
1302        rv = audit_set_loginuid(kloginuid);
1303        if (rv < 0)
1304                return rv;
1305        return count;
1306}
1307
1308static const struct file_operations proc_loginuid_operations = {
1309        .read           = proc_loginuid_read,
1310        .write          = proc_loginuid_write,
1311        .llseek         = generic_file_llseek,
1312};
1313
1314static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1315                                  size_t count, loff_t *ppos)
1316{
1317        struct inode * inode = file_inode(file);
1318        struct task_struct *task = get_proc_task(inode);
1319        ssize_t length;
1320        char tmpbuf[TMPBUFLEN];
1321
1322        if (!task)
1323                return -ESRCH;
1324        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1325                                audit_get_sessionid(task));
1326        put_task_struct(task);
1327        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1328}
1329
1330static const struct file_operations proc_sessionid_operations = {
1331        .read           = proc_sessionid_read,
1332        .llseek         = generic_file_llseek,
1333};
1334#endif
1335
1336#ifdef CONFIG_FAULT_INJECTION
1337static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1338                                      size_t count, loff_t *ppos)
1339{
1340        struct task_struct *task = get_proc_task(file_inode(file));
1341        char buffer[PROC_NUMBUF];
1342        size_t len;
1343        int make_it_fail;
1344
1345        if (!task)
1346                return -ESRCH;
1347        make_it_fail = task->make_it_fail;
1348        put_task_struct(task);
1349
1350        len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1351
1352        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1353}
1354
1355static ssize_t proc_fault_inject_write(struct file * file,
1356                        const char __user * buf, size_t count, loff_t *ppos)
1357{
1358        struct task_struct *task;
1359        char buffer[PROC_NUMBUF];
1360        int make_it_fail;
1361        int rv;
1362
1363        if (!capable(CAP_SYS_RESOURCE))
1364                return -EPERM;
1365        memset(buffer, 0, sizeof(buffer));
1366        if (count > sizeof(buffer) - 1)
1367                count = sizeof(buffer) - 1;
1368        if (copy_from_user(buffer, buf, count))
1369                return -EFAULT;
1370        rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1371        if (rv < 0)
1372                return rv;
1373        if (make_it_fail < 0 || make_it_fail > 1)
1374                return -EINVAL;
1375
1376        task = get_proc_task(file_inode(file));
1377        if (!task)
1378                return -ESRCH;
1379        task->make_it_fail = make_it_fail;
1380        put_task_struct(task);
1381
1382        return count;
1383}
1384
1385static const struct file_operations proc_fault_inject_operations = {
1386        .read           = proc_fault_inject_read,
1387        .write          = proc_fault_inject_write,
1388        .llseek         = generic_file_llseek,
1389};
1390
1391static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1392                                   size_t count, loff_t *ppos)
1393{
1394        struct task_struct *task;
1395        int err;
1396        unsigned int n;
1397
1398        err = kstrtouint_from_user(buf, count, 0, &n);
1399        if (err)
1400                return err;
1401
1402        task = get_proc_task(file_inode(file));
1403        if (!task)
1404                return -ESRCH;
1405        task->fail_nth = n;
1406        put_task_struct(task);
1407
1408        return count;
1409}
1410
1411static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1412                                  size_t count, loff_t *ppos)
1413{
1414        struct task_struct *task;
1415        char numbuf[PROC_NUMBUF];
1416        ssize_t len;
1417
1418        task = get_proc_task(file_inode(file));
1419        if (!task)
1420                return -ESRCH;
1421        len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1422        put_task_struct(task);
1423        return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1424}
1425
1426static const struct file_operations proc_fail_nth_operations = {
1427        .read           = proc_fail_nth_read,
1428        .write          = proc_fail_nth_write,
1429};
1430#endif
1431
1432
1433#ifdef CONFIG_SCHED_DEBUG
1434/*
1435 * Print out various scheduling related per-task fields:
1436 */
1437static int sched_show(struct seq_file *m, void *v)
1438{
1439        struct inode *inode = m->private;
1440        struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1441        struct task_struct *p;
1442
1443        p = get_proc_task(inode);
1444        if (!p)
1445                return -ESRCH;
1446        proc_sched_show_task(p, ns, m);
1447
1448        put_task_struct(p);
1449
1450        return 0;
1451}
1452
1453static ssize_t
1454sched_write(struct file *file, const char __user *buf,
1455            size_t count, loff_t *offset)
1456{
1457        struct inode *inode = file_inode(file);
1458        struct task_struct *p;
1459
1460        p = get_proc_task(inode);
1461        if (!p)
1462                return -ESRCH;
1463        proc_sched_set_task(p);
1464
1465        put_task_struct(p);
1466
1467        return count;
1468}
1469
1470static int sched_open(struct inode *inode, struct file *filp)
1471{
1472        return single_open(filp, sched_show, inode);
1473}
1474
1475static const struct file_operations proc_pid_sched_operations = {
1476        .open           = sched_open,
1477        .read           = seq_read,
1478        .write          = sched_write,
1479        .llseek         = seq_lseek,
1480        .release        = single_release,
1481};
1482
1483#endif
1484
1485#ifdef CONFIG_SCHED_AUTOGROUP
1486/*
1487 * Print out autogroup related information:
1488 */
1489static int sched_autogroup_show(struct seq_file *m, void *v)
1490{
1491        struct inode *inode = m->private;
1492        struct task_struct *p;
1493
1494        p = get_proc_task(inode);
1495        if (!p)
1496                return -ESRCH;
1497        proc_sched_autogroup_show_task(p, m);
1498
1499        put_task_struct(p);
1500
1501        return 0;
1502}
1503
1504static ssize_t
1505sched_autogroup_write(struct file *file, const char __user *buf,
1506            size_t count, loff_t *offset)
1507{
1508        struct inode *inode = file_inode(file);
1509        struct task_struct *p;
1510        char buffer[PROC_NUMBUF];
1511        int nice;
1512        int err;
1513
1514        memset(buffer, 0, sizeof(buffer));
1515        if (count > sizeof(buffer) - 1)
1516                count = sizeof(buffer) - 1;
1517        if (copy_from_user(buffer, buf, count))
1518                return -EFAULT;
1519
1520        err = kstrtoint(strstrip(buffer), 0, &nice);
1521        if (err < 0)
1522                return err;
1523
1524        p = get_proc_task(inode);
1525        if (!p)
1526                return -ESRCH;
1527
1528        err = proc_sched_autogroup_set_nice(p, nice);
1529        if (err)
1530                count = err;
1531
1532        put_task_struct(p);
1533
1534        return count;
1535}
1536
1537static int sched_autogroup_open(struct inode *inode, struct file *filp)
1538{
1539        int ret;
1540
1541        ret = single_open(filp, sched_autogroup_show, NULL);
1542        if (!ret) {
1543                struct seq_file *m = filp->private_data;
1544
1545                m->private = inode;
1546        }
1547        return ret;
1548}
1549
1550static const struct file_operations proc_pid_sched_autogroup_operations = {
1551        .open           = sched_autogroup_open,
1552        .read           = seq_read,
1553        .write          = sched_autogroup_write,
1554        .llseek         = seq_lseek,
1555        .release        = single_release,
1556};
1557
1558#endif /* CONFIG_SCHED_AUTOGROUP */
1559
1560#ifdef CONFIG_TIME_NS
1561static int timens_offsets_show(struct seq_file *m, void *v)
1562{
1563        struct task_struct *p;
1564
1565        p = get_proc_task(file_inode(m->file));
1566        if (!p)
1567                return -ESRCH;
1568        proc_timens_show_offsets(p, m);
1569
1570        put_task_struct(p);
1571
1572        return 0;
1573}
1574
1575static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1576                                    size_t count, loff_t *ppos)
1577{
1578        struct inode *inode = file_inode(file);
1579        struct proc_timens_offset offsets[2];
1580        char *kbuf = NULL, *pos, *next_line;
1581        struct task_struct *p;
1582        int ret, noffsets;
1583
1584        /* Only allow < page size writes at the beginning of the file */
1585        if ((*ppos != 0) || (count >= PAGE_SIZE))
1586                return -EINVAL;
1587
1588        /* Slurp in the user data */
1589        kbuf = memdup_user_nul(buf, count);
1590        if (IS_ERR(kbuf))
1591                return PTR_ERR(kbuf);
1592
1593        /* Parse the user data */
1594        ret = -EINVAL;
1595        noffsets = 0;
1596        for (pos = kbuf; pos; pos = next_line) {
1597                struct proc_timens_offset *off = &offsets[noffsets];
1598                char clock[10];
1599                int err;
1600
1601                /* Find the end of line and ensure we don't look past it */
1602                next_line = strchr(pos, '\n');
1603                if (next_line) {
1604                        *next_line = '\0';
1605                        next_line++;
1606                        if (*next_line == '\0')
1607                                next_line = NULL;
1608                }
1609
1610                err = sscanf(pos, "%9s %lld %lu", clock,
1611                                &off->val.tv_sec, &off->val.tv_nsec);
1612                if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1613                        goto out;
1614
1615                clock[sizeof(clock) - 1] = 0;
1616                if (strcmp(clock, "monotonic") == 0 ||
1617                    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1618                        off->clockid = CLOCK_MONOTONIC;
1619                else if (strcmp(clock, "boottime") == 0 ||
1620                         strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1621                        off->clockid = CLOCK_BOOTTIME;
1622                else
1623                        goto out;
1624
1625                noffsets++;
