linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_inode.h"
  16#include "xfs_dir2.h"
  17#include "xfs_ialloc.h"
  18#include "xfs_alloc.h"
  19#include "xfs_rtalloc.h"
  20#include "xfs_bmap.h"
  21#include "xfs_trans.h"
  22#include "xfs_trans_priv.h"
  23#include "xfs_log.h"
  24#include "xfs_error.h"
  25#include "xfs_quota.h"
  26#include "xfs_fsops.h"
  27#include "xfs_icache.h"
  28#include "xfs_sysfs.h"
  29#include "xfs_rmap_btree.h"
  30#include "xfs_refcount_btree.h"
  31#include "xfs_reflink.h"
  32#include "xfs_extent_busy.h"
  33#include "xfs_health.h"
  34#include "xfs_trace.h"
  35
  36static DEFINE_MUTEX(xfs_uuid_table_mutex);
  37static int xfs_uuid_table_size;
  38static uuid_t *xfs_uuid_table;
  39
  40void
  41xfs_uuid_table_free(void)
  42{
  43        if (xfs_uuid_table_size == 0)
  44                return;
  45        kmem_free(xfs_uuid_table);
  46        xfs_uuid_table = NULL;
  47        xfs_uuid_table_size = 0;
  48}
  49
  50/*
  51 * See if the UUID is unique among mounted XFS filesystems.
  52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  53 */
  54STATIC int
  55xfs_uuid_mount(
  56        struct xfs_mount        *mp)
  57{
  58        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
  59        int                     hole, i;
  60
  61        /* Publish UUID in struct super_block */
  62        uuid_copy(&mp->m_super->s_uuid, uuid);
  63
  64        if (mp->m_flags & XFS_MOUNT_NOUUID)
  65                return 0;
  66
  67        if (uuid_is_null(uuid)) {
  68                xfs_warn(mp, "Filesystem has null UUID - can't mount");
  69                return -EINVAL;
  70        }
  71
  72        mutex_lock(&xfs_uuid_table_mutex);
  73        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  74                if (uuid_is_null(&xfs_uuid_table[i])) {
  75                        hole = i;
  76                        continue;
  77                }
  78                if (uuid_equal(uuid, &xfs_uuid_table[i]))
  79                        goto out_duplicate;
  80        }
  81
  82        if (hole < 0) {
  83                xfs_uuid_table = krealloc(xfs_uuid_table,
  84                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  85                        GFP_KERNEL | __GFP_NOFAIL);
  86                hole = xfs_uuid_table_size++;
  87        }
  88        xfs_uuid_table[hole] = *uuid;
  89        mutex_unlock(&xfs_uuid_table_mutex);
  90
  91        return 0;
  92
  93 out_duplicate:
  94        mutex_unlock(&xfs_uuid_table_mutex);
  95        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
  96        return -EINVAL;
  97}
  98
  99STATIC void
 100xfs_uuid_unmount(
 101        struct xfs_mount        *mp)
 102{
 103        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 104        int                     i;
 105
 106        if (mp->m_flags & XFS_MOUNT_NOUUID)
 107                return;
 108
 109        mutex_lock(&xfs_uuid_table_mutex);
 110        for (i = 0; i < xfs_uuid_table_size; i++) {
 111                if (uuid_is_null(&xfs_uuid_table[i]))
 112                        continue;
 113                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 114                        continue;
 115                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 116                break;
 117        }
 118        ASSERT(i < xfs_uuid_table_size);
 119        mutex_unlock(&xfs_uuid_table_mutex);
 120}
 121
 122
 123STATIC void
 124__xfs_free_perag(
 125        struct rcu_head *head)
 126{
 127        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 128
 129        ASSERT(atomic_read(&pag->pag_ref) == 0);
 130        kmem_free(pag);
 131}
 132
 133/*
 134 * Free up the per-ag resources associated with the mount structure.
 135 */
 136STATIC void
 137xfs_free_perag(
 138        xfs_mount_t     *mp)
 139{
 140        xfs_agnumber_t  agno;
 141        struct xfs_perag *pag;
 142
 143        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 144                spin_lock(&mp->m_perag_lock);
 145                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 146                spin_unlock(&mp->m_perag_lock);
 147                ASSERT(pag);
 148                ASSERT(atomic_read(&pag->pag_ref) == 0);
 149                xfs_iunlink_destroy(pag);
 150                xfs_buf_hash_destroy(pag);
 151                call_rcu(&pag->rcu_head, __xfs_free_perag);
 152        }
 153}
 154
 155/*
 156 * Check size of device based on the (data/realtime) block count.
 157 * Note: this check is used by the growfs code as well as mount.
 158 */
 159int
 160xfs_sb_validate_fsb_count(
 161        xfs_sb_t        *sbp,
 162        uint64_t        nblocks)
 163{
 164        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 165        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 166
 167        /* Limited by ULONG_MAX of page cache index */
 168        if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 169                return -EFBIG;
 170        return 0;
 171}
 172
 173int
 174xfs_initialize_perag(
 175        xfs_mount_t     *mp,
 176        xfs_agnumber_t  agcount,
 177        xfs_agnumber_t  *maxagi)
 178{
 179        xfs_agnumber_t  index;
 180        xfs_agnumber_t  first_initialised = NULLAGNUMBER;
 181        xfs_perag_t     *pag;
 182        int             error = -ENOMEM;
 183
 184        /*
 185         * Walk the current per-ag tree so we don't try to initialise AGs
 186         * that already exist (growfs case). Allocate and insert all the
 187         * AGs we don't find ready for initialisation.
 188         */
 189        for (index = 0; index < agcount; index++) {
 190                pag = xfs_perag_get(mp, index);
 191                if (pag) {
 192                        xfs_perag_put(pag);
 193                        continue;
 194                }
 195
 196                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 197                if (!pag) {
 198                        error = -ENOMEM;
 199                        goto out_unwind_new_pags;
 200                }
 201                pag->pag_agno = index;
 202                pag->pag_mount = mp;
 203                spin_lock_init(&pag->pag_ici_lock);
 204                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 205
 206                error = xfs_buf_hash_init(pag);
 207                if (error)
 208                        goto out_free_pag;
 209                init_waitqueue_head(&pag->pagb_wait);
 210                spin_lock_init(&pag->pagb_lock);
 211                pag->pagb_count = 0;
 212                pag->pagb_tree = RB_ROOT;
 213
 214                error = radix_tree_preload(GFP_NOFS);
 215                if (error)
 216                        goto out_hash_destroy;
 217
 218                spin_lock(&mp->m_perag_lock);
 219                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 220                        WARN_ON_ONCE(1);
 221                        spin_unlock(&mp->m_perag_lock);
 222                        radix_tree_preload_end();
 223                        error = -EEXIST;
 224                        goto out_hash_destroy;
 225                }
 226                spin_unlock(&mp->m_perag_lock);
 227                radix_tree_preload_end();
 228                /* first new pag is fully initialized */
 229                if (first_initialised == NULLAGNUMBER)
 230                        first_initialised = index;
 231                error = xfs_iunlink_init(pag);
 232                if (error)
 233                        goto out_hash_destroy;
 234                spin_lock_init(&pag->pag_state_lock);
 235        }
 236
 237        index = xfs_set_inode_alloc(mp, agcount);
 238
 239        if (maxagi)
 240                *maxagi = index;
 241
 242        mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
 243        return 0;
 244
 245out_hash_destroy:
 246        xfs_buf_hash_destroy(pag);
 247out_free_pag:
 248        kmem_free(pag);
 249out_unwind_new_pags:
 250        /* unwind any prior newly initialized pags */
 251        for (index = first_initialised; index < agcount; index++) {
 252                pag = radix_tree_delete(&mp->m_perag_tree, index);
 253                if (!pag)
 254                        break;
 255                xfs_buf_hash_destroy(pag);
 256                xfs_iunlink_destroy(pag);
 257                kmem_free(pag);
 258        }
 259        return error;
 260}
 261
 262/*
 263 * xfs_readsb
 264 *
 265 * Does the initial read of the superblock.
 266 */
 267int
 268xfs_readsb(
 269        struct xfs_mount *mp,
 270        int             flags)
 271{
 272        unsigned int    sector_size;
 273        struct xfs_buf  *bp;
 274        struct xfs_sb   *sbp = &mp->m_sb;
 275        int             error;
 276        int             loud = !(flags & XFS_MFSI_QUIET);
 277        const struct xfs_buf_ops *buf_ops;
 278
 279        ASSERT(mp->m_sb_bp == NULL);
 280        ASSERT(mp->m_ddev_targp != NULL);
 281
 282        /*
 283         * For the initial read, we must guess at the sector
 284         * size based on the block device.  It's enough to
 285         * get the sb_sectsize out of the superblock and
 286         * then reread with the proper length.
 287         * We don't verify it yet, because it may not be complete.
 288         */
 289        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 290        buf_ops = NULL;
 291
 292        /*
 293         * Allocate a (locked) buffer to hold the superblock. This will be kept
 294         * around at all times to optimize access to the superblock. Therefore,
 295         * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
 296         * elevated.
 297         */
 298reread:
 299        error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 300                                      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
 301                                      buf_ops);
 302        if (error) {
 303                if (loud)
 304                        xfs_warn(mp, "SB validate failed with error %d.", error);
 305                /* bad CRC means corrupted metadata */
 306                if (error == -EFSBADCRC)
 307                        error = -EFSCORRUPTED;
 308                return error;
 309        }
 310
 311        /*
 312         * Initialize the mount structure from the superblock.
 313         */
 314        xfs_sb_from_disk(sbp, bp->b_addr);
 315
 316        /*
 317         * If we haven't validated the superblock, do so now before we try
 318         * to check the sector size and reread the superblock appropriately.
 319         */
 320        if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 321                if (loud)
 322                        xfs_warn(mp, "Invalid superblock magic number");
 323                error = -EINVAL;
 324                goto release_buf;
 325        }
 326
 327        /*
 328         * We must be able to do sector-sized and sector-aligned IO.
 329         */
 330        if (sector_size > sbp->sb_sectsize) {
 331                if (loud)
 332                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 333                                sector_size, sbp->sb_sectsize);
 334                error = -ENOSYS;
 335                goto release_buf;
 336        }
 337
 338        if (buf_ops == NULL) {
 339                /*
 340                 * Re-read the superblock so the buffer is correctly sized,
 341                 * and properly verified.
 342                 */
 343                xfs_buf_relse(bp);
 344                sector_size = sbp->sb_sectsize;
 345                buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 346                goto reread;
 347        }
 348
 349        xfs_reinit_percpu_counters(mp);
 350
 351        /* no need to be quiet anymore, so reset the buf ops */
 352        bp->b_ops = &xfs_sb_buf_ops;
 353
 354        mp->m_sb_bp = bp;
 355        xfs_buf_unlock(bp);
 356        return 0;
 357
 358release_buf:
 359        xfs_buf_relse(bp);
 360        return error;
 361}
 362
 363/*
 364 * If the sunit/swidth change would move the precomputed root inode value, we
 365 * must reject the ondisk change because repair will stumble over that.