1626                if (noffsets == ARRAY_SIZE(offsets)) {
1627                        if (next_line)
1628                                count = next_line - kbuf;
1629                        break;
1630                }
1631        }
1632
1633        ret = -ESRCH;
1634        p = get_proc_task(inode);
1635        if (!p)
1636                goto out;
1637        ret = proc_timens_set_offset(file, p, offsets, noffsets);
1638        put_task_struct(p);
1639        if (ret)
1640                goto out;
1641
1642        ret = count;
1643out:
1644        kfree(kbuf);
1645        return ret;
1646}
1647
1648static int timens_offsets_open(struct inode *inode, struct file *filp)
1649{
1650        return single_open(filp, timens_offsets_show, inode);
1651}
1652
1653static const struct file_operations proc_timens_offsets_operations = {
1654        .open           = timens_offsets_open,
1655        .read           = seq_read,
1656        .write          = timens_offsets_write,
1657        .llseek         = seq_lseek,
1658        .release        = single_release,
1659};
1660#endif /* CONFIG_TIME_NS */
1661
1662static ssize_t comm_write(struct file *file, const char __user *buf,
1663                                size_t count, loff_t *offset)
1664{
1665        struct inode *inode = file_inode(file);
1666        struct task_struct *p;
1667        char buffer[TASK_COMM_LEN];
1668        const size_t maxlen = sizeof(buffer) - 1;
1669
1670        memset(buffer, 0, sizeof(buffer));
1671        if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1672                return -EFAULT;
1673
1674        p = get_proc_task(inode);
1675        if (!p)
1676                return -ESRCH;
1677
1678        if (same_thread_group(current, p))
1679                set_task_comm(p, buffer);
1680        else
1681                count = -EINVAL;
1682
1683        put_task_struct(p);
1684
1685        return count;
1686}
1687
1688static int comm_show(struct seq_file *m, void *v)
1689{
1690        struct inode *inode = m->private;
1691        struct task_struct *p;
1692
1693        p = get_proc_task(inode);
1694        if (!p)
1695                return -ESRCH;
1696
1697        proc_task_name(m, p, false);
1698        seq_putc(m, '\n');
1699
1700        put_task_struct(p);
1701
1702        return 0;
1703}
1704
1705static int comm_open(struct inode *inode, struct file *filp)
1706{
1707        return single_open(filp, comm_show, inode);
1708}
1709
1710static const struct file_operations proc_pid_set_comm_operations = {
1711        .open           = comm_open,
1712        .read           = seq_read,
1713        .write          = comm_write,
1714        .llseek         = seq_lseek,
1715        .release        = single_release,
1716};
1717
1718static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1719{
1720        struct task_struct *task;
1721        struct file *exe_file;
1722
1723        task = get_proc_task(d_inode(dentry));
1724        if (!task)
1725                return -ENOENT;
1726        exe_file = get_task_exe_file(task);
1727        put_task_struct(task);
1728        if (exe_file) {
1729                *exe_path = exe_file->f_path;
1730                path_get(&exe_file->f_path);
1731                fput(exe_file);
1732                return 0;
1733        } else
1734                return -ENOENT;
1735}
1736
1737static const char *proc_pid_get_link(struct dentry *dentry,
1738                                     struct inode *inode,
1739                                     struct delayed_call *done)
1740{
1741        struct path path;
1742        int error = -EACCES;
1743
1744        if (!dentry)
1745                return ERR_PTR(-ECHILD);
1746
1747        /* Are we allowed to snoop on the tasks file descriptors? */
1748        if (!proc_fd_access_allowed(inode))
1749                goto out;
1750
1751        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1752        if (error)
1753                goto out;
1754
1755        error = nd_jump_link(&path);
1756out:
1757        return ERR_PTR(error);
1758}
1759
1760static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1761{
1762        char *tmp = (char *)__get_free_page(GFP_KERNEL);
1763        char *pathname;
1764        int len;
1765
1766        if (!tmp)
1767                return -ENOMEM;
1768
1769        pathname = d_path(path, tmp, PAGE_SIZE);
1770        len = PTR_ERR(pathname);
1771        if (IS_ERR(pathname))
1772                goto out;
1773        len = tmp + PAGE_SIZE - 1 - pathname;
1774
1775        if (len > buflen)
1776                len = buflen;
1777        if (copy_to_user(buffer, pathname, len))
1778                len = -EFAULT;
1779 out:
1780        free_page((unsigned long)tmp);
1781        return len;
1782}
1783
1784static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1785{
1786        int error = -EACCES;
1787        struct inode *inode = d_inode(dentry);
1788        struct path path;
1789
1790        /* Are we allowed to snoop on the tasks file descriptors? */
1791        if (!proc_fd_access_allowed(inode))
1792                goto out;
1793
1794        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1795        if (error)
1796                goto out;
1797
1798        error = do_proc_readlink(&path, buffer, buflen);
1799        path_put(&path);
1800out:
1801        return error;
1802}
1803
1804const struct inode_operations proc_pid_link_inode_operations = {
1805        .readlink       = proc_pid_readlink,
1806        .get_link       = proc_pid_get_link,
1807        .setattr        = proc_setattr,
1808};
1809
1810
1811/* building an inode */
1812
1813void task_dump_owner(struct task_struct *task, umode_t mode,
1814                     kuid_t *ruid, kgid_t *rgid)
1815{
1816        /* Depending on the state of dumpable compute who should own a
1817         * proc file for a task.
1818         */
1819        const struct cred *cred;
1820        kuid_t uid;
1821        kgid_t gid;
1822
1823        if (unlikely(task->flags & PF_KTHREAD)) {
1824                *ruid = GLOBAL_ROOT_UID;
1825                *rgid = GLOBAL_ROOT_GID;
1826                return;
1827        }
1828
1829        /* Default to the tasks effective ownership */
1830        rcu_read_lock();
1831        cred = __task_cred(task);
1832        uid = cred->euid;
1833        gid = cred->egid;
1834        rcu_read_unlock();
1835
1836        /*
1837         * Before the /proc/pid/status file was created the only way to read
1838         * the effective uid of a /process was to stat /proc/pid.  Reading
1839         * /proc/pid/status is slow enough that procps and other packages
1840         * kept stating /proc/pid.  To keep the rules in /proc simple I have
1841         * made this apply to all per process world readable and executable
1842         * directories.
1843         */
1844        if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1845                struct mm_struct *mm;
1846                task_lock(task);
1847                mm = task->mm;
1848                /* Make non-dumpable tasks owned by some root */
1849                if (mm) {
1850                        if (get_dumpable(mm) != SUID_DUMP_USER) {
1851                                struct user_namespace *user_ns = mm->user_ns;
1852
1853                                uid = make_kuid(user_ns, 0);
1854                                if (!uid_valid(uid))
1855                                        uid = GLOBAL_ROOT_UID;
1856
1857                                gid = make_kgid(user_ns, 0);
1858                                if (!gid_valid(gid))
1859                                        gid = GLOBAL_ROOT_GID;
1860                        }
1861                } else {
1862                        uid = GLOBAL_ROOT_UID;
1863                        gid = GLOBAL_ROOT_GID;
1864                }
1865                task_unlock(task);
1866        }
1867        *ruid = uid;
1868        *rgid = gid;
1869}
1870
1871void proc_pid_evict_inode(struct proc_inode *ei)
1872{
1873        struct pid *pid = ei->pid;
1874
1875        if (S_ISDIR(ei->vfs_inode.i_mode)) {
1876                spin_lock(&pid->lock);
1877                hlist_del_init_rcu(&ei->sibling_inodes);
1878                spin_unlock(&pid->lock);
1879        }
1880
1881        put_pid(pid);
1882}
1883
1884struct inode *proc_pid_make_inode(struct super_block * sb,
1885                                  struct task_struct *task, umode_t mode)
1886{
1887        struct inode * inode;
1888        struct proc_inode *ei;
1889        struct pid *pid;
1890
1891        /* We need a new inode */
1892
1893        inode = new_inode(sb);
1894        if (!inode)
1895                goto out;
1896
1897        /* Common stuff */
1898        ei = PROC_I(inode);
1899        inode->i_mode = mode;
1900        inode->i_ino = get_next_ino();
1901        inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1902        inode->i_op = &proc_def_inode_operations;
1903
1904        /*
1905         * grab the reference to task.
1906         */
1907        pid = get_task_pid(task, PIDTYPE_PID);
1908        if (!pid)
1909                goto out_unlock;
1910
1911        /* Let the pid remember us for quick removal */
1912        ei->pid = pid;
1913        if (S_ISDIR(mode)) {
1914                spin_lock(&pid->lock);
1915                hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1916                spin_unlock(&pid->lock);
1917        }
1918
1919        task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1920        security_task_to_inode(task, inode);
1921
1922out:
1923        return inode;
1924
1925out_unlock:
1926        iput(inode);
1927        return NULL;
1928}
1929
1930int pid_getattr(const struct path *path, struct kstat *stat,
1931                u32 request_mask, unsigned int query_flags)
1932{
1933        struct inode *inode = d_inode(path->dentry);
1934        struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1935        struct task_struct *task;
1936
1937        generic_fillattr(inode, stat);
1938
1939        stat->uid = GLOBAL_ROOT_UID;
1940        stat->gid = GLOBAL_ROOT_GID;
1941        rcu_read_lock();
1942        task = pid_task(proc_pid(inode), PIDTYPE_PID);
1943        if (task) {
1944                if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1945                        rcu_read_unlock();
1946                        /*
1947                         * This doesn't prevent learning whether PID exists,
1948                         * it only makes getattr() consistent with readdir().
1949                         */
1950                        return -ENOENT;
1951                }
1952                task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1953        }
1954        rcu_read_unlock();
1955        return 0;
1956}
1957
1958/* dentry stuff */
1959
1960/*
1961 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1962 */
1963void pid_update_inode(struct task_struct *task, struct inode *inode)
1964{
1965        task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1966
1967        inode->i_mode &= ~(S_ISUID | S_ISGID);
1968        security_task_to_inode(task, inode);
1969}
1970
1971/*
1972 * Rewrite the inode's ownerships here because the owning task may have
1973 * performed a setuid(), etc.
1974 *
1975 */
1976static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1977{
1978        struct inode *inode;
1979        struct task_struct *task;
1980
1981        if (flags & LOOKUP_RCU)
1982                return -ECHILD;
1983
1984        inode = d_inode(dentry);
1985        task = get_proc_task(inode);
1986
1987        if (task) {
1988                pid_update_inode(task, inode);
1989                put_task_struct(task);
1990                return 1;
1991        }
1992        return 0;
1993}
1994
1995static inline bool proc_inode_is_dead(struct inode *inode)
1996{
1997        return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1998}
1999
2000int pid_delete_dentry(const struct dentry *dentry)
2001{
2002        /* Is the task we represent dead?
2003         * If so, then don't put the dentry on the lru list,
2004         * kill it immediately.
2005         */
2006        return proc_inode_is_dead(d_inode(dentry));
2007}
2008
2009const struct dentry_operations pid_dentry_operations =
2010{
2011        .d_revalidate   = pid_revalidate,
2012        .d_delete       = pid_delete_dentry,
2013};
2014
2015/* Lookups */
2016
2017/*
2018 * Fill a directory entry.
2019 *
2020 * If possible create the dcache entry and derive our inode number and
2021 * file type from dcache entry.
2022 *
2023 * Since all of the proc inode numbers are dynamically generated, the inode
2024 * numbers do not exist until the inode is cache.  This means creating the
2025 * the dcache entry in readdir is necessary to keep the inode numbers
2026 * reported by readdir in sync with the inode numbers reported
2027 * by stat.
2028 */
2029bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2030        const char *name, unsigned int len,
2031        instantiate_t instantiate, struct task_struct *task, const void *ptr)
2032{
2033        struct dentry *child, *dir = file->f_path.dentry;
2034        struct qstr qname = QSTR_INIT(name, len);
2035        struct inode *inode;
2036        unsigned type = DT_UNKNOWN;
2037        ino_t ino = 1;
2038
2039        child = d_hash_and_lookup(dir, &qname);
2040        if (!child) {
2041                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2042                child = d_alloc_parallel(dir, &qname, &wq);
2043                if (IS_ERR(child))
2044                        goto end_instantiate;
2045                if (d_in_lookup(child)) {
2046                        struct dentry *res;
2047                        res = instantiate(child, task, ptr);
2048                        d_lookup_done(child);
2049                        if (unlikely(res)) {
2050                                dput(child);
2051                                child = res;
2052                                if (IS_ERR(child))
2053                                        goto end_instantiate;
2054                        }
2055                }
2056        }
2057        inode = d_inode(child);
2058        ino = inode->i_ino;
2059        type = inode->i_mode >> 12;
2060        dput(child);
2061end_instantiate:
2062        return dir_emit(ctx, name, len, ino, type);
2063}
2064
2065/*
2066 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2067 * which represent vma start and end addresses.
2068 */
2069static int dname_to_vma_addr(struct dentry *dentry,
2070                             unsigned long *start, unsigned long *end)
2071{
2072        const char *str = dentry->d_name.name;
2073        unsigned long long sval, eval;
2074        unsigned int len;
2075
2076        if (str[0] == '0' && str[1] != '-')
2077                return -EINVAL;
2078        len = _parse_integer(str, 16, &sval);
2079        if (len & KSTRTOX_OVERFLOW)
2080                return -EINVAL;
2081        if (sval != (unsigned long)sval)
2082                return -EINVAL;
2083        str += len;
2084
2085        if (*str != '-')
2086                return -EINVAL;
2087        str++;
2088
2089        if (str[0] == '0' && str[1])
2090                return -EINVAL;
2091        len = _parse_integer(str, 16, &eval);
2092        if (len & KSTRTOX_OVERFLOW)
2093                return -EINVAL;
2094        if (eval != (unsigned long)eval)
2095                return -EINVAL;
2096        str += len;
2097
2098        if (*str != '\0')
2099                return -EINVAL;
2100
2101        *start = sval;
2102        *end = eval;
2103
2104        return 0;
2105}
2106
2107static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2108{
2109        unsigned long vm_start, vm_end;
2110        bool exact_vma_exists = false;
2111        struct mm_struct *mm = NULL;
2112        struct task_struct *task;
2113        struct inode *inode;
2114        int status = 0;
2115
2116        if (flags & LOOKUP_RCU)
2117                return -ECHILD;
2118
2119        inode = d_inode(dentry);
2120        task = get_proc_task(inode);
2121        if (!task)
2122                goto out_notask;
2123
2124        mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2125        if (IS_ERR_OR_NULL(mm))
2126                goto out;
2127
2128        if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2129                status = mmap_read_lock_killable(mm);
2130                if (!status) {
2131                        exact_vma_exists = !!find_exact_vma(mm, vm_start,
2132                                                            vm_end);
2133                        mmap_read_unlock(mm);
2134                }
2135        }
2136
2137        mmput(mm);
2138
2139        if (exact_vma_exists) {
2140                task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2141
2142                security_task_to_inode(task, inode);
2143                status = 1;
2144        }
2145
2146out:
2147        put_task_struct(task);
2148
2149out_notask:
2150        return status;
2151}
2152
2153static const struct dentry_operations tid_map_files_dentry_operations = {
2154        .d_revalidate   = map_files_d_revalidate,
2155        .d_delete       = pid_delete_dentry,
2156};
2157
2158static int map_files_get_link(struct dentry *dentry, struct path *path)
2159{
2160        unsigned long vm_start, vm_end;
2161        struct vm_area_struct *vma;
2162        struct task_struct *task;
2163        struct mm_struct *mm;
2164        int rc;
2165
2166        rc = -ENOENT;
2167        task = get_proc_task(d_inode(dentry));
2168        if (!task)
2169                goto out;
2170
2171        mm = get_task_mm(task);
2172        put_task_struct(task);
2173        if (!mm)
2174                goto out;
2175
2176        rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2177        if (rc)
2178                goto out_mmput;
2179
2180        rc = mmap_read_lock_killable(mm);
2181        if (rc)
2182                goto out_mmput;
2183
2184        rc = -ENOENT;
2185        vma = find_exact_vma(mm, vm_start, vm_end);
2186        if (vma && vma->vm_file) {
2187                *path = vma->vm_file->f_path;
2188                path_get(path);
2189                rc = 0;
2190        }
2191        mmap_read_unlock(mm);
2192
2193out_mmput:
2194        mmput(mm);
2195out:
2196        return rc;
2197}
2198
2199struct map_files_info {
2200        unsigned long   start;
2201        unsigned long   end;
2202        fmode_t         mode;
2203};
2204
2205/*
2206 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2207 * to concerns about how the symlinks may be used to bypass permissions on
2208 * ancestor directories in the path to the file in question.