 366 * However, we allow the mount to proceed because we never rejected this
 367 * combination before.  Returns true to update the sb, false otherwise.
 368 */
 369static inline int
 370xfs_check_new_dalign(
 371        struct xfs_mount        *mp,
 372        int                     new_dalign,
 373        bool                    *update_sb)
 374{
 375        struct xfs_sb           *sbp = &mp->m_sb;
 376        xfs_ino_t               calc_ino;
 377
 378        calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
 379        trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
 380
 381        if (sbp->sb_rootino == calc_ino) {
 382                *update_sb = true;
 383                return 0;
 384        }
 385
 386        xfs_warn(mp,
 387"Cannot change stripe alignment; would require moving root inode.");
 388
 389        /*
 390         * XXX: Next time we add a new incompat feature, this should start
 391         * returning -EINVAL to fail the mount.  Until then, spit out a warning
 392         * that we're ignoring the administrator's instructions.
 393         */
 394        xfs_warn(mp, "Skipping superblock stripe alignment update.");
 395        *update_sb = false;
 396        return 0;
 397}
 398
 399/*
 400 * If we were provided with new sunit/swidth values as mount options, make sure
 401 * that they pass basic alignment and superblock feature checks, and convert
 402 * them into the same units (FSB) that everything else expects.  This step
 403 * /must/ be done before computing the inode geometry.
 404 */
 405STATIC int
 406xfs_validate_new_dalign(
 407        struct xfs_mount        *mp)
 408{
 409        if (mp->m_dalign == 0)
 410                return 0;
 411
 412        /*
 413         * If stripe unit and stripe width are not multiples
 414         * of the fs blocksize turn off alignment.
 415         */
 416        if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 417            (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 418                xfs_warn(mp,
 419        "alignment check failed: sunit/swidth vs. blocksize(%d)",
 420                        mp->m_sb.sb_blocksize);
 421                return -EINVAL;
 422        } else {
 423                /*
 424                 * Convert the stripe unit and width to FSBs.
 425                 */
 426                mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 427                if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
 428                        xfs_warn(mp,
 429                "alignment check failed: sunit/swidth vs. agsize(%d)",
 430                                 mp->m_sb.sb_agblocks);
 431                        return -EINVAL;
 432                } else if (mp->m_dalign) {
 433                        mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 434                } else {
 435                        xfs_warn(mp,
 436                "alignment check failed: sunit(%d) less than bsize(%d)",
 437                                 mp->m_dalign, mp->m_sb.sb_blocksize);
 438                        return -EINVAL;
 439                }
 440        }
 441
 442        if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
 443                xfs_warn(mp,
 444"cannot change alignment: superblock does not support data alignment");
 445                return -EINVAL;
 446        }
 447
 448        return 0;
 449}
 450
 451/* Update alignment values based on mount options and sb values. */
 452STATIC int
 453xfs_update_alignment(
 454        struct xfs_mount        *mp)
 455{
 456        struct xfs_sb           *sbp = &mp->m_sb;
 457
 458        if (mp->m_dalign) {
 459                bool            update_sb;
 460                int             error;
 461
 462                if (sbp->sb_unit == mp->m_dalign &&
 463                    sbp->sb_width == mp->m_swidth)
 464                        return 0;
 465
 466                error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
 467                if (error || !update_sb)
 468                        return error;
 469
 470                sbp->sb_unit = mp->m_dalign;
 471                sbp->sb_width = mp->m_swidth;
 472                mp->m_update_sb = true;
 473        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 474                    xfs_sb_version_hasdalign(&mp->m_sb)) {
 475                mp->m_dalign = sbp->sb_unit;
 476                mp->m_swidth = sbp->sb_width;
 477        }
 478
 479        return 0;
 480}
 481
 482/*
 483 * precalculate the low space thresholds for dynamic speculative preallocation.
 484 */
 485void
 486xfs_set_low_space_thresholds(
 487        struct xfs_mount        *mp)
 488{
 489        int i;
 490
 491        for (i = 0; i < XFS_LOWSP_MAX; i++) {
 492                uint64_t space = mp->m_sb.sb_dblocks;
 493
 494                do_div(space, 100);
 495                mp->m_low_space[i] = space * (i + 1);
 496        }
 497}
 498
 499/*
 500 * Check that the data (and log if separate) is an ok size.
 501 */
 502STATIC int
 503xfs_check_sizes(
 504        struct xfs_mount *mp)
 505{
 506        struct xfs_buf  *bp;
 507        xfs_daddr_t     d;
 508        int             error;
 509
 510        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 511        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 512                xfs_warn(mp, "filesystem size mismatch detected");
 513                return -EFBIG;
 514        }
 515        error = xfs_buf_read_uncached(mp->m_ddev_targp,
 516                                        d - XFS_FSS_TO_BB(mp, 1),
 517                                        XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 518        if (error) {
 519                xfs_warn(mp, "last sector read failed");
 520                return error;
 521        }
 522        xfs_buf_relse(bp);
 523
 524        if (mp->m_logdev_targp == mp->m_ddev_targp)
 525                return 0;
 526
 527        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 528        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 529                xfs_warn(mp, "log size mismatch detected");
 530                return -EFBIG;
 531        }
 532        error = xfs_buf_read_uncached(mp->m_logdev_targp,
 533                                        d - XFS_FSB_TO_BB(mp, 1),
 534                                        XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 535        if (error) {
 536                xfs_warn(mp, "log device read failed");
 537                return error;
 538        }
 539        xfs_buf_relse(bp);
 540        return 0;
 541}
 542
 543/*
 544 * Clear the quotaflags in memory and in the superblock.