2209 */
2210static const char *
2211proc_map_files_get_link(struct dentry *dentry,
2212                        struct inode *inode,
2213                        struct delayed_call *done)
2214{
2215        if (!checkpoint_restore_ns_capable(&init_user_ns))
2216                return ERR_PTR(-EPERM);
2217
2218        return proc_pid_get_link(dentry, inode, done);
2219}
2220
2221/*
2222 * Identical to proc_pid_link_inode_operations except for get_link()
2223 */
2224static const struct inode_operations proc_map_files_link_inode_operations = {
2225        .readlink       = proc_pid_readlink,
2226        .get_link       = proc_map_files_get_link,
2227        .setattr        = proc_setattr,
2228};
2229
2230static struct dentry *
2231proc_map_files_instantiate(struct dentry *dentry,
2232                           struct task_struct *task, const void *ptr)
2233{
2234        fmode_t mode = (fmode_t)(unsigned long)ptr;
2235        struct proc_inode *ei;
2236        struct inode *inode;
2237
2238        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2239                                    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2240                                    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2241        if (!inode)
2242                return ERR_PTR(-ENOENT);
2243
2244        ei = PROC_I(inode);
2245        ei->op.proc_get_link = map_files_get_link;
2246
2247        inode->i_op = &proc_map_files_link_inode_operations;
2248        inode->i_size = 64;
2249
2250        d_set_d_op(dentry, &tid_map_files_dentry_operations);
2251        return d_splice_alias(inode, dentry);
2252}
2253
2254static struct dentry *proc_map_files_lookup(struct inode *dir,
2255                struct dentry *dentry, unsigned int flags)
2256{
2257        unsigned long vm_start, vm_end;
2258        struct vm_area_struct *vma;
2259        struct task_struct *task;
2260        struct dentry *result;
2261        struct mm_struct *mm;
2262
2263        result = ERR_PTR(-ENOENT);
2264        task = get_proc_task(dir);
2265        if (!task)
2266                goto out;
2267
2268        result = ERR_PTR(-EACCES);
2269        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2270                goto out_put_task;
2271
2272        result = ERR_PTR(-ENOENT);
2273        if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2274                goto out_put_task;
2275
2276        mm = get_task_mm(task);
2277        if (!mm)
2278                goto out_put_task;
2279
2280        result = ERR_PTR(-EINTR);
2281        if (mmap_read_lock_killable(mm))
2282                goto out_put_mm;
2283
2284        result = ERR_PTR(-ENOENT);
2285        vma = find_exact_vma(mm, vm_start, vm_end);
2286        if (!vma)
2287                goto out_no_vma;
2288
2289        if (vma->vm_file)
2290                result = proc_map_files_instantiate(dentry, task,
2291                                (void *)(unsigned long)vma->vm_file->f_mode);
2292
2293out_no_vma:
2294        mmap_read_unlock(mm);
2295out_put_mm:
2296        mmput(mm);
2297out_put_task:
2298        put_task_struct(task);
2299out:
2300        return result;
2301}
2302
2303static const struct inode_operations proc_map_files_inode_operations = {
2304        .lookup         = proc_map_files_lookup,
2305        .permission     = proc_fd_permission,
2306        .setattr        = proc_setattr,
2307};
2308
2309static int
2310proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2311{
2312        struct vm_area_struct *vma;
2313        struct task_struct *task;
2314        struct mm_struct *mm;
2315        unsigned long nr_files, pos, i;
2316        GENRADIX(struct map_files_info) fa;
2317        struct map_files_info *p;
2318        int ret;
2319
2320        genradix_init(&fa);
2321
2322        ret = -ENOENT;
2323        task = get_proc_task(file_inode(file));
2324        if (!task)
2325                goto out;
2326
2327        ret = -EACCES;
2328        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2329                goto out_put_task;
2330
2331        ret = 0;
2332        if (!dir_emit_dots(file, ctx))
2333                goto out_put_task;
2334
2335        mm = get_task_mm(task);
2336        if (!mm)
2337                goto out_put_task;
2338
2339        ret = mmap_read_lock_killable(mm);
2340        if (ret) {
2341                mmput(mm);
2342                goto out_put_task;
2343        }
2344
2345        nr_files = 0;
2346
2347        /*
2348         * We need two passes here:
2349         *
2350         *  1) Collect vmas of mapped files with mmap_lock taken
2351         *  2) Release mmap_lock and instantiate entries
2352         *
2353         * otherwise we get lockdep complained, since filldir()
2354         * routine might require mmap_lock taken in might_fault().
2355         */
2356
2357        for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2358                if (!vma->vm_file)
2359                        continue;
2360                if (++pos <= ctx->pos)
2361                        continue;
2362
2363                p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2364                if (!p) {
2365                        ret = -ENOMEM;
2366                        mmap_read_unlock(mm);
2367                        mmput(mm);
2368                        goto out_put_task;
2369                }
2370
2371                p->start = vma->vm_start;
2372                p->end = vma->vm_end;
2373                p->mode = vma->vm_file->f_mode;
2374        }
2375        mmap_read_unlock(mm);
2376        mmput(mm);
2377
2378        for (i = 0; i < nr_files; i++) {
2379                char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2380                unsigned int len;
2381
2382                p = genradix_ptr(&fa, i);
2383                len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2384                if (!proc_fill_cache(file, ctx,
2385                                      buf, len,
2386                                      proc_map_files_instantiate,
2387                                      task,
2388                                      (void *)(unsigned long)p->mode))
2389                        break;
2390                ctx->pos++;
2391        }
2392
2393out_put_task:
2394        put_task_struct(task);
2395out:
2396        genradix_free(&fa);
2397        return ret;
2398}
2399
2400static const struct file_operations proc_map_files_operations = {
2401        .read           = generic_read_dir,
2402        .iterate_shared = proc_map_files_readdir,
2403        .llseek         = generic_file_llseek,
2404};
2405
2406#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2407struct timers_private {
2408        struct pid *pid;
2409        struct task_struct *task;
2410        struct sighand_struct *sighand;
2411        struct pid_namespace *ns;
2412        unsigned long flags;
2413};
2414
2415static void *timers_start(struct seq_file *m, loff_t *pos)
2416{
2417        struct timers_private *tp = m->private;
2418
2419        tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2420        if (!tp->task)
2421                return ERR_PTR(-ESRCH);
2422
2423        tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2424        if (!tp->sighand)
2425                return ERR_PTR(-ESRCH);
2426
2427        return seq_list_start(&tp->task->signal->posix_timers, *pos);
2428}
2429
2430static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2431{
2432        struct timers_private *tp = m->private;
2433        return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2434}
2435
2436static void timers_stop(struct seq_file *m, void *v)
2437{
2438        struct timers_private *tp = m->private;
2439
2440        if (tp->sighand) {
2441                unlock_task_sighand(tp->task, &tp->flags);
2442                tp->sighand = NULL;
2443        }
2444
2445        if (tp->task) {
2446                put_task_struct(tp->task);
2447                tp->task = NULL;
2448        }
2449}
2450
2451static int show_timer(struct seq_file *m, void *v)
2452{
2453        struct k_itimer *timer;
2454        struct timers_private *tp = m->private;
2455        int notify;
2456        static const char * const nstr[] = {
2457                [SIGEV_SIGNAL] = "signal",
2458                [SIGEV_NONE] = "none",
2459                [SIGEV_THREAD] = "thread",
2460        };
2461
2462        timer = list_entry((struct list_head *)v, struct k_itimer, list);
2463        notify = timer->it_sigev_notify;
2464
2465        seq_printf(m, "ID: %d\n", timer->it_id);
2466        seq_printf(m, "signal: %d/%px\n",
2467                   timer->sigq->info.si_signo,
2468                   timer->sigq->info.si_value.sival_ptr);
2469        seq_printf(m, "notify: %s/%s.%d\n",
2470                   nstr[notify & ~SIGEV_THREAD_ID],
2471                   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2472                   pid_nr_ns(timer->it_pid, tp->ns));
2473        seq_printf(m, "ClockID: %d\n", timer->it_clock);
2474
2475        return 0;
2476}
2477
2478static const struct seq_operations proc_timers_seq_ops = {
2479        .start  = timers_start,
2480        .next   = timers_next,
2481        .stop   = timers_stop,
2482        .show   = show_timer,
2483};
2484
2485static int proc_timers_open(struct inode *inode, struct file *file)
2486{
2487        struct timers_private *tp;
2488
2489        tp = __seq_open_private(file, &proc_timers_seq_ops,
2490                        sizeof(struct timers_private));
2491        if (!tp)
2492                return -ENOMEM;
2493
2494        tp->pid = proc_pid(inode);
2495        tp->ns = proc_pid_ns(inode->i_sb);
2496        return 0;
2497}
2498
2499static const struct file_operations proc_timers_operations = {
2500        .open           = proc_timers_open,
2501        .read           = seq_read,
2502        .llseek         = seq_lseek,
2503        .release        = seq_release_private,
2504};
2505#endif
2506
2507static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2508                                        size_t count, loff_t *offset)
2509{
2510        struct inode *inode = file_inode(file);
2511        struct task_struct *p;
2512        u64 slack_ns;
2513        int err;
2514
2515        err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2516        if (err < 0)
2517                return err;
2518
2519        p = get_proc_task(inode);
2520        if (!p)
2521                return -ESRCH;
2522
2523        if (p != current) {
2524                rcu_read_lock();
2525                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2526                        rcu_read_unlock();
2527                        count = -EPERM;
2528                        goto out;
2529                }
2530                rcu_read_unlock();
2531
2532                err = security_task_setscheduler(p);
2533                if (err) {
2534                        count = err;
2535                        goto out;
2536                }
2537        }
2538
2539        task_lock(p);
2540        if (slack_ns == 0)
2541                p->timer_slack_ns = p->default_timer_slack_ns;
2542        else
2543                p->timer_slack_ns = slack_ns;
2544        task_unlock(p);
2545
2546out:
2547        put_task_struct(p);
2548
2549        return count;
2550}
2551
2552static int timerslack_ns_show(struct seq_file *m, void *v)
2553{
2554        struct inode *inode = m->private;
2555        struct task_struct *p;
2556        int err = 0;
2557
2558        p = get_proc_task(inode);
2559        if (!p)
2560                return -ESRCH;
2561
2562        if (p != current) {
2563                rcu_read_lock();
2564                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2565                        rcu_read_unlock();
2566                        err = -EPERM;
2567                        goto out;
2568                }
2569                rcu_read_unlock();
2570
2571                err = security_task_getscheduler(p);
2572                if (err)
2573                        goto out;
2574        }
2575
2576        task_lock(p);
2577        seq_printf(m, "%llu\n", p->timer_slack_ns);
2578        task_unlock(p);
2579
2580out:
2581        put_task_struct(p);
2582
2583        return err;
2584}
2585
2586static int timerslack_ns_open(struct inode *inode, struct file *filp)
2587{
2588        return single_open(filp, timerslack_ns_show, inode);
2589}
2590
2591static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2592        .open           = timerslack_ns_open,
2593        .read           = seq_read,
2594        .write          = timerslack_ns_write,
2595        .llseek         = seq_lseek,
2596        .release        = single_release,
2597};
2598
2599static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2600        struct task_struct *task, const void *ptr)
2601{
2602        const struct pid_entry *p = ptr;
2603        struct inode *inode;
2604        struct proc_inode *ei;
2605
2606        inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2607        if (!inode)
2608                return ERR_PTR(-ENOENT);
2609
2610        ei = PROC_I(inode);
2611        if (S_ISDIR(inode->i_mode))
2612                set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2613        if (p->iop)
2614                inode->i_op = p->iop;
2615        if (p->fop)
2616                inode->i_fop = p->fop;
2617        ei->op = p->op;
2618        pid_update_inode(task, inode);
2619        d_set_d_op(dentry, &pid_dentry_operations);
2620        return d_splice_alias(inode, dentry);
2621}
2622
2623static struct dentry *proc_pident_lookup(struct inode *dir, 
2624                                         struct dentry *dentry,
2625                                         const struct pid_entry *p,
2626                                         const struct pid_entry *end)
2627{
2628        struct task_struct *task = get_proc_task(dir);
2629        struct dentry *res = ERR_PTR(-ENOENT);
2630
2631        if (!task)
2632                goto out_no_task;
2633
2634        /*
2635         * Yes, it does not scale. And it should not. Don't add
2636         * new entries into /proc/<tgid>/ without very good reasons.
2637         */
2638        for (; p < end; p++) {
2639                if (p->len != dentry->d_name.len)
2640                        continue;
2641                if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2642                        res = proc_pident_instantiate(dentry, task, p);
2643                        break;
2644                }
2645        }
2646        put_task_struct(task);
2647out_no_task:
2648        return res;
2649}
2650
2651static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2652                const struct pid_entry *ents, unsigned int nents)
2653{
2654        struct task_struct *task = get_proc_task(file_inode(file));
2655        const struct pid_entry *p;
2656
2657        if (!task)
2658                return -ENOENT;
2659
2660        if (!dir_emit_dots(file, ctx))
2661                goto out;
2662
2663        if (ctx->pos >= nents + 2)
2664                goto out;
2665
2666        for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2667                if (!proc_fill_cache(file, ctx, p->name, p->len,
2668                                proc_pident_instantiate, task, p))
2669                        break;
2670                ctx->pos++;
2671        }
2672out:
2673        put_task_struct(task);
2674        return 0;
2675}
2676
2677#ifdef CONFIG_SECURITY
2678static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2679                                  size_t count, loff_t *ppos)
2680{
2681        struct inode * inode = file_inode(file);
2682        char *p = NULL;
2683        ssize_t length;
2684        struct task_struct *task = get_proc_task(inode);
2685
2686        if (!task)
2687                return -ESRCH;
2688
2689        length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2690                                      (char*)file->f_path.dentry->d_name.name,
2691                                      &p);
2692        put_task_struct(task);
2693        if (length > 0)
2694                length = simple_read_from_buffer(buf, count, ppos, p, length);
2695        kfree(p);
2696        return length;
2697}
2698
2699static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2700                                   size_t count, loff_t *ppos)
2701{
2702        struct inode * inode = file_inode(file);
2703        struct task_struct *task;
2704        void *page;
2705        int rv;
2706
2707        rcu_read_lock();
2708        task = pid_task(proc_pid(inode), PIDTYPE_PID);
2709        if (!task) {
2710                rcu_read_unlock();
2711                return -ESRCH;
2712        }
2713        /* A task may only write its own attributes. */
2714        if (current != task) {
2715                rcu_read_unlock();
2716                return -EACCES;
2717        }
2718        /* Prevent changes to overridden credentials. */
2719        if (current_cred() != current_real_cred()) {
2720                rcu_read_unlock();
2721                return -EBUSY;
2722        }
2723        rcu_read_unlock();
2724
2725        if (count > PAGE_SIZE)
2726                count = PAGE_SIZE;
2727
2728        /* No partial writes. */
2729        if (*ppos != 0)
2730                return -EINVAL;
2731
2732        page = memdup_user(buf, count);
2733        if (IS_ERR(page)) {
2734                rv = PTR_ERR(page);
2735                goto out;
2736        }
2737
2738        /* Guard against adverse ptrace interaction */
2739        rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2740        if (rv < 0)
2741                goto out_free;
2742
2743        rv = security_setprocattr(PROC_I(inode)->op.lsm,
2744                                  file->f_path.dentry->d_name.name, page,
2745                                  count);
2746        mutex_unlock(&current->signal->cred_guard_mutex);
2747out_free:
2748        kfree(page);
2749out:
2750        return rv;
2751}
2752
2753static const struct file_operations proc_pid_attr_operations = {
2754        .read           = proc_pid_attr_read,
2755        .write          = proc_pid_attr_write,
2756        .llseek         = generic_file_llseek,
2757};
2758
2759#define LSM_DIR_OPS(LSM) \
2760static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2761                             struct dir_context *ctx) \
2762{ \
2763        return proc_pident_readdir(filp, ctx, \
2764                                   LSM##_attr_dir_stuff, \
2765                                   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2766} \
2767\
2768static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2769        .read           = generic_read_dir, \
2770        .iterate        = proc_##LSM##_attr_dir_iterate, \
2771        .llseek         = default_llseek, \
2772}; \
2773\
2774static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2775                                struct dentry *dentry, unsigned int flags) \
2776{ \
2777        return proc_pident_lookup(dir, dentry, \
2778                                  LSM##_attr_dir_stuff, \
2779                                  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2780} \
2781\
2782static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2783        .lookup         = proc_##LSM##_attr_dir_lookup, \
2784        .getattr        = pid_getattr, \
2785        .setattr        = proc_setattr, \
2786}
2787
2788#ifdef CONFIG_SECURITY_SMACK
2789static const struct pid_entry smack_attr_dir_stuff[] = {
2790        ATTR("smack", "current",        0666),
2791};
2792LSM_DIR_OPS(smack);
2793#endif
2794
2795#ifdef CONFIG_SECURITY_APPARMOR
2796static const struct pid_entry apparmor_attr_dir_stuff[] = {
2797        ATTR("apparmor", "current",     0666),
2798        ATTR("apparmor", "prev",        0444),
2799        ATTR("apparmor", "exec",        0666),
2800};
2801LSM_DIR_OPS(apparmor);
2802#endif
2803
2804static const struct pid_entry attr_dir_stuff[] = {
2805        ATTR(NULL, "current",           0666),
2806        ATTR(NULL, "prev",              0444),
2807        ATTR(NULL, "exec",              0666),
2808        ATTR(NULL, "fscreate",          0666),
2809        ATTR(NULL, "keycreate",         0666),
2810        ATTR(NULL, "sockcreate",        0666),
2811#ifdef CONFIG_SECURITY_SMACK
2812        DIR("smack",                    0555,
2813            proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2814#endif
2815#ifdef CONFIG_SECURITY_APPARMOR
2816        DIR("apparmor",                 0555,
2817            proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2818#endif
2819};
2820
2821static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2822{
2823        return proc_pident_readdir(file, ctx, 
2824                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2825}
2826
2827static const struct file_operations proc_attr_dir_operations = {
2828        .read           = generic_read_dir,
2829        .iterate_shared = proc_attr_dir_readdir,
2830        .llseek         = generic_file_llseek,
2831};
2832
2833static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2834                                struct dentry *dentry, unsigned int flags)
2835{
2836        return proc_pident_lookup(dir, dentry,
2837                                  attr_dir_stuff,
2838                                  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2839}
2840
2841static const struct inode_operations proc_attr_dir_inode_operations = {
2842        .lookup         = proc_attr_dir_lookup,
2843        .getattr        = pid_getattr,
2844        .setattr        = proc_setattr,
2845};
2846
2847#endif
2848
2849#ifdef CONFIG_ELF_CORE
2850static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2851                                         size_t count, loff_t *ppos)
2852{
2853        struct task_struct *task = get_proc_task(file_inode(file));
2854        struct mm_struct *mm;
2855        char buffer[PROC_NUMBUF];
2856        size_t len;
2857        int ret;
2858
2859        if (!task)
2860                return -ESRCH;
2861
2862        ret = 0;
2863        mm = get_task_mm(task);
2864        if (mm) {
2865                len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2866                               ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2867                                MMF_DUMP_FILTER_SHIFT));
2868                mmput(mm);
2869                ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2870        }
2871
2872        put_task_struct(task);
2873
2874        return ret;
2875}
2876
2877static ssize_t proc_coredump_filter_write(struct file *file,
2878                                          const char __user *buf,
2879                                          size_t count,
2880                                          loff_t *ppos)
2881{
2882        struct task_struct *task;
2883        struct mm_struct *mm;
2884        unsigned int val;
2885        int ret;
2886        int i;
2887        unsigned long mask;
2888
2889        ret = kstrtouint_from_user(buf, count, 0, &val);
2890        if (ret < 0)
2891                return ret;
2892
2893        ret = -ESRCH;
2894        task = get_proc_task(file_inode(file));
2895        if (!task)
2896                goto out_no_task;
2897
2898        mm = get_task_mm(task);
2899        if (!mm)
2900                goto out_no_mm;
2901        ret = 0;
2902
2903        for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2904                if (val & mask)
2905                        set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2906                else
2907                        clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2908        }
2909
2910        mmput(mm);
2911 out_no_mm:
2912        put_task_struct(task);
2913 out_no_task:
2914        if (ret < 0)
2915                return ret;
2916        return count;
2917}
2918
2919static const struct file_operations proc_coredump_filter_operations = {
2920        .read           = proc_coredump_filter_read,
2921        .write          = proc_coredump_filter_write,
2922        .llseek         = generic_file_llseek,
2923};
2924#endif
2925
2926#ifdef CONFIG_TASK_IO_ACCOUNTING
2927static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2928{
2929        struct task_io_accounting acct = task->ioac;
2930        unsigned long flags;
2931        int result;
2932
2933        result = mutex_lock_killable(&task->signal->exec_update_mutex);
2934        if (result)
2935                return result;
2936
2937        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2938                result = -EACCES;
2939                goto out_unlock;
2940        }
2941
2942        if (whole && lock_task_sighand(task, &flags)) {
2943                struct task_struct *t = task;
2944
2945                task_io_accounting_add(&acct, &task->signal->ioac);
2946                while_each_thread(task, t)
2947                        task_io_accounting_add(&acct, &t->ioac);
2948
2949                unlock_task_sighand(task, &flags);
2950        }
2951        seq_printf(m,
2952                   "rchar: %llu\n"
2953                   "wchar: %llu\n"
2954                   "syscr: %llu\n"
2955                   "syscw: %llu\n"
2956                   "read_bytes: %llu\n"
2957                   "write_bytes: %llu\n"
2958                   "cancelled_write_bytes: %llu\n",
2959                   (unsigned long long)acct.rchar,
2960                   (unsigned long long)acct.wchar,
2961                   (unsigned long long)acct.syscr,
2962                   (unsigned long long)acct.syscw,
2963                   (unsigned long long)acct.read_bytes,
2964                   (unsigned long long)acct.write_bytes,
2965                   (unsigned long long)acct.cancelled_write_bytes);
2966        result = 0;
2967
2968out_unlock:
2969        mutex_unlock(&task->signal->exec_update_mutex);
2970        return result;
2971}
2972
2973static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2974                                  struct pid *pid, struct task_struct *task)
2975{
2976        return do_io_accounting(task, m, 0);
2977}
2978