 545 */
 546int
 547xfs_mount_reset_sbqflags(
 548        struct xfs_mount        *mp)
 549{
 550        mp->m_qflags = 0;
 551
 552        /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 553        if (mp->m_sb.sb_qflags == 0)
 554                return 0;
 555        spin_lock(&mp->m_sb_lock);
 556        mp->m_sb.sb_qflags = 0;
 557        spin_unlock(&mp->m_sb_lock);
 558
 559        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 560                return 0;
 561
 562        return xfs_sync_sb(mp, false);
 563}
 564
 565uint64_t
 566xfs_default_resblks(xfs_mount_t *mp)
 567{
 568        uint64_t resblks;
 569
 570        /*
 571         * We default to 5% or 8192 fsbs of space reserved, whichever is
 572         * smaller.  This is intended to cover concurrent allocation
 573         * transactions when we initially hit enospc. These each require a 4
 574         * block reservation. Hence by default we cover roughly 2000 concurrent
 575         * allocation reservations.
 576         */
 577        resblks = mp->m_sb.sb_dblocks;
 578        do_div(resblks, 20);
 579        resblks = min_t(uint64_t, resblks, 8192);
 580        return resblks;
 581}
 582
 583/* Ensure the summary counts are correct. */
 584STATIC int
 585xfs_check_summary_counts(
 586        struct xfs_mount        *mp)
 587{
 588        /*
 589         * The AG0 superblock verifier rejects in-progress filesystems,
 590         * so we should never see the flag set this far into mounting.
 591         */
 592        if (mp->m_sb.sb_inprogress) {
 593                xfs_err(mp, "sb_inprogress set after log recovery??");
 594                WARN_ON(1);
 595                return -EFSCORRUPTED;
 596        }
 597
 598        /*
 599         * Now the log is mounted, we know if it was an unclean shutdown or
 600         * not. If it was, with the first phase of recovery has completed, we
 601         * have consistent AG blocks on disk. We have not recovered EFIs yet,
 602         * but they are recovered transactionally in the second recovery phase
 603         * later.
 604         *
 605         * If the log was clean when we mounted, we can check the summary
 606         * counters.  If any of them are obviously incorrect, we can recompute
 607         * them from the AGF headers in the next step.
 608         */
 609        if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 610            (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
 611             !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
 612             mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
 613                xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
 614
 615        /*
 616         * We can safely re-initialise incore superblock counters from the
 617         * per-ag data. These may not be correct if the filesystem was not
 618         * cleanly unmounted, so we waited for recovery to finish before doing
 619         * this.
 620         *
 621         * If the filesystem was cleanly unmounted or the previous check did
 622         * not flag anything weird, then we can trust the values in the
 623         * superblock to be correct and we don't need to do anything here.
 624         * Otherwise, recalculate the summary counters.
 625         */
 626        if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
 627             XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
 628            !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
 629                return 0;
 630
 631        return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
 632}
 633
 634/*
 635 * This function does the following on an initial mount of a file system:
 636 *      - reads the superblock from disk and init the mount struct
 637 *      - if we're a 32-bit kernel, do a size check on the superblock
 638 *              so we don't mount terabyte filesystems
 639 *      - init mount struct realtime fields
 640 *      - allocate inode hash table for fs
 641 *      - init directory manager
 642 *      - perform recovery and init the log manager
 643 */
 644int
 645xfs_mountfs(
 646        struct xfs_mount        *mp)
 647{
 648        struct xfs_sb           *sbp = &(mp->m_sb);
 649        struct xfs_inode        *rip;
 650        struct xfs_ino_geometry *igeo = M_IGEO(mp);
 651        uint64_t                resblks;
 652        uint                    quotamount = 0;
 653        uint                    quotaflags = 0;
 654        int                     error = 0;
 655
 656        xfs_sb_mount_common(mp, sbp);
 657
 658        /*
 659         * Check for a mismatched features2 values.  Older kernels read & wrote
 660         * into the wrong sb offset for sb_features2 on some platforms due to
 661         * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 662         * which made older superblock reading/writing routines swap it as a
 663         * 64-bit value.
 664         *
 665         * For backwards compatibility, we make both slots equal.
 666         *
 667         * If we detect a mismatched field, we OR the set bits into the existing
 668         * features2 field in case it has already been modified; we don't want
 669         * to lose any features.  We then update the bad location with the ORed
 670         * value so that older kernels will see any features2 flags. The
 671         * superblock writeback code ensures the new sb_features2 is copied to
 672         * sb_bad_features2 before it is logged or written to disk.
 673         */
 674        if (xfs_sb_has_mismatched_features2(sbp)) {
 675                xfs_warn(mp, "correcting sb_features alignment problem");
 676                sbp->sb_features2 |= sbp->sb_bad_features2;
 677                mp->m_update_sb = true;
 678
 679                /*
 680                 * Re-check for ATTR2 in case it was found in bad_features2
 681                 * slot.
 682                 */
 683                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 684                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 685                        mp->m_flags |= XFS_MOUNT_ATTR2;
 686        }
 687
 688        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 689           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 690                xfs_sb_version_removeattr2(&mp->m_sb);
 691                mp->m_update_sb = true;
 692
 693                /* update sb_versionnum for the clearing of the morebits */
 694                if (!sbp->sb_features2)
 695                        mp->m_update_sb = true;
 696        }
 697
 698        /* always use v2 inodes by default now */
 699        if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 700                mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 701                mp->m_update_sb = true;
 702        }
 703
 704        /*
 705         * If we were given new sunit/swidth options, do some basic validation
 706         * checks and convert the incore dalign and swidth values to the
 707         * same units (FSB) that everything else uses.  This /must/ happen
 708         * before computing the inode geometry.