2979static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2980                                   struct pid *pid, struct task_struct *task)
2981{
2982        return do_io_accounting(task, m, 1);
2983}
2984#endif /* CONFIG_TASK_IO_ACCOUNTING */
2985
2986#ifdef CONFIG_USER_NS
2987static int proc_id_map_open(struct inode *inode, struct file *file,
2988        const struct seq_operations *seq_ops)
2989{
2990        struct user_namespace *ns = NULL;
2991        struct task_struct *task;
2992        struct seq_file *seq;
2993        int ret = -EINVAL;
2994
2995        task = get_proc_task(inode);
2996        if (task) {
2997                rcu_read_lock();
2998                ns = get_user_ns(task_cred_xxx(task, user_ns));
2999                rcu_read_unlock();
3000                put_task_struct(task);
3001        }
3002        if (!ns)
3003                goto err;
3004
3005        ret = seq_open(file, seq_ops);
3006        if (ret)
3007                goto err_put_ns;
3008
3009        seq = file->private_data;
3010        seq->private = ns;
3011
3012        return 0;
3013err_put_ns:
3014        put_user_ns(ns);
3015err:
3016        return ret;
3017}
3018
3019static int proc_id_map_release(struct inode *inode, struct file *file)
3020{
3021        struct seq_file *seq = file->private_data;
3022        struct user_namespace *ns = seq->private;
3023        put_user_ns(ns);
3024        return seq_release(inode, file);
3025}
3026
3027static int proc_uid_map_open(struct inode *inode, struct file *file)
3028{
3029        return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3030}
3031
3032static int proc_gid_map_open(struct inode *inode, struct file *file)
3033{
3034        return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3035}
3036
3037static int proc_projid_map_open(struct inode *inode, struct file *file)
3038{
3039        return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3040}
3041
3042static const struct file_operations proc_uid_map_operations = {
3043        .open           = proc_uid_map_open,
3044        .write          = proc_uid_map_write,
3045        .read           = seq_read,
3046        .llseek         = seq_lseek,
3047        .release        = proc_id_map_release,
3048};
3049
3050static const struct file_operations proc_gid_map_operations = {
3051        .open           = proc_gid_map_open,
3052        .write          = proc_gid_map_write,
3053        .read           = seq_read,
3054        .llseek         = seq_lseek,
3055        .release        = proc_id_map_release,
3056};
3057
3058static const struct file_operations proc_projid_map_operations = {
3059        .open           = proc_projid_map_open,
3060        .write          = proc_projid_map_write,
3061        .read           = seq_read,
3062        .llseek         = seq_lseek,
3063        .release        = proc_id_map_release,
3064};
3065
3066static int proc_setgroups_open(struct inode *inode, struct file *file)
3067{
3068        struct user_namespace *ns = NULL;
3069        struct task_struct *task;
3070        int ret;
3071
3072        ret = -ESRCH;
3073        task = get_proc_task(inode);
3074        if (task) {
3075                rcu_read_lock();
3076                ns = get_user_ns(task_cred_xxx(task, user_ns));
3077                rcu_read_unlock();
3078                put_task_struct(task);
3079        }
3080        if (!ns)
3081                goto err;
3082
3083        if (file->f_mode & FMODE_WRITE) {
3084                ret = -EACCES;
3085                if (!ns_capable(ns, CAP_SYS_ADMIN))
3086                        goto err_put_ns;
3087        }
3088
3089        ret = single_open(file, &proc_setgroups_show, ns);
3090        if (ret)
3091                goto err_put_ns;
3092
3093        return 0;
3094err_put_ns:
3095        put_user_ns(ns);
3096err:
3097        return ret;
3098}
3099
3100static int proc_setgroups_release(struct inode *inode, struct file *file)
3101{
3102        struct seq_file *seq = file->private_data;
3103        struct user_namespace *ns = seq->private;
3104        int ret = single_release(inode, file);
3105        put_user_ns(ns);
3106        return ret;
3107}
3108
3109static const struct file_operations proc_setgroups_operations = {
3110        .open           = proc_setgroups_open,
3111        .write          = proc_setgroups_write,
3112        .read           = seq_read,
3113        .llseek         = seq_lseek,
3114        .release        = proc_setgroups_release,
3115};
3116#endif /* CONFIG_USER_NS */
3117
3118static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3119                                struct pid *pid, struct task_struct *task)
3120{
3121        int err = lock_trace(task);
3122        if (!err) {
3123                seq_printf(m, "%08x\n", task->personality);
3124                unlock_trace(task);
3125        }
3126        return err;
3127}
3128
3129#ifdef CONFIG_LIVEPATCH
3130static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3131                                struct pid *pid, struct task_struct *task)
3132{
3133        seq_printf(m, "%d\n", task->patch_state);
3134        return 0;
3135}
3136#endif /* CONFIG_LIVEPATCH */
3137
3138#ifdef CONFIG_STACKLEAK_METRICS
3139static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3140                                struct pid *pid, struct task_struct *task)
3141{
3142        unsigned long prev_depth = THREAD_SIZE -
3143                                (task->prev_lowest_stack & (THREAD_SIZE - 1));
3144        unsigned long depth = THREAD_SIZE -
3145                                (task->lowest_stack & (THREAD_SIZE - 1));
3146
3147        seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3148                                                        prev_depth, depth);
3149        return 0;
3150}
3151#endif /* CONFIG_STACKLEAK_METRICS */
3152
3153/*
3154 * Thread groups
3155 */
3156static const struct file_operations proc_task_operations;
3157static const struct inode_operations proc_task_inode_operations;
3158
3159static const struct pid_entry tgid_base_stuff[] = {
3160        DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3161        DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3162        DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3163        DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3164        DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3165#ifdef CONFIG_NET
3166        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3167#endif
3168        REG("environ",    S_IRUSR, proc_environ_operations),
3169        REG("auxv",       S_IRUSR, proc_auxv_operations),
3170        ONE("status",     S_IRUGO, proc_pid_status),
3171        ONE("personality", S_IRUSR, proc_pid_personality),
3172        ONE("limits",     S_IRUGO, proc_pid_limits),
3173#ifdef CONFIG_SCHED_DEBUG
3174        REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3175#endif
3176#ifdef CONFIG_SCHED_AUTOGROUP
3177        REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3178#endif
3179#ifdef CONFIG_TIME_NS
3180        REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3181#endif
3182        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3183#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3184        ONE("syscall",    S_IRUSR, proc_pid_syscall),
3185#endif
3186        REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3187        ONE("stat",       S_IRUGO, proc_tgid_stat),
3188        ONE("statm",      S_IRUGO, proc_pid_statm),
3189        REG("maps",       S_IRUGO, proc_pid_maps_operations),
3190#ifdef CONFIG_NUMA
3191        REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3192#endif
3193        REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3194        LNK("cwd",        proc_cwd_link),
3195        LNK("root",       proc_root_link),
3196        LNK("exe",        proc_exe_link),
3197        REG("mounts",     S_IRUGO, proc_mounts_operations),
3198        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3199        REG("mountstats", S_IRUSR, proc_mountstats_operations),
3200#ifdef CONFIG_PROC_PAGE_MONITOR
3201        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3202        REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3203        REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3204        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3205#endif
3206#ifdef CONFIG_SECURITY
3207        DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3208#endif
3209#ifdef CONFIG_KALLSYMS
3210        ONE("wchan",      S_IRUGO, proc_pid_wchan),
3211#endif
3212#ifdef CONFIG_STACKTRACE
3213        ONE("stack",      S_IRUSR, proc_pid_stack),
3214#endif
3215#ifdef CONFIG_SCHED_INFO
3216        ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3217#endif
3218#ifdef CONFIG_LATENCYTOP
3219        REG("latency",  S_IRUGO, proc_lstats_operations),
3220#endif
3221#ifdef CONFIG_PROC_PID_CPUSET
3222        ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3223#endif
3224#ifdef CONFIG_CGROUPS
3225        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3226#endif
3227#ifdef CONFIG_PROC_CPU_RESCTRL
3228        ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3229#endif
3230        ONE("oom_score",  S_IRUGO, proc_oom_score),
3231        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3232        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3233#ifdef CONFIG_AUDIT
3234        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3235        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3236#endif
3237#ifdef CONFIG_FAULT_INJECTION
3238        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3239        REG("fail-nth", 0644, proc_fail_nth_operations),
3240#endif
3241#ifdef CONFIG_ELF_CORE
3242        REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3243#endif
3244#ifdef CONFIG_TASK_IO_ACCOUNTING
3245        ONE("io",       S_IRUSR, proc_tgid_io_accounting),
3246#endif
3247#ifdef CONFIG_USER_NS
3248        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3249        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3250        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3251        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3252#endif
3253#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3254        REG("timers",     S_IRUGO, proc_timers_operations),
3255#endif
3256        REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3257#ifdef CONFIG_LIVEPATCH
3258        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3259#endif
3260#ifdef CONFIG_STACKLEAK_METRICS
3261        ONE("stack_depth", S_IRUGO, proc_stack_depth),
3262#endif
3263#ifdef CONFIG_PROC_PID_ARCH_STATUS
3264        ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3265#endif
3266};
3267
3268static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3269{
3270        return proc_pident_readdir(file, ctx,
3271                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3272}
3273
3274static const struct file_operations proc_tgid_base_operations = {
3275        .read           = generic_read_dir,
3276        .iterate_shared = proc_tgid_base_readdir,
3277        .llseek         = generic_file_llseek,
3278};
3279
3280struct pid *tgid_pidfd_to_pid(const struct file *file)
3281{
3282        if (file->f_op != &proc_tgid_base_operations)
3283                return ERR_PTR(-EBADF);
3284
3285        return proc_pid(file_inode(file));
3286}
3287
3288static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3289{
3290        return proc_pident_lookup(dir, dentry,
3291                                  tgid_base_stuff,
3292                                  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3293}
3294
3295static const struct inode_operations proc_tgid_base_inode_operations = {
3296        .lookup         = proc_tgid_base_lookup,
3297        .getattr        = pid_getattr,
3298        .setattr        = proc_setattr,
3299        .permission     = proc_pid_permission,
3300};
3301
3302/**
3303 * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3304 * @pid: pid that should be flushed.