 709         */
 710        error = xfs_validate_new_dalign(mp);
 711        if (error)
 712                goto out;
 713
 714        xfs_alloc_compute_maxlevels(mp);
 715        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 716        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 717        xfs_ialloc_setup_geometry(mp);
 718        xfs_rmapbt_compute_maxlevels(mp);
 719        xfs_refcountbt_compute_maxlevels(mp);
 720
 721        /*
 722         * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
 723         * is NOT aligned turn off m_dalign since allocator alignment is within
 724         * an ag, therefore ag has to be aligned at stripe boundary.  Note that
 725         * we must compute the free space and rmap btree geometry before doing
 726         * this.
 727         */
 728        error = xfs_update_alignment(mp);
 729        if (error)
 730                goto out;
 731
 732        /* enable fail_at_unmount as default */
 733        mp->m_fail_unmount = true;
 734
 735        error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
 736                               NULL, mp->m_super->s_id);
 737        if (error)
 738                goto out;
 739
 740        error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
 741                               &mp->m_kobj, "stats");
 742        if (error)
 743                goto out_remove_sysfs;
 744
 745        error = xfs_error_sysfs_init(mp);
 746        if (error)
 747                goto out_del_stats;
 748
 749        error = xfs_errortag_init(mp);
 750        if (error)
 751                goto out_remove_error_sysfs;
 752
 753        error = xfs_uuid_mount(mp);
 754        if (error)
 755                goto out_remove_errortag;
 756
 757        /*
 758         * Update the preferred write size based on the information from the
 759         * on-disk superblock.
 760         */
 761        mp->m_allocsize_log =
 762                max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
 763        mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
 764
 765        /* set the low space thresholds for dynamic preallocation */
 766        xfs_set_low_space_thresholds(mp);
 767
 768        /*
 769         * If enabled, sparse inode chunk alignment is expected to match the
 770         * cluster size. Full inode chunk alignment must match the chunk size,
 771         * but that is checked on sb read verification...
 772         */
 773        if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
 774            mp->m_sb.sb_spino_align !=
 775                        XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
 776                xfs_warn(mp,
 777        "Sparse inode block alignment (%u) must match cluster size (%llu).",
 778                         mp->m_sb.sb_spino_align,
 779                         XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
 780                error = -EINVAL;
 781                goto out_remove_uuid;
 782        }
 783
 784        /*
 785         * Check that the data (and log if separate) is an ok size.
 786         */
 787        error = xfs_check_sizes(mp);
 788        if (error)
 789                goto out_remove_uuid;
 790
 791        /*
 792         * Initialize realtime fields in the mount structure
 793         */
 794        error = xfs_rtmount_init(mp);
 795        if (error) {
 796                xfs_warn(mp, "RT mount failed");
 797                goto out_remove_uuid;
 798        }
 799
 800        /*
 801         *  Copies the low order bits of the timestamp and the randomly
 802         *  set "sequence" number out of a UUID.
 803         */
 804        mp->m_fixedfsid[0] =
 805                (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
 806                 get_unaligned_be16(&sbp->sb_uuid.b[4]);
 807        mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
 808
 809        error = xfs_da_mount(mp);
 810        if (error) {
 811                xfs_warn(mp, "Failed dir/attr init: %d", error);
 812                goto out_remove_uuid;
 813        }
 814
 815        /*
 816         * Initialize the precomputed transaction reservations values.
 817         */
 818        xfs_trans_init(mp);
 819
 820        /*
 821         * Allocate and initialize the per-ag data.
 822         */
 823        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 824        if (error) {
 825                xfs_warn(mp, "Failed per-ag init: %d", error);
 826                goto out_free_dir;
 827        }
 828
 829        if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
 830                xfs_warn(mp, "no log defined");
 831                error = -EFSCORRUPTED;
 832                goto out_free_perag;
 833        }
 834
 835        /*
 836         * Log's mount-time initialization. The first part of recovery can place
 837         * some items on the AIL, to be handled when recovery is finished or
 838         * cancelled.
 839         */
 840        error = xfs_log_mount(mp, mp->m_logdev_targp,
 841                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 842                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 843        if (error) {
 844                xfs_warn(mp, "log mount failed");
 845                goto out_fail_wait;
 846        }
 847
 848        /* Make sure the summary counts are ok. */
 849        error = xfs_check_summary_counts(mp);
 850        if (error)
 851                goto out_log_dealloc;
 852
 853        /*
 854         * Get and sanity-check the root inode.
 855         * Save the pointer to it in the mount structure.
 856         */
 857        error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
 858                         XFS_ILOCK_EXCL, &rip);
 859        if (error) {
 860                xfs_warn(mp,
 861                        "Failed to read root inode 0x%llx, error %d",
 862                        sbp->sb_rootino, -error);
 863                goto out_log_dealloc;
 864        }
 865
 866        ASSERT(rip != NULL);
 867
 868        if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
 869                xfs_warn(mp, "corrupted root inode %llu: not a directory",
 870                        (unsigned long long)rip->i_ino);
 871                xfs_iunlock(rip, XFS_ILOCK_EXCL);
 872                error = -EFSCORRUPTED;
 873                goto out_rele_rip;
 874        }
 875        mp->m_rootip = rip;     /* save it */
 876
 877        xfs_iunlock(rip, XFS_ILOCK_EXCL);
 878
 879        /*
 880         * Initialize realtime inode pointers in the mount structure
 881         */
 882        error = xfs_rtmount_inodes(mp);
 883        if (error) {
 884                /*
 885                 * Free up the root inode.