3305 *
3306 * This function walks a list of inodes (that belong to any proc
3307 * filesystem) that are attached to the pid and flushes them from
3308 * the dentry cache.
3309 *
3310 * It is safe and reasonable to cache /proc entries for a task until
3311 * that task exits.  After that they just clog up the dcache with
3312 * useless entries, possibly causing useful dcache entries to be
3313 * flushed instead.  This routine is provided to flush those useless
3314 * dcache entries when a process is reaped.
3315 *
3316 * NOTE: This routine is just an optimization so it does not guarantee
3317 *       that no dcache entries will exist after a process is reaped
3318 *       it just makes it very unlikely that any will persist.
3319 */
3320
3321void proc_flush_pid(struct pid *pid)
3322{
3323        proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3324}
3325
3326static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3327                                   struct task_struct *task, const void *ptr)
3328{
3329        struct inode *inode;
3330
3331        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3332        if (!inode)
3333                return ERR_PTR(-ENOENT);
3334
3335        inode->i_op = &proc_tgid_base_inode_operations;
3336        inode->i_fop = &proc_tgid_base_operations;
3337        inode->i_flags|=S_IMMUTABLE;
3338
3339        set_nlink(inode, nlink_tgid);
3340        pid_update_inode(task, inode);
3341
3342        d_set_d_op(dentry, &pid_dentry_operations);
3343        return d_splice_alias(inode, dentry);
3344}
3345
3346struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3347{
3348        struct task_struct *task;
3349        unsigned tgid;
3350        struct proc_fs_info *fs_info;
3351        struct pid_namespace *ns;
3352        struct dentry *result = ERR_PTR(-ENOENT);
3353
3354        tgid = name_to_int(&dentry->d_name);
3355        if (tgid == ~0U)
3356                goto out;
3357
3358        fs_info = proc_sb_info(dentry->d_sb);
3359        ns = fs_info->pid_ns;
3360        rcu_read_lock();
3361        task = find_task_by_pid_ns(tgid, ns);
3362        if (task)
3363                get_task_struct(task);
3364        rcu_read_unlock();
3365        if (!task)
3366                goto out;
3367
3368        /* Limit procfs to only ptraceable tasks */
3369        if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3370                if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3371                        goto out_put_task;
3372        }
3373
3374        result = proc_pid_instantiate(dentry, task, NULL);
3375out_put_task:
3376        put_task_struct(task);
3377out:
3378        return result;
3379}
3380
3381/*
3382 * Find the first task with tgid >= tgid
3383 *
3384 */
3385struct tgid_iter {
3386        unsigned int tgid;
3387        struct task_struct *task;
3388};
3389static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3390{
3391        struct pid *pid;
3392
3393        if (iter.task)
3394                put_task_struct(iter.task);
3395        rcu_read_lock();
3396retry:
3397        iter.task = NULL;
3398        pid = find_ge_pid(iter.tgid, ns);
3399        if (pid) {
3400                iter.tgid = pid_nr_ns(pid, ns);
3401                iter.task = pid_task(pid, PIDTYPE_TGID);
3402                if (!iter.task) {
3403                        iter.tgid += 1;
3404                        goto retry;
3405                }
3406                get_task_struct(iter.task);
3407        }
3408        rcu_read_unlock();
3409        return iter;
3410}
3411
3412#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3413
3414/* for the /proc/ directory itself, after non-process stuff has been done */
3415int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3416{
3417        struct tgid_iter iter;
3418        struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3419        struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3420        loff_t pos = ctx->pos;
3421
3422        if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3423                return 0;
3424
3425        if (pos == TGID_OFFSET - 2) {
3426                struct inode *inode = d_inode(fs_info->proc_self);
3427                if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3428                        return 0;
3429                ctx->pos = pos = pos + 1;
3430        }
3431        if (pos == TGID_OFFSET - 1) {
3432                struct inode *inode = d_inode(fs_info->proc_thread_self);
3433                if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3434                        return 0;
3435                ctx->pos = pos = pos + 1;
3436        }
3437        iter.tgid = pos - TGID_OFFSET;
3438        iter.task = NULL;
3439        for (iter = next_tgid(ns, iter);
3440             iter.task;
3441             iter.tgid += 1, iter = next_tgid(ns, iter)) {
3442                char name[10 + 1];
3443                unsigned int len;
3444
3445                cond_resched();
3446                if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3447                        continue;
3448
3449                len = snprintf(name, sizeof(name), "%u", iter.tgid);
3450                ctx->pos = iter.tgid + TGID_OFFSET;
3451                if (!proc_fill_cache(file, ctx, name, len,
3452                                     proc_pid_instantiate, iter.task, NULL)) {
3453                        put_task_struct(iter.task);
3454                        return 0;
3455                }
3456        }
3457        ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3458        return 0;
3459}
3460
3461/*
3462 * proc_tid_comm_permission is a special permission function exclusively
3463 * used for the node /proc/<pid>/task/<tid>/comm.
3464 * It bypasses generic permission checks in the case where a task of the same
3465 * task group attempts to access the node.
3466 * The rationale behind this is that glibc and bionic access this node for
3467 * cross thread naming (pthread_set/getname_np(!self)). However, if
3468 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3469 * which locks out the cross thread naming implementation.
3470 * This function makes sure that the node is always accessible for members of
3471 * same thread group.
3472 */
3473static int proc_tid_comm_permission(struct inode *inode, int mask)
3474{
3475        bool is_same_tgroup;
3476        struct task_struct *task;
3477
3478        task = get_proc_task(inode);
3479        if (!task)
3480                return -ESRCH;
3481        is_same_tgroup = same_thread_group(current, task);
3482        put_task_struct(task);
3483
3484        if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3485                /* This file (/proc/<pid>/task/<tid>/comm) can always be
3486                 * read or written by the members of the corresponding
3487                 * thread group.
3488                 */
3489                return 0;
3490        }
3491
3492        return generic_permission(inode, mask);
3493}
3494
3495static const struct inode_operations proc_tid_comm_inode_operations = {
3496                .permission = proc_tid_comm_permission,
3497};
3498
3499/*
3500 * Tasks
3501 */
3502static const struct pid_entry tid_base_stuff[] = {
3503        DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3504        DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3505        DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3506#ifdef CONFIG_NET
3507        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3508#endif
3509        REG("environ",   S_IRUSR, proc_environ_operations),
3510        REG("auxv",      S_IRUSR, proc_auxv_operations),
3511        ONE("status",    S_IRUGO, proc_pid_status),
3512        ONE("personality", S_IRUSR, proc_pid_personality),
3513        ONE("limits",    S_IRUGO, proc_pid_limits),
3514#ifdef CONFIG_SCHED_DEBUG
3515        REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3516#endif
3517        NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3518                         &proc_tid_comm_inode_operations,
3519                         &proc_pid_set_comm_operations, {}),
3520#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3521        ONE("syscall",   S_IRUSR, proc_pid_syscall),
3522#endif
3523        REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3524        ONE("stat",      S_IRUGO, proc_tid_stat),
3525        ONE("statm",     S_IRUGO, proc_pid_statm),
3526        REG("maps",      S_IRUGO, proc_pid_maps_operations),
3527#ifdef CONFIG_PROC_CHILDREN
3528        REG("children",  S_IRUGO, proc_tid_children_operations),
3529#endif
3530#ifdef CONFIG_NUMA
3531        REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3532#endif
3533        REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3534        LNK("cwd",       proc_cwd_link),
3535        LNK("root",      proc_root_link),
3536        LNK("exe",       proc_exe_link),
3537        REG("mounts",    S_IRUGO, proc_mounts_operations),
3538        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3539#ifdef CONFIG_PROC_PAGE_MONITOR
3540        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3541        REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3542        REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3543        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3544#endif
3545#ifdef CONFIG_SECURITY
3546        DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3547#endif
3548#ifdef CONFIG_KALLSYMS
3549        ONE("wchan",     S_IRUGO, proc_pid_wchan),
3550#endif
3551#ifdef CONFIG_STACKTRACE
3552        ONE("stack",      S_IRUSR, proc_pid_stack),
3553#endif
3554#ifdef CONFIG_SCHED_INFO
3555        ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3556#endif
3557#ifdef CONFIG_LATENCYTOP
3558        REG("latency",  S_IRUGO, proc_lstats_operations),
3559#endif
3560#ifdef CONFIG_PROC_PID_CPUSET
3561        ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3562#endif
3563#ifdef CONFIG_CGROUPS
3564        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3565#endif
3566#ifdef CONFIG_PROC_CPU_RESCTRL
3567        ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3568#endif
3569        ONE("oom_score", S_IRUGO, proc_oom_score),
3570        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3571        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3572#ifdef CONFIG_AUDIT
3573        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3574        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3575#endif
3576#ifdef CONFIG_FAULT_INJECTION
3577        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3578        REG("fail-nth", 0644, proc_fail_nth_operations),
3579#endif
3580#ifdef CONFIG_TASK_IO_ACCOUNTING
3581        ONE("io",       S_IRUSR, proc_tid_io_accounting),
3582#endif
3583#ifdef CONFIG_USER_NS
3584        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3585        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3586        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3587        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3588#endif
3589#ifdef CONFIG_LIVEPATCH
3590        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3591#endif
3592#ifdef CONFIG_PROC_PID_ARCH_STATUS
3593        ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3594#endif
3595};
3596
3597static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3598{
3599        return proc_pident_readdir(file, ctx,
3600                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3601}
3602
3603static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3604{
3605        return proc_pident_lookup(dir, dentry,
3606                                  tid_base_stuff,
3607                                  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3608}
3609
3610static const struct file_operations proc_tid_base_operations = {
3611        .read           = generic_read_dir,
3612        .iterate_shared = proc_tid_base_readdir,
3613        .llseek         = generic_file_llseek,
3614};
3615
3616static const struct inode_operations proc_tid_base_inode_operations = {
3617        .lookup         = proc_tid_base_lookup,
3618        .getattr        = pid_getattr,
3619        .setattr        = proc_setattr,
3620};
3621
3622static struct dentry *proc_task_instantiate(struct dentry *dentry,
3623        struct task_struct *task, const void *ptr)
3624{
3625        struct inode *inode;
3626        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3627        if (!inode)
3628                return ERR_PTR(-ENOENT);
3629
3630        inode->i_op = &proc_tid_base_inode_operations;
3631        inode->i_fop = &proc_tid_base_operations;
3632        inode->i_flags |= S_IMMUTABLE;
3633
3634        set_nlink(inode, nlink_tid);
3635        pid_update_inode(task, inode);
3636
3637        d_set_d_op(dentry, &pid_dentry_operations);
3638        return d_splice_alias(inode, dentry);
3639}
3640
3641static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3642{
3643        struct task_struct *task;
3644        struct task_struct *leader = get_proc_task(dir);
3645        unsigned tid;
3646        struct proc_fs_info *fs_info;
3647        struct pid_namespace *ns;
3648        struct dentry *result = ERR_PTR(-ENOENT);
3649
3650        if (!leader)
3651                goto out_no_task;
3652
3653        tid = name_to_int(&dentry->d_name);
3654        if (tid == ~0U)
3655                goto out;
3656
3657        fs_info = proc_sb_info(dentry->d_sb);
3658        ns = fs_info->pid_ns;
3659        rcu_read_lock();
3660        task = find_task_by_pid_ns(tid, ns);
3661        if (task)
3662                get_task_struct(task);
3663        rcu_read_unlock();
3664        if (!task)
3665                goto out;
3666        if (!same_thread_group(leader, task))
3667                goto out_drop_task;
3668
3669        result = proc_task_instantiate(dentry, task, NULL);
3670out_drop_task:
3671        put_task_struct(task);
3672out:
3673        put_task_struct(leader);
3674out_no_task:
3675        return result;
3676}
3677
3678/*
3679 * Find the first tid of a thread group to return to user space.
3680 *
3681 * Usually this is just the thread group leader, but if the users
3682 * buffer was too small or there was a seek into the middle of the
3683 * directory we have more work todo.
3684 *
3685 * In the case of a short read we start with find_task_by_pid.
3686 *
3687 * In the case of a seek we start with the leader and walk nr
3688 * threads past it.
3689 */
3690static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3691                                        struct pid_namespace *ns)
3692{
3693        struct task_struct *pos, *task;
3694        unsigned long nr = f_pos;
3695
3696        if (nr != f_pos)        /* 32bit overflow? */
3697                return NULL;
3698
3699        rcu_read_lock();
3700        task = pid_task(pid, PIDTYPE_PID);
3701        if (!task)
3702                goto fail;
3703
3704        /* Attempt to start with the tid of a thread */
3705        if (tid && nr) {
3706                pos = find_task_by_pid_ns(tid, ns);
3707                if (pos && same_thread_group(pos, task))
3708                        goto found;
3709        }
3710
3711        /* If nr exceeds the number of threads there is nothing todo */
3712        if (nr >= get_nr_threads(task))
3713                goto fail;
3714
3715        /* If we haven't found our starting place yet start
3716         * with the leader and walk nr threads forward.
3717         */
3718        pos = task = task->group_leader;
3719        do {
3720                if (!nr--)
3721                        goto found;
3722        } while_each_thread(task, pos);
3723fail:
3724        pos = NULL;
3725        goto out;
3726found:
3727        get_task_struct(pos);
3728out:
3729        rcu_read_unlock();
3730        return pos;
3731}
3732
3733/*
3734 * Find the next thread in the thread list.
3735 * Return NULL if there is an error or no next thread.
3736 *
3737 * The reference to the input task_struct is released.
3738 */
3739static struct task_struct *next_tid(struct task_struct *start)
3740{
3741        struct task_struct *pos = NULL;
3742        rcu_read_lock();
3743        if (pid_alive(start)) {
3744                pos = next_thread(start);
3745                if (thread_group_leader(pos))
3746                        pos = NULL;
3747                else
3748                        get_task_struct(pos);
3749        }
3750        rcu_read_unlock();
3751        put_task_struct(start);
3752        return pos;
3753}
3754
3755/* for the /proc/TGID/task/ directories */
3756static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3757{
3758        struct inode *inode = file_inode(file);
3759        struct task_struct *task;
3760        struct pid_namespace *ns;
3761        int tid;
3762
3763        if (proc_inode_is_dead(inode))
3764                return -ENOENT;
3765
3766        if (!dir_emit_dots(file, ctx))
3767                return 0;
3768
3769        /* f_version caches the tgid value that the last readdir call couldn't
3770         * return. lseek aka telldir automagically resets f_version to 0.
3771         */
3772        ns = proc_pid_ns(inode->i_sb);
3773        tid = (int)file->f_version;
3774        file->f_version = 0;
3775        for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3776             task;
3777             task = next_tid(task), ctx->pos++) {
3778                char name[10 + 1];
3779                unsigned int len;
3780                tid = task_pid_nr_ns(task, ns);
3781                len = snprintf(name, sizeof(name), "%u", tid);
3782                if (!proc_fill_cache(file, ctx, name, len,
3783                                proc_task_instantiate, task, NULL)) {
3784                        /* returning this tgid failed, save it as the first
3785                         * pid for the next readir call */
3786                        file->f_version = (u64)tid;
3787                        put_task_struct(task);
3788                        break;
3789                }
3790        }
3791
3792        return 0;
3793}
3794
3795static int proc_task_getattr(const struct path *path, struct kstat *stat,
3796                             u32 request_mask, unsigned int query_flags)
3797{
3798        struct inode *inode = d_inode(path->dentry);
3799        struct task_struct *p = get_proc_task(inode);
3800        generic_fillattr(inode, stat);
3801
3802        if (p) {
3803                stat->nlink += get_nr_threads(p);
3804                put_task_struct(p);
3805        }
3806
3807        return 0;
3808}
3809
3810static const struct inode_operations proc_task_inode_operations = {
3811        .lookup         = proc_task_lookup,
3812        .getattr        = proc_task_getattr,
3813        .setattr        = proc_setattr,
3814        .permission     = proc_pid_permission,
3815};
3816
3817static const struct file_operations proc_task_operations = {
3818        .read           = generic_read_dir,
3819        .iterate_shared = proc_task_readdir,
3820        .llseek         = generic_file_llseek,
3821};
3822
3823void __init set_proc_pid_nlink(void)
3824{
3825        nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3826        nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3827}
3828