 886                 */
 887                xfs_warn(mp, "failed to read RT inodes");
 888                goto out_rele_rip;
 889        }
 890
 891        /*
 892         * If this is a read-only mount defer the superblock updates until
 893         * the next remount into writeable mode.  Otherwise we would never
 894         * perform the update e.g. for the root filesystem.
 895         */
 896        if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 897                error = xfs_sync_sb(mp, false);
 898                if (error) {
 899                        xfs_warn(mp, "failed to write sb changes");
 900                        goto out_rtunmount;
 901                }
 902        }
 903
 904        /*
 905         * Initialise the XFS quota management subsystem for this mount
 906         */
 907        if (XFS_IS_QUOTA_RUNNING(mp)) {
 908                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 909                if (error)
 910                        goto out_rtunmount;
 911        } else {
 912                ASSERT(!XFS_IS_QUOTA_ON(mp));
 913
 914                /*
 915                 * If a file system had quotas running earlier, but decided to
 916                 * mount without -o uquota/pquota/gquota options, revoke the
 917                 * quotachecked license.
 918                 */
 919                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 920                        xfs_notice(mp, "resetting quota flags");
 921                        error = xfs_mount_reset_sbqflags(mp);
 922                        if (error)
 923                                goto out_rtunmount;
 924                }
 925        }
 926
 927        /*
 928         * Finish recovering the file system.  This part needed to be delayed
 929         * until after the root and real-time bitmap inodes were consistently
 930         * read in.
 931         */
 932        error = xfs_log_mount_finish(mp);
 933        if (error) {
 934                xfs_warn(mp, "log mount finish failed");
 935                goto out_rtunmount;
 936        }
 937
 938        /*
 939         * Now the log is fully replayed, we can transition to full read-only
 940         * mode for read-only mounts. This will sync all the metadata and clean
 941         * the log so that the recovery we just performed does not have to be
 942         * replayed again on the next mount.
 943         *
 944         * We use the same quiesce mechanism as the rw->ro remount, as they are
 945         * semantically identical operations.
 946         */
 947        if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
 948                                                        XFS_MOUNT_RDONLY) {
 949                xfs_quiesce_attr(mp);
 950        }
 951
 952        /*
 953         * Complete the quota initialisation, post-log-replay component.
 954         */
 955        if (quotamount) {
 956                ASSERT(mp->m_qflags == 0);
 957                mp->m_qflags = quotaflags;
 958
 959                xfs_qm_mount_quotas(mp);
 960        }
 961
 962        /*
 963         * Now we are mounted, reserve a small amount of unused space for
 964         * privileged transactions. This is needed so that transaction
 965         * space required for critical operations can dip into this pool
 966         * when at ENOSPC. This is needed for operations like create with
 967         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 968         * are not allowed to use this reserved space.
 969         *
 970         * This may drive us straight to ENOSPC on mount, but that implies
 971         * we were already there on the last unmount. Warn if this occurs.
 972         */
 973        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 974                resblks = xfs_default_resblks(mp);
 975                error = xfs_reserve_blocks(mp, &resblks, NULL);
 976                if (error)
 977                        xfs_warn(mp,
 978        "Unable to allocate reserve blocks. Continuing without reserve pool.");
 979
 980                /* Recover any CoW blocks that never got remapped. */
 981                error = xfs_reflink_recover_cow(mp);
 982                if (error) {
 983                        xfs_err(mp,
 984        "Error %d recovering leftover CoW allocations.", error);
 985                        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 986                        goto out_quota;
 987                }
 988
 989                /* Reserve AG blocks for future btree expansion. */
 990                error = xfs_fs_reserve_ag_blocks(mp);
 991                if (error && error != -ENOSPC)
 992                        goto out_agresv;
 993        }
 994
 995        return 0;
 996
 997 out_agresv:
 998        xfs_fs_unreserve_ag_blocks(mp);
 999 out_quota:
1000        xfs_qm_unmount_quotas(mp);
1001 out_rtunmount:
1002        xfs_rtunmount_inodes(mp);
1003 out_rele_rip:
1004        xfs_irele(rip);
1005        /* Clean out dquots that might be in memory after quotacheck. */
1006        xfs_qm_unmount(mp);
1007        /*
1008         * Cancel all delayed reclaim work and reclaim the inodes directly.
1009         * We have to do this /after/ rtunmount and qm_unmount because those
1010         * two will have scheduled delayed reclaim for the rt/quota inodes.
1011         *
1012         * This is slightly different from the unmountfs call sequence
1013         * because we could be tearing down a partially set up mount.  In
1014         * particular, if log_mount_finish fails we bail out without calling
1015         * qm_unmount_quotas and therefore rely on qm_unmount to release the
1016         * quota inodes.
1017         */
1018        cancel_delayed_work_sync(&mp->m_reclaim_work);
1019        xfs_reclaim_inodes(mp);
1020        xfs_health_unmount(mp);
1021 out_log_dealloc:
1022        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1023        xfs_log_mount_cancel(mp);
1024 out_fail_wait:
1025        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1026                xfs_wait_buftarg(mp->m_logdev_targp);
1027        xfs_wait_buftarg(mp->m_ddev_targp);
1028 out_free_perag:
1029        xfs_free_perag(mp);
1030 out_free_dir:
1031        xfs_da_unmount(mp);
1032 out_remove_uuid:
1033        xfs_uuid_unmount(mp);
1034 out_remove_errortag:
1035        xfs_errortag_del(mp);
1036 out_remove_error_sysfs:
1037        xfs_error_sysfs_del(mp);
1038 out_del_stats:
1039        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1040 out_remove_sysfs:
1041        xfs_sysfs_del(&mp->m_kobj);
1042 out:
1043        return error;
1044}
1045
1046/*
1047 * This flushes out the inodes,dquots and the superblock, unmounts the
1048 * log and makes sure that incore structures are freed.
1049 */
1050void
1051xfs_unmountfs(
1052        struct xfs_mount        *mp)
1053{
1054        uint64_t                resblks;
1055        int                     error;
1056
1057        xfs_stop_block_reaping(mp);
1058        xfs_fs_unreserve_ag_blocks(mp);
1059        xfs_qm_unmount_quotas(mp);
1060        xfs_rtunmount_inodes(mp);
1061        xfs_irele(mp->m_rootip);
1062
1063        /*
1064         * We can potentially deadlock here if we have an inode cluster
1065         * that has been freed has its buffer still pinned in memory because
1066         * the transaction is still sitting in a iclog. The stale inodes
1067         * on that buffer will be pinned to the buffer until the
1068         * transaction hits the disk and the callbacks run. Pushing the AIL will
1069         * skip the stale inodes and may never see the pinned buffer, so
1070         * nothing will push out the iclog and unpin the buffer. Hence we
1071         * need to force the log here to ensure all items are flushed into the
1072         * AIL before we go any further.
1073         */
1074        xfs_log_force(mp, XFS_LOG_SYNC);
1075
1076        /*
1077         * Wait for all busy extents to be freed, including completion of
1078         * any discard operation.
1079         */
1080        xfs_extent_busy_wait_all(mp);
1081        flush_workqueue(xfs_discard_wq);
1082
1083        /*
1084         * We now need to tell the world we are unmounting. This will allow
1085         * us to detect that the filesystem is going away and we should error
1086         * out anything that we have been retrying in the background. This will
1087         * prevent neverending retries in AIL pushing from hanging the unmount.
1088         */
1089        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1090
1091        /*
1092         * Flush all pending changes from the AIL.
1093         */
1094        xfs_ail_push_all_sync(mp->m_ail);
1095
1096        /*
1097         * Reclaim all inodes. At this point there should be no dirty inodes and
1098         * none should be pinned or locked. Stop background inode reclaim here
1099         * if it is still running.
1100         */
1101        cancel_delayed_work_sync(&mp->m_reclaim_work);
1102        xfs_reclaim_inodes(mp);
1103        xfs_health_unmount(mp);
1104
1105        xfs_qm_unmount(mp);
1106
1107        /*
1108         * Unreserve any blocks we have so that when we unmount we don't account
1109         * the reserved free space as used. This is really only necessary for
1110         * lazy superblock counting because it trusts the incore superblock
1111         * counters to be absolutely correct on clean unmount.
1112         *
1113         * We don't bother correcting this elsewhere for lazy superblock
1114         * counting because on mount of an unclean filesystem we reconstruct the
1115         * correct counter value and this is irrelevant.
1116         *
1117         * For non-lazy counter filesystems, this doesn't matter at all because
1118         * we only every apply deltas to the superblock and hence the incore
1119         * value does not matter....
1120         */
1121        resblks = 0;
1122        error = xfs_reserve_blocks(mp, &resblks, NULL);
1123        if (error)
1124                xfs_warn(mp, "Unable to free reserved block pool. "
1125                                "Freespace may not be correct on next mount.");
1126
1127        error = xfs_log_sbcount(mp);
1128        if (error)
1129                xfs_warn(mp, "Unable to update superblock counters. "
1130                                "Freespace may not be correct on next mount.");
1131
1132
1133        xfs_log_unmount(mp);
1134        xfs_da_unmount(mp);
1135        xfs_uuid_unmount(mp);
1136
1137#if defined(DEBUG)
1138        xfs_errortag_clearall(mp);
1139#endif
1140        xfs_free_perag(mp);
1141
1142        xfs_errortag_del(mp);
1143        xfs_error_sysfs_del(mp);
1144        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1145        xfs_sysfs_del(&mp->m_kobj);
1146}
1147
1148/*
1149 * Determine whether modifications can proceed. The caller specifies the minimum
1150 * freeze level for which modifications should not be allowed. This allows
1151 * certain operations to proceed while the freeze sequence is in progress, if
1152 * necessary.
1153 */
1154bool
1155xfs_fs_writable(
1156        struct xfs_mount        *mp,
1157        int                     level)
1158{
1159        ASSERT(level > SB_UNFROZEN);
1160        if ((mp->m_super->s_writers.frozen >= level) ||
1161            XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1162                return false;
1163
1164        return true;
1165}
1166
1167/*
1168 * xfs_log_sbcount
1169 *
1170 * Sync the superblock counters to disk.
1171 *
1172 * Note this code can be called during the process of freezing, so we use the
1173 * transaction allocator that does not block when the transaction subsystem is
1174 * in its frozen state.
1175 */
1176int
1177xfs_log_sbcount(xfs_mount_t *mp)
1178{
1179        /* allow this to proceed during the freeze sequence... */
1180        if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1181                return 0;
1182
1183        /*
1184         * we don't need to do this if we are updating the superblock
1185         * counters on every modification.
1186         */
1187        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1188                return 0;
1189
1190        return xfs_sync_sb(mp, true);
1191}
1192
1193/*
1194 * Deltas for the block count can vary from 1 to very large, but lock contention
1195 * only occurs on frequent small block count updates such as in the delayed
1196 * allocation path for buffered writes (page a time updates). Hence we set
1197 * a large batch count (1024) to minimise global counter updates except when
1198 * we get near to ENOSPC and we have to be very accurate with our updates.
1199 */
1200#define XFS_FDBLOCKS_BATCH      1024
1201int
1202xfs_mod_fdblocks(
1203        struct xfs_mount        *mp,
1204        int64_t                 delta,
1205        bool                    rsvd)
1206{
1207        int64_t                 lcounter;
1208        long long               res_used;
1209        s32                     batch;
1210
1211        if (delta > 0) {
1212                /*
1213                 * If the reserve pool is depleted, put blocks back into it
1214                 * first. Most of the time the pool is full.
1215                 */
1216                if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1217                        percpu_counter_add(&mp->m_fdblocks, delta);
1218                        return 0;
1219                }
1220
1221                spin_lock(&mp->m_sb_lock);
1222                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1223
1224                if (res_used > delta) {
1225                        mp->m_resblks_avail += delta;
1226                } else {
1227                        delta -= res_used;
1228                        mp->m_resblks_avail = mp->m_resblks;
1229                        percpu_counter_add(&mp->m_fdblocks, delta);
1230                }
1231                spin_unlock(&mp->m_sb_lock);
1232                return 0;
1233        }
1234
1235        /*
1236         * Taking blocks away, need to be more accurate the closer we
1237         * are to zero.
1238         *
1239         * If the counter has a value of less than 2 * max batch size,
1240         * then make everything serialise as we are real close to
1241         * ENOSPC.
1242         */
1243        if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1244                                     XFS_FDBLOCKS_BATCH) < 0)
1245                batch = 1;
1246        else
1247                batch = XFS_FDBLOCKS_BATCH;
1248
1249        percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1250        if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1251                                     XFS_FDBLOCKS_BATCH) >= 0) {
1252                /* we had space! */
1253                return 0;
1254        }
1255
1256        /*
1257         * lock up the sb for dipping into reserves before releasing the space
1258         * that took us to ENOSPC.
1259         */
1260        spin_lock(&mp->m_sb_lock);
1261        percpu_counter_add(&mp->m_fdblocks, -delta);
1262        if (!rsvd)
1263                goto fdblocks_enospc;
1264
1265        lcounter = (long long)mp->m_resblks_avail + delta;
1266        if (lcounter >= 0) {
1267                mp->m_resblks_avail = lcounter;
1268                spin_unlock(&mp->m_sb_lock);
1269                return 0;
1270        }
1271        xfs_warn_once(mp,
1272"Reserve blocks depleted! Consider increasing reserve pool size.");
1273
1274fdblocks_enospc:
1275        spin_unlock(&mp->m_sb_lock);
1276        return -ENOSPC;
1277}
1278
1279int
1280xfs_mod_frextents(
1281        struct xfs_mount        *mp,
1282        int64_t                 delta)
1283{
1284        int64_t                 lcounter;
1285        int                     ret = 0;
1286
1287        spin_lock(&mp->m_sb_lock);
1288        lcounter = mp->m_sb.sb_frextents + delta;
1289        if (lcounter < 0)
1290                ret = -ENOSPC;
1291        else
1292                mp->m_sb.sb_frextents = lcounter;
1293        spin_unlock(&mp->m_sb_lock);
1294        return ret;
1295}
1296
1297/*
1298 * Used to free the superblock along various error paths.
1299 */
1300void
1301xfs_freesb(
1302        struct xfs_mount        *mp)
1303{
1304        struct xfs_buf          *bp = mp->m_sb_bp;
1305
1306        xfs_buf_lock(bp);
1307        mp->m_sb_bp = NULL;
1308        xfs_buf_relse(bp);
1309}
1310
1311/*
1312 * If the underlying (data/log/rt) device is readonly, there are some
1313 * operations that cannot proceed.
1314 */
1315int
1316xfs_dev_is_read_only(
1317        struct xfs_mount        *mp,
1318        char                    *message)
1319{
1320        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1321            xfs_readonly_buftarg(mp->m_logdev_targp) ||
1322            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1323                xfs_notice(mp, "%s required on read-only device.", message);
1324                xfs_notice(mp, "write access unavailable, cannot proceed.");
1325                return -EROFS;
1326        }
1327        return 0;
1328}
1329
1330/* Force the summary counters to be recalculated at next mount. */
1331void
1332xfs_force_summary_recalc(
1333        struct xfs_mount        *mp)
1334{
1335        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1336                return;
1337
1338        xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1339}
1340
1341/*
1342 * Update the in-core delayed block counter.
1343 *
1344 * We prefer to update the counter without having to take a spinlock for every
1345 * counter update (i.e. batching).  Each change to delayed allocation
1346 * reservations can change can easily exceed the default percpu counter
1347 * batching, so we use a larger batch factor here.
1348 *
1349 * Note that we don't currently have any callers requiring fast summation
1350 * (e.g. percpu_counter_read) so we can use a big batch value here.
1351 */
1352#define XFS_DELALLOC_BATCH      (4096)
1353void
1354xfs_mod_delalloc(
1355        struct xfs_mount        *mp,
1356        int64_t                 delta)
1357{
1358        percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1359                        XFS_DELALLOC_BATCH);
1360}
1361